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ABSTRACT
We present here two novel algorithms for simulated tempering simulations, which break the detailed balance condition (DBC) but sat-
isfy the skewed detailed balance to ensure invariance of the target distribution. The irreversible methods we present here are based on
Gibbs sampling and concern breaking DBC at the update scheme of the temperature swaps. We utilize three systems as a test bed for
our methods: a Markov chain Monte Carlo simulation on a simple system described by a one-dimensional double well potential, the
Ising model, and molecular dynamics simulations on alanine pentapeptide (ALA5). The relaxation times of inverse temperature, mag-
netic susceptibility, and energy density for the Ising model indicate clear gains in sampling efficiency over conventional Gibbs sam-
pling techniques with DBC and also over the conventionally used simulated tempering with the Metropolis–Hastings (MH) scheme.
Simulations on ALA5 with a large number of temperatures indicate distinct gains in mixing times for inverse temperature and conse-
quently the energy of the system compared to conventional MH. With no additional computational overhead, our methods were found
to be more efficient alternatives to the conventionally used simulated tempering methods with DBC. Our algorithms should be partic-
ularly advantageous in simulations of large systems with many temperature ladders, as our algorithms showed a more favorable con-
stant scaling in Ising spin systems as compared with both reversible and irreversible MH algorithms. In future applications, our irre-
versible methods can also be easily tailored to utilize a given dynamical variable other than temperature to flatten rugged free energy
landscapes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025775., s

INTRODUCTION

Algorithms based on Markov Chain Monte Carlo (MCMC)
techniques are the most commonly used in Monte Carlo (MC) sim-
ulations. The broadly applicable Metropolis–Hastings (MH) algo-
rithm1,2 has been implemented in various fields including physics,3,4

chemical and biological sciences,5,6 and economics.7 In most cases,
one is interested in sampling from intractable multi-dimensional
probability distributions with the intention to estimate the expec-
tation value of an observable with respect to the given distribution.

However, when we consider the simulation of complex physical sys-
tems, we often find that it remains difficult to efficiently sample
them from a target distribution with conventional MCMC algo-
rithms such as the Metropolis–Hastings1,2 (MH) and the Gibbs sam-
pler.8 Particularly, systems with multiple minimum energy states,
such as biopolymers and spin glasses, can often get trapped in local
minima.

Extended ensemble MCMC techniques9 such as multi-
canonical methods,10,11 the closely related transition matrix Monte
Carlo methods,78–80 and simulated12 and parallel tempering14–17
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provide a solution to explore the state space more efficiently than
it is possible with conventional MCMC methods (see also the work
of Swendsen and Wang13 for an independently developed replica
Monte Carlo technique for spin glasses). In this paper, we focus on
the simulated tempering method.12 In simulated tempering, unlike
in conventional methods, the temperature in the Gibbs–Boltzmann
distribution is also treated as a dynamical variable along with the
configuration. A single replica of the system is therefore simulated
with conventional MCMC or Molecular Dynamics (MD), while a
temperature change is attempted periodically from among a prede-
termined discrete set of values. Indeed, at higher temperatures, free
energy barriers are lower, and it is therefore more probable that at
a higher temperature, the system may cross a free energy barrier
and then, upon cooling off again, visit a different energy minimum.
The exploration of the temperature space therefore allows the sys-
tem to escape local minimum energy states by simply transitioning
to higher temperatures, and this allows broad sampling of the state
space at high temperatures and thorough sampling around local
energy minima at low temperatures.

Convergence to the correct enlarged target distribution and
therefore invariance at all chosen temperatures can be ensured by
a careful construction of the transition rate for temperature change.
The most commonly used criterion for temperature change is the
MH algorithm,2 which ensures invariance through the detailed bal-
ance condition (DBC). However, the DBC is not a strict require-
ment for invariance.18–20 Several studies have shown that breaking
it enhances sampling efficiency21–27,29–32 and may speed up conver-
gence to the target distribution.33,34 The lifting framework,21 which
violates DBC, has been implemented for several systems.23,25–27,29–32

One of the earlier applications of the lifting technique to one-
dimensional (1D) random walk showed a square root reduction in
the mixing time,21 which may be an optimal improvement through
the lifting framework.22 In simulated tempering,12 the dynamics of
the system in temperature space with K predetermined tempera-
tures can be comparable to a random walk on the one-dimensional
lattice with K sites. In this light, Sakai and Hukushima have imple-
mented the lifting framework with the skewed detailed balance con-
dition (SDBC) to the update scheme of the inverse temperature30

and have demonstrated (with the Ising model as a test system) a
considerable improvement in the relaxation dynamics of the inverse
temperature compared to the standard updating scheme of MH
with DBC.

In simulated tempering, the temperature update scheme with
the Gibbs sampler (GS)8 and its variant, the Metropolized Gibbs
sampler (MGS),35 has been suggested in some studies.37–39 The tran-
sition rates for both GS and MGS satisfy the strict DBC; however,
we recently proposed their irreversible counterparts with SDBC,
namely, the irreversible Gibbs sampler (IGS) and the irreversible
Metropolized-Gibbs sampler (IMGS), respectively.36 In this paper,
we implement IGS and IMGS to the update scheme of inverse
temperature in simulated tempering. We apply our simulated tem-
pering methods to three test systems: MCMC simulations on a
simple system described by a 1D double well potential and the
Ising model and MD simulations on alanine pentapeptide (ALA5).
Applications to the Ising model show that the update scheme of
inverse temperature β with IGS and IMGS can improve the relax-
ation dynamics of β when compared to their respective reversible
counterparts with the DBC. Furthermore, the gain in relaxation

dynamics of β gets exceedingly better with increasing domain size
K (i.e., the number of temperatures within a fixed range) when
compared to both the conventionally used MH algorithm and irre-
versible Metropolis–Hastings (IMH) with SDBC, as implemented
by Sakai and Hukushima.30 We further demonstrate that both IGS
and IMGS reduce the integrated autocorrelation times on magnetic
susceptibility and energy density by a considerable factor compared
to their reversible counterparts and significantly so compared to
both MH and IMH in large temperature domains. The MD sim-
ulations on ALA5 indicate distinct gains in the mixing time of
inverse temperature and total energy for a large temperature domain
size, but modest gains in the mixing time of the slowest dihedral
angles when compared to the conventional simulated tempering
with MH.

Assuming a constant specific heat capacity within the range of
two temperatures T1 and T2, the mean energy Ē of a system can be
assumed to scale as Ē ∼ N kBT with the degrees of freedom N .53

The difference in mean energy ΔĒ = Ē(T2) − Ē(T1) at T1 and T2
therefore scales as ΔĒ ∼N kBΔT. In conventional simulated temper-
ing methods with the MH scheme, for systems with large degrees of
freedom, the temperature spacing is therefore required to be small
to ensure overlap of energy distributions at T1 and T2 for reason-
able acceptance probability. For simulations of large systems at a
fixed temperature range, sampling of the temperature space becomes
inefficient with the conventional simulated tempering, as one would
expect with random walks in domains of increasing size. With our
methods, the mixing time of inverse temperature and system observ-
ables is particularly improved in large temperature domain sizes
when compared to conventional methods. We argue that our meth-
ods can therefore be more efficient alternatives for the simulation of
large systems.

The definition of variables and abbreviations are provided in
the nomenclature.

THE SIMULATED TEMPERING METHOD

One is often interested in using MCMC methods to estimate
expectation values under probability distributions with very large
dimensions. We may consider a physical system with state space
Ω. In classical statistical mechanics, the conditional probability of
finding the system in a given configuration σ ∈ Ω is given by the
Gibbs–Boltzmann distribution,

π(σ∣β) =
1

Z(β)
e−βH(σ), (1)

where Z(β) =∑Ωe−βH (σ ) is the partition function for a given inverse
temperature β and H(σ) is the Hamiltonian of the system. In conven-
tional MCMC methods, such as the Metropolis–Hastings algorithm,
configurations are sampled from the Gibbs–Boltzmann distribution
at fixed β. However, in simulated tempering, β is allowed to vary
from among a predetermined set of K discrete values β ∈ {β1, . . ., βK }.
In simulated tempering, both β and σ ∈ Ω are therefore stochastic
variables. The original state space is enlarged to Ω̄ ∶= Ω× {1, . . . , K}
and the probability of finding the system in a given state (σ,βk) ∈ Ω̄
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is given by the joint probability,

π(σ,βk) =
1
Z

e−βkH(σ)+wk , (2)

where the functions wk = w(βk) for k = 1, . . ., K are
the weighting factors determined so that the marginal prob-
ability distribution, denoted by the probability vector π(β)
= (π(β1),π(β2), . . . ,π(βK)), is uniform in β. We will demonstrate
this in Eq. (5) shortly. In simulated tempering, in the update scheme
of inverse temperature at fixed σ, we therefore wish to sample from
the target probability distribution

π̄ = (π(β1∣σ),π(β2∣σ), . . . ,π(βK ∣σ)) ∀ σ ∈ Ω, (3)

where π̄ is a probability vector so that π(βk∣σ) > 0 and
∑

K
k=1 π(βk∣σ) = 1. In essence, simulated tempering therefore

involves alternately sampling from the two conditional distributions
π(σ|β) and π(β|σ). The generalized partition function Z is given by

Z =∑
Ω̄

e−βkH(σ)+wk

=∑
k
∑
Ω

e−βkH(σ)+wk

=∑
k

Z(βk)e
wk . (4)

From Eq. (4), we notice that the partition functions Z(βk) are
weighted differently for the given temperatures, where ewk indicates
the weight corresponding to the kth temperature and wk, the cor-
responding logarithmic weight. In this paper, we will refer to wk
as simply the weights. In simulated tempering, one wishes to avoid
confinement of the system in a subspace of the temperature space;
therefore, typically a uniform sampling of the temperature space is
desired. The determination of the weighs wk is therefore dictated
by the requirement that the probability distribution of tempera-
ture is flat. This is ideally achieved by setting wk = −ln Z(βk), the
case in which the marginal probability π(βk) for a given βk becomes
constant,

π(βk) =∑
Ω
π(σ,βk)

=
Z(βk)

Z
ewk

=
1
K

. (5)

Notice that wk = −ln Z(βk) is proportional to the Helmholtz free
energy F of the system at βk, which is given by βkF = −ln Z(βk). The
determination of the free energies and therefore of the weights wk
is generally difficult to achieve for large complex systems. However,

even if the weights are estimated approximately using one of the sev-
eral iterative methods,40–45 a uniform sampling of the temperature
space can be realized to a good approximation.

