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Abstract : 
 
In marine sciences, many fields display high variability over a large range of spatial and temporal 
scales, from seconds to thus ousands of years. The longer and longer recorded time series, with an 
increasing sampling frequency, in this field are often nonlinear, nonstationary, multiscale and noisy. 
Their analysis faces new challenges and thus requires the implementation of adequate and specific 
methods. The objective of this paper is to highlight time series analysis methods already applied in 
econometrics, signal processing, health,etc. to the environmental marine domain, assess advantages 
and inconvenients and compare classical techniques with more recent ones. Temperature, turbidity and 
salinity are important quantities for ecosystem studies. The authors here consider the fluctuations of sea 
level, salinity, turbidity and temperature recorded from the MAREL Carnot system of Boulogne-sur-Mer 
(France), which is a moored buoy equipped with physico-chemical measuring devices, working in 
continuous and autonomous conditions. In order to perform adequate statistical and spectral analyses, it 
is necessary to know the nature of the considered time series. For this purpose, the stationarity of the 
series and the occurrence of unit-root are addressed with the Augmented-Dickey Fuller tests. As an 
example, the harmonic analysis is not relevant for temperature, turbidity and salinity due to the 
nonstationary condition, except for the nearly stationary sea level datasets. In order to consider the 
dominant frequencies associated to the dynamics, the large number of data provided by the sensors 
should enable the estimation of Fourier spectral analysis. Different powerspectra show a complex 
variability and reveal an influence of environmental factors such as tides. However, the previous 
classical spectral analysis, namely the Blackman-Tukey method, requires not only linear and stationary 
data but also evenly-spaced data. Interpolating the time series introduces numerous artifacts to the 
data. The Lomb-Scargle algorithm is adapted to unevenly-spaced data and is used as an alternative. 
The limits of the method are also set out. It was found that beyond 50% of missing measures, few 
significant frequencies are detected, several seasonalities are no more visible, and even a whole range 
of high frequency disappears progressively. Furhermore, two time-frequency decomposition methods, 
namely wavelets and Hilbert-Huang Transformation (HHT), are applied for the analysis of the entire 
dataset. Using the Continuous Wavelet Transform (CWT), some properties of the time series are 
determined. Then, the inertial wave and several low-frequency tidal waves are identified by the 
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application of the Empirical Mode Decomposition (EMD). Finally, EMD based Time Dependent Intrinsic 
Correlation (TDIC) analysis is applied to consider the correlation between two nonstationary time series. 
 

Keywords : Continuous wavelet transform, cross-correlation, empirical mode decomposition, Hilbert-
Huang transform, stationarity, time dependent intrinsic correlation, time series, wavelets 
 
 
 
 
1. Introduction 

 
The birth of observatories contributes to improve the environmental knowledge. Indeed, long-term 
research infrastructures such as NEPTUNE Canada and in Europe: EMSO, FIXO3 and JERICO are 
providing longer and longer time series with high frequency records in open sea and coastal areas. The 
analysis of such time series requires the implementation of procedures and methods suitable to this 
increasing data flow towards an automatisation. Consequently, the objective of this paper is to explore 
adequate analysis methods, assess advantages and inconvenients and compare classical techniques 
with more recent ones. Coastal ecosystems, especially those of transitional waters, display high 
variability over a large range of spatial and temporal scales. To study their dynamics and estimate their 
variations at all scales, high frequency measurements are needed (Chang and Dickey, 2001; Chavez et 
al., 1997; Dickey, 1991; Dickey et al., 1993) together with appropriate analysis techniques. We present 
here the data recorded every twenty minutes by an autonomous monitoring device, settled in coastal 
waters of Boulogne-sur-Mer (eastern English Channel, France), recorded from 2005 to 2009. The fixed 
buoy station can record various biogeochemical parameters simultaneously. The time series of sea 
level, temperature, salinity and turbidity are considered. The fluctuations of the four quantities are 
important for ecosystem studies. The paper is structured in the seven following sections. After the 
description of the background and objectives in section 1, section 2 is dedicated to the presentation of 
the data. Then, stationarity issues are addressed in section 3. A preliminary analysis of stationarity 
focuses on the graphs and the correlograms. The conclusions from the direct observation of these are 
reinforced with application of the Augmented Dickey-Fuller (ADF) tests (Dickey and Fuller, 1979). 
Section 4 is devoted to a spectral analysis of the time series. First, a harmonic analysis is described. 
Secondly, the Blackman-Tukey spectral analysis is performed and comparisons between different 
periodograms are made. The problem of missing data is described and the Lomb-Scargle algorithm 
(Lomb, 1976; Scargle 1981) is used. This alternative does not require any interpolation of the data, in 
contrast to the Blackman-Tukey method. Furthermore, the limits of the Lomb-Scargle are illustrated. 
Continuous Wavelet Transform (CWT) and Hilbert- Huang Transformation (HHT) approaches are 
presented in section 5, while section 6 deals with an Empirical Mode Decomposition (EMD) based cross 
correlation method: Time Dependent Intrinsic Correlation (TDIC). Finally, a conclusion section (section 
7) provides also possible developments of this study. 
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Section 2: Presentation of the experimental database 

The MAREL system (Automatic monitoring network for littoral environment, 

Ifremer, France, http://www.ifremer.fr/marel) is based on the deployment of moored 

buoys equipped with physico-chemical measuring devices, working in continuous and 

autonomous conditions (Berthome, 1994; Woerter, 1998). The measuring stations are 

equipped with high performance systems for seawater analysis and real time data 

transmission. 

The database used in the present study comes from the MAREL Carnot system, 

located at the exit of the harbour of Boulogne-sur-Mer (France). This fixed point 

automated system records more than 15 physico-chemical parameters such as 

temperature, salinity, dissolved oxygen, pH, turbidity and water column level, with a 

high frequency resolution: an interval of 20 minutes. Some parts of these data set from 

the MAREL system have been analyzed by Prof. Schmitt and co-works: Huang and 

Schmitt (2014), Dur et al. (2007), Zongo and Schmitt (2011), etc. Their studies mainly 

focus on the scaling/scale invariance behavior. 

