
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Performance Comparison of Multi-container Deployment
Schemes for HPC Workloads: An Empirical Study

Peini Liu · Jordi Guitart

Received: date / Accepted: date

Abstract The High-Performance Computing (HPC) community has recently
started to use containerization to obtain fast, customized, portable, flexible,
and reproducible deployments of their workloads. Previous work showed that
deploying an HPC workload into a single container can keep bare-metal perfor-
mance. However, there is a lack of research on multi-container deployments
that partition the processes belonging to each application into different contain-
ers. Partitioning HPC applications have shown to improve their performance
on virtual machines by allowing them to be set affinity to a NUMA (Non-
Uniform Memory Access) domain. Consequently, it is essential to understand
the performance implications of distinct multi-container deployment schemes
for HPC workloads, focusing on the impact of the container granularity and
its combination with processor and memory affinity. This paper presents a
systematic performance comparison and analysis of multi-container deployment
schemes for HPC workloads on a single-node platform, which considers different
containerization technologies (including Docker and Singularity), two different
platform architectures (UMA and NUMA), and two application subscription
modes (exactly-subscription and over-subscription). Our results indicate that
finer-grained multi-container deployments, on one side, can benefit the perfor-
mance of some applications with low inter-process communication, especially
in over-subscribed scenarios and when combined with affinity but, on the
other side, they can incur some performance degradation for communication-
intensive applications when using containerization technologies that deploy
isolated network namespaces.

Peini Liu, Jordi Guitart
Computer Science Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
Computer Architecture Department, Universitat Politecnica de Catalunya (UPC), Barcelona,
Spain
Tel: +34 - 93 405 40 47
Fax: +34 - 93 401 70 55
E-mail: peini.liu@bsc.es, jordi.guitart@bsc.es

This is a post-peer-review, pre-copyedit version of an article published in 
 Journal of supercomputing. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/s11227-020-03518-1



2 Peini Liu, Jordi Guitart

Keywords Docker · Singularity · Performance analysis · Deployment
schemes · Multi-container · HPC workloads

1 Introduction

Modern computing infrastructure is evolving at a fast pace from using dedicated
physical datacenters to cloud computing services. Virtualization, as a funda-
mental technology for cloud computing, allows efficient utilization and easy
maintenance of the infrastructure. So far, this attractive paradigm has been
widely used by leading commercial companies and communities to manage their
clusters [16,32]. The HPC community is also involved in this transformation of
adopting virtualization to benefit from some of its well-known advantages [49],
such as the encapsulation of specific software environments for each user, which
allows for customization, portability, and research reproducibility [19]; the
isolation of users from the underlying system and from other users, which
allows for security and fault protection; and the agile and fine-grain resource
allocation and balancing, which allows for efficient cluster utilization and failure
recovery [9].

Virtualization was initially adopted in the form of hardware virtualization,
which adds a layer of software between the operating system and hardware
(so-called hypervisor), as well as an extra operating system for the guest.
Historically, this incurred noticeable performance penalties, which have been
dramatically reduced with the latest advances in virtualization. In particular,
HPC workloads have taken advantage of the ability to leverage compute accel-
erators such as Graphics Processing Units (GPUs) from the virtual machines,
or the ability to map the physical resources directly to the virtual machines.
Furthermore, innovative deployment schemes have been also proposed to deal
with the performance bottlenecks of virtualized HPC workloads in typical HPC
architectures, such as multi-socket multi-core systems, like partitioning HPC
applications into several virtual machines to prevent them spanning multiple
NUMA domains [15]. This allows enabling affinity to a NUMA domain, which
can enhance data locality in the L3 cache and reduce the RAM memory latency
by preventing accesses to remote domains. Leveraging processor affinity as well
can prevent process preemption and also enhance data locality in the L1 and
L2 caches. Apart from exploiting data locality, partitioning can also optimize
the packing of virtual machines and hence increase the utilization of the hosts
since small-sized tasks can be allocated more easily without blocking in a
waiting queue [11]. It can be also helpful to enhance the fault tolerance of the
application, by replicating specific vital processes in separate virtual machines.
If one of them fails, the replica can take over without downtime. Similarly,
specific tasks of the application can also be checkpointed and recovered in case
of a failure.

However, the still existing performance degradation of hardware virtual-
ization regarding bare-metal executions [38] might not be acceptable for some
HPC users. The emergence of containerization can alleviate that performance



Performance Comparison of Multi-container Deployment Schemes 3

gap [9, 41], as each container shares the underlying host kernel for OS services
such as libraries, modules, and kernel functions. Therefore, a systematic analy-
sis of HPC workloads running on containerized environments is necessary to
understand the performance implications of using container technologies for de-
ploying HPC workloads [8,49], and to determine if the partitioning deployment
schemes using multiple instances and the performance optimization methods
based on affinity used for virtual machines are also appropriate with containers
and what potential problems they might incur.

Performance analysis of HPC applications in containerized environments
is an ongoing research problem [2,35,46]. Most related works evaluate single-
container deployments and emphasize the possibility that deploying a HPC
workload into a single container can achieve native performance [9,41]. However,
there is a lack of research on multi-container deployment solutions for a single-
tenant multi-process HPC workload. Unlike the multi-container deployments
holding workloads for multiple tenants [16–18,24], using multiple containers
to package a single-tenant multi-process/thread HPC workload refers to parti-
tioning the processes or threads belonging to each application into different
containers, obtaining in that way a finer-grained deployment. Whereas few
works include experiments with different container granularity [8, 34, 35], none
of them provide a deep understanding of the impact of such multi-container
deployments on the performance of HPC workloads, which considers different
containerization technologies, container grain sizes, and hardware platforms.
To better identify optimal containerized deployment schemes and potential per-
formance bottlenecks in a single multi-socket multi-core system, a proper and
in-depth performance analysis is important before migrating HPC applications
to containerized environments.

Early containerization implementations for deploying HPC benchmarks
were mainly Linux-VServer, OpenVZ, and LXC [46]. However, containeriza-
tion technologies have been evolving and Docker1 has become the most used
containerization software [3, 8, 35]. Docker provides an easy way to isolate the
network and limit the resource usage of the containers, but some challenges
remain with this technology to guarantee security and ensure performance
when employed in HPC. Singularity2, a novel HPC-oriented containerization
technology, offers promising solutions for these issues [2,20]. Regarding security,
Singularity does not create containers as spawned child processes of a root
owned daemon. Regarding performance, Singularity enables all the containers
to use the underlying HPC environment in a natural way (without namespaces
isolation). This work focuses on these two containerization technologies for
deploying HPC workloads.

This paper presents a systematic performance comparison and analysis of
containerized deployment schemes for HPC workloads. We address the next
research questions: i) What is the impact of container granularity on the
performance of multi-container deployment schemes for HPC workloads? ii)

1 https://www.docker.com/
2 https://sylabs.io/



4 Peini Liu, Jordi Guitart

What is the impact of processor and memory affinity on the performance of
multi-container deployment schemes for HPC workloads?

Consequently, this paper contributes with a performance comparison and
analysis of distinct multi-container deployment schemes for HPC workloads
comprising i) different containerization technologies, ii) different container gran-
ularity, iii) different processor and memory affinity configurations, iv) different
hardware platform settings, v) different application subscription modes.

The remaining of the paper is structured as follows. Related works are pre-
sented in Section 2. Section 3 describes the technologies behind containerization,
especially Docker and Singularity, and also discusses the HPC benchmarks used
in the evaluation. In Section 4, we evaluate the impact of container granularity
on multi-container deployments, including also a comparison of different appli-
cation subscription modes, different containerization technologies, and different
hardware platform settings. Section 5 evaluates the impact of processor and
memory affinity on multi-container deployments. Finally, Section 6 concludes
the paper and discusses the future work.

2 Related Work

In order to improve the performance of HPC applications on virtualized
multi-socket architectures, several works have proposed partitioning the HPC
applications into several virtual machines to prevent them spanning multiple
NUMA domains [14, 15]. The same idea of sizing virtual machines conforming
with NUMA boundaries for throughput workloads (i.e. MPI jobs without
communication) has been suggested by VMware in their reference architecture
for virtualizing High Performance Computing [43].

Consequently, application partitioning comes together with the need to
schedule the resulting virtual machines in the NUMA platform so that each
of them optimizes its memory access locality [7, 31] or the access to local I/O
devices [5]. Cheng et al. [7] presented a user-level scheduler that periodically
adjusts the placement of virtual machines aiming for local node execution, that
is, the VCPUs of a virtual machine are running on one NUMA node and its
memory is also located on the same NUMA node. Rao et al. [31] proposed a
load balancing algorithm to determine the optimal VCPU-to-core assignment
by dynamically migrating VCPUs to minimize the penalty to access the uncore
memory subsystem.

However, there is few empirical research yet evidencing whether the expe-
rience of virtualization can be applied with containerization with the same
benefit for HPC applications. Yang et al. [48] proposed a management service
for Docker containers based on OpenStack, which features a NUMA-aware
mechanism that limits the accessible CPU and memory of containers to the
same NUMA node. However, this work does not consider multi-container de-
ployments from a single tenant but a simple scenario with two containers from
two different tenants.



Performance Comparison of Multi-container Deployment Schemes 5

Several studies have compared the overhead of using virtualization and
containerization technologies for HPC applications [6, 38, 40]. They claimed
that containerization has less overhead than virtualization in most cases. As a
result, many works have focused on the performance analysis of containerized
deployments for HPC applications. Xavier et al. [46] firstly did in 2013 a
full performance comparison of container-based technologies relevant at that
time, mainly Linux-VServer, OpenVZ, and LXC, for HPC workloads. However,
containerization technologies have evolved considerably since then, and new
ones must be also evaluated for deploying HPC applications. In particular,
Docker has become the most popular containerization software, and Singularity
is also widely used in the community to support HPC workloads [2, 33, 44, 49].
These works have focused on evaluating the performance of an HPC application
from a single-tenant on a single container allocated on a single node with
different containerized technologies. Other works considered multi-tenant HPC
workloads. Maliszewski et al. [24] investigated the performance of scientific
workloads with single or multi-tenant instances in a single node, where each
tenant held its independent application among other tenants. Jha et al. have
studied HPC microservices in different container environments [17,18]. Their
work includes flexible deployments for HPC applications on a single node,
from running a single or multiple applications in a single container, to running
multiple containers each holding a single application. Whereas these studies
above considered one or multiple tenants, co-located independent applications
on a single node, or allocated one or more applications into a container, none of
them considered a deployment scheme partitioning one application into several
containers.

Other works have evaluated HPC workloads in distributed containerized
platforms. Saha et al. [35] evaluated the performance of an HPC application
running with several processes distributed across multiple containers using
Docker Swarm, and studied different network methods, number of hosts, and
ranks per container. Some of their results showed that one rank per container
had degradation, but they did not explain in-depth why this occurred. In
another work [34], the same authors presented a framework combining Apache
Mesos and Docker Swarm which can orchestrate distributed containers with
MPI processes across the nodes. They studied the overhead of running a different
number of MPI processes and nodes, and presented a co-scheduling policy.
These works showed that there is a possibility that distributed containers with
partitioned processes from a single HPC application can be allocated on the
same host. However, they mainly focused on the overhead of the orchestrator
and the number of nodes, and did not study the specific interference among
these containers while being allocated on the same node.

Chung et al. [8] considered the container granularity. Their work studies the
scalability of running an HPC application on one or more containers. However,
they only measured Docker performance for computation and data access
intensive HPC applications, and did not distinguish the different subscription
modes of the application or compare different containerization technologies.



6 Peini Liu, Jordi Guitart

None of these works study the joint impact of container granularity and
processor and memory affinity settings for multi-container deployments, as
we do in this work. Furthermore, none of them feature either an in-depth
performance evaluation of Singularity, including its instance-based variant, and
also a scenario adding CPU cgroups to its original implementation.

3 Background

This section introduces the technologies behind containerization, especially
Docker and Singularity, and also discusses the benchmarks that we use to
evaluate the performance of those technologies with HPC workloads.

3.1 Containerization technologies

3.1.1 Docker

Docker1, the most popular containerization technology, builds upon resource
isolation and limitation features of the Linux kernel, such as namespaces
and cgroups, respectively. Also, it adds a union-capable file system such as
OverlayFS.

Without the hypervisor needed for virtual machines, Docker contains a
lightweight engine to control and manage its containers. Also, Docker allows
containers to share the underlying host kernel including the libraries, modules,
kernel functions, and a root file system. Regarding runtime isolation, Docker
containers are defined into some operational spaces (e.g. Network, PIDs, UIDs,
IPC) which are implemented by means of namespaces. Regarding resource
limitation, some sets of dedicated resources that are defined by means of
cgroups can be allocated to the Docker containers.

3.1.2 Singularity

Singularity2 containers are mostly used in HPC environments where they
are proven to introduce less overhead than Docker while providing more
reliable security guarantees [2]. Regarding security, Singularity does not create
containers as spawned child processes of a root owned daemon. Regarding
performance, Singularity enables all the containers to use the underlying HPC
environment in a natural way (without namespaces isolation). Because of this
feature, the integration between Singularity and MPI can be transparent to
the user. Users only need to run mpirun command as they run it on bare-metal
machines, then the MPI process management daemon (ORTED) will handle the
containers execution and the processes launching and communications. These
make Singularity a first-class choice for HPC and scientific simulations [20, 36].