In Algorithm 1, we give a general execution of the simulated
tempering method where we have used the notation X(t ,τ ) as a state
of enlarged state space Ω̄ after t MC-steps of the β update and τ
MC/MD-steps of the σ update. T(σ′, βl|σ, βk) denotes the transi-
tion probability from state (σ,βk) ∈ Ω̄ to (σ′,βl) ∈ Ω̄. Once the
weights are estimated by either short trial simulations (see Ref. 43) or
continually adjusted throughout the main simulation (see Ref. 44), a
simulated tempering simulation is then executed by alternately per-
forming MC or MD simulations at a fixed β [i.e., sampling from the
conditional distribution π(σ|β) at step 3] and a Monte Carlo step
to update β at fixed σ [that is, sampling from the conditional dis-
tribution π(β|σ) at step 5]. The focus of this paper is on transition
probabilities for updating β at a fixed configuration σ: T(σ, βl|σ, βk).
In order to ensure convergence to the correct target distribution in
Eq. (2), the transition matrix T(σ, βl|σ, βk) must satisfy the balance
condition (BC),

π(σ,βk) =
K

∑
l=1
π(σ,βl)T(σ,βk∣σ,βl), ∀ (σ,βk) ∈ Ω̄. (6)

In some conventional simulated tempering methods, the BC is
satisfied through the detailed balance condition (DBC),

π(σ,βk)T(σ,βl∣σ,βk) = π(σ,βl)T(σ,βk∣σ,βl). (7)

Markov chains that satisfy DBC are reversible chains, while those
that violate DBC are irreversible chains. Perhaps, the most widely
used transition probability for updating β is that of the Metropolis–
Hastings criterion,2 which we discuss in the Subsection titled The
Metropolis–Hastings scheme for updating β.

ALGORITHM 1. Simulated tempering.

Input: Initialize X(0,0)
= (σ,β(0))

1: For t = 0, . . . , T − 1
2: For τ = 0, . . ., Γ − 1
3: Sample from π(σ∣β): Perform an MC or MD simulation to

update X(t,τ) = (σ,β(t)) to X(t,τ+1)
= (σ′,β(t)), σ, σ′ ∈ Ω.

4: end for
5: Sample from π(β∣σ): Assuming X(t,Γ) = (σ,βk), assign

X(t+1,Γ)
= (σ,βl),βl ∈ {β1, . . . ,βK} with the transition

probability

T(σ,βl∣σ,βk). (8)

6: X(t+1,Γ)
= (σ,β(t+1)

)→ X(t+1,0).
7: end for
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UPDATING INVERSE TEMPERATURE WITH DBC
The Metropolis–Hastings scheme for updating β

In conventional simulated tempering, the Metropolis–Hastings2

type of transition probability is often used for updating β. The
Metropolis–Hastings algorithm enforces the detailed balance condi-
tion by requiring that the stochastic flow v(σ, βl|σ, βk) = π(σ, βk)T(σ,
βl|σ, βk) is balanced out by its inverse flow v(σ, βk|σ, βl) = π(σ,
βl)T(σ, βk|σ, βl). The transition probability T(σ, βl|σ, βk) from state
(σ, βk) to (σ, βl) (i.e., for updating β at a fixed configuration σ) can
be written as

T(σ,βl∣σ,βk) = Q(σ,βl∣σ,βk)A(σ,βl∣σ,βk)

∀ βl ≠ βk ∈ {β1, . . . ,βK},

T(σ,βk∣σ,βk) = 1 − ∑
βl≠βk

T(σ,βl∣σ,βk),
(9)

where Q(σ, βl|σ, βk) and A(σ, βl|σ, βk) denote the proposal and
acceptance probabilities, respectively. Hereafter, we assume that
the set of inverse temperatures {β1, . . ., βK } are equally spaced
and ordered such that β1 > β2 > ⋯ > βK . Assuming a symmetric
proposal, the MH acceptance probability A(σ,βl∣σ,βk)MH is then
given by

A(σ,βl∣σ,βk)MH = min[1,
Q(σ,βk∣σ,βl)π(σ,βl)

Q(σ,βl∣σ,βk)π(σ,βk)
] ∀ βl ≠ βk

= min[1, e−Δ], (10)

where Δ = (βl − βk)H(σ) − (wl − wk). We immediately notice that
the MH acceptance probability to transition from βk to βl reduces
for large values of βl − βk. Therefore, in practice, the proposal βl
is often chosen from among {βk−1, βk+1} such that Q(σ,βk+1∣σ,βk)

= Q(σ,βk−1∣σ,βk) = 1/2, Q(σ,β2∣σ,β1) = Q(σ,βK−1∣σ,βK) = 1, and
zero otherwise. Now, to update the inverse temperature with the
Metropolis–Hastings transition, in step (5) of Algorithm 1, we sim-
ply make use of Eq. (9) with the MH acceptance given in (10). We
show this explicitly in Algorithm 2.

ALGORITHM 2. Simulated tempering with Metropolis–Hastings.

Input: Initialize X(0,0)
= (σ,β(0))

1: For t = 0, . . . , T − 1
2: For τ = 0, . . ., Γ − 1
3: Sample from π(σ∣β): Perform an MC or MD simulation

to update X(t,τ) = (σ,β(t)) to X(t,τ+1)
= (σ′,β(t)), σ, σ′ ∈ Ω.

4: end for
5: Sample from π(β∣σ): Assuming X(t,Γ) = (σ,βk), propose

X(t+1,Γ)
= (σ,βl),βl ≠ βk ∈ {β1, . . . ,βK} with the probability

Q(σ,βl∣σ,βk) and accept it with the probability A(σ,βl∣σ,βk)MH.
If the proposal is rejected, assign X(t+1,Γ) = X(t ,Γ).

6: X(t+1,Γ)
= (σ,β(t+1)

)→ X(t+1,0).
7: end for

It is a simple exercise to demonstrate that the MH transition
matrix, T(σ,βl∣σ,βk)MH = Q(σ,βl∣σ,βk)A(σ,βl∣σ,βk)MH, satisfies
the DBC in (7) and therefore ensures the invariance of the target
distribution.

The Gibbs sampler for updating β

In the Gibbs sampler (GS),8 also known as the heat-bath algo-
rithm in statistical physics, the inverse temperature is updated,
whereby a new βl ∈ {β1, . . ., βK } is drawn from its conditional
distribution π(⋅|σ). We let G(σ,βl∣σ,βk) to denote the Gibbs tran-
sition probability from βk to βl, which is simply the conditional
distribution given σ,

G(σ,βl∣σ,βk) =
π(σ,βl)

K
∑
r=1

π(σ,βr)

∀ (σ,βl) ∈ Ω̄, (11)

where π(σ,βl) is given in (2). Notice that the Gibbs transition to the
new value βl is independent of the current value βk. The execution
of simulated tempering with the Gibbs sampler is then straightfor-
ward: In step (5) of Algorithm 1, the generic transition probability in
(8) is now replaced with the Gibbs transition given in (11). Note that
for a fixed configuration σ, the computational cost of the summation
in (11) is next to negligible even for excessively large K values. The
Gibbs sampler is, in fact, a special case of the Metropolis–Hastings
algorithm whereby every proposal is accepted. This is easily demon-
strated by letting the proposal Q(σ,βl∣σ,βk) = π(βl∣σ), the case
in which the MH acceptance probability for every proposal is then
exactly one,

A(σ,βl∣σ,βk) = min[1,
π(βk∣σ)π(σ,βl)

π(βl∣σ)π(σ,βk)
] = 1. (12)

As a special case of the Metropolis–Hastings criteria, the Gibbs sam-
pler therefore ensures the invariance of the target distribution. The
Metropolis–Hastings acceptance in (10) is dependent on the spacing
(βl − βk), and the acceptance probabilities for large jumps in tem-
perature space are therefore small. However, the Gibbs transition
probability is independent of the current inverse temperature βk,
and it is therefore capable of providing a more efficient global explo-
ration of temperature space than that is possible with the standard
Metropolis–Hastings method. Simulated tempering with the Gibbs
sampler, whereby the Gibbs transition in (11) is used to update the
inverse temperature, has been implemented in several studies37–39

that demonstrate better performance compared with the conven-
tional method of updating β with the Metropolis–Hastings method.
However, for reasons unclear, it is not as widely in practice as the
standard Metropolis–Hastings method.

The Metropolized-Gibbs sampler for updating β

We now briefly introduce a variant of the Gibbs sampler,
namely, the Metropolized-Gibbs sampler (MGS), which was origi-
nally introduced by Liu35 as a modification of the random scan Gibbs
sampler with an improved mixing rate. The MGS transition matrix,
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which also satisfies DBC, provides an improved sampling of the state
space compared to the standard Gibbs transition in (11). The devel-
opment of the Metropolized-Gibbs sampler was directly motivated
by Peskun’s theorem: Given that both transition matrices (TA

ij )i,j∈Ω

and (TB
ij )i,j∈Ω satisfy DBC and TA

ii < TB
ii ∀ i ∈ Ω, then a Markov

chain with the transition matrix TA
ij returns estimates with smaller

asymptotic variance than a Markov chain with transition matrix TB
ij .

In other words, minimizing the probability of remaining in the cur-
rent state increases mobility in the state space and therefore provides
a more efficient sampling of the state space. In the context of simu-
lated tempering for updating β, a new candidate, βl ≠ βk, is proposed
with the probability

Q(σ,βl∣σ,βk) =
G(σ,βl∣σ,βk)

1 −G(σ,βk∣σ,βl)
∀ βl ≠ βk ∈ {β1, . . . ,βK} (13)

and accepted with the Metropolis–Hastings acceptance probability
[Eq. (10)]

A(σ,βl∣σ,βk) = min[1,
1 −G(σ,βk∣σ,βl)

1 −G(σ,βl∣σ,βk)
] ∀ βl ≠ βk, (14)

where, upon rejection, the current state (σ,βk) is retained. The
reversible transition matrix M(σ,βl∣σ,βk) for the Metropolized-
Gibbs sampler can then be written as

M(σ,βl∣σ,βk) = min[
G(σ,βl∣σ,βk)

1 −G(σ,βk∣σ,βl)
,

G(σ,βl∣σ,βk)

1 −G(σ,βl∣σ,βk)
]

∀ βl ≠ βk ∈ {β1, . . . ,βK},

M(σ,βk∣σ,βk) = 1 − ∑
βl≠βk

M(σ,βl∣σ,βk),

(15)

which satisfies DBC. A few points here merit some elaboration; we
point out that for a two state solution, K = 2, The Gibbs transi-
tion probability in (11) becomes equivalent to Barker’s method,46

whereas the MGS transition in (15) decomposes to the stan-
dard Metropolis–Hastings transition. Peskun had demonstrated
that, within DBC, the Metropolis–Hastings criterion is superior
to Barker’s method as the former returns a smaller probability of
remaining in the current state and therefore increases mobility in the
state space. This argument applies more generally to the MGS sam-
pler. By minimizing the probability of retaining the current state,
the MGS transition, M(σ,βl∣σ,βk), is more efficient at sampling of
the state space than the Gibbs transition G(σ,βl∣σ,βk). This has
been numerically demonstrated in some studies.36,38,47 In practice,
to update the inverse temperature with the MGS sampler, one sim-
ply replaces the generic transition probability in (8) with that of the
MGS transition given in (15).

