Performance Meets Programmabilty: Enabling
Native Python MPI Tasks In PyCOMPSs

Hatem Elshazly
Department of Computer Sciences

Francesc Lordan
Department of Computer Sciences

Jorge Ejarque
Department of Computer Sciences

Barcelona Supercomputing Center (BSC) Barcelona Supercomputing Center (BSC) Barcelona Supercomputing Center (BSC)

Barcelona, Spain
hatem.elshazly @bsc.es

Rosa M. Badia
Department of Computer Sciences
Barcelona Supercomputing Center (BSC)
Barcelona, Spain
rosa.m.badia@bsc.es

Abstract—The increasing complexity of modern and future
computing systems makes it challenging to develop applications
that aim for maximum performance. Hybrid parallel program-
ming models offer new ways to exploit the capabilities of the
underlying infrastructure. However, the performance gain is
sometimes accompanied by increased programming complexity.
We introduce an extension to PyCOMPSs, a high-level task-based
parallel programming model for Python applications, to support
tasks that use MPI natively as part of the task model. Without
compromising application’s programmability, using Native MPI
tasks in PyCOMPSs offers up to 3x improvement in total
performance for compute intensive applications and up to 1.9x
improvement in total performance for I/O intensive applications
over sequential implementation of the tasks.

Index Terms—Hybrid Programming Models, Distributed Com-
puting, MPI, High Performance Computing, Task-based Parallel
Programming Models, Performance, Productivity

I. INTRODUCTION

The growing complexity and heterogeneity of computing
systems hinder the development of parallel applications from
fully exploiting their capabilities. Application programmers
have to handle the complexity of the systems to obtain per-
formance and the code needs to be exposed to the underlying
hardware details.

While MPI [1] + X (where X is another parallel program-
ming model) has been proposed and used by the community,
we propose a hybrid programming model that combines task-
based model + MPI. The task-based programming model
offers the necessary abstraction to simplify the application
development for large scale execution, and supporting tasks
that launch MPI executions enables to exploit the performance
capabilities of many-core systems.

In this paper, we present an extension to PyCOMPSs
framework [2], a task-based parallel programming model for
the execution of Python applications. Throughout this paper,
we name the tasks that natively execute MPI code as Native
MPI Tasks, as opposed to tasks that call external MPI binaries.
Having Native MPI tasks as part of the programming model

Barcelona, Spain
francesc.lordan @bsc.es

Barcelona, Spain
jorge.ejarque @bsc.es

means that in the same source file users can have two types
of task: tasks that execute MPI code and other tasks that
execute non-MPI code. PyCOMPSs organizes the tasks in
Directed Acyclic Graph (DAG) and manages their scheduling
and execution, hence users can focus only on the logic of the
task.

II. RELATED WORK

Unlike task-based parallel programming models that are
characterized by fine-grained parallelism such as OpenMP [3],
Intel TBB framework [4] and OmpSs [5], PyCOMPSs targets
coarse-grained parallelism for execution in large compute
clusters.

Other task-based parallel programming models target higher
level of granularity such as Ruffus [6] and Luigi [7].However,
PyCOMPSs allows more flexibility in expressing parallelism
since it does not force the use of a specific parallel paradigm.

On the other hand, hybrid parallel programming models
were discussed in previous works [8], [9]. A widely-used
hybrid model is the one combining MPI and OpenMP, where
OpenMP threads perform compute-intensive work on local
data on each node whereas MPI is responsible for the com-
munication between processes.

To the best knowledge of the authors, this is the first work
to target enabling Native MPI tasks in a high-level task-based
parallel programming model for large scale executions.

III. NATIVE MPI IN PYCOMPSs

Tasks are defined in PyCOMPSs by annotating application’s
method with Python decorators. Through the @task annota-
tion, developers indicate that a function in the code becomes
a task.

Using PyCOMPSs, a method is declared as Native MPI
task by means of the @mpi decorator. The number of MPI
processes per Native MPI task can be specified using @con-
straints decorator as shown in the sample code snippet in
Figure 1.