In late 2018, Singularity 3.0 was released [13]. This version brings a new
functionality (so-called instances) to run containers in ”daemon” mode, which



Performance Comparison of Multi-container Deployment Schemes 7

allows running them as services in the background. Singularity instances can
have isolated network resources, and they also support cgroups functionality to
restrict the resource usage. MPI applications can run in Singularity instances
as if they were running in separated hosts, having its own network identity
and using a SSH backend service to communicate. In this sense, Singularity
instances somehow mimic Docker, while still keeping the advantages regarding
security, thus we also include them as a part of our evaluation.

3.2 HPC Challenge Benchmark

The HPC Challenge (HPCC) benchmark suite3 is widely used to evaluate
the performance of HPC systems. Its design goal is to enable complete under-
standings of the performance characteristics of platforms [22]. It consists of
several benchmarks that show the performance impact of real-world HPC ap-
plications. For example, the capability of processor floating point computation
(e.g. DGEMM, FFT), memory bandwidth (e.g. STREAM, FFT) and latency
(e.g. RandomAccess), and communication bandwidth (e.g. b eff, PTRANS,
FFT) and latency (e.g. b eff, RandomAccess, FFT) [47]. We use common and
standard units to evaluate the results of HPCC. The benchmarks are described
as follows:

– EP-DGEMM (DGEMM) [22]: Real-valued dense matrix multiplica-
tion in double precision. Measures the floating point rate of execution in
GFLOP/s.

– G-FFT (FFT) [1]: Global discrete Fast Fourier Transform of a vector.
Measures the floating point rate of execution in GFLOP/s.

– G-PTRANS (PTRANS) [1]: Global Parallel matrix transpose. Exercises
the communications where pairs of processors communicate with each other
simultaneously. It is a useful test of the total communication capacity (in
GB/s) of the network.

– EP-STREAM (STREAM) [12]: Measures sustainable memory band-
width (in GB/s) and the corresponding computation rate for simple vector
kernels.

– G-RamdomAccess (RA) [1]: Random memory access. Measures the rate
of integer random updates of memory (in GUP/s, i.e., GigaUpdates per
second).

– b eff [12]: Measures the latency (in microseconds) and bandwidth (in GB/s)
of various communication patterns including ping-pong and ring.

3.2.1 Profiling analysis of the HPCC benchmarks

Due to the different attributes of each benchmark, some profiling of these
benchmarks is useful for understanding their different MPI usage patterns [12],

3 http://icl.cs.utk.edu/hpcc/



8 Peini Liu, Jordi Guitart

DGEMM FFT PTRANSSTREAM RA bw_lat0

20

40

60

80

100

Ti
m

e 
(%

)

Overall Time (Exactly-subscribed)

Outside MPI
MPI_Send
MPI_Recv
MPI_Bcast

MPI_Barrier
MPI_Reduce
MPI_Allreduce
MPI_Comm_rank

MPI_Comm_size
MPI_Init
MPI_Finalize
MPI_Alltoall

MPI_Comm_split
MPI_Comm_free
MPI_Sendrecv
MPI_Isend

MPI_Irecv
MPI_Waitall
MPI_Gather
MPI_Test

MPI_Testany
MPI_Waitany
MPI_Wait
MPI_Cancel

DGEMM FFT PTRANSSTREAM RA bw_lat0

20

40

60

80

100

Ti
m

e 
(%

)

Overall Time (Over-subscribed)

Fig. 1 HPCC MPI Profiling Analysis.

and can be used as a baseline for comparison with container-based executions
in the evaluation.

Our analysis considers two different application subscription patterns,
namely exactly-subscribed mode and over-subscribed mode. In the exactly-
subscribed mode, the number of running processes is equal to the number of
available processors. In the over-subscribed mode, there are more processes
running than processors available, that is, it permits resource over-subscription.
Tasks enabling over-subscription can obtain their resources sooner and decrease
the waiting time, thus can be started earlier than in the exclusive mode [39].

Environment and Settings: The hardware platform consists of a single
host with 2 x Intel 2697v4 CPUs (18 cores each, hyperthreading disabled),
256 GB RAM, 60 TB GPFS file system, and 1 Gb Ethernet network. The
operating system on each server is CentOS 7.6. OpenMPI v4.0.3rc3 and HPCC
benchmarks v1.5.0 are compiled by the GNU compiler collection in version
5.5.0. All the benchmarks are running with 16 processes on bare-metal. Exactly-
subscribed mode is using 16 cores (8 from each socket). For over-subscribed
mode, the over-commitment ratio is set to 2, which means using 8 cores (4
cores from each socket). We use an open source analysis tool Paraver4 to profile
MPI usage patterns of the benchmarks [30].

Results: Figure 1 shows the HPCC MPI profiling results. Segments of
different colors correspond to the time spent within the various MPI functions
with respect to the overall execution time. Table 1 presents the detailed time
consumption percentages and the number of invocations of these MPI functions,
which are classified according to the corresponding communication patterns.

From these results, we can divide these benchmarks broadly into two cate-
gories: MPI communication workloads, where processes need to communicate
(frequently) with each other, and MPI throughput workloads, where there is
(almost) no communication between processes [43]. Benchmarks whose name
starts with G- and b eff benchmark belong to the first category while others
starting with EP- belong to the second one. Within the MPI communication

4 https://tools.bsc.es/paraver



Performance Comparison of Multi-container Deployment Schemes 9
T
a
b
le

1
H

P
C

C
B

en
ch

m
a
rk

P
ro

fi
li
n

g
A

n
a
ly

si
s

F
o
r

E
x
a
ct

ly
-

a
n

d
O

v
er

-s
u

b
sc

ri
b

ed
M

o
d

e.

B
en

ch
m

a
rk

P
o
in

t
to

p
o
in

t
co

m
m

u
n

ic
a
ti

o
n

s
C

o
ll
ec

ti
v
e

co
m

m
u

n
ic

a
ti

o
n

s
b

lo
ck

in
g

p
in

g
-p

o
n

g
tr

a
n

sf
er

b
lo

ck
in

g
co

n
cu

rr
en

t
tr

a
n

sf
er

n
o
n

-b
lo

ck
in

g
tr

a
n

sf
er

n
o
n

-b
lo

ck
in

g
sy

n
ch

ro
n

iz
e

b
a
rr

ie
r

sy
n

ch
ro

n
iz

e
d

a
ta

m
o
v
em

en
t

g
lo

b
a
l

re
d

u
ce

M
P

I
S

en
d

M
P

I
R

ec
v

M
P

I
S

en
d

re
cv

M
P

I
Is

en
d

M
P

I
Ir

ec
v

M
P

I
W

a
it

(a
n
y
/
a
ll
)

M
P

I
T

es
t

(a
n
y
/
a
ll
)

M
P

I
C

a
n

ce
l

M
P

I
B

a
rr

ie
r

M
P

I
A

ll
to

a
ll

M
P

I
B

ca
st

M
P

I
G

a
th

er
M

P
I

(A
ll
)

R
ed

u
ce

D
G

E
M

M
E

:<
0
.0

1
%

O
:<

0
.0

1
%

N
I:

2
1
0

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

1
6

E
:0

.0
1
%

O
:0

.0
1
%

N
I:

9
6

E
:1

.4
1
%

O
:1

3
.8

8
%

N
I:

9
6

F
F

T
E

:<
0
.0

1
%

O
:<

0
.0

1
%

N
I:

2
1
0

E
:<

0
.0

1
%

O
:0

.0
2
%

N
I:

1
6

E
:1
4
.2
2
%

O
:3
2
.6
5
%

N
I:
9
6

E
:<

0
.0

1
%

O
:0

.0
1
%

N
I:

9
6

E
:0

.5
6
%

O
:9

%
N

I:
4
8

P
T

R
A

N
S

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

2
2
0

E
:5
.6
9
%

O
:5
.2
4
%

N
I:
4
8
0

E
:2

.5
2
%

O
:8

.4
3
%

N
I:

9
6

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

8
0

E
:4

.2
6
%

O
:1

8
.0

9
%

N
I:

5
9
2

S
T

R
E

A
M

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

2
1
0

E
:1

.2
5
%

O
:2

8
.4

2
%

N
I:

1
2
9
6

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

1
4
4

E
:0

.0
5
%

O
:0

.1
3
%

N
I:

1
6

E
:0

.0
5
%

O
:0

.9
2
%

N
I:

2
5
6

R
A

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

2
1
0

E
:8
.8
9
%

O
:0
.6
2
%

N
I:
3
2
7
6
6
3
2

E
:1
4
.0
8
%

O
:1
6
.0
7
%

N
I:
3
2
7
6
3
4
4

E
:0

.4
2
%

O
:0

.0
3
%

N
I:

4
0
9
6

E
:0

.9
9
%

O
:0

.0
6
%

N
I:

4
0
4
8

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

9
6

E
:<

0
.0

1
%

O
:<

0
.0

1
%

N
I:

3
0
4

b eff

p
in

g
-

p
o
n

g

E
:5
6
.3
2
%

O
:6
1
.6
%

N
I:
5
4
4
0
4

E
:<

0
.0

1
%

O
:0

.0
1
%

N
I:

1
6

E
:2

.1
%

O
:2

.5
3
%

N
I:

6
6
7
2

E
:2

.3
6
%

O
:5

.2
2
%

N
I:

9
5
0
4

ri
n

g
E
:1
2
.4
1
%

O
:1
3
.3
3
%

N
I:
5
0
7
8
4

E
:2
.6
7
%

O
:0
.9
1
%

N
I:
1
0
1
5
6
8

E
:1
1
.1
1
%

O
:1
1
.4
8
%

N
I:
2
5
3
9
2

(E
)
a
n
d
(O

)
m
ea
n
s
E
xa

ct
ly
-
a
n
d
O
ve
r-
su

bs
cr
ib
ed

M
od

e,
re
sp
ec
ti
ve
ly
.

N
I
m
ea
n
s
N
u
m
be
r
o
f
In

vo
ca
ti
o
n
s.



10 Peini Liu, Jordi Guitart

workloads, b eff presents different patterns of point-to-point communications
(e.g. blocking ping-pong transfer, blocking concurrent transfer, and non-blocking
communications), which are also shown in G-PTRANS (blocking concurrent
transfer) and G-RandomAccess (non-blocking communications). G-FFT uses
mainly collective all-to-all communication. Thereby, all of these benchmarks can
be used to evaluate the different aspects of interprocess communication. On the
other side, MPI throughput workloads EP-STREAM and EP-DGEMM can be
used to assess the memory bandwidth and the computation performance of the
system, respectively. Note that our classification matches with the existing liter-
ature on HPCC [23], which has identified b eff, G-RandomAccess, G-PTRANS,
and G-FFT as performance-sensitive to the interconnection latency and/or
bandwidth, whereas EP-DGEMM and EP-STREAM have been characterized
as not sensitive to them.

4 Performance Analysis of Multi-container Deployments

4.1 Objective

In this section, we present an empirical performance evaluation of multi-
container deployments of HPCC benchmarks with different container gran-
ularity. We evaluate different scenarios where we partition each application
among an increasing number of containers, but decreasing number of processes
per container (i.e., finer-grained container granularity). Within this evaluation,
we consider different subscription modes on the application layer (exactly-
subscription and over-subscription), different containerization technologies
(including Docker and Singularity), and different hardware platform settings
(UMA and NUMA).

4.2 Method

The idea of containerization is to provide a pool of resources for a group of
processes/threads. However, the grouping of the processes/threads within a
job admits several combinations, as well as the resource group provided by the
hardware can also vary. Thus, the impact of containerized deployments can be
analyzed by changing the elements at both ends of the mapping.

The container-based deployment model for HPC workloads is shown in
Figure 2. It consists of three modules: a job contains several processes/threads,
which can be divided into groups of various sizes and are packaged into different
containers; a host has multiple resources organized into sets which are able
to run the containers; and a containerization layer including containers that
holds the mapping between a group of processes/threads and a set of resources.
Our evaluation compares and analyzes the performance of HPC workloads
by considering deployment schemes with different number of containers and
processes per container and using different containerization technologies on the
containerized layer.



Performance Comparison of Multi-container Deployment Schemes 11

Job

Task Group

Task Task Task

Task Group

Task Task Task

Job

 Process/Thread Group

P/T P/T P/T

Process/Thread Group

P/T P/T

Container Pool Host

Resource Group

Resource Group

Resource Group

Container

P/TG

TaskTaskP/T

RG

Container

P/TG

TaskP/T

RG

Fig. 2 Container-based deployment model for HPC workloads.

4.3 Experimental setup

This section describes the experimental setup used for performance evaluation.
All the results of each experiment are derived from the average of 10 executions
and the bare-metal executions are considered as baselines of every scenario.
We perform unpaired two-samples T tests to assess whether the performance
difference between the means in our experiments is statistically significant
or due to randomness. We consider that a P-value lower than threshold 0.05
denotes a statistically significant difference.

Classical unpaired two-samples T tests require that the two groups of
samples are normally distributed, so we first verify that by using Shapiro-Wilk
tests [37]. When some of the groups of samples being compared are not normally
distributed, we use Mann-Whitney tests [25] instead of the classical two-samples
T tests. Unpaired two-samples T tests also require that the variances of the two
groups are equal. We verify this by using Fisher’s F-tests. When the variances
are not equal, we use Welch T tests [45] instead of the classical T tests.

Environment: Our experiments are executed on a single-host HPC plat-
form. The hardware characteristics of this host have been described in Section
3.2.1. Figure 3 shows a schematic view of its architecture. There are two sockets
containing 18 cores each. The distance for accessing local and remote memory
is 10 and 21, respectively. Each core has its own L1 and L2 cache, and L3 cache
is shared by the 18 cores in the same socket. We use this host to define two
different hardware platform settings: one with Non-Uniform Memory Access
(NUMA) and another with Uniform Memory Access (UMA). Table 2 summa-
rizes the hardware characteristics of these two settings. Both of them have
the same number of cores, each one with L1 data cache (32K), L1 instruction
cache (32K), and L2 cache (256K). In the NUMA hardware setting, those
cores belong to 2 different sockets, each one with its own L3 cache (45MB);
in the UMA hardware setting, the cores all belong to a single socket with a
single 45MB L3 cache. The software stack for both host and containers, and
its compilation environment are described in Table 3.