UPDATING INVERSE TEMPERATURE WITH SDBC
The lifting framework

In the lifting framework, as introduced by Diaconis et al.,21 the
state space is enlarged by effectively replicating a duplicate copy of

the original space. Each replica, which is characterized by a lifting
variable ε ∈ {−1, +1}, consists of all configurations σ ∈ Ω as in the
original space. The system now explores an extended state space,
that is, in addition to the intra-replica transition between configu-
rations σ → σ′ as in the original space, the system can now also
perform inter-replica transition (σ, ε) → (σ,−ε) between dupli-
cate copies of a given configuration. A Markov chain propagated
in this enlarged state space breaks the DBC but ensures conver-
gence to the target distribution by satisfying BC.21,25,26,29,36 In this
section, we utilize the lifting framework with SDBC, as proposed by
Turitsyn et al.25 In particular, we implement the lifting framework
in the updating scheme of inverse temperature in simulated tem-
pering. Sakai and Hukushima30 have already implemented lifting
with SDBC to the Metropolis–Hastings transition T(σ,βl∣σ,βk)MH
= Q(σ,βl∣σ,βk)A(σ,βl∣σ,βk)MH for updating β. The authors applied
their algorithm to the simulation of the 2D Ising model and demon-
strated that, when compared with the conventional Metropolis–
Hastings method with the DBC, their algorithm provides significant
improvement in the relaxation dynamics of β and the magnetization
of the model. Hereafter, we will refer to the algorithm of Sakai and
Hukushima30 as irreversible Metropolis–Hastings (IMH). We had
recently proposed the irreversible counterparts of the Gibbs sam-
pler and the Metropolized-Gibbs sampler, namely, IGS and IMGS
where both satisfy the SDBC.36 Here, we demonstrate that both IGS
and IMGS can be adapted for the update scheme of inverse temper-
ature. Numerical simulations in the next section show that, when
compared with their respective reversible counterparts, both IGS
and IMGS improve the relaxation dynamics of β and consequently
that of some system observables. Furthermore, our results also show
considerable improvement over the IMH algorithm in the mixing
time of β and that of some system observables for large temperature
domains K.

SDBC in the context of simulated tempering

The lifting variable ε ∈ {+1, −1} is introduced to double the state
space Ω̄ so that the extended state space Ω̃ ∶= Ω̄×{+1,−1} now con-
sist of two replicas characterized by ε = ±. The probability of finding
the system in state (σ, βk, ε) is given by

π̃(σ,βk, ε) =
1
2
π(σ,βk). (16)

To update β, we now wish to sample from the extended target
distribution given by the probability vector

π̃ = (π̃(β1∣σ, +), . . . , π̃(βK ∣σ, +), π̃(β1∣σ,−), . . . , π̃(βK ∣σ,−))

=
1
2
(π̄, π̄), (17)

where the original target π̄ is given in (3). Notably, π̃(σ,βk, ε)
= π̃(σ,βk,−ε) and the marginal∑ε′ π̃(σ,βk, ε′) = π(σ,βk). The tran-
sition matrix T̃ of the Markov chain on the extended state space Ω̃ is
now given by
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T̃ = (T(σ,βl, +∣σ,βk, +) Λ(σ,βk,−∣σ,βk, +)
Λ(σ,βk, +∣σ,βk,−) T(σ,βl,−∣σ,βk,−)), (18)

where T(σ, βl, ±|σ, βk, ±) ≥ 0 denotes the intra-replica transition
probability from state (σ,βk) ∈ Ω̄ to (σ,βl) ∈ Ω̄ in the respec-
tive ε = ± replicas. The inter-replica transition probability from state
(σ,βk,±) to (σ,βk,∓) is denoted byΛ(σ, βk,∓|σ, βk,±) ≥ 0. Note that
Λ(σ, βl, ∓|σ, βk, ±) = 0 ∀ βl ≠ βk ∈ {β1, . . ., βK }. The normalization of
probability in the extended state space can be written as

K

∑
l=1

T(σ,βl, ε∣σ,βk, ε) + Λ(σ,βk,−ε∣σ,βk, ε) = 1. (19)

Assuming that the transition matrix T̃ is ergodic, it must then satisfy
the BC π̃ = π̃T̃ to ensure invariance of the target distribution π̃. The
BC takes the explicit form

K

∑
l=1

T(σ,βl, ε∣σ,βk, ε)π̃(σ,βk, ε) + Λ(σ,βk,−ε∣σ,βk, ε)π̃(σ,βk, ε)

=
K

∑
l=1

T(σ,βk, ε∣σ,βl, ε)π̃(σ,βl, ε)

+ Λ(σ,βk, ε∣σ,βk,−ε)π̃(σ,βk,−ε), (20)

∀βk ∈ {β1, . . ., βK }. The BC can be satisfied by imposing the skewed
detailed balance condition (SDBC) on the transition matrix,

π̃(σ,βk, ε)T(σ,βl, ε∣σ,βk, ε) = π̃(σ,βl,−ε)T(σ,βk,−ε∣σ,βl,−ε).
(21)

The SDBC requires that the stochastic flow from state
(σ, βk) → (σ, βl) in one replica is balanced by reverse flow (σ, βl)
→ (σ, βk) in the other replica. The SDBC therefore by definition
breaks the detailed balance condition, π̃(σ,βk, ε)T(σ,βl, ε∣σ,βk, ε)
≠ π̃(σ,βl, ε)T(σ,βk, ε∣σ,βl, ε). Note that by imposing SDBC on the
transition matrix, we can obtain a condition for the construction
of the inter-replica transition probability Λ(σ,βk,−ε∣σ,βk, ε), and we
see this clearly once we insert (21) into (20) to obtain

Λ(σ,βk,−ε∣σ,βk, ε) −Λ(σ,βk, ε∣σ,βk,−ε)

=∑
l≠k
[T(σ,βl,−ε∣σ,βk,−ε) − T(σ,βl, ε∣σ,βk, ε)]. (22)

A particular solution of (22), which was originally proposed by
Turitsyn et al.,25 is of the form

Λ(σ,βk,−ε∣σ,βk, ε)

= max
⎡
⎢
⎢
⎢
⎣

0,∑
l≠k
(T(σ,βl,−ε∣σ,βk,−ε) − T(σ,βl, ε∣σ,βk, ε))

⎤
⎥
⎥
⎥
⎦

, (23)

which is known as the Turitsyn–Chertkov–Vucelja (TCV) solu-
tion. However, several alternative solutions of (22) have been

proposed and studied,29 as the alternative choice known as the
Sakai–Hukushima 1 (SH1) solution, which is given by

Λ(σ,βk,−ε∣σ,βk, ε) =∑
l≠k

T(σ,βl,−ε∣σ,βk,−ε), (24)

has been studied in the context of the 1D Ising model.27

Our task at hand is now to construct an intra-replica transi-
tion matrix T(σ,βl, ε∣σ,βk, ε) that satisfies the SDBC given in (21).
With this in mind, we follow the same procedure we had outlined
recently,36 which involves modifying a generic transition matrix
T(σ,βl∣σ,βk) that satisfies DBC in (7), with the skewness function
Θ(βl, ε|βk, ε). We therefore define

T(σ,βl, ε∣σ,βk, ε) = Θ(βl, ε∣βk, ε)T(σ,βl∣σ,βk), (25)

where the skewness function has the properties

0 ≤ Θ(βl, ε∣βk, ε) ≤ 1 (26)

and

Θ(βl, ε∣βk, ε) = Θ(βk,−ε∣βl,−ε). (27)

With this definition, we note that the transition matrix
T(σ,βl, ε∣σ,βk, ε) in (25) now satisfies the SDBC in (21). This com-
pletes our description of the extended transition matrix T̃, as defined
in (18). An irreversible Markov chain can therefore be propagated
on the extended state space Ω̃, whereby the stationary distribution
of the chain will, by the arguments above, converge to the invariant
target distribution. Next, we introduce an explicit form of a suit-
able skewness function and demonstrate how to adapt the IGS and
IMGS36 to the update scheme of inverse temperature.

Irreversible Gibbs sampler for updating β

In principle, any skewness function that meets conditions
(26) and (27) will suffice to construct a transition matrix
T(σ,βl, ε∣σ,βk, ε). However, certain choices of the skewness function
may lead to more efficient sampling of the temperature space than
others. Here, we make use of the skewness function we had recently
proposed,36 which we express in general formulation in the context
of simulated tempering,

Θ(fl, ε∣fk, ε) = φ(1 + δεΦ(f )), (28)

where f ∈ {f 1, . . ., f K } is the lifting coordinate and the function
Φ(f ) = sgn(fl − fk) with the sign function given by

sgn(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1 if x < 0,
0 if x = 0,

+1 if x > 0.

The constant φ = 1/(1 + δ). The deviation parameter δ ∈ [0, 1]
determines the extent to which the DBC is violated, and the DBC
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is recovered by setting δ = 0. Notably, with δ = 0, the transition
T(σ,βl, ε∣σ,βk, ε) in (25) becomes uniform in ε, and consequently,
the SDBC in (21) reduces to the DBC in (7).

In general applications of the lifting framework with the SDBC,
the lifting coordinate f is often taken to be an observable of inter-
est, as in the context of spin systems, this could be the magneti-
zation25–28,36 or energy of the system.26,36 Often f is assigned to be
an observable with slow relaxation dynamics so that by lifting it,
a more efficient sampling of the state space can be realized along
the coordinates of this particular observable. In temperature simu-
lated tempering, particularly in the update scheme of β, one is often
interested in improving the mixing rate in temperature space. We
therefore assign the lifting coordinate f to be the inverse tempera-
ture β. However, considering a simulated tempering equivalent of
Hamiltonian replica exchange,53 one may assign a dynamical vari-
able other than β as the lifting coordinate, such as an interaction
parameter (e.g., different strengths of an external magnetic field) in
the Hamiltonian of spin systems.

The skewness function in (28) effectively introduces a bias in
the way the variable f is sampled. To better understand this, we set
the lifting coordinate f as the inverse temperature and consider two
distinct cases: (ε = ±,Φ(β) = ±) and (ε = ±,Φ(β) = ∓). The tran-
sition probability T(σ, βl, ε|σ, βk, ε) in (25) then breaks down to
T(σ,βl∣σ,βk) for (ε = ±1,Φ(β) = ±1) and (1−δ/1+δ)T(σ,βl∣σ,βk)

for (ε = ±1,Φ(β) = ∓1). Considering the ε = +1 replica and δ ≠ 0
as an example, we observe that Monte Carlo moves that increase β
[i.e., Φ(β) = +1] are stochastically favored over moves that decrease
β [i.e., Φ(β) = −1], while the opposite is true in the ε = −1 replica. In
the two replicas, the system therefore stochastically favors opposing
and fixed directions in temperature space.