In this paper, the dynamics of temperature, salinity and turbidity records, from 

January 2005 to the end of 2009, are investigated. The temperature sensor covers 

measurement from -5 °C up to +30 °C, with accuracies of 0.1 °C. For the salinity, the 

conductivity sensor measures values between 0 and 70 mS/cm, with accuracies of 0.3 

mS/cm. The turbidity sensor measures values between 0 and 4000 NTU, with a 

precision of about 10% of the value. Portions of the time series are shown in Figs. 1-3, 

for the three studied quantities. They seem to be intermittent and influenced by the tidal 

cycle, with also an important stochastic component (river flow, turbulence) since the 

Marel Carnot station is strongly influenced by the Liane river discharge.  
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Figure 1. Temperature time series over 5 years (a), showing strong annual and 

seasonal cycles. A 15-day portion indicates a periodic component associated to the 

tide together with stochastic fluctuations (b). The red curve represents a downward 

trend. 

 

  
Figure 2. Turbidity time series over 5 years (a).  A 15-day portion of the data sets 

indicates a strong periodic component associated to the tide together with stochastic 

fluctuations (b).  
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Figure 3. Salinity time series over 5 years (a).  A 15-day portion of the data sets shows 

important and apparently irregular fluctuations (b). 

 

Table 1 presents some statistical properties of the time series. The normalized third 

central moment is called the skewness and represents a measure of asymmetry of the 

tails of a distribution. The mode is the most common value, or the peak in the 

histogram. Fig. 4 displays different probability density functions (PDFs) of the data sets. 

We notice for the salinity that mean < median < mode, which corresponds to a negative 

skewness of 49.2  and indicates that the distribution is spread out more to the left of the 

mean value (Panofsky and Brier, 1968). On the other hand, the distribution of the 

turbidity with a positive skewness has large tails that extend to the right. The 

distributions of temperature and sea level are almost symmetric. This observation is 

consistent with the corresponding values of skewness, since the skewness of the 

symmetric normal distribution is zero.  

In Boulogne-Sur-Mer, the temperature of the sea remains almost the same during 

August and September as well as during February and March. Whereas the passage 

from the wintry temperatures to the summer temperatures is very quick and the 

offseason is very short. The net sheet of the heat due to the ocean-atmosphere 

exchanges is then a seasonal curve with a sinusoidal shape. Therefore, the histogram of 

temperature shows a bimodal pattern with two modes around 9°C and 18°C. Also, the 

sea level histogram shows a bimodal pattern where the two peaks correspond to slack 

tides, i.e., high tide and low tide around 3 m and around 7 m respectively. The width of 

each peak is related to the Spring-Neap tidal cycle. 

Before estimating the statistical models, it is important to analyze whether the 

series are stationary or not. Stationarity issues are addressed in the next section. 
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 Mean Variance Median Mode Skewness 

Salinity (µmol/L) 33.43 0,79 33.56 33.75 -2.49 

Turbidity (NTU) 12.33 203,61 7.70 0 2.73 

Temperature (°C) 12.65 20,86 18.30 12.70 -0.03 

Sea level (m) 4.91 4.82 4.85 2.81 0.04 

Table 1. Statistical properties of the time series. 

 

 
 

Figure 4. PDFs of a) salinity, b) turbidity, c) temperature and d) sea level. 

 

Section 3: Stationarity tests 

The following definition of stationarity is taken from Challis and Kitney, 1991. 

“Stationarity is defined as a quality of a process in which the statistical parameters of 

the process do not change with time”. The “weak” stationary condition requires that the 

mean, variance and covariance structure of each variable do not change over time. It is 

important to analyze whether the series are stationary or not since it is not valid to use 

standard statistical tests in the negative case (Nelson and Plosser, 1982). Estimating the 

correlation between nonstationary variables can give spurious dependencies and 

conclusions about the development of temperature can be erroneous. If the dependent 

variable has a deterministic trend, a trend-adjusted series could be used instead. In case 

the variable has a unit-root, thus it has to be differenced. Further details about 

stationarity and its implications are available in Emery and Thompson (2014). 

 

A preliminary analysis of stationarity is based on the graphs of the time series as 

well as the correlograms. Correlograms were used in early work such as the seminal 
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paper by Yule (1926), the monograph by Wold (1938) and the analysis of agricultural 

price series by Kendall (1943). As shown in Figs. 1-3, the graphs of temperature, 

turbidity and salinity are characterized by: 

 A non stationarity in mean showed by a slight linear upward or downward 

trend. For instance, the red linear fitting plotted in Fig. 1 (b) shows how the 

temperature values are declining and represents a downward trend for the 

considered 15 day portion.  

 An increase or decrease in variance by slices, characterizing a non 

stationarity in variance. For example, Fig. 5 displays the variance by slices 

for the temperature time series over the year 2007. The continuous and 

random increase and decrease in variance by slices illustrates the non 

stationarity of the time series.  Here, the variability at time scale of the 

week is mainly induced by the variability of current (tides and wind 

induced circulation) rather than by the seasonal cycle of ocean-atmosphere 

fluxes. 

  A regularly repeated phenomenon from the season to the tidal period (i.e., 

from about one hour to six months), which lets suppose the presence of 

seasonality. 

 
 

Figure 5. Variance by slices (window size of one week) for the temperature time 

series over the year 2007.   

 

For the sea level plotted in Fig. 6, the time series is stationary since there is no 

systematic change in mean (no trend) and variance. Regarding the correlogram, Fig. 7 

shows that it has few significant spikes at small lags (lag <5); and decreases drastically 

at 8 or 9 lags. Therefore, the correlogram confirms that the sea level series is stationary. 

Nevertheless, the correlogram of the turbidity in Fig. 8 is not declining and shows 

persisting significant values, indicating that the time series is nonstationary. 

Differencing is a transformation of the series to a new time series where the values are 

the differences between consecutive values. This procedure may be applied iteratively 
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more than once, giving rise to the "first differences", "second differences", etc. 

Differencing makes the time series stationary, as the correlogram has only a couple of 

significant spikes at lags 1 and 2. Similar results are obtained for salinity and 

temperature. 