Benchmark settings: The settings for HPCC are the same as described
in Section 3.2.1, so all the benchmarks are running with 16 MPI processes in



12 Peini Liu, Jordi Guitart

Host (256GB)

Node 1   RAM (128GB)

L3
(45MB)

L1(64K)

L2(256K)

Core33

L1(64K)

L2(256K)

Core34

L1(64K)

L2(256K)

Core35

L1(64K)

L2(256K)

Core18

L1(64K)

L2(256K)

Core32

...

Node 0   RAM (128GB)

L3
(45MB)

L1(64K)

L2(256K)

Core0

L1(64K)

L2(256K)

Core3

L1(64K)

L2(256K)

Core17

L1(64K)

L2(256K)

Core1

L1(64K)

L2(256K)

Core2

...

10 10
21

Fig. 3 A schematic view of our single-host HPC platform with two sockets and 18 cores per
socket with shared L3 cache.

Table 2 Overview of the multi-socket multi-core hardware settings used in the experiments.

Hardware Setting #sockets #cores L3(MB) RAM(GB)
NUMA 2 16(8 per socket) 90(45 per socket) 256(128 per socket)
UMA 1 16 45 128

Table 3 Software Stack.

Software Version Location Compiler
Linux CentOS 7.6.1810 Host & Container
Docker 19.03.5 Host

Singularity 3.5.1 Host
OpenMPI OpenMPI-4.0.3rc3 Host & Container GCC 5.5.0

all the scenarios. In the exactly-subscribed mode, those processes run on 16
cores, whereas in the over-subscribed mode they run on 8 cores. Additionally,
we enable OpenMPI MCA parameter mpi_yield_when_idle for all the over-
subscribed scenarios to prevent the degradation from the OpenMPI (see Section
4.4.4).

Container granularity settings: Different deployment schemes for eval-
uating container granularity are presented in Figure 4. Figure 4 (a) presents
the settings of deployment scenarios on the NUMA hardware platform setting
and Figure 4 (b) on the UMA hardware platform setting. E or O refers to
the application running on exactly-subscribed mode or over-subscribed mode,
respectively. E1-E5 and O1-O4 reflect the different granularity of the containers.
As shown in Table 4, E1 and O1 use a single container, while E2-E5, O2-O4
are scenarios with an increasing number of containers, but decreasing number
of processes per container.

In the experiments denoted as ’ANY’, each container could use any of the
available cores according to the used hardware platform setting (see Table



Performance Comparison of Multi-container Deployment Schemes 13

E1

0 718 25 0 718 25

E2

0 718 25

E3

0 718 25

E4

0 718 25

E5

0 15 0 15 0 15

E1 E2 E3 E4 E5

0 15 0 15

O1

0 318 21 0 318 21

O2 O3 O4

0 318 210 318 21

O1

0 7

O2 O3 O4

0 7 0 7 0 7

(a) Configurations of deployment scenarios - NUMA  hardware settings

(b) Configurations of deployment scenarios - UMA  hardware settings

sockets containers cores processes E - Exactly-subscribed mode O - Over-subscribed mode Mapping

Fig. 4 Containerized deployment scenarios.

Table 4 Settings for containerized deployment scenarios.

Scenarios #containers
#processes

per container
Used cores and sockets

E1,E2,E3,E4,E5 1,2,4,8,16 16,8,4,2,1
NUMA: cores 0-7,18-25; sockets 0-1
UMA: cores 0-15; socket 0

O1,O2,O3,O4 1,2,4,8 16,8,4,2
NUMA: cores 0-3,18-21; sockets 0-1
UMA: cores 0-7; socket 0

4). The actual distribution of the running processes on the available cores is
decided dynamically by the CFS Linux scheduler. In the experiments denoted
as ’PIN’, we enforce a 1-to-1 binding from the processes of the application
to the available cores according to the used hardware platform settings. This
binding holds during the entire execution of the application. We include this
setting in the comparison to serve as a reference and to assess the performance
reproducibility when variable process placement is eliminated, especially with
over-subscription.

Containerization technologies: Docker and Singularity containerization
technologies are evaluated in this work. We include also some variants of
Singularity in the comparison. The different features of these technologies are
described in Table 5: 1) Docker : Docker containers run isolated into different
namespaces and cgroups. 2) Singularity : Default Singularity version, which
executes the containers like they were native programs or scripts on a host
computer, without encapsulating them on separated namespaces or cgroups. 3)
Singularity-instance: Similar to Docker, Singularity container instances, which
are persistent versions of the container image, run isolated in the background
into different namespaces and cgroups. 4) Singularity+cgroup: Plain Singularity
containers are executed (not instances), but each of them runs on its own
cpu cgroup. Note that this cgroup should be a hierarchical cgroup, otherwise
the scheduler will allocate resources among multiple root level cgroups thus
bringing some degradation of performance.



14 Peini Liu, Jordi Guitart

Table 5 Features of different containerization technologies.

Docker Singularity Singularity Singularity
(instance) (+cgroup)

Namespaces Yes Yes No No
Cgroup Yes Yes No Yes

File System overlay ext3 ext3 ext3
Network Bridge Bridge Host Host

Performance analysis tools: We use Paraver to profile MPI usage pat-
terns of the benchmarks. We capture also performance event counters (through
Perf5) and operating system metrics, such as context-switches, migrations, and
memory accesses, from representative executions of the benchmarks and we
use them to explain the obtained performance results.

4.4 Results

4.4.1 Impact of containerization technology and container granularity on
multi-container deployments

In this section, we evaluate the performance impact of different granularity of
containers with different containerization technologies through scenarios E1-E5
and O1-O4.

MPI communication workloads: As a result of the profiling analysis in
Section 3.2.1, we concluded that b eff (including Ping-Pong and Ring patterns),
G-RandomAccess, G-PTRANS, and G-FFT benchmarks can be classified as
MPI communication workloads. In particular, b eff spends about 87% of overall
runtime in MPI (95% when over-subscribed), G-RandomAccess spends about
24% of overall runtime in MPI (16% when over-subscribed), G-PTRANS spends
about 13% of overall runtime in MPI (34% when over-subscribed), and G-FFT
spends about 15% of overall runtime in MPI (42% when over-subscribed).

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

GB
/s

RandomRing Bandwidth - ANY

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

GB
/s

RandomRing Bandwidth - PIN

O1 O2 O3 O40.0

0.5

1.0

1.5

2.0

GB
/s

RandomRing Bandwidth - ANY

O1 O2 O3 O40.0

0.5

1.0

1.5

2.0

GB
/s

RandomRing Bandwidth - PIN

Bare-metal Docker Singularity-instance Singularity Singularity+cgroup

Fig. 5 Impact of container granularity in b eff(RandomRing) bandwidth on NUMA hardware
platform setting.

5 http://man7.org/linux/man-pages/man1/perf.1.html



Performance Comparison of Multi-container Deployment Schemes 15

E1 E2 E3 E4 E50

1

2

3

4

5

GB
/s

Pingpong Bandwidth - ANY

E1 E2 E3 E4 E50

1

2

3

4

5

GB
/s

Pingpong Bandwidth - PIN

O1 O2 O3 O40

1

2

3

4

5

GB
/s

Pingpong Bandwidth - ANY

O1 O2 O3 O40

1

2

3

4

5

GB
/s

Pingpong Bandwidth - PIN

Bare-metal Docker Singularity-instance Singularity Singularity+cgroup

Fig. 6 Impact of container granularity in b eff(PingPong) bandwidth on NUMA hardware
platform setting.

 Blocking Ping-pong Tranfer

Fig. 7 Time spent in MPI communication
patterns of b eff(PingPong) benchmark for
PIN scenarios on Docker (NUMA hardware
platform setting).

1. Blocking Ping-pong Tranfer 2. Non-blocking Communicate 3. Blocking Concurrent Tranfer

Fig. 8 Time spent in MPI communication
patterns of b eff(Ring) benchmark for PIN
scenarios on Docker (NUMA hardware plat-
form setting).

Figures 5 and 6 show the bandwidth results for the b eff benchmark,
differentiating PingPong and RandomRing MPI point-to-point communication
patterns. We omitted the latency results as they were essentially following the
same trend. There is significant performance degradation when the processes
run on multiple containers in Docker and Singularity-instance (scenarios E2 to
E5 and O2 to O4) regarding single-container deployments, as the P-values of the
corresponding T-tests range from 4.9e−21 to 3.3e−11, which are all clearly lower
than 0.05. In order to better understand this behavior, Figures 7 and 8 detail
the time spent in seconds on each MPI function for the various communication
patterns in this benchmark when running on Docker. This time is greater
when running with multiple containers for blocking ping-pong transfer patterns
(MPI Send and MPI Recv), around 90% on scenario E2, and non-blocking
transfer patterns (MPI Isend and MPI Irecv), around 37% on scenario E2, and
increases with the number of containers, +16% (E3), +7% (E4), +4% (E5)
and +12% (E3), +8% (E4), +4% (E5), respectively. The time is also greater
when running multiple containers for non-blocking synchronization, around
47% on scenario E2, and blocking concurrent transfer patterns, around 61% on
scenario E2, but it barely increases with the number of containers, +7% (E3),
+5% (E4), -3% (E5) and +4% (E3), +1% (E4), -4% (E5), respectively.

This degradation occurs because the processes running on separated con-
tainers in Docker and Singularity-instance are deployed on isolated network
namespaces and have to use the TCP/IP network stack rather than shared-
memory to communicate with one another. Executions with a single container
or using Singularity do not have degradation on any of the scenarios when



16 Peini Liu, Jordi Guitart

comparing with bare-metal (the P-values of the corresponding T-tests range
from 0.34 to 0.89, clearly higher than 0.05, thus the difference is not statisti-
cally significant) because the processes do not communicate through isolated
network namespaces. All the processes belong to the same namespace and can
use shared-memory to communicate as when running on bare-metal.

E1 E2 E3 E4 E50.00

0.01

0.02

0.03

GU
P/

s

G-RandomAccess - ANY

E1 E2 E3 E4 E50.00

0.01

0.02

0.03

GU
P/

s

G-RandomAccess - PIN

O1 O2 O3 O40.00

0.01

0.02

0.03

GU
P/

s

G-RandomAccess - ANY

O1 O2 O3 O40.00

0.01

0.02

0.03

GU
P/

s

G-RandomAccess - PIN

Bare-metal Docker Singularity-instance Singularity Singularity+cgroup

Fig. 9 Impact of container granularity in G-RandomAccess performance on NUMA hardware
platform setting.

E1 E2 E3 E4 E50

2

4

6

8

GB
/s

G-PTRANS - ANY

E1 E2 E3 E4 E50

2

4

6

8

GB
/s

G-PTRANS - PIN

O1 O2 O3 O40

2

4

6

8

GB
/s

G-PTRANS - ANY

O1 O2 O3 O40

2

4

6

8
GB

/s
G-PTRANS - PIN

Bare-metal Docker Singularity-instance Singularity Singularity+cgroup

Fig. 10 Impact of container granularity in G-PTRANS performance on NUMA hardware
platform setting.

According to the profiling analysis of benchmarks in Section 3.2.1, among
the benchmarks classified as MPI communication workloads, G-RandomAccess
and G-PTRANS present some MPI point-to-point communication patterns
(see Figures 9 and 10). In particular, G-Randomaccess spends about 23% of
overall runtime on point-to-point non-blocking communication (16% when
over-subscribed). Thereby, Docker and Singularity-instance incur performance
degradation (around 70% on scenario E2) that increases slightly with the num-
ber of containers (up to 77% on scenario E5). This degradation is statistically
significant as the P-values of the corresponding T-tests are lower than 0.05
(ranging from 9.4e−22 to 1.8e−18). G-PTRANS spends about 5% of overall
runtime on point-to-point blocking concurrent transfers (e.g. MPI Sendrecv)
(also 5% when over-subscribed), thus Docker and Singularity-instance degrade
on running multiple containers due to using the network stack (around 15-17%
degradation on scenarios E2 to E5, which is statistically significant as the
P-values of the T-tests with respect to single-container deployments range from



Performance Comparison of Multi-container Deployment Schemes 17

3.2e−7 to 1.8e−4, which are lower than 0.05), but this degradation does not in-
crease with the number of containers (P-values of scenarios E3-E5 with respect
to E2 range from 0.2 to 1, which are higher than 0.05). The performance degra-
dation in G-PTRANS is significantly lower than b eff and G-RandomAccess
because the number of invocations to MPI functions is considerably lower. As
before, Singularity and Singularity+cgroup does not incur any statistically
significant degradation. This is confirmed in the corresponding T-tests where
all the P-values are higher than 0.05 (ranging from 0.07 to 0.9).

E1 E2 E3 E4 E50.0
2.5
5.0
7.5

10.0
12.5

GF
LO

P/
s

G-FFT - ANY

E1 E2 E3 E4 E50.0
2.5
5.0
7.5

10.0
12.5

GF
LO

P/
s

G-FFT - PIN

O1 O2 O3 O40.0
2.5
5.0
7.5

10.0
12.5

GF
LO

P/
s

G-FFT - ANY

O1 O2 O3 O40.0
2.5
5.0
7.5

10.0
12.5

GF
LO

P/
s

G-FFT - PIN

Bare-metal Docker Singularity-instance Singularity Singularity+cgroup

Fig. 11 Impact of container granularity in G-FFT performance on NUMA hardware platform
setting.