Notably, inserting the Metropolis–Hastings transition
T(σ,βl∣σ,βk)MH on the right-hand side of (25) (also setting φ = 1)
leads to the IMH algorithm of Sakai and Hukushima.30 The IMH
algorithm, in particular, introduces a bias in the proposal Q(σ,
βl|σ, βk) in the nearest neighbor exchange scheme for β. In this
scheme, the dynamical behavior of a fixed configuration σ is com-
parable to a simple random walk in temperature space with K
states. Sakai and Hukushima have numerically demonstrated with
the Ising model that the IMH algorithm suppresses the diffusive
behavior of σ on the temperature space so that the mixing time
of β now scales on the order of O(K) with the IMH algorithm
as opposed to O(K2

) with conventional MH with DBC. How-
ever, as we have seen in previous sections, other than the conven-
tional Metropolis–Hastings algorithm, there are several alternative
choices with the DBC to sample from the conditional distribu-
tion π(β∣σ). We argue here that the irreversible counterparts of
the Gibbs sampler and Metropolized-Gibbs sampler can be con-
structed to sample from the conditional π(β|σ) through satisfying
the SDBC. As we will see in the Section titled Performance analy-
sis with MCMC simulations, the resulting IGS and IMGS schemes
for updating β provide an improvement in the relaxation dynamics
of β and system observables over their respective reversible coun-
terparts with the DBC and also when compared with the IMH
algorithm.

We proceed to adapt the irreversible Gibbs sampler36 for the
update scheme of β. We do this by inserting the Gibbs transition,
G(σ,βl∣σ,βk) given in (11), on the right-hand side of (25). The IGS
intra-replica transition matrix G(σ,βl, ε∣σ,βk, ε) is then defined as

G(σ,βl, ε∣σ,βk, ε) = Θ(βl, ε∣βk, ε)G(σ,βl∣σ,βk)

∀ βl ≠ βk ∈ {β1, . . . ,βK},

G(σ,βk, ε∣σ,βk, ε) = 1 −∑
l≠k

G(σ,βl, ε∣σ,βk, ε).
(29)

We recover the inter-replica transition probability of the TCV solu-
tion from the general formulation in (23),

Λ(σ,βk,−ε∣σ,βk, ε)IGS

= max
⎡
⎢
⎢
⎢
⎣

0,∑
l≠k
(G(σ,βl,−ε∣σ,βk,−ε) − G(σ,βl, ε∣σ,βk, ε))

⎤
⎥
⎥
⎥
⎦

. (30)

This completes our description of the irreversible Gibbs sampler for
the update scheme of inverse temperature in simulated tempering.
The general execution of the IGS to update β is given in Algorithm 3
where we have used the notation X̃(t,τ) as a state of the extended
state space Ω̃ after t MC steps of β updates and τ MC/MD steps of σ
updates.

The implementation of the irreversible Gibbs sampler as given
in Algorithm 3 differs from that of the conventional Gibbs sam-
pler of Eq. (11) with DBC in steps 5–7. Therefore, to verify that
the steps shown in Algorithm 3 lead to sampling from the correct
target distribution, it suffices to demonstrate that the conditional
π̃(β, ε∣σ) = 1/2π(β∣σ) satisfies the balance condition. We show this
in the Appendix.

Irreversible Metropolized-Gibbs sampler
for updating β

Likewise, we briefly demonstrate that the IMGS36 can be
adapted to sample from the conditional distribution π(β|σ). We
insert the Metropolized-Gibbs transition M(σ, βl|σ, βk), as given in
(15), on the right-hand side of (25) to obtain the transition matrix
M(σ,βl, ε∣σ,βk, ε) for IMGS,

M(σ,βl, ε∣σ,βk, ε) = Θ(βl, ε∣βk, ε)M(σ,βl∣σ,βk)

∀ βl ≠ βk ∈ {β1, . . . ,βK},

M(σ,βk, ε∣σ,βk, ε) = 1 −∑
l≠k

M(σ,βl, ε∣σ,βk, ε).
(31)

The inter-replica transition probability of the TCV solution is then
given by

Λ(σ,βk,−ε∣σ,βk, ε)IMGS

= max
⎡
⎢
⎢
⎢
⎣

0,∑
l≠k
(M(σ,βl,−ε∣σ,βk,−ε) −M(σ,βl, ε∣σ,βk, ε))

⎤
⎥
⎥
⎥
⎦

.

(32)

To sample from π(β∣σ) with the IMGS, one follows the same steps
as in Algorithm 3, except for making use of (31) and (32) in steps
(5) and (6). We have demonstrated36 in the context of the 1D Potts
model that the optimality of MGS over the standard Gibbs sam-
pler is modestly replicated in their irreversible counterparts with the
SDBC. It is therefore of interest to inspect if similar improvement is
replicated in the context of simulated tempering.
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ALGORITHM 3. Simulated tempering with IGS.

Input: Initialize X̃(0,0)
= (σ,β(0), ε(0))

1: For t = 0, . . . , T − 1
2: For τ = 0, . . ., Γ − 1
3: Sample from π̃(σ∣β, ε): Perform an MC or MD simulation to

update X̃(t,τ) = (σ,β(t), ε(t)) to X̃(t,τ+1)
= (σ′,β(t), ε(t)), σ, σ′ ∈Ω.

4: end for
5: Sample from π̃(β∣σ, ε): Suppose that X̃(t,Γ) = (σ,βk, ε), assign

X̃(t+1,Γ)
= (σ,βl, ε),βl ∈ {β1, . . . ,βK}, with the transition

probability

G(σ,βl, ε∣σ,βk, ε) = Θ(βl, ε∣βk, ε)G(σ,βl∣σ,βk) ∀ βl ≠ βk,
(33)

G(σ,βk, ε∣σ,βk, ε) = 1 − ∑
l≠k

G(σ,βl, ε∣σ,βk, ε).

6: If βl = βk, assign X̃(t+1,Γ)
= (σ,βk,−ε) with the transition

probability

P(σ,βk,−ε∣σ,βk, ε) =
Λ(σ,βk,−ε∣σ,βk, ε)IGS

1 − ∑
r≠k

G(σ,βr , ε∣σ,βk, ε)
. (34)

7: If this is also rejected, then set X̃(t+1,Γ)
= X̃(t,Γ).

8: X̃(t+1,Γ)
= (σ,β(t+1), ε(t+1)

)→ X̃(t+1,0)

9: end for

PERFORMANCE ANALYSIS WITH MCMC SIMULATIONS

We carry out simulated tempering simulations to test the per-
formance of IGS and IMGS when sampling from π̃(β∣σ, ε). In this
section, we perform MCMC simulations to sample from π̃(σ∣β, ε).
Performance analysis whereby MD simulations are used to sam-
ple from π̃(σ∣β, ε) are provided in the section titled Performance
analysis with MD simulations.

To demonstrate the validity of our algorithms, we first con-
sider a system described by a one-dimensional double well potential
whose exacts weights wk for k = 1, . . ., K are known. We show
that both the IGS and IMGS sample from the correct distribution
at a given β. In the Subsection titled Ising model, we consider a
more complex test system, the Ising model. For the Ising model,
we demonstrate that both the IGS and IMGS improve the relax-
ation dynamics of inverse temperature and some system observables
when compared to their respective reversible counterparts. We also
show that the relaxation dynamics of inverse temperature and sys-
tem observables can be significantly better than those of MH and
IMH algorithms. In this section, we use β = 1/kBT, whereby the
Boltzmann constant kB is set to 1.

In this paper, we define the integrated autocorrelation time
τint ,f for a system observable f as

τint,f = 1 + 2
∞

∑
t=1

Cf (t), (35)

where Cf (t) is the autocorrelation function given by

Cf (t) =
Eπ[f (t′ + t)f (t′)] − Eπ[f (t′)]

2

Eπ[f 2(t′)] − Eπ[f (t′)]2
(36)

and we set t′ sufficiently large for equilibration to estimate Cf (t).
Eπ[⋯] is understood to be the expectation value with respect to the
target distribution π(σ,β). Note that the expectation value Eπ̃[f ]
with respect to the extended target distribution π̃(σ,β, ε) is equiva-
lent to the expectation value with respect to the original distribution
π(σ, β),

Eπ̃[f ] =∑
Ω̃

π̃(σ,β, ε)f (σ,β, ε)

=∑
ε′
∑
Ω̄
π̃(σ,β, ε′)f (σ,β, ε′)

=∑
ε′
∑
Ω̄

1
2
π(σ,β)f (σ,β)

=∑
Ω̄
π(σ,β)f (σ,β)

= Eπ[f ], (37)

where we have made use of (16) and have assumed that f (σ, β, ε)
= f (σ, β, −ε) = f (σ, β). Consider the measurements f 1, . . ., f N of the
observable f. A large integrated autocorrelation time of the observ-
able f is indicative of a large corresponding asymptotic variance on
the expectation value for f. As often, the relationship σ2

f = σ
2
0,f τint,f is

used to compute the asymptotic variance σ2
f . σ2

0,f is the naive variance
on the expectation value of f, that is, the variance on the expectation
value of f by treating all the realizations f 1, . . ., f N as though they
were independently sampled.

In simulated and parallel tempering simulations, we are often
interested in computing expectation values of system observables
under the distribution π(σ|β) given in (1) at a single temperature
of interest, often the coolest temperature. The simplest method of
achieving this is to discard all measurements made at temperatures
other than the temperature of interest and thereby make use of
only a fraction of the data generated. However, perhaps a more cost
effective method is to use one of the re-weighting techniques48,49 to
properly weight the data generated at all temperatures in order to
compute expectations under π(σ|β) for any given temperature of
interest. In other words, all configurations sampled from the joint
distribution π(σ, β) in (2) can be reweighed to compute expecta-
tions at a given temperature of interest. Within a fixed computa-
tional time, it is therefore of interest to collect as large number of
uncorrelated samples as possible from the joint π(σ, β) in order
to compute (using reweighing techniques) expectation values with
small variance at a given temperature of interest. The quantity N/τint
is often used to establish the effective sample size, i.e., the num-
ber of uncorrelated samples in the time series data consisting of N
measurements. The integrated autocorrelation time therefore not
only quantifies the relaxation dynamics of a given system observ-
able but also can be used to test the sampling efficiency of a given
algorithm. Among other comparison tools, we will therefore make
use of the integrated autocorrelation time to provide comparison of
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the sampling efficiency of our methods to other methods currently
in use.