 
  

 
 

Figure 6. A 30-day portion of the sea level data sets indicates a strong periodic 

component associated to the tide. 
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Figure 7. Correlogram of sea level data sets.   

 

 
 

 

Figure 8. Correlogram of turbidity data sets before and after differencing.   

 

After a preliminary inspection of the graphs, we move to a quantitative study of the 

stationarity. Indeed, using non-stationary time series data in environmental models may 

lead to poor understanding and forecasting. The solution to the problem is to transform 

the time series data so that it becomes stationary. If the non-stationary process is a 

random walk with or without a drift, it is transformed to stationary process by 
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differencing. On the other hand, if the time series data analyzed exhibits a deterministic 

trend, the spurious results can be avoided by detrending. Furthermore, the non-

stationary series may combine a stochastic and deterministic trend at the same time and 

to avoid obtaining misleading results both differencing and detrending should be 

applied, as differencing will remove the trend in the variance and detrending will 

remove the deterministic trend. Sometimes it can be hard to tell the difference between 

a series that is trend-stationary and one that is difference-stationary. Therefore, the ADF 

unit root tests were used to get a more definitive answer. These are statistical hypothesis 

tests of stationarity that are designed for determining more objectively whether 

differencing is required. That is why we have applied Augmented Dickey-Fuller (ADF) 

tests (Dickey and Fuller, 1979) for testing of unit root and stationarity. Unit root 

corresponds to the application of the difference operator 
 
to induce stationarity. Given 

an observed time series ( 1Y , 2Y , …, NY ), Dickey and Fuller consider three differential-

form autoregressive equations to detect the presence of a unit root: 

 

1. 





p

j
tjtjtt

YYY
1

1
  

2. 





p

j
tjtjtt

YYY
1

1
  

3. 


 
p

j
tjtjtt YYtY

1
1   

where t  is the time index,   is an intercept constant called a drift,   is the coefficient 

on a time trend,   is the coefficient presenting process root, i.e. the focus of testing, p  

is the lag order of the first-differences autoregressive process and 
t

  is an independent 

identically distributes residual term. The difference between the three equations 

concerns the presence of the deterministic elements   (a drift term) and t  (a linear 

time trend). The focus of testing is whether the coefficient   equals to zero, what means 

that the original 1Y , 2Y , …, NY  process has a unit root; hence, the null hypothesis of 

0  (random walk process) is tested against the alternative hypothesis 0 of 

stationarity. If the original series needs differencing, then the coefficient  should be 

approximately zero. If tY  is already stationary, then 0 . 

More detailed, the null and alternative hypotheses corresponding to the models above 

are:  

 

(
1

h )  
0

H : 
t

Y 0  is random walk  

  
1

H : 
t

Y 0  is stationary process 

 

(
2

h )  
0

H :  
t

Y 0,0   is random walk around a drift 

  
1

H :  
t

Y 0,0   is level stationary process 

(
3

h )  
0

H :  
t

Y 0,0   is random walk around a trend 

  
1

H :  
t

Y 0,0   is trend stationary process 

An important practical issue for the implementation of the ADF test is the 

specification of the lag length p . If p  is too small then the remaining serial correlation 
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in the errors will bias the test. If p  is too large then the power of the test will suffer. 

The results of the Monte Carlo experiments suggest that it is better to error on the side 

of including too many lags. Ng and Perron (1995) suggest the following data dependent 

lag length selection procedure that results in stable size of the test and minimal power 

loss. 

 First, set an upper bound 
max

p  for p . 

  Next, estimate the ADF test regression with 
max

pp  . 

 If the absolute value of the t-statistic for testing the significance of the last 

lagged difference is greater than 1.6 (see Ng and Perron, 1995) then set 

max
pp   and perform the unit root test. Otherwise, reduce the lag length by 

one and repeat the process. 

 A common rule of thumb for determining 
max

p , suggested by Schwert 

(1989), is 























4
1

max
100

12
N

p where  x denotes the integer part of x .  

To estimate the significance of the coefficients in focus, the modified t (Student)-

statistic (known as Dickey-Fuller statistic) is computed and compared with the relevant 

critical value (MacKinnon, 1996): if the test statistic is less than the critical value then 

the null hypothesis is rejected. Each version of the test has its own critical value which 

depends on the size of the sample.  

The ADF tests results for salinity are presented in Fig. 9. The test of constant and a 

deterministic trend occurring results in the computed absolute ADF statistic (3.12), 

which is smaller than the tabulated critical value (11.62) at 90 % level of confidence. 

Therefore, the hypothesis that the time series is nonstationary and has a trend is 

accepted. The hypothesis of unit root with a drift is also accepted since the computed 

absolute ADF statistic (2.56) is smaller than the tabulated critical value (11.55) at 90 % 

level of confidence However, the first ADF test without a constant is rejected since the 

test values are greater (in absolute value) than the critical value (0.36) for different 

confidence levels.  

Similar results are obtained for temperature and turbidity data: all the critical 

values (MacKinnon, 1996) are the same and only the test values are different. Thus, the 

unit-root tests exclude that the series are pure random walk processes (first model). 

Nevertheless, these series are random walk processes with a drift (second model). 

Moreover, they are nonstationary and have a deterministic trend (third model). In the 

next section, we perform power spectral analysis of these data.  

 
 

Section 4: Power spectral analysis 

4.1 Harmonic analysis 

Harmonic analysis takes advantage of the fact that one knows a priori all the 

frequencies at which tidal energy will be found in a data time series. Most of these 

frequencies are astronomically caused but many are due to the nonlinear hydrodynamic 

effects of shallow water. Indeed, the shallower the water depth is the more the tidal 

wavelength will shorten and the faster the tidal characteristics of a waterway will 

change with horizontal (geographic) distance.  
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In classical harmonic analysis, the tidal signal is modeled as the sum of a finite set 

of sinusoids at specific frequencies related to astronomical parameters. The purpose of 

the tide analysis is to determine the amplitude and phase (the so-called tidal harmonic 

constants) of the individual cosine waves, each of which represents a tidal constituent 

identified by its period in mean solar hours. The tidal response is modelled as: 

           kA

 

   

    k    kB     k    

where N constituents are used. Each constituent has a frequency σk which is known 

from the development of the potential, and complex amplitudes (Ak and Bk) which are 

not known. A possible offset and (optional) linear drift is handled by the first two terms 

α and β. 