Unlike previous MPI communication workloads, G-FFT mainly uses collec-
tive communication (mostly MPI Alltoall) for data movement. From the results
in Figure 11, the performance degradation when running multiple containers in
Docker and Singularity-instance is almost negligible when exactly-subscribed
(around 1%) and quite small when over-subscribed (around 4% when pinning
processes). In both cases, the P-values of the corresponding T-tests show that
those small differences are statistically significant and not due to randomness
(ranging from 5.3e−6 to 7.5e−3). What makes the difference is the number of
invocations of MPI calls. As a rule of thumb, applications doing point-to-point
communication perform many more invocations to MPI functions than applica-
tions using collective communication. In particular, as shown in Table 1, G-FFT
does only 210 point-to-point and 256 collective invocations (vs. more than
50000 point-to-point invocation in b eff(PingPong)), hence the degradation is
considerably lower.

MPI throughput workloads: The results of the profiling analysis in
Section 3.2.1 allowed to classify EP-STREAM and EP-DGEMM benchmarks
as MPI throughput workloads. As shown in Figures 12 and 13, which depict the
performance of those benchmarks when running with various container grain
sizes and containerization technologies, those workloads do not show significant
performance variation regarding the baseline when increasing the number of
containers per host. For instance, the P-values of the T-tests for multi-container
deployments of EP-STREAM regarding single-container deployments range
from 0.05 to 0.85 (higher than 0.05). This is due to the low amount of inter-
process communication, namely 1.4% of overall runtime in MPI (29.5% when
over-subscribed, but mostly in synchronization functions) for EP-STREAM,



18 Peini Liu, Jordi Guitart

and 1.5% of overall runtime in MPI (13.9% when over-subscribed, but mostly
in the global reduce) for EP-DGEMM.

E1 E2 E3 E4 E50

1

2

3

4

5

GB
/s

EP-STREAM - ANY

E1 E2 E3 E4 E50

1

2

3

4

5

GB
/s

EP-STREAM - PIN

O1 O2 O3 O40

1

2

3

4

5

GB
/s

EP-STREAM - ANY

O1 O2 O3 O40

1

2

3

4

5

GB
/s

EP-STREAM - PIN

Bare-metal Docker Singularity-instance Singularity Singularity+cgroup

Fig. 12 Impact of container granularity in EP-STREAM performance on NUMA hardware
platform setting.

E1 E2 E3 E4 E50

10

20

30

GF
LO

P/
s

EP-DGEMM - ANY

E1 E2 E3 E4 E50

10

20

30

GF
LO

P/
s

EP-DGEMM - PIN

O1 O2 O3 O40

10

20

30

GF
LO

P/
s

EP-DGEMM - ANY

O1 O2 O3 O40

10

20

30

GF
LO

P/
s

EP-DGEMM - PIN

Bare-metal Docker Singularity-instance Singularity Singularity+cgroup

Fig. 13 Impact of container granularity in EP-DGEMM performance on NUMA hardware
platform setting.

E1 E2 E3 E4 E50

1

2

3

4

co
un

t

1e8
context-switches

E1 E2 E3 E4 E50

1000

2000

co
un

t

migrations

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

co
un

t

1e9
l3_cache_miss

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

co
un

t

1e9
Local_memory_access_dram

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

co
un

t

1e9
Remote_memory_access_dram

baremetal Docker Singularity

Fig. 14 Performance event counters of EP-DGEMM for ANY scenarios on NUMA hardware
platform setting.

Something noticeable in Figure 13 is the performance improvement of
EP-DGEMM in scenario ANY-E5 (which runs a single MPI process on each
container) regarding the other deployment scenarios with all the containeriza-
tion technologies but plain Singularity. In those technologies, ANY-E5 shows
significant difference compared to ANY-E1, as the P-values of the correspond-
ing T-tests range from 1.7e−3 to 7.3e−3 (lower than 0.05). As shown in Figure
14, which depicts relevant performance counters of EP-DGEMM, scenario E5



Performance Comparison of Multi-container Deployment Schemes 19

with Docker has considerably less process migrations and context-switches than
the other deployment scenarios. It also shows better cache utilization (less
L3 misses), more local memory accesses, and only minimal remote memory
accesses. These are consequences of the scheduling of the containers (i.e. the
cgroups) and their corresponding MPI processes. As each container runs a single
process, this is essentially a single-level scheduling (i.e. at the cgroup level),
which is simpler and allows to exploit processor affinity better, in a similar
way to when processes are pinned explicitly (although not so deterministic).
The same occurs with Singularity-instance, but not with Singularity because
all the processes run within the same cgroup.

Performance variability and impact of 1-to-1 process pinning:
Most benchmarks (b eff, G-PTRANS, G-FFT, EP-STREAM, and EP-DGEMM)
present some performance variability in the ANY over-subscribed scenarios,
which does not occur when binding processes to processors. In addition, EP-
DGEMM also shows some variability in the ANY exactly-subscribed scenarios,
which comes mainly from the process context-switches and migrations, and
can be avoided again by pinning the processes. Apart from eliminating the
performance variability, 1-to-1 process pinning also improves the performance
on over-subscribed scenarios by eliminating the variable process placement.
In the same way, it also improves the performance of EP-DGEMM when
exactly-subscribed.

4.4.2 Impact of the cgroup scheduling on multi-container deployments

As shown in previous sections, Docker and Singularity-instance incurred signifi-
cant performance degradation on MPI communication workloads when running
multiple containers due to the interprocess communication between them. In
this section, we assess whether other container-supporting technologies, such
as cgroups, could be also contributing to that performance degradation.

Linux cgroups are mechanisms from kernel-level that control the resource
allocation by restricting CPU, memory, network, etc., for each group of pro-
cesses. One of them is the CPU controller, which is responsible for grouping
tasks together that will be viewed by the scheduler as a single unit. The CFS
(Completely Fair Scheduler) scheduler applies the principle of sharing the
resources fairly among these groups at the same level of the hierarchy, which
means it will first divide CPU time equally between all entities in the same
level, and then proceed by doing the same in the next level [10].

To assess the impact of cgroups, we included the Singularity+cgroup ex-
periments, which run each container in a separated CPU cgroup (as done by
default by Docker and Singularity-instance), which means that each container
will run their processes in their own group sharing the CPU time allocated.

As shown in previous figures, Singularity+cgroup achieves the same perfor-
mance than Singularity for all the benchmarks in exactly-subscribed scenarios,
but it incurs some performance degradation (similar to Docker and Singularity-
instance) in some of the benchmarks on over-subscribed scenarios. For instance,
this is especially noticeable with G-PTRANS on ANY scenarios O2, O3, and



20 Peini Liu, Jordi Guitart

baremetal docker singularity
-instance

singularity singularity
+cgroup

12

14

16

18

GF
LO

P/
S

baremetal
1container

8containers
10containers

12containers
16containers

Fig. 15 Performance comparison of EP-DGEMM with different number of containers.

O4, and EP-DGEMM (and to a lesser extent on G-FFT) on ANY scenario
O4. In those scenarios, the cgroup scheduling performed by the CFS results
in imbalanced executions. CFS tries to maintain fair time allocation among
cgroups, not processes, but it is not especially accurate tracking the load of
scheduling entities when they are groups of processes (i.e. cgroups). Those
coarse-grain load measurements are then used to calculate the load of the
processors and decide about load balancing from busier to idler processors,
resulting in an imbalanced allocation of processes to processors [4, 21]. This
is critical in over-subscribed scenarios where processes must share processors
efficiently to ensure progress.

This can be confirmed in Figure 15, which shows the EP-DGEMM per-
formance on over-subscribed mode including additional scenarios that deploy
a higher number of containers cgroups than the number of available CPUs.
Whereas holding all the MPI processes in a single container provides bare-metal
performance, having multi-container deployments causes significant perfor-
mance degradation in all the containerization technologies except Singularity,
as Singularity is not using distinct cgroups. The corresponding T-tests confirm
that the P-values for Singularity are higher than 0.05 (ranging from 0.13 to
0.49), whereas for the other containerization technologies they are lower than
0.05 (ranging from 1.9e−6 to 7.4e−3).

4.4.3 Impact of the hardware platform setting on multi-container deployments

The hardware platform setting has also an impact on the performance of the
different benchmarks, but this is mostly unrelated with the containerization
technology and the deployment scheme. As such, in the UMA setting there is
also significant performance degradation for MPI communication workloads
when the processes run on multiple containers in Docker and Singularity-
instance because the processes running on separated containers are deployed
on isolated network namespaces. Executions with a single container, using
Singularity, or for MPI throughput workloads do not have degradation on none
of the scenarios when comparing with bare-metal.



Performance Comparison of Multi-container Deployment Schemes 21

E1 E2 E3 E4 E50
5

10
15
20
25

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

Pingpong Bandwidth - ANY

E1 E2 E3 E4 E50
5

10
15
20
25

Pingpong Bandwidth - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 16 Bandwidth difference (in %) of
UMA relative to NUMA in b eff(PingPong).

E1 E2 E3 E4 E5

15

10

5

0

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

Pingpong Latency - ANY

E1 E2 E3 E4 E5

15

10

5

0 Pingpong Latency - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 17 Latency difference (in %) of UMA
relative to NUMA on b eff(PingPong).

E1 E2 E3 E4 E5

15

10

5

0

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

RandomRing Latency - ANY

E1 E2 E3 E4 E5

15

10

5

0RandomRing Latency - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 18 Latency difference (in %) of UMA
relative to NUMA on b eff(RandomRing).

E1 E2 E3 E4 E5

1

0

1

2

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

G-RandomAccess - ANY

E1 E2 E3 E4 E5

1

0

1

2
G-RandomAccess - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 19 Performance difference (in %)
of UMA relative to NUMA on G-
RandomAccess.

E1 E2 E3 E4 E50.00

0.25

0.50

0.75

1.00

1.25

co
un

t

1e7
NUMA-l3 cache miss

E1 E2 E3 E4 E50.00

0.25

0.50

0.75

1.00

1.25

co
un

t

1e7
UMA-l3 cache miss

baremetal Docker Singularity

Fig. 20 Performance counters for b eff(PingPong) benchmark on ANY scenarios.

The performance difference between the NUMA and UMA hardware plat-
form settings depends on the specific characteristics of each benchmark. Figures
16-19, 21, and 23-26 present the performance difference (in %) of UMA relative
to NUMA for each benchmark. The difference between these two hardware
settings is that UMA optimizes the latency of accessing memory by improving
the cache usage and eliminating the remote memory accesses, while NUMA
optimizes the memory bandwidth. Given the performance variability in the
ANY over-subscribed scenarios, which makes it difficult to obtain meaningful
conclusions, we focus the comparison in this section in the exactly-subscribed
scenarios.

As shown in Figures 16-19, PingPong Bandwidth/Latency and Ring Latency
benchmarks show significant better performance in the UMA setting, ranging
from 15% to 27%. In those benchmarks, the P-values of the T-tests comparing
UMA and NUMA scenarios range from 1.0e−25 to 1.8e−4 (lower than 0.05).



22 Peini Liu, Jordi Guitart

G-Randomaccess benchmark also shows some improvement (less than 2%),
but the results are inconclusive, as the P-values of the T-tests are higher than
0.05 for some scenarios (ranging from 0.06 to 0.94) and lower than 0.05 for
others (ranging from 2.5e−3 to 0.04). The MPI processes on these benchmarks
communicate through small-sized point-to-point messages and are not memory
intensive. In the UMA setting, all the processes run in a single socket, sharing
the L3 cache and the local memory, which enhances the use of the cache (less
L3 misses as shown in Figure 20) and reduces the number of memory accesses
regarding the NUMA setting.

E1 E2 E3 E4 E5
0

5

10

15

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

EP-DGEMM - ANY

E1 E2 E3 E4 E5
0

5

10

15

EP-DGEMM - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 21 Performance difference (in %) of UMA relative to NUMA on EP-DGEMM.

As shown in Figure 21, EP-DGEMM also performs better in the UMA
setting for ANY scenarios. The improvement is significant as the P-values
of the corresponding T-tests for scenarios E1-E4 and E5-Singularity range
from 1.6e−9 to 4.5e−2 (lower than 0.05). The difference is less statistically
significant in scenario E5 with the other containerization technologies as the
corresponding P-values are around 0.14. Placing all the MPI processes in the
same socket has resulted in better cache sharing and allows them to better
access the local memory, which reduces the latency of accessing remote memory.
As shown in Figure 22, EP-DGEMM in the UMA setting performs only local
memory accesses, whereas it does a mixture of local (56% of the L3 cache misses
count) and remote memory accesses in the NUMA setting. For PIN scenarios,
EP-DGEMM in the NUMA setting already has good memory locality (local
memory accesses count is 99% of L3 cache misses count), thus UMA does not
bring any advantage on avoiding remote memory accesses latency, and hence
the performance of EP-DGEMM on both hardware platform settings is almost
the same, with NUMA bringing a small improvement around 1%-2%, which is
statistically significant as the corresponding P-values range from 2.0e−15 to
2.8e−3.