@constraints(computingUnits=4)
@mpi(runner="mpirun’, computingNodes=1)
@task(returns=int)
def return_ranks(random_num):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

return rank*random_num

Fig. 1. Simple Native MPI task in PyCOMPSs. return_ranks task will be
executed by 4 MPI processes as specified in computingUnits on 1 node. It
returns a list of each MPI rank multiplied by the random_num input value.

PyCOMPSs runtime will manage the input and output data
of Native MPI tasks like any non-MPI task in a completely
transparent manner to the user. The runtime will ensure that
all the processes in the MPI environment have access to all
the input data of the task. The return output of a Native MPI
task — if any — is a list containing the output of all the MPI
processes invoked for the task.

Similar to non-MPI PyCOMPSs tasks, the execution de-
tails of Native MPI tasks are completely abstracted from
the runtime; the MPI environment is encapsulated within
the Native MPI task that launched it. Thus, one workflow
can have multiple Native MPI tasks, each with different
configuration parameters (i.e., number of computing nodes and
MPI processes) and combine them with other tasks in the task
execution graph.

Special working processes called MPI Worker are responsi-
ble for launching the MPI environment with the configuration
set by the user in the arguments of the @mpi and @constraints
decorators. In addition to that, they monitor the execution of
the task and send a task completion signal to the runtime in
case of successful execution or an error signal in case of failed
execution. Moreover, MPI workers are also responsible for
communicating the inputs and the outputs of the task to the
runtime in a totally transparent manner to the user.

PyCOMPSs runtime launches MPI workers for Native MPI
tasks at the time of the task execution. For each Native MPI
task in the application, a single MPI worker is launched
exclusively for that task to manage its execution. If two Native
MPI tasks are scheduled for execution at the same time,
the runtime launches an exclusive MPI worker for each of
them. Hence, each of the tasks will have its own isolated
execution environment. Upon successful or failed execution
of a Native MPI task, the runtime terminates the MPI worker.
Figure 2 shows a diagram of the execution behavior when
executing Native MPI tasks and non-MPI tasks on a 2-node
infrastructure. Each node has a worker to host the execution
of up to one non-MPI task. When Native MPI tasks need to
be executed, one MPI worker per Native MPI task is launched
to handle its execution.

IV. EVALUATION

In this section, we evaluate both the productivity and per-
formance benefits of using Native MPI tasks in PyCOMPSs.
Experiments were conducted on the MareNostrum4 super-
computer; which includes a set of high-memory computing
nodes with 48 cores and 370 GB of memory each. Each node

2y Ay # Idle Thread
¥ I'l 4 Iil ¥ Working Thread
I MPI Process
v 2 T
Q il
N i 7l
>

o
b

-

Fig. 2. PyCOMPSs Task Execution Behaviour. Non-MPI tasks (in blue) use
the persistent workers of PyCOMPSs (in this case two) whereas Native MPI
tasks (in yellow) use MPI workers for launching the specified number of MPI
processes (in this case each MPI task launches 2 MPI processes).

has a local SSD disk with 200 GB and access to General
Parallel Filesystem (GPFS).

A. Programmability Evaluation

PyCOMPSs with Native Python MPI combines fine-grained
MPI parallelism with coarse-grained task parallelism. Since
task execution is encapsulated, it allows the combination and
interaction of different types of tasks (e.g. Native Python
MPI, Binary MPI, Non-MPI) each with its own independent
configuration and execution requirements. Parallelism can be
controlled by simply changing the parameters of PyCOMPSs
decorators. Using PyCOMPSs without Native MPI parallelism
will only allow task parallelism but opportunities for MPI
parallelism will not exploited.

On the other hand, in a pure Python approach in which MPI
is used, no task parallelism is realized so the ability of execut-
ing in a distributed cluster environment is limited. In addition
to that, to control parallelism, users have to use conditional
statements to specify how many MPI processes will execute
a block of code. Other ways to get more parallelism out of
this approach is by spawning MPI processes which makes the
management of this environment of nested MPI processes a
complicated task.

Figure 3 presents the main function of two approaches
for parallelizing a Python code. Figure 3(a) is using Py-
COMPSs with Native Python MPI support whereas Figure
3(b) is presenting one of the ways that MPI can be used to
parallelize Pure Python code. Using PyCOMPSs with Native
MPI task support enables combining task parallelism and MPI
parallelism with minimal code modifications.