 One widely-used program for performing harmonic analysis of oceanic tides is is 

the set of programs in MATLAB created by Pawlowicz et al. (2002) to perform 

classical harmonic analysis for periods of about 1 year or shorter. They have rewritten 

the FORTRAN package created by Mike Foreman (1977), incorporating many useful 

extras. Confidence intervals for the amplitudes and phases of the tidal constituents are 

calculated from the estimated variance. Confidence intervals were computed from the 

average of power spectral density within frequency bands centered on 0; 1; 2; ... 

cycles/day, ±0.1 cycles/day (M0 and M1), ±0.2 cycles/day (M2 to M5), ±0.21 cycles/day 

(M6), 0.26 - 0.29 cycles/day (M7), and 0.3 - 0.5 cycles/day (M8) (Pawlowicz et al., 

2002). 

We have performed harmonic analysis of the data sets presented in section 2 

“Presentation of the experimental database”. For the sea level, the harmonic analysis is 

able to predict 99.7% of the variance of the original signal (see Fig. 9). The highest tidal 

amplitudes and the corresponding waves can be found in Table 2. Thus, the semidiurnal 

wave 
2

M is the most energetic one. For the salinity, the harmonic analysis is able to 

predict 18.4% of the variance of the original signal. This is due to freshwater contents 

(received from the rivers) and a seasonal cycle with higher variability linked to the 

regime of rivers and residuel (subtidal) circulation. Regarding the turbidity, it contains 

tidal components, but also a biological signal such as the one induced by the plankton in 

the spring, high-frequency effects linked to storms and a cycle of tidal streams 

(suspension and advection) (Burchard and Baumert, 1998; Chant and Stoner, 2001; 

Goni et al., 2005). Such components make the time series non stationary. This is the 

reason why the harmonic analysis is even worse: only 8.3% of the original signal’s 

variance is predicted. Hence, the harmonic analysis is not relevant except for the sea 

level. An adequate spectral analysis is introduced hereafter and allows comparing 

different periodograms. 

 

 

Amplitude Tidal wave Type 

2.8431 Principal lunar 
2

M  Semidiurnal  

0.9429 Principal solar  
2

S  Semidiurnal 

0.5160 Larger elliptical lunar 
2

N  Semidiurnal 

0.3478 Declinational lunar-solar 
2

K  Semidiurnal 

0.3160 
24

2MM   Compound  

Table 2. Important tidal constituents obtained from the harmonic analysis of sea level. 
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Figure 9. Use of t_tide toolbox for the harmonic analysis of sea level data: Spectral 

estimates before and after removal of tidal energy. 

4.2 Blackman-Tukey spectral analysis 

The most popular method to compute powerspectra in earth sciences is the method 

introduced by Blackman and Tukey (1958). This method performs autospectral analysis 

in three steps: calculation of the autocorrelation sequence, windowing and finally 

computation of the discrete Fourier transform. For the modified periodogram, several 

window shapes are available such as Bartlett (triangular), Hamming (cosinusoidal) and 

Hanning (slightly different cosinusoidal). An enhancement was made by the application 

of the Welch’s method (1967). First, the time series is divided into overlapping 

segments. After the data is split up, the overlapping segments are windowed, like for the 

modified periodogram. Then, the Welch method includes computing the powerspectrum 

for each segment and finally averaging the powerspectra. To be more specific, we 

divide an   point data sequence     ,       , into   segments of   samples each. 

The Welch periodogram is an   modified or windowed periodogram and can be defined 

as 

  
     

 

  
    

               

   

   

 

 

      

where  , the energy in the window is 
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Figure 10. Two powerspectra of the turbidity data sets: modified periodogram with a 

Hamming window versus Welch powerspectrum. 

 

The dynamics of turbidity is illustrated in Fig. 10 showing two powerspectra in 

log-log plot: the modified periodogram using a Hamming window and the Welch 

powerspectrum. Both reveal a very complex dynamics, with a turbulent-like behaviour 

at high frequencies, with a regime following roughly a power-law. This analysis is 

coherent with the power spectrum of turbidity obtained by Schmitt et al. (2008). For 

low frequencies, deterministic forcings are visible, associated with several energetic 

spikes such as the diurnal tidal cycle 
1

K , the semidiurnal cycle  
2

M  and the 

corresponding propagation of 
24

2MM  . The diurnal period 
1

K  (23,93 h) is very close 

to the day duration and the corresponding spike may hide biological effects on turbidity 

like the nychtemeral vertical migration of zooplankton. Compared to the modified 

periodogram, the Welch method improves the signal-to-noise ratio of the spectrum 

versus a loss of resolution. For example, there are not any spikes in the Welch 

powerspectrum for the monthly ( Mm ) and semi monthly ( Mf ) lunar tides due to an 

important loss of resolution at these low frequencies. Even more, the annual cycle ( Sa ) 

is not detected at all. Indeed, for the Welch power spectrum, the raw data has been 

divided into several segment, the lowest frequency that could be resolved thus depends 

on the length of the segment. 

  

 In earth sciences, time series are often unevenly spaced. Missing values represent 

a common characteristic property of autonomous monitoring data bases due to routine 

maintenance, inaccessibility, vandalism, removal of biofouling, and failure of the 

measuring devices. The Blackman-Tukey method, however, requires evenly-spaced 

data. Therefore, we have interpolated the turbidity time series with 13% of missing data 
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in order to generate the powespectra in Fig. 10, as done in some studies (Ibanez and 

Conversi, 2002; Paparella, 2005). Nevertheless, interpolation introduces numerous 

artifacts to the data, both in the time and the frequency domain. For this reason, an 

alternative method of time-series analysis has become increasingly popular in earth 

sciences, the Lomb-Scargle algorithm (Lomb, 1976; Scargle 1981, 1982, 1989; Press et 

al. 1992; Schulz and Stattegger, 1998).  