As shown in Figures 23-26, EP-STREAM, G-FFT, b eff(Ring Bandwidth),
and G-PTRANS have significantly worse performance in the UMA setting. In
particular, EP-STREAM is 48% slower in the UMA setting, with P-values of
the T-tests ranging from 3.3e−36 to 1.8e−4 (lower than 0.05). As the processes
are mostly accessing the local memory in the NUMA setting (99.6% for ANY
scenarios and 99.9% for PIN scenarios), UMA cannot bring additional benefit
by avoiding remote memory accesses, but introduces more memory contention



Performance Comparison of Multi-container Deployment Schemes 23

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

lo
ca

l m
em

or
y 

ac
ce

ss
co

un
t

1e9 NUMA

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

lo
ca

l m
em

or
y 

ac
ce

ss
co

un
t

1e9 UMA

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0
Re

m
ot

e 
m

em
or

y 
ac

ce
ss

co
un

t
1e9 NUMA

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

Re
m

ot
e 

m
em

or
y 

ac
ce

ss
co

un
t

1e9 UMA

baremetal Docker Singularity

Fig. 22 Performance counters for EP-DGEMM benchmark on ANY scenarios.

E1 E2 E3 E4 E5
50

40

30

20

10

0

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

EP-STREAM - ANY

E1 E2 E3 E4 E5
50

40

30

20

10

0 EP-STREAM - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 23 Performance difference (in %) of
UMA relative to NUMA on EP-STREAM.

E1 E2 E3 E4 E5

30

20

10

0

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

G-FFT - ANY

E1 E2 E3 E4 E5

30

20

10

0 G-FFT - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 24 Performance difference (in %) of
UMA relative to NUMA on G-FFT.

E1 E2 E3 E4 E520

15

10

5

0

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

RandomRing Bandwidth - ANY

E1 E2 E3 E4 E520

15

10

5

0

RandomRing Bandwidth - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 25 Bandwidth difference (in
%) of UMA relative to NUMA on
b eff(RandomRing).

E1 E2 E3 E4 E5
20

15

10

5

0

di
ffe

re
nc

e 
in

 %
 o

f U
M

A 
 re

la
tiv

e 
to

 N
UM

A

G-PTRANS - ANY

E1 E2 E3 E4 E5
20

15

10

5

0 G-PTRANS - PIN

Bare-metal
Docker

Singularity-instance
Singularity

Singularity+cgroup

Fig. 26 Performance difference (in %) of
UMA relative to NUMA on G-PTRANS.

because it has only one socket which reduces the available memory bandwidth.
G-FFT, b eff(Ring Bandwidth), and G-PTRANS communicate their processes
using large messages. In a single host, their performance is also limited by the
memory bandwidth, and for this reason, the NUMA setting provides better
performance for them. For example, G-FFT is 32%-36% faster (P-values ranging
from 7.5e−35 to 1.8e−4) and G-PTRANS is 14%-20% faster (P-values ranging
from 1.0e−16-2.8e−3).

In order to measure the memory contention that occurs on those benchmarks,
we calculate the memory contention ratio among cores in the UMA and NUMA
settings by using the model proposed by Tudor and Teo [42]. Same as those



24 Peini Liu, Jordi Guitart

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

2.5

M
em

or
y 

co
nt

en
tio

n 
ra

tio
(n

), 
n=

16

NUMA

E1 E2 E3 E4 E50.0

0.5

1.0

1.5

2.0

2.5

M
em

or
y 

co
nt

en
tio

n 
ra

tio
(n

), 
n=

16

UMA

baremetal Docker Singularity

Fig. 27 Memory contention ratio for EP-
STREAM benchmark on ANY scenarios.

E1 E2 E3 E4 E50.0

0.2

0.4

0.6

0.8

M
em

or
y 

co
nt

en
tio

n 
ra

tio
(n

), 
n=

16

NUMA

E1 E2 E3 E4 E50.0

0.2

0.4

0.6

0.8

M
em

or
y 

co
nt

en
tio

n 
ra

tio
(n

), 
n=

16

UMA

baremetal Docker Singularity

Fig. 28 Memory contention ratio for G-FFT
benchmark on ANY scenarios.

authors, we are not interested in the absolute value of stall cycles, but on how
stall cycles grow relative to a baseline value on one core (where there is no
contention) due to memory contention among cores. Consequently, we derive
the memory contention ratio ω as the stall cycles due to contention divided
by the useful work cycles (including stall cycles that are not due to resource
contention). A higher ω means more memory contention. As shown in Figures
27 and 28, which depict the memory contention ratio for EP-STREAM and
G-FFT, respectively, memory contention is higher in the UMA platform setting,
because there are 16 processes concurrently accessing the local memory and
the UMA platform setting cannot benefit from a second memory controller to
serve their operations, which increases the contention in L3 cache and local
memory.

4.4.4 Proper configuration of multi-container deployments with
over-subscription

Unlike the exactly-subscribed mode where OpenMPI can run its message
passing engine always in aggressive mode (never giving up the processors to
other processes), over-subscribed mode requires the OpenMPI engine to run in
degraded mode and frequently yielding the processor to its peers when idle,
thereby allowing all processes to make progresses [28]. The awareness of the
aggressive or degraded mode of OpenMPI engine is usually automatic, although
the user can use the MCA parameter mpi_yield_when_idle to control whether
an MPI process runs in aggressive or degraded performance mode [27].

However, when using containers to run an MPI application in over-subscribed
mode, things are more complicated. The difference between the aggressive and
degraded modes in the OpenMPI engine when running on containers can be
observed in Figure 29. For bare-metal, Singularity, and single-container de-
ployments of Docker and Singularity-instance, the performance of the ’default’
configuration matches with the performance when mpi_yield_when_idle is
enabled, as the OpenMPI engine can automatically detect the over-subscription
and run in degraded mode. However, for scenarios with multiple containers of
Docker and Singularity-instance, the degraded mode must be set explicitly by
enabling mpi_yield_when_idle in the mpirun command in order to let the
process yield the processor to its peers. Otherwise, MPI processes running in



Performance Comparison of Multi-container Deployment Schemes 25

Bare
-m

eta
l

Dock
er

Sin
gu

lar
ity

-in
sta

nce

Sin
gu

lar
ity
Dock

er

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

-in
sta

nce

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

(2 
Ins

tan
ces

)
0

5

10

15
GF

LO
P/

s
EP-DGEMM

Bare
-m

eta
l

Dock
er

Sin
gu

lar
ity

-in
sta

nce

Sin
gu

lar
ity
Dock

er

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

-in
sta

nce

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

(2 
Ins

tan
ces

)
0.000

0.001

0.002

GU
P/

s

G-RandomAccess

Bare
-m

eta
l

Dock
er

Sin
gu

lar
ity

-in
sta

nce

Sin
gu

lar
ity
Dock

er

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

-in
sta

nce

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

(2 
Ins

tan
ces

)
0.0

0.5

1.0

GB
/s

RandomRing Bandwidth

Bare
-m

eta
l

Dock
er

Sin
gu

lar
ity

-in
sta

nce

Sin
gu

lar
ity
Dock

er

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

-in
sta

nce

(2 
Ins

tan
ces

)

Sin
gu

lar
ity

(2 
Ins

tan
ces

)
0

2500

5000

7500

s

RandomRing Latency

Over-subscribed default
Over-subscribed enable mpi_yield_when_idle
Over-subscribed disable mpi_yield_when_idle

Fig. 29 Comparison of over-subscribed mode with different mpi yield when idle configura-
tions on single and multiple containers environments.

disparate containers are not aware of their peers and will not yield the pro-
cessor, thus degrading the performance (’default’ configuration is degraded as
when mpi_yield_when_idle is disabled). The results also show that, the most
time the MPI processes are blocked in the MPI library, the most noticeable
the benefits of declaring degraded mode operation are, indicating that MPI
communication workloads will be especially sensitive to this.

These observations can also be confirmed through unpaired two-samples T-
tests between the ’default’ configuration and the one with mpi_yield_when_idle

enabled. In particular, for the EP-DGEMM benchmark, the P-values of the
T-tests for all the scenarios are all higher than 0.05 (ranging from 0.16 to 0.74),
hence both configurations have the same performance. On the other side, for
the other three benchmarks, which are more communication intensive, the
P-values of the T-tests on Docker and Singularity-instance with more than
one instance are lower than 0.05 (ranging from 2.2e−12 to 0.02), hence the
’default’ configuration provides statistically worse performance than enabling
mpi_yield_when_idle.

4.4.5 Summary

To sum up, the findings from our previous evaluation of multi-container de-
ployments are as follows:



26 Peini Liu, Jordi Guitart

– For Docker and Singularity-instance, multi-container deployments incur
some performance degradation for MPI communication workloads, because
the processes running on separated containers are deployed on isolated
network namespaces and have to use the TCP/IP network stack rather than
shared-memory to communicate with one another. This could be avoided
by enabling shared-memory among the distinct containers and making the
MPI engine aware of that shared-memory area [15].

– Singularity has close to bare-metal performance because the containers
share the network and IPC namespaces and can use shared-memory to
communicate the processes.

– Multi-container deployments of MPI throughput workloads do not incur sig-
nificant performance degradation regarding bare-metal when increasing the
number of containers due to the low amount of interprocess communication.
Finer-grained deployments show a performance improvement because they
simplify the scheduling in a similar way to when processes are pinned explic-
itly, which encourages further study of the impact of affinity on performance
(see next section).

– On over-subscribed mode, some performance degradation is due to the
scheduling of cgroups by Linux CFS, which results in an imbalanced allo-
cation of processes to processors, because CFS is not especially accurate
tracking the load of scheduling entities when they are groups of processes
(i.e. cgroups).

– The advantage/disadvantage of using the UMA hardware platform setting
is not directly related with any containerization technology or container
granularity, but with the application and hardware setting characteristics,
such as the cache usage or the memory bandwidth. In particular, applications
with low memory bandwidth requirements and good data locality perform
better in the UMA setting, while memory-intensive applications perform
better in the NUMA setting.

– It is necessary to enable MCA parameter mpi_yield_when_idle for multi-
container deployments on over-subscribed mode, especially with MPI com-
munication workloads, because this enables MPI processes on different
containers to run in degraded mode.

5 Performance Analysis of Multi-container Deployments with
Processor and Memory Affinity

5.1 Objective

As mentioned in the introduction, Ibrahim et al. [15] have shown that the
performance of HPC workloads on multi-socket NUMA architectures degrades
when virtual machines span several NUMA domains. They claimed that the
degradation was caused by the two-level memory management inherent in
virtualized systems combined with the lazy page reclamation policies imple-
mented in modern kernels. Our results in the previous section showed that the



Performance Comparison of Multi-container Deployment Schemes 27

performance of HPC workloads running on a single container does not suffer
such degradation when spanning several NUMA domains, basically because
containers use only one-level memory management (the same as bare-metal
processes). Consequently, partitioning HPC workloads into multiple containers
and containing each one in a single NUMA domain through affinity is not
expected to show noticeable benefits from a memory translation perspective
for most of the benchmarks analyzed in this paper.

Nevertheless, the impact of container granularity on multi-container deploy-
ments with affinity can be significant depending on the CPU and memory usage
characteristics of each benchmark. For example, restricting the range of possible
CPUs to be assigned to the containers can help applications that suffer many
cpu-migrations and context-switches. Restricting the memory access of the
containers to the NUMA node where their CPUs belong can help applications
presenting an elevated number of remote memory accesses.

In this section, we evaluate the impact of setting affinity on partitioned work-
loads when using containers, by assessing the performance of multi-container
HPC applications with different processor and memory affinity configurations.
In particular, we test different scenarios where we partition each application
among an increasing number of containers but decreasing number of processes
per container, and we configure each container with some affinity settings,
which include i) affinity of the container to a set of cores from two sockets
and to the corresponding local and remote memory nodes (i.e. CPU), ii) affin-
ity of the container to a set of cores from a single socket and to the local
memory node (i.e. CPUMEM), and iii) 1-to-1 affinity of the processes of the
container to cores from a single socket and to the local memory node (i.e.
CPUMEMPIN). Within this evaluation, we consider different subscription
modes on the application layer (exactly-subscription and over-subscription),
different containerization technologies (including Docker and Singularity), and
different hardware platform settings (UMA and NUMA).

5.2 Method

Most containerization technologies use by default the namespace capability
of the control groups, but utilize the resource control capability only when
the user explicitly provides the parameters [29]. For example, considering the
experiments in Section 4, from the application perspective, the workload is
partitioned into several containers. However, from the kernel perspective, all
of them are still sharing the same resources in the system (and competing
for them). Thereby, the kernel has to arbitrate this competition to access the
system hardware or software resources and multiplex the containers to ensure
that all of them receive a fair share.

The purpose of processor and memory affinity is to reduce the number
of kernel-level cycles spent due to the process preemption (i.e., avoid cpu-
migrations and context-switches) and due to the system calls (i.e., exploit
locality in data accessing). The affinity settings for our containerized deploy-



28 Peini Liu, Jordi Guitart

0 25718

0 25718

0 718 25

0 718 25

E2

0 25718

0 718 25

0 25718

0 718 25

E3

0 25718

0 718 25

0 25718

0 718 25

E4

0 318 21

O2 O3

0 318 21

0 318 21

0 318 21

0 318 21

0 318 21

0 318 21

0 318 21

0 15

0 15

0 15

0 15

0 15

0 15

E2 E3 E4

0 15

0 15

0 15

(a) Affinity setting model of deployment scenarios - NUMA hardware settings

(b) Affinity setting model of deployment scenarios - UMA hardware settings

sockets containers cores processes E - exactly-subscribed mode O - over-subscribed mode

O2 O3

0 7 0 7

0 7

0 70 7

0 7

Ⅰ

Ⅱ

Ⅲ

Ⅳ

Ⅰ

Ⅲ

Ⅳ

Ⅰ - ANY Ⅱ Ⅲ Ⅳ- CPU - CPUMEM - CPUMEMPIN
Mapping

Fig. 30 Containerized deployment scenarios using affinity.

ment scenarios are shown in Figure 30. They include three different settings,
namely CPU, CPUMEM, and CPUMEMPIN, which are all compared to ANY
(the baseline used in the experiments in Section 4). We assume a number of
containers Nctn, where each one hosts a number of processes Nmpi, so that
Nctn ×Nmpi = K, which is kept constant in all the deployment scenarios (i.e.,
16). For different subscription modes with ratio r, each container requests the
number of cores Ncpu = Nmpi/r, where r = 1 or r > 1, which means the appli-
cation runs on exactly-subscribed mode or over-subscribed mode, respectively.
Each hardware platform setting provides a number of CPU cores and MEM
nodes from one or more sockets S = {sockets|s = 0, ..., Nsocket − 1}, where
each socket has P cores. Hence, for each application distributed in a set of
containers CTN = {ctni|i = 1, ..., Nctn} where each one hosts a set of processes
MPI = {mpij |j = 1, ..., Nmpi}, each affinity setting defines a mapping :

Mapi,j →

{
CPUs,x→y

MEMs

(1)

where s refers to the assigned socket and x, y refer to the range of assigned
cores.