B. Performance Impact

This subsection presents the performance results of two
types of applications: a compute intensive application and an
I/0O intensive application. In both applications we targeted the
task that dominates the execution time. Each experiment was
run multiple times: using sequential implementation of the
targeted tasks and a parallel implementation with an increasing
number of MPI processes (2, 4 and 8). In all experiments, the
sequential implementation of the task is used as the baseline.



” »

1.if _name__=="__main__":

for i in range(NUM_RANGE):
data = generate_data()
data_sum = mpi_sum(data)

data_sum = compss_wait_on(data_sum)
avg = data_sum/RANGE_LEN

OCONOORWN

printi, ”:”, avg

(a) Sample Python Code Parallelized with PyCOMPSs. A set of NUM_RANGE
generate_data tasks, each has a successor mpi_sum Native MPI task. More
parallelism achieved with minimal code additions.

” »

1.if _name__=="__main__":

2 for i in range(NUM_RANGE):

3 if rank == 0:

4 data = generate_data()

5. else:

6. data = None

7.

8. data = comm.scatter(data, root=0)
9.

10. data_sum = mpi_sum(data)

11. comm.Barrier()

12.

13. if rank == 0:

14. avg = data_sum/RANGE_LEN
15. printi, ”: 7, avg

(b) Sample Python code parallelized with MPIL. No task parallelism and MPI
parallelism is controlled using If conditionals and distributing the data among
Processes is the responsibility of the user.

Fig. 3. main function of a Python code parallelized with PyCOMPSs Native
MPI support and with MPI only.

All experiments were launched on 8 nodes of MareNostrum4
Supercomputer.

1) Performance Impact Of Parallelizing Compute Tasks:
For the purpose of this test, we developed an application that
calculates the term frequency (TF-IDF) of a web archive file.
We used an input web archive file of a total size of 186 Gbytes
The application consists of a reading task which reads a record
from the file and a compute task that calculates TF-IDF. The
total number of tasks for this application is 1440 tasks; 720
read tasks and 720 corresponding compute tasks.

Figure 4 shows the performance results of the application.

As shown in Figure 4(a) the average time per compute task
decreases while increasing the number of MPI processes per
compute task. Using 8 MPI processes per compute task, we
obtained up to 7x speedup in the average time per compute
task. In addition to that, as shown in Figure 4(b), the perfor-
mance improvement per compute task is reflected as up to 3x
speedup improvement in the total execution time.

2) Performance Impact Of Parallelizing I/O Tasks: For
testing the performance impact of parallelizing I/O tasks with
MPI using Native MPI tasks in PyCOMPSs, we used a check-
pointing version of a block matrix multiplication application.
This application has a total number of 1216 tasks; 192 tasks
that generates a block of a given dimension, 512 multiply
block tasks that carries out the multiplication process and 512
write tasks that writes the result of each multiplication. Figure
5 shows the average execution time per write task and the
overall execution time.

As presented in Figure 5(a) the write time per task decreases
when using parallel Native Python MPI tasks. Figure 5(a)
shows up to 3x improvement in the I/O time per task when
using 8 MPI process per write task. This in turn is reflected
as up to 1.9x improvement in the total time as shown in
Figure 5(b). As the number of MPI processes per write task
increases, the load on the parallel file system increases which
creates a congestion in I/O bandwidth so we do not get a linear
speedup.

Time (in seconds)

seq 2 mpi 4 mpi 8 mpi

Number of MPI Processes

(a) Average Time Per Compute Task

1250
1000
750
500

250

Time (in seconds)

0
seq

2mpi

4mpi 8 mpi

Number of MPI Processes
(b) Total Execution Time

Fig. 4. Performance Results for Web Archive Analysis Application

Time (in seconds)

seq 2mpi 4 mpi 8 mpi

Number of MPI Processes
(a) Average Time Per Write Task
300
200

170

100

Time (in seconds)

seq 2 mpi 4 mpi 8 mpi

Number of MPI Processes
(b) Total Execution Time

Fig. 5. Performance Results for Checkpointing Matrix Multiplication Appli-
cation



C. MPI Parallelism and Task Parallelism TradeOff

To further understand the performance and behaviour of
Native Python MPI tasks in PyCOMPSs, several experiments
were conducted on the Web Archive Analysis and the Check-
pointing Matrix Multiplication applications. Every experiment
is launched multiple times with a sequential implementation
task and then a parallel Native MPI task implementation
with different numbers of MPI processes (2, 4, 8, 16 and
48) on different number of nodes (4, 8 and 12). Figure 6(a)
presents the results of the Checkpointing Matrix Multiplication
application and Figure 6(b) presents the results of the Web
Archive Analysis application.