 

4.3 Lomb-Scargle powerspectrum 

 

The Lomb-Scargle approach was done in the field of astronomy, corresponding to 

a framework which can be quite different from time series in coastal oceanography. In 

contrast to the Blackman-Tukey method, the Lomb-Scargle algorithm evaluates the data 

of the time series only at times    that are actually measured. Detailed discussions of the 

Lomb-Scargle method are given in Scargle (1989) and Press et al. (1992). An excellent 

summary of the method and a TURBO PASCAL program to compute the normalized 

Lomb-Scargle powerspectrum of paleoclimatic data has been published by Schulz and 

Stattegger (1998). A comfortable MATLAB algorithm lombscargle to compute the 

Lomb-Scargle periodogram has been published by Brett Shoelson (The MathWorks 

Inc.). 

We suppose that a physical variable   is measured at a set of time   . Then, the 

Lomb-Scargle peridogram    as a function of angular frequency         is given 

by 

       
 

 
 
                

 

             

 
                

 

             

  

where    is defined by  

          
         

         
 

 

In the next, we consider the salinity time series over the year 2005, where 18.76% 

of the values are missing. Instead of filling the discontinuities with interpolated data, the 

spectral analysis is performed using the Lomb-Scargle algorithm (see Fig. 11). Similarly 

to the turbidity, a turbulent-like stochastic behaviour is visible at high frequencies, 

whereas the dynamics at low frequencies are dominated by deterministic forcings. 

Several energetic spikes are observed for the original time series of salinity. The first 

period corresponds roughly to the year ( Sa ), then the monthly ( Mm ) and semi monthly 

( Msf ) lunar tides. Furthermore, the diurnal and semidiurnal cycles are identified as for 

the previous analysis of turbidity. The peak between Mm  and Msf  seems to be more 

pronounced ( 2105 f days). It corresponds to a period of 20 days which is longer 

than an atmospheric disturbance. Thus, it could be related to the river discharges. 
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Figure 11. Lomb-Scargle powerspectrum of the salinity data over the year 2005. 

 

The method is adapted for unevenly spaced data, however, one might ask the 

following questions. What are the limits? If the time series has a high rate of missing 

values, would the Lomb-Scargle powerspectrum be significant? Would the method 

always detect the most energetic frequencies? Or would it suffer above a certain 

threshold? To answer these questions, we have removed intentionally and randomly 

other data from the original time series as follows: 

 

1. Case 1: Remove randomly one month of measures, representing 8.22% of 

additional missing values. Thus, the rate of missing values is increased 

from 18.76% to nearly 27%. 

2. Case 2: Remove randomly 3 months of measures, representing 24.65% of 

additional missing values. Thus, the rate of missing values is increased 

from 18.76% to 43.41%. 

3. Case 3: Remove randomly 6 months of measures, representing 49.31% of 

additional missing values. Thus, the rate of missing values is increased 

from 18.76% to nearly 68%. 

4. Case 4: Remove randomly 90% of the data. 

 

 

   



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 
17 

 
Figure 12. Comparing different Lomb-Scargle powerspectra for the salinity while 

increasing the rate of missing data. 

 

Fig. 12 displays the corresponding Lomb-Scargle powerspectra. The more data are 

discarded, the less energetic spikes are observed in the powerspectrum. Table 3 provides 

the number of significant frequencies above the 95% confidence level, dropping down 

from 131 for the original data of salinity to only 14 when 90% of the data are randomly 

eliminated. Several seasonalities are no more visible in the spectra and even a whole 

range of high frequency disappears progressively. Beyond 3 months of discarded data, 

the Lomb-Scargle algorithm really suffers from a high rate that approaches 50% of 

missing measures. 

 

Time series  significant frequencies 

Original data 131 

Case 1 90 

Case 2 79 

Case 3 53 

Case 4 14 
 

Table 3. Number of significant frequencies above the 95% confidence level detected 

by the Lomb-Scargle method. 

 

 Although the Fourier transform is a traditional spectral analysis method, it is 

predicated on a priori selection of basis functions. The Fourier transform is suitable for 

analyzing periodic signals like ocean tides or Earth tides. The signal is compared with 

harmonic oscillations of different frequencies. The Fourier Transform gives information 

about the frequency content of the signal without any time localization. Thus, time-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 
18 

varying amplitudes and/or periods can hardly be detected. Consequently, the Fourier 

analysis is also constrained by the assumptions of stationarity and linearity. To 

accommodate the variety of data generated by nonlinear and nonstationary processes, 

Huang et al. (1998, 1999) developed a new adaptive data analysis method designated by 

the NASA as the Hilbert-Huang Transform (HHT) and introduced hereafter. Unlike the 

Fourier transform, which transforms information from the time domain into the 

frequency domain, the HHT does not lose temporal information after transformation, 

i.e. energy–frequency information is maintained in the time domain.  

 

 

Section 5: Hilbert Huang Transform  

While the natural physical processes are mostly nonlinear and nonstationary, the 

available data analysis methods are either for linear but nonstationary processes such as 

wavelet analysis and the Wagner-Ville distribution, or nonlinear but stationary 

processes (see, for example, Tong 1990; Kantz and Schreiber 1997; Diks 1999). The 

development of the HHT was motivated by the need to describe nonlinear distorted 

waves in detail, along with the variations of these signals that naturally occur in 

nonstationary processes (Huang et al., 1998). The HHT consists of the following steps: 

 

 sifting, that is, empirical adoption of the Principal Component Analysis 

(PCA) for multi-components in the signal to rearrange the signal in terms 

of local bases that are nearly orthogonal each other; 

 physically based construction of instantaneous frequency whose concept is 

applicable to nonstationary and nonlinear signals; 

 complexification of the signal via the Hilbert Transform to characterize the 

signal in terms of the modulated amplitude and the associated instantaneous 

frequencies that appear to represent both  interwaves and intrawaves; 

 reconstruction of the signal and the Hilbert spectrum (energy-frequency) 

and the multi-component frequency-time relations. 