Each of the affinity settings works as follows: (I) ANY: processes do not have
any processor or memory affinity, they could access all the resources provided
by the hardware platform setting, and the actual distribution is decided by the
operating system. Thus, the mapping of ANY scenarios could be expressed as:

Mapi,j →

{⋃Nsocket−1
s=0 CPU

s,s×P→s×P+
Ncpu×Nctn

Nsocket
−1⋃Nsocket−1

s=0 MEMs

(2)

(II) CPU: we define a specific processor affinity for each container to a set
of cores from the two sockets available in the host. This can only be set in the



Performance Comparison of Multi-container Deployment Schemes 29

NUMA hardware platform setting. The mapping of CPU scenarios could be
formulated as follows:

Mapi,j →

{⋃Nsocket−1
s=0 CPU

s,s×P+(i−1)× Ncpu
Nsocket

→s×P+i× Ncpu
Nsocket

−1⋃Nsocket−1
s=0 MEMs

(3)

(III) CPUMEM: we define specific processor and memory affinity for each
container to a set of cores belonging to a single socket and to the corresponding
local memory node. The mapping of CPUMEM scenarios could be calculated
as follows, provided that the number of cores requested by each container is
lower than the cores each socket provides:

Mapi,j →


CPUd i

Ncps
e−1,(d i

Ncps
e−1)×P+((i−1)−Ncps×(d i

Ncps
e−1))×Ncpu

→ (d i
Ncps
e − 1)× P + (i−Ncps × (d i

Ncps
e − 1))×Ncpu − 1

MEMd i
Ncps

e−1

(4)
where Ncps refers to the number of containers per socket and is calculated as
Nctn/Nsocket.

(IV) CPUMEMPIN: this scheme has the same setting as CPUMEM about
the affinity of the containers, but it enables the 1-to-1 process-to-processor
binding inside the container so that each process is mapped into a specific core:

Mapi,j →

CPUd i
Ncps

e−1,(d i
Ncps

e−1)×P+((i−1)−Ncps×(d i
Ncps

e−1))×Ncpu+d jr e−1

MEMd i
Ncps

e−1

(5)

5.3 Experimental setup

The environment, benchmarks, performance tools, statistical significance as-
sessment methods, and container granularity settings are the same as Section
4.3. Some other settings regarding affinity are described below:

CPU affinity settings: The CPU affinity is defined by restricting the
range of possible CPUs to be assigned to the containers. The cpuset-cpus

parameter is needed for Docker to specify the set of CPUs that can be used,
and for Singularity we define a cgroup.toml configuration file which sets cpus.

Memory affinity settings: The purpose of using memory affinity is to
restrict the memory accesses of containers to the NUMA node where their
assigned CPUs belong. For Docker, together with the cpuset-cpus parameter,
the containers must be provided with the corresponding cpuset-mems parame-
ter. For Singularity, we use the same strategy as Docker and specify cpus and
mems options within the cgroups.toml file.

OpenMPI processes binding: Unlike the settings of ANY, CPU, and
CPUMEM, where processes are free to be moved between the various CPUs



30 Peini Liu, Jordi Guitart

allocated to each container, CPUMEMPIN utilizes bind-to core where a more
rigid procedure of ranking, mapping, and binding of processes on CPUs is
carried out, actually making it a 1-to-1 process-to-processor binding. For Docker
and Singularity-instance, it was necessary to configure the appropriate rankfiles
that describe this behavior.

5.4 Results

Figure 31-37 show the impact when using processor and memory affinity
strategies on multi-container deployments of the HPCC benchmarks on two
hardware platform settings, namely the UMA and NUMA settings described
before.

5.4.1 Impact of containerization technology on multi-container deployments
with affinity

Figure 31-35 show the performance results of MPI communication workloads.
Congruently with the results in the previous section, Singularity achieves
the best performance also when using processor and memory affinity, while
Docker and Singularity-instance present some performance degradation in
multi-container scenarios. As discussed in the previous section, this is due to
the overhead of communication through the network stack instead of using
shared-memory, which depends on the amount of time spent within the MPI
library and the specific MPI functions invoked. Setting affinity cannot avoid
this performance degradation.

E2 E3 E40

1

2

GB
/s

NUMA-RandomRing Bandwidth

Docker-ANY
Docker-CPU
Docker-CPUMEM

Docker-CPUMEMPIN
Singularity-instance-ANY
Singularity-instance-CPU

Singularity-instance-CPUMEM
Singularity-instance-CPUMEMPIN
Singularity-ANY

Singularity-CPU
Singularity-CPUMEM
Singularity-CPUMEMPIN

O2 O30

1

2

GB
/s

NUMA-RandomRing Bandwidth

E2 E3 E40

1

2

GB
/s

UMA-RandomRing Bandwidth

O2 O30

1

2

GB
/s

UMA-RandomRing Bandwidth

Fig. 31 Impact of affinity on RandomRing-bandwidth performance.

Figure 36-37 depict the performance results of MPI throughput benchmarks.
In this case, all the containerization technologies (Docker, Singularity-instance,
and Singularity) achieve the same performance if they are set with the same
affinity configuration. The effectiveness of using affinity with those benchmarks
is not dependent on the containerization technology because, as we discussed
in the previous section, they present low inter-process communication.



Performance Comparison of Multi-container Deployment Schemes 31

E2 E3 E40

2

4

6

GB
/s

NUMA-Pingpong Bandwidth

Docker-ANY
Docker-CPU
Docker-CPUMEM

Docker-CPUMEMPIN
Singularity-instance-ANY
Singularity-instance-CPU

Singularity-instance-CPUMEM
Singularity-instance-CPUMEMPIN
Singularity-ANY

Singularity-CPU
Singularity-CPUMEM
Singularity-CPUMEMPIN

O2 O30

2

4

6

GB
/s

NUMA-Pingpong Bandwidth

E2 E3 E40

2

4

6

GB
/s

UMA-Pingpong Bandwidth

O2 O30

2

4

6

GB
/s

UMA-Pingpong Bandwidth

Fig. 32 Impact of affinity on Pingpong-bandwidth performance.

E2 E3 E40.00

0.01

0.02

0.03

GU
P/

s

NUMA-G-RandomAccess

Docker-ANY
Docker-CPU
Docker-CPUMEM

Docker-CPUMEMPIN
Singularity-instance-ANY
Singularity-instance-CPU

Singularity-instance-CPUMEM
Singularity-instance-CPUMEMPIN
Singularity-ANY

Singularity-CPU
Singularity-CPUMEM
Singularity-CPUMEMPIN

O2 O30.00

0.01

0.02

0.03

GU
P/

s

NUMA-G-RandomAccess

E2 E3 E40.00

0.01

0.02

0.03

GU
P/

s

UMA-G-RandomAccess

O2 O30.00

0.01

0.02

0.03

GU
P/

s

UMA-G-RandomAccess

Fig. 33 Impact of affinity on G-Randomaccess performance.

E2 E3 E40.0

2.5

5.0

7.5

GB
/s

NUMA-G-PTRANS

Docker-ANY
Docker-CPU
Docker-CPUMEM

Docker-CPUMEMPIN
Singularity-instance-ANY
Singularity-instance-CPU

Singularity-instance-CPUMEM
Singularity-instance-CPUMEMPIN
Singularity-ANY

Singularity-CPU
Singularity-CPUMEM
Singularity-CPUMEMPIN

O2 O30.0

2.5

5.0

7.5

GB
/s

NUMA-G-PTRANS

E2 E3 E40.0

2.5

5.0

7.5

GB
/s

UMA-G-PTRANS

O2 O30.0

2.5

5.0

7.5

GB
/s

UMA-G-PTRANS

Fig. 34 Impact of affinity on G-PTRANS performance.

E2 E3 E40

5

10

GF
LO

P/
s

NUMA-G-FFT

Docker-ANY
Docker-CPU
Docker-CPUMEM

Docker-CPUMEMPIN
Singularity-instance-ANY
Singularity-instance-CPU

Singularity-instance-CPUMEM
Singularity-instance-CPUMEMPIN
Singularity-ANY

Singularity-CPU
Singularity-CPUMEM
Singularity-CPUMEMPIN

O2 O30

5

10

GF
LO

P/
s

NUMA-G-FFT

E2 E3 E40

5

10

GF
LO

P/
s

UMA-G-FFT

O2 O30

5

10

GF
LO

P/
s

UMA-G-FFT

Fig. 35 Impact of affinity on G-FFT performance.

5.4.2 Impact of container granularity on multi-container deployments with
affinity

As discussed previously, the impact of container granularity on multi-container
deployments with affinity can be significant depending on the CPU and memory
usage characteristics of each benchmark. The results in Table 6, which depict
the access rate to the local memory in the NUMA setting for each benchmark
on ANY scenario, show that EP-STREAM, G-PTRANS, G-FFT, and G-
RandomAccess are well optimized for locality (processes mostly access the



32 Peini Liu, Jordi Guitart

E2 E3 E40

2

4

GB
/s

NUMA-EP-STREAM

Docker-ANY
Docker-CPU
Docker-CPUMEM

Docker-CPUMEMPIN
Singularity-instance-ANY
Singularity-instance-CPU

Singularity-instance-CPUMEM
Singularity-instance-CPUMEMPIN
Singularity-ANY

Singularity-CPU
Singularity-CPUMEM
Singularity-CPUMEMPIN

O2 O30

2

4

GB
/s

NUMA-EP-STREAM

E2 E3 E40

2

4

GB
/s

UMA-EP-STREAM

O2 O30

2

4

GB
/s

UMA-EP-STREAM

Fig. 36 Impact of affinity on EP-STREAM performance.

E2 E3 E40

10

20

30

GF
LO

P/
s

NUMA-EP-DGEMM

Docker-ANY
Docker-CPU
Docker-CPUMEM

Docker-CPUMEMPIN
Singularity-instance-ANY
Singularity-instance-CPU

Singularity-instance-CPUMEM
Singularity-instance-CPUMEMPIN
Singularity-ANY

Singularity-CPU
Singularity-CPUMEM
Singularity-CPUMEMPIN

O2 O30

10

20

30

GF
LO

P/
s

NUMA-EP-DGEMM

E2 E3 E40

10

20

30

GF
LO

P/
s

UMA-EP-DGEMM

O2 O30

10

20

30

GF
LO

P/
s

UMA-EP-DGEMM

Fig. 37 Impact of affinity on EP-DGEMM performance.

Table 6 HPCC Benchmark Memory Locality Analysis.

Benchmark Local memory access rate
Exact-subscribed Over-subscribed

EP-DGEMM 56% 54%
EP-STREAM 99% 97%

G-FFT 96% 93%
G-PTRANS 98% 95%

G-RandomAccess 90% 80%
b eff 2% 2%

local memory), while EP-DGEMM has distributed memory allocation (only
56% accesses to local memory) (b eff performs most of its accesses to remote
memory, but as it uses few memory, this is not significant for performance).
Consequently, only EP-DGEMM can take advantage of using memory affinity
to reduce the latency to access the memory, and the benefit of memory affinity
for the other benchmarks should be negligible. Similarly, as the local memory
access rates are slightly lower on over-subscribed deployment scenarios than
exactly-subscribed ones, over-subscribed mode scenarios have more room for
exploiting better memory affinity.

CPU and memory affinity have considerably increased the performance
of EP-DGEMM in all the scenarios. Specifically, the improvement (in %)
for Docker in CPU, CPUMEM, and CPUMEMPIN scenarios with respect
to ANY scenarios on the NUMA setting is significant in all the exactly-
subscribed scenarios (with P-values of the corresponding T-tests ranging from
9.7e−11 to 1.8e−4, clearly below 0.05): around 12%–22% (E2–E4 CPU), 13%–
21% (E2–E4 CPUMEM), and 29%–33% (E2–E4 CPUMEMPIN). In the over-
subscribed mode, the improvement is also significant in O2-CPUMEMX and
O3 scenarios (with P-values ranging from 7.6e−3 to 0.06): 7% (O2 CPUMEM),



Performance Comparison of Multi-container Deployment Schemes 33

DE2 DE3 DE4 SRE2SRE3SRE40

1

2

3

co
un

t

1e8
context-switches

DO2 DO3 SRO2 SRO30

1

2

3

co
un

t

1e8
context-switches

DE2 DE3 DE4 SRE2SRE3SRE40

500

1000

1500

co
un

t

migrations

DO2 DO3 SRO2 SRO30

500

1000

1500

co
un

t

migrations

DE2 DE3 DE4 SRE2SRE3SRE40.00

0.25

0.50

0.75

1.00

co
un

t

1e9
Local_memory_access_dram

DO2 DO3 SRO2 SRO30.00

0.25

0.50

0.75

1.00
co

un
t

1e9
Local_memory_access_dram

DE2 DE3 DE4 SRE2SRE3SRE40.00

0.25

0.50

0.75

1.00

co
un

t

1e9
Remote_memory_access_dram

DO2 DO3 SRO2 SRO30.00

0.25

0.50

0.75

1.00

co
un

t

1e9
Remote_memory_access_dram

ANY CPU CPUMEM CPUMEMPIN

Fig. 38 Performance event counters of EP-DGEMM on Docker and Singularity for scenarios
with different affinity on NUMA hardware platform setting.