1D model potential

We consider a simple system described by the 1D double well
potential

U(x) = C(x + 1)2
(x − 1)2, x ∈ Ω, (38)

with energy minima at coordinates x = +1 and x = −1 and an energy
barrier of magnitude C ⩾ 0 at x = 0. To sample from π̃(σ∣β, ε), we
perform a Metropolis–Hastings MC simulation at fixed β using a
Gaussian proposal in the x-coordinate,

x′i+1 = xi + Ϛξ, (39)

to propose x′ ∈ Ω for the (i + 1)th Monte-Carlo time step.
ξ ∼ N (0, 1) and the standard deviation Ϛ is fixed at 0.05. To sample
from π̃(β∣σ, ε), we use a predetermined set of K inverse temperatures
that are equally spaced in the range β1 = 1 and βK = 0.1. The weights
are then numerically computed using

wk = −lnZ(βk) = −ln∫
+∞

−∞

dx e−βkU(x). (40)

Simulated tempering is then performed by alternately sampling from
the conditional distributions π̃(σ∣β, ε) and π̃(β∣σ, ε) such that a sin-
gle step t involves Γ Monte-Carlo steps to sample from π̃(σ∣β, ε) and
a single MC step to sample from π̃(β∣σ, ε).

We have performed two sets of simulated tempering simula-
tions with K = 30 and K = 512 temperature domain sizes. The results
are shown in Figs. 1 and 2, respectively. For comparison, we show
the performance of IMGS against the standard Metropolis–Hastings
algorithm as given in Algorithm 2 and the irreversible Metropolis–
Hastings (IMH) as proposed by Sakai and Hukushima.30 For both
MH and the IMH algorithms, we had adopted the nearest neighbor
exchange scheme for β. The tunable deviation parameter δ is set to 1
for both IMH and IMGS.

The top row of Fig. 1 shows the evolution of β and the position
coordinate x as a function of the MC steps t. Expectedly, the trajec-
tory of β for MH indicates that the system performs a characteristi-
cally random walk in the temperature space. The IMH algorithm,30

on the other hand, was proposed to suppress diffusive behavior in
the temperature space, and we therefore observe the typically deter-
ministic exploration of β coordinates with a visually better mixing
rate than MH. The IMGS seems to provide a more ballistic explo-
ration of temperature space, as shown in Fig. 1(c). Unlike MH and
IMH, which perform optimally with nearest neighbor β proposals,
the IMGS can perform more distant jumps in the β coordinate, thus
inducing a more global exploration of temperature space.

From the autocorrelation functions Cβ(t) for β, shown
in Fig. 1(g), we observe that Cβ(t) for IMGS decays more
rapidly compared to MH and IMH. In particular, we find that
[τint,β]MH/[τint,β]IMGS ∼ 87.6 and [τint,β]IMH/[τint,β]IMGS ∼ 5.2. Gen-
erally, an improvement in the relaxation dynamics of β is accom-
panied by an improvement in the relaxation dynamics of system
observables. From the trajectory of position coordinate x, we clearly

observe that an improvement in the mixing rate of β induces a
more frequent crossing of the energy barrier at x = 0 (Fig. 1, top
row). The energy and position coordinate autocorrelation functions,
CE(t) [Fig. 1(h)] and Cx(t) [Fig. 1(i)], respectively, therefore decay
most rapidly for the IMGS. Note that Cx(t) for the IMGS decays sub-
stantially faster than that for MH, but compared to that for IMH,
there is little gain. This is in contrast to the autocorrelation function
CE(t) for energy, which decays most rapidly for the IMGS with a
distinctly clear gain over that of IMH. We speculate that perhaps for
a given domain size K, there could possibly be an optimum mixing
rate for β such that any further improvement in the mixing rate for
βmay not necessarily lead to substantial improvement in the mixing
rate for x.

In Fig. 2, we consider simulations for a larger temperature
domain, K = 512. The improvement in performance of IMGS com-
pared to MH and IMH is now more visibly clear. The trajectory of
β for MH [Fig. 2(a)] confirms the expected degradation in explo-
ration of temperature space, which is typical of random walks on
domains of increasing size. For the IMH algorithm, the determinis-
tic exploration of temperature space in a specific direction [Fig. 2(b)]
is now visibly clearer than that for the K = 30 case [Fig. 1(b)].
Notice that this behavior leads to a very uniform exploration of
β coordinates, as shown in the probability distribution of inverse
temperature [Fig. 2(e)]. In contrast, the IMGS mixing rate for β
remains visibly unchanged with increasing temperature domain. In
fact, notice that the autocorrelation functions Cβ(t), CE(t), and Cx(t)
(Fig. 2, third row) for the IMGS are visibly unchanged from the
K = 30 case (Fig. 1, third row). This observation is in agreement
with a similar study by Chodera and Shirts38 who show numeri-
cally that the integrated autocorrelation time for temperature and
position index remain independent of the temperature domain size
K for algorithms based on Gibbs sampling. In particular, we report
[τint,β]MH/[τint,β]IMGS ∼ 1.25×104 and [τint,β]IMH/[τint,β]IMGS ∼ 79.2.
Consequently, the speedup in τint ,x is [τint,x]MH/[τint,x]IMGS ∼ 14.7
and [τint,x]IMH/[τint,x]IMGS ∼ 3.4. In fact, for the MH algorithm, the
relaxation dynamics of β is diffusive, and therefore, τint ,β scales on
the order of O(K2

). For the IMH algorithm, it has been demon-
strated30 that the relaxation dynamics of β scales on the order of
O(K), i.e., a square root reduction in the dynamical scaling of relax-
ation time with respect to the temperature domain size. In the sec-
tion titled Ising model, we have shown using the Ising model as
a test bed that for the IMGS, the relaxation dynamics of β and
system observables is independent of K and scales on the order
of O(1).

Furthermore, we demonstrate in the bottom row of Figs. 1
and 2 that the IMGS leaves the target distribution invariant. We
have shown convergence to the correct free energy profile βF(x)
= −ln(π(x|β)) for the temperature of interest, the coldest temper-
ature corresponding to β1 = 1. The performance of the IGS (not
shown for this model) is very similar to IMGS. The gain in integrated
autocorrelation times for IMGS is only slightly better than those of
IGS. Furthermore, for this simple model, we have not shown com-
parison of IMGS to that of its reversible counterpart, the MGS. The
gain in integrated autocorrelation time of β, E, and x for the IMGS is
only slightly better than that of MGS.

We have demonstrated the validity of our method using this
simple 1D potential model and have provided first hand comparison
with the widely used MH method and the recently proposed IMH
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FIG. 1. Simulations of a simple system described by the 1D model potential given in (38) for the temperature domain size K = 30. [(a)–(c)] Trajectories of inverse temperature
β and position coordinate x as a function of MC step t. [(d)–(f)] Probability of inverse temperatures obtained from frequency distributions. [(g)–(i)] Autocorrelation functions
C(t) for inverse temperature β, energy E(x), and position coordinate x. [(j)–(l)] Free energy profile βF(x) = −ln(π(x|β)) at the coldest temperature β = 1 (left), standard error
on the free energy profile trajectories obtained from 100 independent simulations (center), and the weights ω(β) computed numerically using (40) (right). The simulation
parameters are Γ = 102 MC steps, T = 106 MC steps, β1 = 1 and βK = 0.1 all equally spaced, and energy barrier height C = 10 in (38). The simulations were initialized with
β(0) = 1 and x(0) = −1 and a random assignment of ε ∈ {−1, +1}. The deviation parameter δ is set to 1 for both the IMH and IMGS.

algorithm of Sakai and Hukushima.30 The potential gains of IMGS
over its reversible counterpart are, however, not fully captured by
this simple model. In the section titled Ising model, we observe that
for a more complex and practical system, we observe a clear gain of
IMGS over its reversible counterpart.

Ising model

In this section, we test our methods on a L × L 2D Ising model4

with periodic boundary conditions. The Hamiltonian H(σ) of the

Ising model is given by

H(σ) = −∑
⟨i,j⟩

Jij σiσj, (41)

where the notation ⟨i, j⟩ indicates that spins σi, σj ∈ {+1, −1} are
nearest neighbors. We set the interaction strength to constant so that
Jij = J = 1. A given configuration or the state of the model is defined
by the state vector σ = (σ1, . . . , σN) ∈ Ω with N = L2 spins. The
discrete state space Ω = {1, . . ., S} therefore consists of S = 2N config-
urations. We consider a 2D lattice of row index m and column index
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FIG. 2. Simulations of a simple system described by the 1D model potential given in (38) for temperature domain size K = 512. [(a)–(c)] Trajectories of inverse temperature β
and position coordinate x as a function of MC step t. [(d)–(f)] Probability of inverse temperatures obtained from frequency distributions. [(g)–(i)] Autocorrelation functions C(t)
for inverse temperature β, energy E(x), and position coordinate x. [(j)–(l)] Free energy profile βF(x) = −ln(π(x|β)) at the coldest temperature β = 1 (left), standard error on the
free energy profile trajectories obtained from 100 independent simulations (center), and the weights ω(β) computed numerically using (40) (right). The simulation parameters
are Γ = 102 MC steps, T = 106 MC steps, β1 = 1 and βK = 0.1 all equally spaced, and energy barrier height C = 10 in (38). The simulations are initialized with β(0) = 1 and
x(0) = −1 and a random assignment of ε ∈ {−1, +1}. The deviation parameter δ is set to 1 for both IMH and IMGS.

n, and the energy density E of the system is then defined by

E = −J/N∑
m,n
(σm,nσm+1,n + σm,nσm,n+1), (42)

where periodic boundary conditions are imposed so that σm ,L+1
= σm ,1 and σL+1,n = σ1,n. The magnetization density of the system
is defined as m = 1/N∑iσi, and the magnetic susceptibility χ is
given by

χ =
1
N
∥∑

i
σi ∥

2 . (43)

We perform simulated tempering by alternately sampling from
the distributions π̃(σ∣β, ε) and π̃(β∣σ, ε). We define one sweep of
the 2D spin lattice as N MC trials to update individual spins. To
update individual spins, we make use of the Metropolis Monte Carlo
algorithm4 with the sequential updating scheme,50 whereby indi-
vidual spins are updated in a fixed sequential order. Γ sweeps are
performed at fixed β to sample from π̃(σ∣β, ε), taking measurements
at each sweep, before attempting a single Monte Carlo step to sample
from π̃(β∣σ, ε). The weights ω(β) are determined using the method
proposed by Park and Pande.43
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We have verified the correctness of our irreversible simulated
tempering algorithms IGS and IMGS and have obtained near perfect
agreement for energy density E, magnetization density m, and spe-
cific heat capacity c (Fig. 3, top row) with the Metropolized-Gibbs
sampler.35,38 As an additional baseline comparison, we have also
computed the corresponding values of the three observables using a
much longer standard Metropolis–Hastings MC simulation with no
simulated tempering (shown in red crosses). Notice that the critical

inverse temperature βc ≃ 0.4407 of the model is within our predeter-
mined set of temperatures for the simulation: β1 = 0.5 to βK = 0.2,
all equally spaced. The deviation parameter δ in the skewness func-
tion given in (28) determines the extent to which DBC is violated,
and δ = 0 recovers DBC. With δ = 0, the IGS, as given in Algorithm 3,
decomposes to its reversible counterpart, the standard Gibbs sam-
pler with transition probability given in (11). Likewise, the IMGS
with transition in (31) breaks down to its reversible counterpart with