 

The HHT technique for analyzing data consists of two components: a 

decomposition algorithm called Empirical Mode Decomposition (EMD) and a spectral 

analysis tool called Hilbert spectral analysis.  

 

5.1  Empirical Mode Decomposition 

 The key part of the approach HHT is that any complicated dataset can be 

decomposed with the EMD method into a finite and small number of Intrinsic Mode 

Functions (IMFs), which represent different scales of the original time series and 

physically meaningful modes. An IMF is defined as a function having the same number 

of extrema and zero-crossings. It has also symmetric upper and lower envelopes defined 

by the local maxima and minima respectively. 

 The IMFs represent different scales of the original time series and physically 

meaningful modes. Indeed, the EMD divides the time series into a series of modes, but 

unlike a Fourier transform where each component has a constant frequency and a cosine 

or sine shape, the EMD allows each mode to have a time-dependent frequency and 

amplitude. In contrast to almost all the previous methods, the EMD works directly in 
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temporal space rather than in the corresponding frequency space. With the definition of 

the IMFs, one can then decompose any function  tx  through a sifting process:  

 First identify all the local extrema (minima) and then connect all the local 

maxima (minima) by a cubic spline line to form the upper (lower) envelope. The 

envelopes should encompass all the data between them. 

 Calculate 1m , the running mean of the envelope. 

 Treat the difference   11 hmtx   as the data in the next iteration and repeat the 

above sifting processing until  1h  becomes an IMF. 

o )1(1)1(11 hmh  . 

o After k  times, the first IMF is derived: 1)(1)(1)1(1 chmh kkk  . The 

term 1c  contains the highest frequency component of the original signal. 

o Separate 1c  from the rest of the data:   11 ctxr   and carry out the same 

process described above. 

 Repeat the procedure until nr  becomes a constant, a monotonic function or a 

function with only one maximum and one minimum from which no more IMF 

can be extracted: 

o 221 rcr   

o … 

o nnn rcr 1  

 By summing all the equations, we can get a decomposition with n  IMFs and a 

residue nr
 as follows: 

     



n

j

nj trtctx
1 .   

 Due to a dyadic filter bank property of the EMD algorithm (Flandrin et al., 2004; 

Huang et al., 2008; Wu and Huang, 2004), usually in practice, the number of IMFs 

modes is less than 
 N

2
log

, where N  is the length of the data set. Note that the sifting 

process serves two purposes: (1) to eliminate background waves on which the IMF is 

riding and (2) to make the wave profile more symmetric. Unlike Fourier based 

methodologies such as Fourier analysis and wavelet transform, the EMD method does 

not define a basis a priori (Flandrin and Gonçalvès, 2004; Huang et al., 1998, 1999) and 

the IMFs obtained by sifting processes constitute an adaptive basis. Therefore, EMD is 

very suitable for nonstationary and nonlinear time series analysis (Huang et al., 1998, 

1999). One way to express the nonstationarity is to find instantaneous frequency and 

instantaneous amplitude. This was the reason why Hilbert spectrum analysis was 

included as a part of HHT. 

 

 HHT has already been applied in marine sciences. For example, Dätig and 

Schlurmann (2004) applied HHT to show excellent correspondence between simulated 

and recorded nonlinear waves. Schmitt et al. (2009) applied the HHT method to 

characterize the scale invariance of velocity fluctuations in the surf zone. The EMD 

scheme was used in studying sea level rise (Ezer et al., 2013). Yin et al. (2014) also 

applied the method and identified three kinds of low-frequency waves using some 

observations in the coastal water of the East China Sea.  
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 In this paper, the EMD algorithm has been applied to the Marel Carnot data sets 

acquired from 2005 to 2009 and already presented in section 2 (Presentation of the 

experimental database). The analysis for  the salinity records is presented below. 

 

5.2  EMD of the salinity time series 

 After EMD decomposition of the salinity data sets, 19 IMFs modes are obtained 

plus the residual, as shown in Fig. 14 and Fig 15. The time scale is increasing with the 

number of the IMF mode, the first IMF thus corresponding to the highest frequency. 

The residual from EMD algorithm has been recognized as the trend of the given data 

(Moghtaderi et al., 2011; Wu et al., 2007).  

 From EMD, several tidal waves are identified through the IMFs: semidiurnal 

( 6IMF , 12 hours such as M2), fourth-degree diurnal ( 4IMF , 6 hours such as M4), spring 

and neap tides, semimonthly ( 13IMF ), monthly ( 14IMF ), seasonal ( 15IMF ), semiannual 

( 16IMF ) and annual waves ( 17IMF ). The 7IMF  may represent the inertial wave with a 

theoretical period of 
   

)(
sin2

24
)(

sin2

11
hoursdays

finertial 






 (Monin, 1990). 

Here, the inertial wave is 
  51sin2

24
  44.51 hours.  The period of 7IMF  is close to 

the inertial period but the bottom friction induced by the strong tidal currents  is likely 

to dissipate these inertial oscillations and this period may be due the  non linear 

interaction between tidal and high frequency atmospheric forcing. 
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Figure 13. The first-tenth IMF modes for salinity. The time scale is increasing with 

the mode index. 
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Figure 14. The last-nineth IMF modes together with the trend term for salinity.  

 

Table 4 summarizes the mean period of the IMF modes and some tidal waves obtained 

after EMD decomposition of the salinity. Furthermore, the contribution of each IMF to 

the total energy is measured by the variance. Table 4 gives also the contribution of each 

IMF to the total energy (measured by the variance), percentage of total and cumulative 

percentage contribution to the sum of the variances. For the high frequencies, the first-

seventh IMFs account for nearly 25% of the total energy. Thus, the main part of energy 

is not carried by the very high frequency components but by intermediate and low ones, 

especially the annual wave 
17IMF . It can be seen that the biggest contribution comes 

from four most energetic IMFs: the annual wave (
17IMF ), the semiannual wave (

16IMF ), 

the semimonthly wave
13IMF and the monthly wave 

14IMF . These four IMFs account for 

over 52 % of the total energy. 

 While the Fourier expansion would require tens of modes to represent the whole 

data, the EMD method decomposes the time series into only 19 IMFs plus the residual. 