11% (O2 CPUMEMPIN), 6% (O3 CPU), 7% (O3 CPUMEM), and 7% (O3
CPUMEMPIN), but not significant in O2-CPU: 2% with P-value 0.5. These
performance increments are directly related with the container granularity, as
finer-grained deployments provide better improvement. This happens because
CPU affinity restricts the number of assigned CPUs within each container,
hence the processes running in finer-grained containers have less available
CPUs where they could be migrated. This can be seen in the counter values in
Figure 38. Setting CPU affinity reduces the number of context-switches and
cpu-migrations in CPUX scenarios, while setting memory affinity restricts as
well the remote memory accesses in CPUMEMX scenarios. Overall, affinity
improves the cache usage and optimizes the data allocation of the EP-DGEMM
application.

For EP-STREAM, G-PTRANS, G-FFT, G-RandomAccess, and b eff bench-
marks, memory affinity does not impact significantly the performance because
b eff uses few memory and the others have the memory allocated mostly in
the local socket already. The impact of CPU affinity on exactly-subscribed
scenarios is not significant either for those benchmarks. As shown in Figure
39, which depicts the counter values for G-FFT benchmark on the NUMA
setting, the operating system can do a pretty good job to prevent unnecessary
context-switches on exactly-subscribed scenarios.

On the other side, CPU affinity can increase the performance in over-
subscribed scenarios for those benchmarks. This is especially noticeable with
CPUMEMPIN affinity configuration (e.g., Docker shows significant improve-
ments from 28% to 87% in scenario O2, with P-values clearly lower than 0.05
ranging from 6.7e−7 to 1.8e−4, and from 17% to 80% in scenario O3, with P-
values also lower than 0.05 ranging from 8.3e−6 to 1.8e−4), and also with CPU
configuration in scenario O3 (e.g., improvements ranging from 31% to 77% are
significant for all the benchmarks but b eff(PingPong), with P-values ranging
from 7.6e−4 to 1.9e−3). ANY configuration is also generally worse than CPU
configuration in scenario O2 for all the benchmarks but b eff(PingPong) (with



34 Peini Liu, Jordi Guitart

DE2 DE3 DE4 SRE2SRE3SRE40

5000

10000

15000

20000

co
un

t

context-switches

DO2 DO3 SRO2 SRO30.0

0.5

1.0

1.5

co
un

t

1e7
context-switches

DE2 DE3 DE4 SRE2SRE3SRE40

500

1000

1500

co
un

t

migrations

DO2 DO3 SRO2 SRO30

1000

2000

co
un

t

migrations

DE2 DE3 DE4 SRE2SRE3SRE40.0

0.5

1.0

1.5

2.0

co
un

t

1e9
Local_memory_access_dram

DO2 DO3 SRO2 SRO30.0

0.5

1.0

1.5

2.0
co

un
t

1e9
Local_memory_access_dram

DE2 DE3 DE4 SRE2SRE3SRE40.0

0.5

1.0

1.5

2.0

co
un

t

1e9
Remote_memory_access_dram

DO2 DO3 SRO2 SRO30.0

0.5

1.0

1.5

2.0

co
un

t

1e9
Remote_memory_access_dram

ANY CPU CPUMEM CPUMEMPIN

Fig. 39 Performance event counters of G-FFT on Docker and Singularity for scenarios
with different affinity on NUMA hardware platform setting.

improvements from 2% to 31%, but most of them not statistically significant
as the P-values are higher than 0.05) and CPUMEM configuration in scenario
O3 (with improvements from 11% to 29%, which are halfway significant with
P-values mostly ranging from 0.001 to 0.3). Results for CPUMEM in O2 are
inconclusive, as all P-values of the T-tests are higher than 0.05, ranging from
0.2 to 0.79. As shown in Figure 39, in over-subscribed scenarios, CPUMEMPIN
and CPU configurations have less cpu-migrations and context-switches than
CPUMEM, which has also less than ANY. Processes in O3-CPU are using cores
belonging to two sockets. As migrations between sockets are more expensive
(e.g. expensive computation for iterating all the runqueues, expensive cache
misses, and synchronization), the scheduler tries more to avoid them [21],
something that does not happen in O3-CPUMEM, where the used cores belong
to the same socket. Similarly, the improvement with CPU and CPUMEM in
scenario O3 is also higher than in scenario O2, because O3 allows to use only
one core per socket, which is effectively encouraging 1-to-1 process-to-processor
pinning.

5.4.3 Impact of the cgroup scheduling on multi-container deployments with
affinity

In section 4.4.2, we assessed the impact of the cgroup scheduling performed
by CFS on ANY scenarios. CFS tried to maintain fair time allocation among
cgroups, but incurred some performance degradation on over-subscribed mode
scenarios due to load imbalance among the various processors. In this section,
we assess the impact of the cgroup scheduling on multi-container deployments
with affinity, to check if affinity could help to overcome this degradation.

Figure 40 shows the EP-DGEMM performance on CPU and CPUMEM
affinity scenarios with different number of containers. All the scenarios provide
the same performance and do not incur performance degradation, even in
containerization technologies which create a different cgroup per container (e.g.



Performance Comparison of Multi-container Deployment Schemes 35

Docker Singularity
instance

Singularity Singularity
+cgroup

16.2

16.3

16.4

16.5

16.6

16.7

16.8
GF

LO
P/

s
EP-DGEMM (16MPIS,8CPUS) - CPU affinity

8containers 10containers 12containers 16containers

Docker Singularity
instance

Singularity Singularity
+cgroup

GF
LO

P/
s

EP-DGEMM (16MPIS,8CPUS) - CPUMEM affinity

Fig. 40 Performance comparison of EP-DGEMM on CPU/CPUMEM scenarios with differ-
ent number of containers.

Docker, Singularity-instance, Singularity+cgroup). This can be confirmed by
means of T-tests for deployments with more than 8 containers regarding the
8-containers deployment, which have P-values ranging from 0.06 to 0.97, all
higher than 0.05 and hence showing no significant difference. CPU affinity
is able to overcome the CFS load imbalance problem because processes are
deployed explicitly in fixed processors, which avoids load balancing by the
scheduler.

5.4.4 Impact of the hardware platform setting on multi-container deployments
with affinity

As discussed in previous sections, the NUMA and UMA hardware platform
settings can provide different performance for specific benchmarks depending on
their characteristics. This happens also with multi-container deployments with
affinity. A significant difference is that the UMA setting can only take advantage
of CPU affinity not memory affinity, since all the memory accesses on the UMA
setting are already local. Regarding CPU affinity, its performance impact in
the UMA setting follows the same trend we discussed before for the NUMA
setting, being clearly visible in over-subscribed scenarios for some benchmarks,
where CPUMEM and CPUMEMPIN configurations on UMA are better than
ANY, because they reduce the number of cpu-migrations and context-switches.
In particular, EP-STREAM, G-PTRANS, G-FFT, G-RandomAccess, and
b eff benchmarks show significant performance improvements ranging from
11% to 87% for O2-CPUMEMPIN in Docker, with P-values of the T-tests
ranging from 3.4e−6 to 0.04, and from 20% to 101% for O3-CPUMEMPIN,
with P-values ranging from 1.1e−7 to 4.7e−4. EP-STREAM, G-FFT, and G-
RandomAccess benchmarks also show significant performance improvements
ranging from 6% to 64% for O3-CPUMEM, with P-values ranging from 1.8e−4

to 0.037. The results of those benchmarks for O2-CPUMEM are inconclusive,
as the performance differences are small (from -3% to 11%) and generally not
statistically significant (with P-values ranging from 0.04 to 0.73).



36 Peini Liu, Jordi Guitart

5.4.5 Summary

The findings from our previous evaluation of the impact of processor and
memory affinity on multi-container deployments are as follows:

– Multi-container deployments with affinity cannot prevent the performance
degradation of Docker and Singularity-instance with MPI communica-
tion workloads due to the execution of containers on separated network
namespaces. With MPI throughput workloads, all the containerization
technologies achieve the same performance if they are set with the same
affinity configuration.

– As containers do not virtualize memory, partitioning HPC workloads into
multiple containers does not show benefits from a memory translation
perspective, but finer-grained container granularity can improve the per-
formance on multi-container deployments with affinity depending on the
CPU and memory usage characteristics of each benchmark. Memory affinity
reduces the number of accesses to the remote memory in benchmarks with
distributed allocated memory, while CPU affinity restricts the cores that
processes can be allocated, which reduces the number of cpu-migrations
and context switches, especially in over-subscribed scenarios.

– 1-to-1 process-processor pinning scenarios (i.e. CPUMEMPIN scenarios)
provide the best performance, but less strict affinity configurations can be
acceptable alternatives when 1-to-1 pinning is not straight-forward (e.g., in
over-subscribed scenarios where the number of processes is not a multiple
of the number of processors).

– On over-subscribed mode, CPU affinity is able to overcome the CFS load
imbalance problem causing performance degradation, because processes
are deployed explicitly in fixed processors and this eliminates the need to
balance load by the scheduler.

– Memory affinity does not provide added benefits in the UMA hardware
platform setting, since memory accesses are already local. CPU affinity
improves the performance of some benchmarks in over-subscribed scenarios
(as in the NUMA setting), by reducing the number of cpu-migrations and
context-switches.

6 Conclusion and future work

This paper presented a performance comparison of multi-container deployment
schemes for HPC workloads. In order to understand the performance impact
of different deployment scenarios, we selected HPCC workloads that exhibit
different communication patterns, memory accesses, and computation. We
executed the various deployment schemes on NUMA and UMA hardware
platform settings with different subscription modes (exactly-subscribed and
over-subscribed). Our research revolved around the above settings to understand
the performance of different containerization technologies (e.g. Docker and
Singularity), especially in terms of the impact of granularity of containers



Performance Comparison of Multi-container Deployment Schemes 37

and the effectiveness of using processor and memory affinity for the various
deployment schemes.

We concluded that some trade-offs need to be taken into account when
choosing multi-container deployment schemes for HPC workloads. Docker
and Singularity-instance incur some performance degradation for MPI com-
munication workloads running on multiple containers, because the processes
running on separated containers are deployed on isolated network namespaces.
Multi-container deployments with affinity cannot prevent this performance
degradation, but the degradation could be avoided by enabling shared-memory
among the distinct containers and making the MPI engine aware of that shared-
memory area. Singularity, which can use shared-memory for communication, is
not affected by this issue.

Workloads with low amount of inter-process communication do not incur
performance degradation with any containerization technology and can benefit
from finer-grained deployments because they simplify the scheduling in a
similar way to when processes are pinned explicitly. Finer-grained container
granularity can improve also the performance on multi-container deployments
with affinity depending on the CPU and memory usage characteristics of each
benchmark, especially in over-subscribed scenarios. 1-to-1 process-processor
pinning provides the best performance, but less strict affinity configurations
can be acceptable alternatives when 1-to-1 pinning is not straight-forward.

On over-subscribed mode, some performance degradation is due to the
scheduling of cgroups by Linux CFS, which results in an imbalanced allocation
of processes to processors. CPU affinity allows to overcome this problem,
because processes are deployed explicitly in fixed processors and this eliminates
the need to balance load by the scheduler.

The performance difference between the hardware platform settings is not
directly related with any containerization technology or container granularity,
but with the application and hardware setting characteristics, such as the cache
usage or the memory bandwidth. Memory affinity does not provide added
benefits in the UMA setting but improves the performance of benchmarks with
distributed memory allocation in the NUMA setting. CPU affinity improves
the performance of some benchmarks in over-subscribed scenarios on both
hardware platform settings, by reducing the number of cpu-migrations and
context-switches.

In the future, we plan to evaluate our multi-container deployment schemes
on multiple hosts that communicate through different network fabrics and
protocols (e.g., TCP/IP on Ethernet, TCP/IP on Infiniband (IPoIB), and
RDMA on Infiniband). Also, we will use insights about the performance of
multi-container deployments, especially those regarding the impact of the
container granularity and the CPU and memory affinity, to derive placement
policies when deploying HPC workloads which can get better utilization of the
resources while maintaining application performance [26].

Acknowledgements We thank Lenovo for providing the technical infrastructure to run
the experiments in this paper. This work was partially supported by Lenovo as part of



38 Peini Liu, Jordi Guitart

Lenovo-BSC collaboration agreement, by the Spanish Government under contract PID2019-
107255GB-C22, and by the Generalitat de Catalunya under contract 2017-SGR-1414 and
under grant 2020 FI-B 00257.