FIG. 3. Simulation results for the 25 × 25 Ising model with periodic boundary conditions. The simulation parameters are Γ = 103 sweeps and T = 106 MC steps. β1 = 0.5
and βK = 0.2, all equally spaced. [(a)–(c)] Energy density E, magnetization density m, and specific heat capacity c obtained from simulated tempering simulations. The values
obtained with our methods IGS (red squares) and IMGS (green circles) are in perfect agreement with the well-established MGS (purple stars). Also shown (red crosses) are
the values obtained from a much longer Metropolis–Hastings MC simulation with no simulated tempering, which we have denoted as MH∗ to distinguish from results with
simulated tempering. The dashed lines are Onsager’s51 exact solutions for a 2D lattice of infinite dimensions. [(d)–(i)] Autocorrelation functions of β, E, and χ for K = 32
(second row) and K = 512 (third row) for various deviation parameters δ. IMGS (solid lines) and IGS (dashed lines). [(j)–(l)] Integrated autocorrelation times τint ,β, τint ,χ and
τint,E with respect to temperature domain size K. IMGS (squares) and IGS (inverted triangles).
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the DBC: the Metropolized-Gibbs sampler with reversible transition
probability in (15). In Fig. 3 (second and third row), we show the
autocorrelation functions for β, E, and χ in two temperature domain
sizes, K = 32 and K = 512, for both of our methods IGS (dashed
lines) and IMGS (solid lines). From the autocorrelation functions,
we observe that in both methods, deviation from the DBC (δ = 0)
accelerates the relaxation dynamics of all three variables. Further-
more, the IMGS seems to provide a visibly modest improvement
over the IGS for all deviation parameters. Since the implementation

of IMGS comes with no additional computational cost, it is therefore
recommended to choose IMGS over IGS.

To quantify the relaxation dynamics of β, E, and χ, we have
computed the integrated autocorrelation times τint,β, τint,χ , τint,E. We
show these in Fig. 3 (bottom row) for various temperature domain
sizes K for both IGS (inverted triangles) and IMGS (squares). The
numerical gain in relaxation dynamics over their reversible counter-
parts (δ = 0) is clear for both the IGS and IMGS. In particular, we
observe that [τint]δ=0/[τint]δ=1 ∼ 3.3 for all three variables β, E, and

FIG. 4. Simulations results for the 12 × 12 Ising model with periodic boundary conditions. The simulation parameters are Γ = 102 sweeps and T = 107 MC steps. β1 =
0.5 and βK = 0.33, all equally spaced. The deviation parameter δ = 1 for both IMH and IMGS. [(a)–(f)] Trajectories of inverse temperature β, magnetization m, and energy
density E shown for the first 6000 MC steps t for K = 32 (top row) and K = 512 (second row) temperatures. [(g)–(i)] Autocorrelation functions Cβ(t), Cχ (t), and CE(t) for the
temperature domain size K = 32 (solid lines) and K = 512 (dashed lines). The autocorrelation functions of IMGS for the two domain sizes heavily overlap. [(j)–(l)] Dynamical
scaling of the integrated autocorrelation times for β, χ, and E with respect to temperature domain size K. The dynamical scaling exponents are retrieved using the asymptotic
relationship τint ∼ Kz . The dashed lines are the least squares fit to the data.
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χ for both the IGS and IMGS. Reportedly, for all values of δ, the
integrated autocorrelation times remain fairly independent of the
temperature domain size. This observation is consistent with a sim-
ilar study using the Gibbs sampler.38 The apparent independence of
τint with respect to K is in contrast to both MH and IMH whose sam-
pling efficiency degrades with temperature domains of increasing
size K, as shown in Fig. 4 (bottom row).

Since the IMGS seems to be the best of our two methods, we
will henceforth provide performance analysis only with the IMGS.
In Fig. 4 (bottom row), we compare the integrated autocorrelation
times of IMGS with those obtained from simulated tempering with
the standard MH of Algorithm 2 and the IMH algorithm of Sakai
and Hukushima.30 The scaling of τint ,β with respect to the tempera-
ture domain size K reveals the expected diffusive relaxation dynam-
ics of β for the MH algorithm, whereby τint ,β scales on the order of
O(K2

). It was numerically demonstrated30 that the IMH algorithm,
which breaks detailed balance, provides a square root reduction in
the mixing time for β, and we have reproduced this result to confirm
that the relaxation dynamics of τint ,β scales on the order of O(K)
for IMH. The scaling of τint ,β with respect to K may be asymptoti-
cally modeled with τint ∼ Kz , the case in which we observe that the
dynamical scaling exponent z of the IMGS is effectively ∼ 0 com-
pared to z ∼ 2 of MH and z ∼ 1 of IMH. In other words, for the
IMGS, τint ,β scales on the order of O(1). A similar dynamical scaling
behavior is observed for χ and E (Fig. 4, bottom row). Compared to
the conventionally used MH algorithm, the IMGS provides a deci-
sive gain in the relaxation dynamics of all three variables for all
values of K; note that the gain accelerates with increasing K. Like-
wise, compared to the IMH algorithm, we clearly observe a decisive
gain in relaxation dynamics with increasing K. Even for practically
small K values, the integrated autocorrelation times are shortened,
but by a modest factor, compared to IMH. For example, the auto-
correlation functions for K = 32 (Fig. 4, third row) show that C(t)
decays faster compared to both MH and IMH for all three variables
β, E, and χ.

In Fig. 4, the trajectories of β, m, and E for K = 32 (top row)
and K = 512 (second row) show a similar pattern to those in Figs. 1
and 2, respectively. While the sampling efficiency of both MH and
IMH degrades with increasing values of K, that of IMGS seems to
be independent of K. The IMGS provides a numerical gain in relax-
ation dynamics of β, χ, and E compared to its reversible counter-
part, the Metropolized-Gibbs sampler. Furthermore, unlike MH and
IMH, it seems insensitive to the increasing temperature domain size.

The implementation of IMGS in simulated tempering simulations
may therefore be of interest, particularly so in simulations that may
require a large temperature domain size K.

PERFORMANCE ANALYSIS WITH MD SIMULATIONS

In this section, we test our methods with MD simulations of ala-
nine pentapeptide (ALA5) in explicit water. Under the assumption
of the previous section that the IMGS appears to be slightly better
than IGS, we will therefore provide comparison analysis of IMGS
with some conventionally used simulated tempering algorithms. In
this section, we set β = 1/kBT, where the Boltzmann constant is given
by kB ≃ 1.38 × 10−23 J K−1. The weights ω(β) are determined using
the method proposed by Park and Pande.43

Setup

We constructed a simple linear model of ALA5 whereby the
peptide was capped with NTER at the N terminus and CTER at
the C terminus. We have performed MD simulations of our ALA5
model (Fig. 5) with the CHARMM36 force field66 in explicit water
using CHARMM-GUI64 to set up the system. The system was sol-
vated in a rectangular truncated box size of 10 Å edge distance where
we have used 3582 TIP3 water molecules and had added 3 K+ and
3 Cl− counterions to account for a 0.15M KCl concentration. The
simulations were run using NAMD65 with a time step of 2 fs using a
Langevin thermostat with a damping coefficient of 1/ps. We used
the particle mesh Ewald method67 in the periodic boundary con-
ditions with standard cut-off values given in the CHARMM-GUI64

protocols. We used the standard protocol for the equilibration step
of CHARMM-GUI before performing any production run.

Simulated tempering was performed to alternately sample from
the distributions π̃(σ∣β, ε) and π̃(β∣σ, ε). The distribution π̃(σ∣β, ε)
was sampled at a fixed temperature for Γ = 0.6 ps before attempt-
ing a single MC trial to sample from π̃(β∣σ, ε), i.e., a single trial
to update the temperature. Simulated tempering trajectories for
K = 32 and K = 512 temperatures equally spaced between 300
and 500 K were therefore run for T = 2 × 105 temperature swap
attempts. This consisted of Γ = 0.6 ps of MD sampling per tem-
perature swap attempt, therefore totaling 120 ns of MD sampling
per Markov chain. For both K = 32 and K = 512 temperatures, we
had performed 6 independent runs with the same starting structure.

FIG. 5. (a) Alanine pentapeptide with the slowest relaxing dihedral angles ϕ3: C3–N4–CA4–C4 and ψ3: N3–CA3–C3–N4, (b) free energy profiles βF = −ln(π(⋅|β)) in ϕ3 and
ψ3 obtained from a very long free MD simulation at 300 K, and (c) 2D free energy landscape in ϕ3 and ψ3 for ALA5. Units of free energy are in kcal/mol.
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Dihedral angles used as descriptors of the system were recorded
at every step (2 fs resolution) of the MD simulations. For com-
parison, we have constructed a baseline free energy profile in the
slowest relaxing dihedral angle ϕ3: C3–N4–CA4–C4, whereby a sin-
gle 2 μs long simulation at the coldest temperature was run with
free MD simulation (no simulated tempering) to sample enough for
every possible configuration of ALA5 [Fig. 5(b)]. The total set of
dihedral angles of the system are as follows: ϕ1: C1–N2–CA2–C2,

ϕ2: C2–N3–CA3–C3, ϕ3: C3–N4–CA4–C4, and ϕ4: C4–N5–CA5–
C5 and ψ1: N1–CA1–C1–N2, ψ2: N2–CA2–C2–N3, ψ3: N3–CA3–
C3–N4, and ψ4: N4–CA4–C4–N5.