As shown in Figure 6, as the number of nodes increases,
task parallelism increases so the total execution time of both
applications improves.

For a specific number of nodes, total execution time de-
creases until it reaches a point after which it starts to increase
as the number of MPI processes per Native MPI task increases.
For the checkpointing matrix multiplication application in
figure 6(a), this point is 4 MPI processes for 4 nodes and 8 MPI
processes for 8 and 12 node. For the Web Archive Analysis
application in figure 6(b) this point is 8§ MPI processes for 4,
8 nodes and 16 MPI processes for 12 nodes. This is because
Native Python MPI tasks use the @constraint decorator of
PyCOMPSs to specify the number of MPI processes per
task. Increasing the number of MPI processes per task (i.e.
increasing task constraints) decreases task parallelism.

This effect is mitigated as the number of resources increases
because there are enough resources to maintain the same level
or allow for more task parallelism. This can be noted in Figure
6(a), for 4 nodes the performance degrades when more than
4 MPI processes per task are requested. When the number
of execution resources increase to 8 and 12 nodes, the total
execution time starts degrading at a later point when more than
8 MPI processes per task are requested. The same can be noted
in Figure 6(b) where for 4 and 8 nodes the total execution time
degrades at 8 MPI processes but when the number of nodes
is increased to 12, this point shifts to 16 MPI processes.

V. CONCLUSION AND FUTURE WORK

Enabling the execution of MPI code natively in PyCOMPSs
tasks offers great benefits in terms of both programmability
and performance for Python applications. However, a tradeoff
arises between MPI parallelism per task and task parallelism
that may negatively affect the total time of the application. As
future work, we plan to improve the scheduling of tasks to
better utilize the underlying infrastructure.

ACKNOWLEDGES

This work is partially supported by the European Union
through the Horizon 2020 research and innovation programme
under contracts 721865 (EXPERTISE Project) and 800898
(ExaQUte project), by the Spanish Government (TIN2015-
65316-P) and the Generalitat de Catalunya (contract 2014-
SGR-1051).

(1]

[2

—

3

—

(4]
(5]

[6

[t}

(7]
(8]

[91

® 4Nodes ® 8Nodes 12 Nodes

600

400

200

Total Time (in seconds)

seq 2mpi 4 mpi 8 mpi 16 mpi 48 mpi
Number of MPI Processes
(a) Matrix Multiplication Application
® 4nodes @ 8nodes 12 nodes
1250
& 1000
k=
2
3
3 750
£
©
H 500
[
e 250
5
2
0
seq 2 mpi 4mpi 8 mpi 16mpi 48 mpi

Number of MPI Processes
(b) Web Archive Analysis Application

Fig. 6. Scalability Results

REFERENCES

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface, vol. 1. MIT press,
1999.

E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres,
T. Cortes, and J. Labarta, “Pycompss: Parallel computational workflows
in python,” International Journal of High Performance Computing Ap-
plications, 2015.

L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46-55, 1998.

J. Reinders, “Intel threading building blocks - outfitting c++ for multi-
core processor parallelism,” 2007.

A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, “Ompss: a proposal for programming heterogeneous multi-
core architectures.,” Parallel Processing Letters, vol. 21, pp. 173-193, 06
2011.

L. Goodstadt, “Ruffus: a lightweight python library for computational
pipelines,” Bioinformatics, vol. 26, no. 21, pp. 2778-2779, 2010. Ex-
ported from https://app.dimensions.ai on 2019/02/23.

“spotify/luigi,” tech. rep., 2016.

R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes,” PDP 09, 2009.

J. Diaz, C. Muioz-Caro, and A. Nifo, “A survey of parallel programming
models and tools in the multi and many-core era,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, pp. 1369-1386, Aug 2012.