When all the IMFs are added back successively, we notice that all the energy is 

recovered, as shown in all the cases in Huang et al. (1998, 1999). 

 
IMFs Mean period 

(days)  

Tidal waves Variance % of total Cumulative % 

IMF1 0,06 = 1,43 hours  0.0292 3.04 3.04 

IMF2 0,11 = 2,66 hours  0.0247 2.57 5.61 

IMF3 0,18 = 4,44 hours  0.0359 3.74 9.35 

IMF4 0,26 = 6,20 hours M4 0.0423 4.40 13.76 
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IMF5 0,39 = 9,44 hours  0.0508 5.29 19.05 

IMF6 0,52 = 12,59 hours Semidiurnal M2 0.0377 3.93 22.98 

IMF7 0,76 = 18,16 hours Inertial 0.0179 1.87 24.84 

IMF8 1,30 = 31,16 hours  0.0179 1.86 26.71 

IMF9 1,99 days  0.0155 1.61 28.31 

IMF10 3,48 days  0.0316 3.29 31.61 

IMF11 6,06 days  0.0367 3.83 35.43 

IMF12 8,97 days  0.0316 3.29 38.73 

IMF13 17,68 days Semimonthly 0.0921 9.59 48.32 

IMF14 31,97 days Monthly 0.0562 5.85 54.17 

IMF15 63,35 days Season (3 months) 0.0457 4.76 58.93 

IMF16 170,11 days Semiannual  

(6 months) 

0.1553 16.18 75.11 

IMF17 318,76 days Annual 0.2049 21.34 96.45 

IMF18 433,07 days  0.0102 1.06 97.51 

IMF19 1011,05 days ~18 months 0.0218 2.27 99.78 

Sum     100.00 

 

Table 4. Contribution of each IMF to the total variance for 2Temp time series 

 

 To analyze the variability, both HHT and Conitunous Wavelet Transform 

(CWT) can be used. Comparaisons of HHT and wavelets are investigated in the next 

subsection. 

5.3 Continuous Wavelet Transformation (CWT) 

 The wavelet transform is widely used as a time-frequency analysis technique to 

deal with nonstationary signals. The choice of the mother wavelet is usually dependent 

on the type of data to deal with (Torrence and Compo, 1998). HHT on the other hand 

does not require any convolution of the signal with a predefined basis function or 

mother wavelet. The process of decomposition is data-driven.  

 The CWT is a consecutive pass-band filter through time series, recognized as a 

very successful approach for the analysis of time series (Addison, 2010; Avdakovic et 

al., 2013; Torrence and Compo, 1998). However, similar to the Fourier transform and in 

contrast to the EMD algorithm, the wavelet transform requires evenly-spaced data. 

Therefore, the data have to be interpolated.  

 Mathematically, a wavelet transformation decomposes a signal      into some 

elementary functions         derived from a mother wavelet      by dilation and 

translation, 

        
 

  
  

   

 
  

where   denotes the position (translation) and   (  ) the scale (dilation) of the wavelet 

(Lau and Weng 1995). The wavelet transform of the signal      about the mother 

wavelet       is defined as the convolution integral 

       
 

  
   

   

 
         . 

There are many mother wavelets available in the literature. However, in geosciences the 

most popular wavelet is the Morlet wavelet, which is given by 

                         



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 
24 

 

where   is the non-dimensional time and     is the wavenumber (Torrence and Compo 

1998). The wavenumber is the number of oscillations within the wavelet itself. 

 In Fig. 16, the wavelet transform has been applied to the four time series. Many 

high frequencies are detected for temperature, salinity and turbidity records. More 

variations are visible for the turbidity time series, which confirms that the data sets are 

highly non-stationary compared to the other data. This analysis confirms also the 

previous results presented in 4.1, where  the performed harmonic analysis allows to 

predicting only 8.3% of the original signal’s variance. As explained before, this is due 

to biological contents induced by the plankton in the spring, high-frequency effects 

linked to storms and a cycle of tidal streams (suspension and advection).  

However, if we look at the CWT of the sea level in Fig. 16, the graph shows 

horizontal clusters of peaks at 365 days and 0.5 day, which corresponds to a strong  

annual cycle and the semidiurnal wave. The powerspectrum also revels other significant 

periods such as the diurnal wave (1 day), the semimonthly and monthly waves; although 

these are sometimes not very clear. 

As the signal content is now known in the frequency domain, the focus will shift to 

the application of an EMD based Time Dependent Intrinsic Correlation (TDIC), in order 

to study the possible links between physical observations.  

 

 
 

 Figure 15. The Morlet wavelet spectrum of the data. The period in the y-axis is 

expressed in days. 
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Section 6: Cross correlation methods 

 The classical global expression for the correlation (defined as the covariance of 

two variables divided by the product of the standard deviation of the two variables) 

assumes that the variables should be stationary and linear. Applied to nonstationary time 

series, the cross correlation information may be altered and distorted. The limitations of 

the correlation coefficient are also obvious: it is unable to provide local temporal 

information, and it cannot distinguish the main cycles from noise when measuring 

correlation. Many scientists tried to address the problem of nonsense correlations 

through different ways. 

 An alternative is to estimate the correlation coefficient by means of a time-

dependent structure. For example, Papadimitriou et al. (2006) applied a sliding window 

to localize the correlation estimations. Rodo and Rodriguez-Aria (2006) developed the 

scale-dependent correlation technique. Although these methods detected the correlation 

between two nonstationary signals by computing the correlation coefficient in a local 

sliding window, the main problem is to determine the size of this window. Recently, 

Chen et al. (2010) introduced an approach based on EMD. They proposed to first 

decompose the nonlinear and nonstationary data into their IMFs, then use the 

instantaneous periods of the IMFs to determine an adaptive window and finally 

compute the time dependent intrinsic correlation coefficients. Huang and Schmitt 

(2014) used TDIC to analyze temperature and dissolved oxygen time series obtained 

from automatic measurements in a moored buoy station in coastal waters of Boulogne-

Sur-Mer (France). In the following, we give an insight into the TDIC method. 