Results

In Figs. 6 and 7, we show the simulation results for ALA5
for respective K = 32 and K = 512 temperature domain sizes. For

FIG. 6. Simulation results for ALA5 with K = 32 temperatures. The deviation parameter δ = 1 for both IMH and IMGS. [(a)–(d)] Trajectories of inverse temperature β and total
energy E shown for the first 105 MC steps t. [(e)–(h)] Average free energy profile trajectories in ϕ3 at the lowest temperature; the shaded colors indicate the standard error
on the average trajectory. The dashed line serves as a baseline comparison obtained from a much longer MD simulation with no simulated tempering (∼16.7 times longer
simulation time). Units of free energy are in kcal/mol. [(i) and (j)] Average trajectory for the autocorrelation functions Cβ(t) and CE(t); the shaded colors indicate standard
error on the average trajectory. The insets show the same plots with the y-axis in the logarithmic scale. (k) Autocorrelation functions of dihedral angles (see the main text)
obtained from a long MD simulation with no simulated tempering. (l) Autocorrelation functions of the slowest relaxing dihedral angles ϕ̃3 (solid lines) and ψ̃3 (dashed lines)
obtained from simulated tempering.
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FIG. 7. Simulation results for ALA5 with K = 512 temperatures. The deviation parameter δ = 1 for both IMH and IMGS. [(a)–(d)] Trajectories of inverse temperature β and total
energy E shown for the first 105 MC steps t. [(e)–(h)] Average free energy profile trajectories in ϕ3 at the lowest temperature; the shaded colors indicate the standard error
on the average trajectory. The dashed line serves as a baseline comparison obtained from a much longer MD simulation with no simulated tempering (∼16.7 times longer
simulation time). Units of free energy are in kcal/mol. [(i) and (j)] Average trajectory for the autocorrelation functions Cβ(t) and CE(t); the shaded colors indicate standard
error on the average trajectory. The insets show the same plots with the y-axis in the logarithmic scale. (k) Autocorrelation functions of dihedral angles (see the main text)
obtained from a long MD simulation with no simulated tempering. (l) Autocorrelation functions of the slowest relaxing dihedral angles ϕ̃3 (solid lines) and ψ̃3 (dashed lines)
obtained from simulated tempering.

K = 32, the trajectories of β for all algorithms exhibit a random walk
exploration of temperature space (Fig. 6, first column). Note that
for IMH and IMGS, this observation is in contrast to that for the
Ising model, where the IMH seemed to have a more deterministic
exploration of temperature space and that of IMGS was ballistic. For
both temperature domain sizes, we have plotted an average trajec-
tory (obtained from six independent runs) for the autocorrelation

functions of β and total energy of the system E. For K = 32, the
autocorrelation functions of β and E suggest a modest gain for both
IMH and IMGS over MH and MGS [Figs. 6(i) and 6(j)]. The corre-
sponding integrated autocorrelation times τint ,β and τint,E recorded
in Table I indicate a modest gain for the IMGS over MH. However,
no statistically conclusive gain is observed over IMH and MGS. On
the other hand, for a larger temperature domain size of K = 512,
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TABLE I. The integrated autocorrelation times (in units of β update trials t) for inverse
temperature β, total energy E, and slowest relaxing dihedral angles ϕ̃3 and ψ̃3. The
relative speed up for a given variable f is defined with respect to the corresponding
value τint , f of MH (see the work of Berendsen81 for error propagation on the relative
speedup).

Integrated autocorrelation times (× 103)

τint ,β τint,E τint,ϕ̃3
τint,ψ̃3

K = 32

MH 2.4 ± 0.2 2.5 ± 0.2 1.3 ± 0.4 0.6 ± 0.2
IMH 2.0 ± 0.1 2.06 ± 0.09 0.7 ± 0.1 0.29 ± 0.03
MGS 2.3 ± 0.2 2.4 ± 0.3 0.8 ± 0.1 0.38 ± 0.03
IMGS 2.0 ± 0.2 2.1 ± 0.2 0.9 ± 0.3 0.42 ± 0.03

K = 512

MH 33.0 ± 4.0 30.0 ± 4.0 1.9 ± 0.7 0.52 ± 0.07
IMH 3.9 ± 0.5 3.9 ± 0.4 1.2 ± 0.2 0.44 ± 0.09
MGS 2.9 ± 0.2 2.9 ± 0.2 0.67 ± 0.09 0.30 ± 0.03
IMGS 2.6 ± 0.2 2.6 ± 0.2 1.0 ± 0.2 0.35 ±± 0.08

Relative speedup

K = 32

MH 1.0 1.0 1.0 1.0
IMH 1.2 ± 0.1 1.2 ± 0.1 1.9 ± 0.6 2.1 ± 0.7
MGS 1.0 ± 0.1 1.0 ± 0.2 1.6 ± 0.5 1.6 ± 0.5
IMGS 1.2 ± 0.2 1.2 ± 0.1 1.4 ± 0.7 1.4 ± 0.5

K = 512

MH 1.0 1.0 1.0 1.0
IMH 8.5 ± 1.5 7.7 ± 1.3 1.6 ± 0.6 1.2 ± 0.3
MGS 11.4 ± 1.6 10.3 ± 1.6 2.8 ± 1.1 1.7 ± 0.3
IMGS 12.7 ± 1.8 11.5 ± 1.8 1.9 ± 0.8 1.5 ± 0.4

notice from the trajectories of β (Fig. 7, first column) that the mixing
rate of β and E for MH is drastically poor compared to the other three
algorithms. Examining the corresponding integrated autocorrela-
tion times in Table I, we notice that IMGS returns smaller integrated
autocorrelation times for β and E than both MH and IMH; how-
ever, compared to MGS, yet again, no conclusive gain is observed.
It therefore seems that concerning the mixing times of β and E, the
superiority of IMGS over IMH becomes more distinct in large tem-
perature domain sizes. This is particularly clear when we compare
the autocorrelation functions for K = 32 [Figs. 6(i) and 6(j)] to those
for K = 512 [Figs. 7(i) and 7(j)].

The dihedral angles for ALA5 are considered the slowest relax-
ing variables of the system. We had determined the slowest relaxing
dihedral angles (ϕ, ψ) from a very long free MD simulation with
no simulated tempering [Fig. 6(k)]. To demonstrate convergence to
the correct target distribution, we have constructed the free energy
profiles in the slowest relaxing dihedral angle ϕ3 at the lowest tem-
perature of 300 K (Figs. 6 and 7, second column). The trajectories

shown are the average of six independent runs, each of which is
plotted by re-weighting profiles at all temperatures with respect to
the coldest temperature. As a baseline for comparison, we have used
the free energy profile that is constructed using a very long free MD
simulation. The baseline trajectory (shown in dashed line) consists
of ∼16.7 times longer MD simulation time than the trajectories con-
structed using simulated tempering. In Fig. 6(l), we show the auto-
correlation functions corresponding to the slowest dihedral angles,
ϕ3: C3–N4–CA4–C4 and ψ3: N3–CA3–C3–N4, obtained from sim-
ulated tempering simulations. Due to the circular nature of the dihe-
dral coordinates, we have chosen to define the sinusoidal functions
ϕ̃3 = 1/2(cosϕ3 + sin ϕ3) and ψ̃3 = 1/2(cosψ3 + sin ψ3) and have
plotted in Fig. 6(l) the average autocorrelation functions Cϕ̃3

(t) and
Cψ̃3(t) obtained from six independent runs. To quantify the relax-
ation dynamics of the dihedral angles ϕ̃3 and ψ̃3, we have computed
the corresponding integrated autocorrelation times in Table I. Keep-
ing in mind the standard error on the mean values, we observe a
modest gain with IMGS over MH in both temperature domain sizes.
However, no statistically conclusive gain is observed over IMH and
MGS.

DISCUSSION

In this paper, we have generalized our recently introduced
irreversible Gibbs sampler (IGS) and its variant the irreversible
Metropolized-Gibbs sampler (IMGS)36 to the simulated tempering
method. In particular, the IGS and IMGS, which break the DBC but
satisfy the SDBC, are adapted for the update scheme of inverse tem-
perature β for a fixed configuration σ. We tested the correctness of
our methods on a simple system described by a 1D model potential,
whose exact weight factors ω(β) can be numerically computed. With
this simple system, we demonstrated that our methods provide a
significant improvement in the relaxation dynamics of inverse tem-
perature and some system observables over the conventionally used
simulated tempering with the Metropolis–Hastings scheme. When
compared to the irreversible Metropolis–Hastings (IMH) method
of Sakai and Hukushima,30 we observe that the improvement in
the mixing time of β and system observables accelerates with the
increasing temperature domain size K.

Furthermore, we tested our methods on the Ising model and
have shown that both the IGS and IMGS provide a decisive gain in
the relaxation dynamics of β, magnetic susceptibility χ, and energy
density E by as much as 3.3 times when compared to their reversible
counterparts with the DBC, respectively, the Gibbs sampler, and the
Metropolized-Gibbs sampler. We demonstrated further that in both
samplers, the furthest deviation from the DBC produces the shortest
mixing time for β, χ, and E. For this system too, we provided com-
parison with MH and IMH. The integrated autocorrelation times
τint,β, τint,χ , τint,E for our methods scale (with respect to K) on the
order of O(1). We compare this to MH and IMH, which scale on
the order of O(K2

) and O(K), respectively. Our methods outper-
form the conventionally used MH for all domain sizes K. The gain in
relaxation times over IMH is modest for small K values but acceler-
ates with increasing K. In summary, when compared to their respec-
tive reversible counterparts, our methods seem to provide a near
fixed numerical gain in relaxation times at all temperature domain
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sizes K. However, the dynamical scaling of the integrated autocorre-
lation times suggests that the gain in sampling efficiency over both
MH and IMH increases with increasing K.

We also performed simulated tempering MD simulations on
alanine pentapeptide (ALA5) with temperature domain sizes, K = 32
and K = 512, equally spaced between 300 K and 500 K. Guided by the
performance on previous two systems, we chose to test the best of
our two methods, namely, the IMGS, to compare performance with
the existing methods. For K = 32, the relaxation times of β and total
energy E indicate modest improvements for the IMGS over MH,
but no conclusive gain over IMH and MGS. However, at a larger
temperature domain size, K = 512, the IMGS provides a distinct
improvement in the relaxation times of β and E over both MH and
IMH, but no conclusive gain is observed over its reversible coun-
terpart MGS. This is typical of both MH and IMH, which perform
optimally with nearest neighbor temperature swaps, and therefore,
with increasing temperature domain size, one expects a less effi-
cient sampling of the temperature space. For example, the integrated
autocorrelation time of β for MH algorithm scales on the order of
O(K2

), as is expected of a random walk on domains of increasing
size, while that of IMH scales on the order of O(K), as shown by
Sakai and Hukushima30 for the Ising model and reproduced in this
paper. The IMGS and its reversible counterpart, the MGS, however,
are not restricted to nearest neighbor temperature swaps and per-
form a more global exploration of temperature space that provides a
better mixing rate.