References

1. Alam, S., Barrett, R., Bast, M., Fahey, M.R., Kuehn, J., McCurdy, C., Rogers, J.,
Roth, P., Sankaran, R., Vetter, J.S., et al.: Early evaluation of IBM BlueGene/P. In:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC’08), pp. 1–12.
IEEE (2008). DOI 10.1109/SC.2008.5214725

2. Arango, C., Dernat, R., Sanabria, J.: Performance Evaluation of Container-based Vir-
tualization for High Performance Computing Environments. CoRR abs/1709.10140
(2017)

3. Azab, A.: Enabling Docker Containers for High-Performance and Many-Task Computing.
In: Proceedings of the 2017 IEEE International Conference on Cloud Engineering (IC2E),
pp. 279–285 (2017). DOI 10.1109/IC2E.2017.52

4. Bacik, J.: Cpu scheduler imbalance with cgroups. URL https://josefbacik.github.

io/kernel/scheduler/cgroup/2017/07/24/scheduler-imbalance.html

5. Banerjee, A., Mehta, R., Shen, Z.: NUMA Aware I/O in Virtualized Systems. In: Pro-
ceedings of the 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pp. 10–17 (2015). DOI 10.1109/HOTI.2015.17

6. Bermejo, B., Juiz, C.: On the classification and quantification of server consolidation
overheads. Journal of Supercomputing pp. 1–21 (2020). DOI 10.1007/s11227-020-03258-2

7. Cheng, Y., Chen, W., Chen, X., Xu, B., Zhang, S.: A user-level numa-aware scheduler
for optimizing virtual machine performance. In: Revised Selected Papers of the 10th
International Symposium on Advanced Parallel Processing Technologies - Volume 8299,
APPT 2013, pp. 32–46. Springer-Verlag, Berlin, Heidelberg (2013). DOI 10.1007/
978-3-642-45293-2 3

8. Chung, M.T., Quang-Hung, N., Nguyen, M., Thoai, N.: Using Docker in High Performance
Computing applications. In: Proceedings of the 2016 IEEE Sixth International Conference
on Communications and Electronics (ICCE), pp. 52–57 (2016). DOI 10.1109/CCE.2016.
7562612

9. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison
of virtual machines and Linux containers. In: Proceedings of the 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172.
IEEE (2015). DOI 10.1109/ISPASS.2015.7095802

10. Google: Cgroups-cpus. URL https://kernel.googlesource.com/pub/scm/linux/

kernel/git/glommer/memcg/+/cpu_stat/Documentation/cgroups/cpu.txt

11. Halácsy, G., Ádám Mann, Z.: Optimal energy-efficient placement of virtual machines
with divisible sizes. Information Processing Letters 138, 51–56 (2018). DOI 10.1016/j.
ipl.2018.06.003

12. HPC advisor council: HPCC Performance Benchmark and Profiling (2015).
URL https://hpcadvisorycouncil.com/pdf/HPCC_Analysis_and_Profiling_Intel_

E5-2697v3.pdf

13. HPC wire: Sylabs releases singularity 3.0 container platform; Cites
AI Support (2018). URL https://www.hpcwire.com/2018/10/08/

sylabs-releases-singularity-3-0-container-platform-cites-ai-support/

14. Ibrahim, K.Z., Hofmeyr, S., Iancu, C.: Characterizing the performance of parallel appli-
cations on multi-socket virtual machines. In: Proceedings of the 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pp. 1–12. IEEE (2011).
DOI 10.1109/CCGrid.2011.50

15. Ibrahim, K.Z., Hofmeyr, S., Iancu, C.: The Case for Partitioning Virtual Machines on
Multicore Architectures. IEEE Transactions on Parallel and Distributed Systems 25(10),
2683–2696 (2014). DOI 10.1109/TPDS.2013.242

16. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.:
Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing.

https://josefbacik.github.io/kernel/scheduler/cgroup/2017/07/24/scheduler-imbalance.html
https://josefbacik.github.io/kernel/scheduler/cgroup/2017/07/24/scheduler-imbalance.html
https://kernel.googlesource.com/pub/scm/linux/kernel/git/glommer/memcg/+/cpu_stat/Documentation/cgroups/cpu.txt
https://kernel.googlesource.com/pub/scm/linux/kernel/git/glommer/memcg/+/cpu_stat/Documentation/cgroups/cpu.txt
https://hpcadvisorycouncil.com/pdf/HPCC_Analysis_and_Profiling_Intel_E5-2697v3.pdf
https://hpcadvisorycouncil.com/pdf/HPCC_Analysis_and_Profiling_Intel_E5-2697v3.pdf
https://www.hpcwire.com/2018/10/08/sylabs-releases-singularity-3-0-container-platform-cites-ai-support/
https://www.hpcwire.com/2018/10/08/sylabs-releases-singularity-3-0-container-platform-cites-ai-support/


Performance Comparison of Multi-container Deployment Schemes 39

IEEE Transactions on Parallel and Distributed Systems 22(6), 931–945 (2011). DOI
10.1109/TPDS.2011.66

17. Jha, D.N., Garg, S., Jayaraman, P.P., Buyya, R., Li, Z., Morgan, G., Ranjan, R.: A study
on the evaluation of HPC microservices in containerized environment. Concurrency and
Computation (March), 1–18 (2019). DOI 10.1002/cpe.5323

18. Jha, D.N., Garg, S., Jayaraman, P.P., Buyya, R., Li, Z., Ranjan, R.: A Holistic Evaluation
of Docker Containers for Interfering Microservices. In: Proceedings of the 2018 IEEE
International Conference on Services Computing (SCC), pp. 33–40 (2018). DOI 10.1109/
SCC.2018.00012

19. Kuity, A., Peddoju, S.K.: Performance Evaluation of Container-Based High Performance
Computing Ecosystem Using OpenPOWER. In: J.M. Kunkel, R. Yokota, M. Taufer,
J. Shalf (eds.) High Performance Computing, ISC High Performance 2017, Lecture Notes
in Computer Science, vol. 10524, pp. 290–308. Springer International Publishing, Cham
(2017). DOI 10.1007/978-3-319-67630-2 22

20. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: Scientific containers for mobility
of compute. PLOS ONE 12(5), e0177459 (2017). DOI 10.1371/journal.pone.0177459

21. Lozi, J.P., Lepers, B., Funston, J., Gaud, F., Quéma, V., Fedorova, A.: The Linux
Scheduler: A Decade of Wasted Cores. In: Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys’16. Association for Computing Machinery
(2016). DOI 10.1145/2901318.2901326

22. Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Lucas, R.F., Rabenseifner, R.,
Takahashi, D.: The HPC Challenge (HPCC) benchmark suite. In: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing (SC’06) (2006). DOI 10.1145/1188455.
1188677

23. Luszczek, P. and Koester, D.: HPC Challenge v1.x Benchmark Suite. SC’05 Tuto-
rial, Seattle, Washington (2005). URL http://icl.cs.utk.edu/news_pub/submissions/

HPCChallengeTutorialDPKPL22Nov2005.pdf

24. Maliszewski, A.M., Griebler, D., Schepke, C., Ditter, A., Fey, D., Fernandes, L.G.: The
NAS Benchmark Kernels for Single and Multi-Tenant Cloud Instances with LXC/KVM.
In: Proceedings of the 2018 International Conference on High Performance Computing
Simulation (HPCS), pp. 359–366 (2018). DOI 10.1109/HPCS.2018.00066

25. Mann, H.B., Whitney, D.R.: On a Test of Whether one of Two Random Variables
is Stochastically Larger than the Other. Ann. Math. Statist. 18(1), 50–60 (1947).
DOI 10.1214/aoms/1177730491

26. Menouer, T.: KCSS: Kubernetes container scheduling strategy. Journal of Supercomput-
ing pp. 1–27 (2020). DOI 10.1007/s11227-020-03427-3

27. OpenMPI Team: Can i force aggressive or degraded performance modes? URL https:

//www.open-mpi.org/faq/?category=running

28. OpenMPI Team: Can I oversubscribe nodes (run more processes than processors)? URL
https://www.open-mpi.org/faq/?category=running

29. Perarnau, S., Essen, B.C.V., Gioiosa, R., Iskra, K., Gokhale, M.B., Yoshii, K., Beckman,
P.: Argo. Operating Systems for Supercomputers and High Performance Computing
(2019). DOI 10.1007/978-981-13-6624-6 12

30. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A Tool to Visualize and
Analyze Parallel Code. In: Proceedings of the 18th World Occam and Transputer User
Group Technical Meeting, pp. 9–13. IOS Press (1995)

31. Rao, J., Wang, K., Zhou, X., Xu, C.: Optimizing virtual machine scheduling in NUMA
multicore systems. In: Proceedings of the 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), pp. 306–317 (2013). DOI
10.1109/HPCA.2013.6522328

32. Roloff, E., Diener, M., Carissimi, A., Navaux, P.O.A.: High Performance Computing in
the cloud: Deployment, performance and cost efficiency. In: Proceedings of the 4th IEEE
International Conference on Cloud Computing Technology and Science, pp. 371–378
(2012). DOI 10.1109/CloudCom.2012.6427549

33. Rudyy, O., Garcia-Gasulla, M., Mantovani, F., Santiago, A., Sirvent, R., Vázquez,
M.: Containers in HPC: A Scalability and Portability Study in Production Biological
Simulations. In: Proceedings of the 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 567–577 (2019). DOI 10.1109/IPDPS.2019.00066

http://icl.cs.utk.edu/news_pub/submissions/HPCChallengeTutorialDPKPL22Nov2005.pdf
http://icl.cs.utk.edu/news_pub/submissions/HPCChallengeTutorialDPKPL22Nov2005.pdf
https://www.open-mpi.org/faq/?category=running
https://www.open-mpi.org/faq/?category=running
https://www.open-mpi.org/faq/?category=running


40 Peini Liu, Jordi Guitart

34. Saha, P., Beltre, A., Govindaraju, M.: Scylla: A mesos framework for container based
MPI jobs. CoRR abs/1905.08386 (2019)

35. Saha, P., Beltre, A., Uminski, P., Govindaraju, M.: Evaluation of Docker Containers
for Scientific Workloads in the Cloud. In: Proceedings of the Practice and Experience
on Advanced Research Computing, PEARC’18. Association for Computing Machinery
(2018). DOI 10.1145/3219104.3229280

36. Sande Veiga, V., Simon, M., Azab, A., Fernandez, C., Muscianisi, G., Fiameni, G.,
Marocchi, S.: Evaluation and Benchmarking of Singularity MPI containers on EU Re-
search e-Infrastructure. In: Proceedings of the 2019 IEEE/ACM International Workshop
on Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), pp. 1–10 (2019). DOI 10.1109/CANOPIE-HPC49598.2019.00006

37. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52(3-4), 591–611 (1965). DOI 10.1093/biomet/52.3-4.591

38. Sharma, P., Chaufournier, L., Shenoy, P., Tay, Y.C.: Containers and Virtual Machines
at Scale. In: Proceedings of the 17th International Conference on Middleware, pp. 1–13
(2016). DOI 10.1145/2988336.2988337

39. Sterling, T., Anderson, M., Brodowicz, M.: The Essential Resource Management. In:
High Performance Computing, Chapter 5, pp. 141–190. Morgan Kaufmann, Boston
(2018). DOI 10.1016/B978-0-12-420158-3.00005-8

40. Tesfatsion, S.K., Klein, C., Tordsson, J.: Virtualization Techniques Compared: Per-
formance, Resource, and Power Usage Overheads in Clouds. In: Proceedings of the
2018 ACM/SPEC International Conference on Performance Engineering, ICPE ’18, pp.
145–156. Association for Computing Machinery (2018). DOI 10.1145/3184407.3184414

41. Torrez, A., Randles, T., Priedhorsky, R.: HPC Container Runtimes have Minimal or No
Performance Impact. In: Proceedings of the 2019 IEEE/ACM International Workshop
on Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), pp. 37–42 (2019). DOI 10.1109/CANOPIE-HPC49598.2019.00010

42. Tudor, B.M., Teo, Y.M.: A Practical Approach for Performance Analysis of Shared-
Memory Programs. In: Proceedings of the 2011 IEEE International Parallel Distributed
Processing Symposium, pp. 652–663 (2011). DOI 10.1109/IPDPS.2011.68

43. Vmware: Virtualizing High-Performance Computing (HPC) Environments: Reference
Architecture (September) (2018)

44. Wang, Y., Evans, R.T., Huang, L.: Performant Container Support for HPC Applications.
In: Proceedings of the Practice and Experience in Advanced Research Computing on Rise
of the Machines (Learning), PEARC’19, pp. 1–6. Association for Computing Machinery
(2019). DOI 10.1145/3332186.3332226

45. Welch, B.L.: The Generalization of Student’s Problem When Several Different Population
Variances Are Involved. Biometrika 34(1-2), 28–35 (1947). DOI 10.1093/biomet/34.1-2.28

46. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.F.:
Performance Evaluation of Container-Based Virtualization for High Performance Com-
puting Environments. In: Proceedings of the 21st Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, pp. 233–240 (2013). DOI
10.1109/PDP.2013.41

47. Xing, F., You, H., Lu, C.: HPC benchmark assessment with statistical analysis. Procedia
Computer Science 29, 210–219 (2014). DOI 10.1016/j.procs.2014.05.019

48. Yang, S., Wang, X., An, L., Zhang, G.: Yun: A High-Performance Container Management
Service Based on OpenStack. In: Proceedings of the 2019 IEEE Fourth International
Conference on Data Science in Cyberspace (DSC), pp. 202–209 (2019). DOI 10.1109/
DSC.2019.00038

49. Younge, A.J., Pedretti, K., Grant, R.E., Brightwell, R.: A Tale of Two Systems: Using
Containers to Deploy HPC Applications on Supercomputers and Clouds. In: Proceedings
of the 2017 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 74–81 (2017). DOI 10.1109/CloudCom.2017.40


	Introduction
	Related Work[id=r3][id=r11]
	Background
	Performance Analysis of Multi-container Deployments
	Performance Analysis of Multi-container Deployments with Processor and Memory Affinity
	Conclusion and future work