The relaxation dynamics of the slowest relaxing dihedral angles
ϕ3: C3–N4–CA4–C4 and ψ3: N3–CA3–C3–N4 indicate that for all
three algorithms, IMH, IMGS, and MGS, ϕ3 and ψ3 relax faster
than with the conventionally used MH algorithm. However, the
integrated autocorrelation times of the dihedral angles indicate that
the IMGS performs fairly similarly to IMH and MGS, with no sta-
tistically conclusive gain over either method in both temperature
domains (K = 32 and K = 512). The slowest relaxing dihedral angles
therefore do not distinguish the performance of our method from
IMH and MGS with statistical significance.

A reason for this could be that in conventional simulated tem-
pering, the relaxation rate of a given variable, say the magnetization
of the system in the Ising model, cannot be slower than that at the

coldest temperature, and equally, it cannot be faster than that at
the hottest temperature. The slowest relaxation time of the system
in simulated tempering therefore lies somewhere between those at
the coldest and hottest temperatures. This follows from the work
of Rosta and Hummer37 who had derived an expression for the
maximum efficiency gain in simulated tempering simulations with
ideally fast mixing rates. We consider the Ising model due to its rel-
ative simplicity and ease of generating large amounts of data. We
show in Fig. 8 the theoretical prediction (black dashed line) from
Ref. 37 for the optimum autocorrelation function of the magneti-
zation density in our simulated tempering simulations. Also shown
are the autocorrelation functions at the coldest (blue dashed line)
and hottest (red dashed line) temperatures of the set obtained from
very long free MC simulations with no simulated tempering and
those obtained from simulated tempering with MH (blue solid line),
IMH (orange solid line), and IMGS (green solid line). Note that the
theoretical prediction lies between those of the coldest and hottest
temperatures and the autocorrelation from the IMGS lies closest
to the theoretically predicted optimum function. We wish to point
out with this example that likewise, for simulated tempering with
ALA5, there may exist an optimum efficiency gain concerning the
relaxation time of the slowest dihedral angles. It is then feasible that
the mixing time of the dihedral angles obtained from all algorithms
are relatively close to the optimum predicted value, and therefore,
the other three algorithms (IMH, MGS, and IMGS), which have
demonstrated substantial gains over MH in the Ising model, now
seem to produce only modest gains over MH. Alternatively, the
modest speedup could also be because, for some systems, it is pos-
sible that varying the temperature may not be the optimal collective
variable to observe a speedup, and a Hamiltonian-based simulated
tempering52–57 may be more suitable with a better chosen collective
variable.

An extensive literature exists on techniques for enhancing the
sampling efficiency of simulated and parallel tempering simula-
tions. Among several studies, proposals have been made on deter-
mining the optimal temperature spacing,59–61 frequency of tem-
perature exchange attempts,62,63 and optimum range and number
of temperatures.37,58 In this paper, we introduced two irreversible
methods for temperature swaps that are essentially based on Gibbs

FIG. 8. Autocorrelation functions of the magnetization density in the 12 × 12 Ising model for K = 32 (left) and K = 512 (right) inverse temperatures between β1 = 0.5 (T =
2.0) and βK = 0.33 (T = 3.0) all equally spaced. The blue and red dashed lines are the autocorrelation functions obtained from a very long MC simulations at β1 = 0.5 and
βK = 0.33, respectively, with no simulated tempering. The solid lines are those obtained from simulated tempering simulations. The black dashed line is the theoretically
predicted optimum value derived by Rosta and Hummer.37 The simulation parameters are Γ = 102 sweeps and T = 107 MC steps. The deviation parameter δ = 1 for both
IMH and IMGS.
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sampling techniques. For fair comparison to the widely used MH
scheme and other existing methods, we therefore kept other impor-
tant aspects of the simulation such as temperature spacing and
range, number of temperatures, and frequency of temperature swaps
constant across the different algorithms. It is of interest for a fur-
ther study to also explore some of these aspects for our irreversible
methods.

Conventional simulated tempering methods with the MH
scheme perform optimally with nearest neighbor temperature swaps
so that the temperature change may be accepted with a reason-
able probability. Given a fixed temperature range, the number of
temperatures K needed scales as O(N 1/2

)
15,53 for a system with

degrees of freedom N . While the choice of K = 512 is practi-
cally unnecessary in our application to ALA5, for large complex
systems, however, such as biologically relevant proteins consisting
of hundreds of residues, a large number of temperatures K are
required to ensure optimum acceptance probability for temperature
swaps.77 It is particularly for the simulation of large systems that
conventional simulated tempering with the MH scheme proves to
be inefficient at exploring temperature space, as is expected for a
random walk in domains of increasing size. Given the robustness
of our methods in an even excessively large temperature domain
sizes, it is therefore hoped that our irreversible methods would pro-
vide a more efficient alternative to conventional methods for the
simulation of large complex systems, such as biologically relevant
proteins.

Although Sakai and Hukushima30 had shown with the Ising
model that the IMH algorithm provides a square root reduction in
the mixing time of inverse temperature as compared to MH, our
study here on the Ising model demonstrates that the mixing times
with Gibbs sampling techniques including our irreversible methods
scale on the order of O(1). In addition, our methods provide a fur-
ther numerical gain (∼3.3 times in the case of a 25 × 25 Ising model)
in relaxation times over the standard reversible Gibbs sampling
techniques. Breaking the DBC can therefore pay off.

Another interesting and important aspect of classical spin sys-
tems is the study of the critical phenomena at phase transitions.
Classical spin systems such as the Ising model suffer from a critical
slowdown4 near the phase transition. The integrated autocorrela-
tion times scale as τint ∼ Lz at the critical temperature Tc, where
L is the linear dimensions of the system and z here denotes the
dynamical critical exponent. Often the scaling of integrated auto-
correlation time with the system size is studied for the slowest relax-
ing observables of spin systems, such as magnetic susceptibility and
energy,31,32 whose autocorrelation times describe the mixing time
of the underlying Markov chain. For conventional Metropolis-type
algorithms that use single spin–flip dynamics, the dynamical crit-
ical exponent is compatible with z ∼ 2 scaling. Spin cluster algo-
rithms,68,69 however, have been impressively superior to the study
of critical phenomena when compared to conventional algorithms
with single spin–flip dynamics. For example, for the 2D Ising4 and
XY model,31 the dynamical critical exponent is compatible with z ∼ 0
scaling with Wolff’s spin cluster algorithm69 when compared to z
∼ 2 scaling with the conventional Metropolis algorithm. However,
the impressive performance of cluster algorithms remains limited
to the application of a few spin models. Their performance remains
particularly disappointing in application to more generic spin glass
models in 3D.70 On the other hand, simulation of spin glass models

has been performed with conventional extended ensemble MCMC
methods, such as the multicanonical method71–74 and simulated75,76

and parallel tempering.15 It remains of interest for a future study
to explore the dynamical critical scaling of the integrated autocor-
relation times with respect to the system size with our irreversible
methods introduced here. Of particular interest is the computation
of the dynamical critical exponent with our irreversible methods to
compare with conventional simulated tempering with the DBC and
spin cluster algorithms.

In summary, our methods do not only provide an efficiency
gain over the conventionally used MH scheme in all practical tem-
perature domain sizes but, particularly for simulations of large sys-
tems that may require large number of temperatures, can also be
more efficient alternatives to both MH and IMH, which suffer from
dynamical scaling with respect to K. Further practical applications
of our methods could extend to larger and/or more complex sys-
tems. In applications to ALA5 and biomolecular systems in general,
it is worth investigating further if more distinct gains in sampling
efficiency can be obtained with our methods using an alternative
dynamical variable other than temperature in simulated tempering,
for example, a dynamical variable in Hamiltonian-based simulated
tempering that may be more effective than temperature in flattening
the free energy landscape in ϕ/ψ.

SUPPLEMENTARY MATERIAL

See the supplementary material for a flow chart of
Algorithm 3.
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NOMENCLATURE

The transition probabilities from state (σ,βk) to (σ,βl)
and commonly used abbreviations in the main text
T(σ,βl∣σ,βk) Generic transition probability
G(σ,βl∣σ,βk) Gibbs sampler (GS)
M(σ,βl∣σ,βk) Metropolized-Gibbs sampler (MGS)
G(σ,βl∣σ,βk) Irreversible Gibbs sampler (IGS)
M(σ,βl∣σ,βk) Irreversible Metropolized-Gibbs sampler (IMGS)
DBC Detailed balance condition
BC Balance condition
SDBC Skewed detailed balance condition
MC Monte Carlo
MCMC Markov chain Monte Carlo
MH Metropolis–Hastings
IMH Irreversible Metropolis–Hastings
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APPENDIX: THE CONDITIONAL π̃(β, ε∣σ) SATISFIES THE
BALANCE CONDITION

Here, we show that the conditional π̃(β, ε∣σ) satisfies the
balance condition. We do this by writing the balance condition
explicitly,

π̃(β, ε∣σ) =∑
ε′
∑
β′
π̃(β′, ε′∣σ)G(β, ε, σ∣β′, ε′, σ)

=∑
ε′
∑
β′≠β

π̃(β′, ε′∣σ)G(β, ε, σ∣β′, ε′, σ)

+∑
ε′
∑
β′=β

π̃(β′, ε′∣σ)G(β, ε, σ∣β′, ε′, σ). (A1)

The first term on the right-hand side decomposes to

∑
β′≠β

π̃(β′, ε∣σ)G(β, ε, σ∣β′, ε, σ) (A2)

since G(β, ε, σ∣β′,−ε, σ) = 0, ∀ β′ ≠ β. The second term on the
right-hand side of (A1) breaks down to

π̃(β, ε∣σ)G(β, ε, σ∣β, ε, σ) + π̃(β,−ε∣σ)G(β, ε, σ∣β,−ε, σ)

= π̃(β, ε∣σ)γ(ε)[1 −
1
γ(ε)

Λ(β,−ε, σ∣β, ε, σ)]

+ π̃(β,−ε∣σ)γ(−ε)[
1

γ(−ε)
Λ(β, ε, σ∣β,−ε, σ)]

= π̃(β, ε∣σ)γ(ε) − π̃(β, ε∣σ)Λ(β,−ε, σ∣β, ε, σ)
+ π̃(β,−ε∣σ)Λ(β, ε, σ∣β,−ε, σ), (A3)

where γ(ε) = 1 − ∑
β′≠β

G(β′, ε, σ∣β, ε, σ). We therefore combine (A2)

and (A3) to write

π̃(β, ε∣σ) =∑
β′
π(β′, ε∣σ)G(β, ε, σ∣β′, ε, σ)

− π̃(β, ε, ∣σ)Λ(β,−ε, σ∣β, ε, σ)
+ π̃(β,−ε∣σ)Λ(β, ε, σ∣β,−ε, σ) (A4)

=∑
β′
π̃(β, ε∣σ)G(β′, ε, σ∣β, ε, σ)

= π̃(β, ε∣σ)

=
1
2
π(β∣σ), (A5)

where we have obtained the second equality by invoking the balance
condition in (20).
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