 

6.1 Time Dependent Intrinsic Correlation (TDIC) 

 The correlation between two data sets is considered here. Suppose the two time 

series  tx1 and  tx2  can be represented in terms of their IMFs as      trthtx i

n

j

i

ji 



1

 

where  thi

j  is the thj IMF of  txi  and  tri  are the residues. We find the mean period 

 tT i

j of each  thi

j either by calculating the local extrema points and zero crossing points, 

i.e.,  
0minmax

4
NbrNbrNbr

lengthdata
tT i

j


 (Huang and Schmitt, 2014) or by considering the 

Fourier energy weighted mean frequency, i.e.,  
 

 




dffXf

dffX
tT

i
j

i
ji

j 2

2

 where  fX i
j  is the 

Fourier power spectrum of each IMF mode. Then, at time instt , the sliding window is 

given by          













2

,max
,

2

,max 2121 tTtT
at

tTtT
att

jj

inst

jj

instwin

, where a is any positive number. This 

window is different from classical sliding windows: it is based on the maximum of two 

instantaneous periods     tTtT jj

21 ,max  and thus it is adaptive. 

 

6.2 Results for cross analyses 

 The focus will shift now to illustrate the cross correlations between temperature 

and sea level time series. We consider a sample of one year for these records between 
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24
th

 May 2006 and 24
th

 May 2007. First, the time series are not correlated since the 

global cross correlation coefficient is only 0.025.  

 Then, the EMD algorithm is applied to the data sets for the same time period 

between 24
th

 May 2006 and 24
th

 May 2007. For the temperature records, there are 12 

IMFs modes with one residual, while the sea level is decomposed into 6 IMFs with one 

residual. Thus, the data are  represented in a multiscale way (Flandrin and Gonçalvès, 

2004; Huang et al., 1998; Huang, 2009) and the IMFs can be used for multiscale 

correlation. For instance, let us consider the IMFs modes with a mean period of 12 

hours (semidiurnal) : 5IMF  for temperature and 1IMF  for sea level data sets. The global 

correlation coefficient is 0.09 for the corresponding IMFs modes. 

 Fig. 17 displays the measured TDIC and shows rich patterns at small sliding 

window. We note a decorrelation of the TDIC and we observe less rich patterns with the 

increase of the window size (as the variable a increases). Although the global cross 

correlation is too small, the TDIC detects several periods of high correlation between 

the modes. To focus on these periods, Fig. 18 shows a zoom of the IMFs modes 

between 15
th

 july and 15
th

 August 2006. These are positively correlated with each other 

on some portions and negatively correlated on others; showing rich dynamics. The red 

circles point out some portions where the IMFs co-vary. This means that sometimes the 

temperature records are highly influenced by the tidal cycles. For example, the 

correlation coefficient between 5IMF  and 1IMF for the time series of temperature and sea 

level respectively, is 0.59 from 15
th

 to 20
th

 July 2006, 0.61 from 4
th

 to 7
th

 August 2006, 

which is much higher compared to the global correlation coefficient between these 

IMFs, equal to only 0.09. 

 

 
 
Figure 16. The measured TDIC for the 12-hour mean period obtained after EMD decomposition 

of temperature and sea level  between 24
th
 May 2006 and 24

th
 May 2007.  
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Figure 17. Zoom on the 12-hour cycle from EMD for temperature and sea level.  

 

 

Section 7: Conclusions and perspectives 

In the era of “Big Data”, the time series are longer and longer. Time series analysis 

in marine sciences is becoming a challenge at the crossroads of marine observatories’ 

data. Indeed, the observatories allow more and more marine data to be safely archived. 

They contribute to understand and forecast the most crucial marine processes. 

Therefore, it is necessary to analyze this increasing data flow in an optimal way. In 

environmental sciences, adequate and specific methods are needed to analyze the 

complex time series which are nonstationary and reflecting nonlinear processes.  

To explore these methods, we have analyzed here four time series recorded at high 

frequency in the coastal waters of Boulogne-sur-Mer, using the MAREL Carnot 

monitoring station: sea level, salinity, turbidity and temperature data sets. In order to 

perform adequate statistical and spectral analyses, it is necessary to know the nature of 

the considered time series. First, a preliminary analysis of stationarity, based on the 

graphs of the time series as well as the correlograms, is carried out. In contrast to the sea 

level time series which is stationary, the graphs of temperature, turbidity and salinity are 

characterized by a non stationarity in mean and variance. The series are also perturbed 

by effects such as the tide and the earth’s rotation. Regarding the corresponding 

correlograms, these these show strong persistence since there are significant spikes at 

several lags, indicating that the time series are nonstationary. Then, the stationnarity of 

the series and the occurrence of unit-root are addressed with the ADF tests. For the 

salinity data, the time series is nonstationary. It has a unit-root with drift and a 

deterministic trend. Similar results are obtained for temperature and turbidity data.  

After stationarity issues, an adequate power spectral analysis is performed. The 

harmonic analysis involves the search for the amplitude and phase of certain known 

frequencies, used for the calculation of the astronomical tide’s generator potential. 

Apart from the sea level where the harmonic analysis is able to predict 99.7% of the 
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original signal’s variance, such analysis is not relevant for the other time series. 

Different spectra for the turbidity and salinity are investigated. They reveal a very 

complex dynamics, with a turbulent-like stochastic behaviour at high frequencies, 

whereas the dynamics at low frequencies are dominated by deterministic forcings. 

Compared to the modified periodogram, the Welch method improves the signal-to-noise 

ratio of the spectrum versus a loss of resolution. Since the Blackman-Tukey method 

requires evenly-spaced data, we have interpolated the time series. However, 

interpolation introduces numerous artifacts to the data, both in the time and the 

frequency domain. Thus, the Lomb-Scargle algorithm is adapted for unevenly-spaced 

data and has been used as an alternative method. To know the limits of this algorithm, 

we have investigated the time series of salinity over the year 2005 and we have 

intentionally increased the rate of missing values by discarding randomly data from the 

original time series. The Lomb-Scargle powerspectra show that, beyond 50% of missing 

measures, few significant frequencies are detected, several seasonalities are no more 

visible, and even a whole range of high frequency disappears progressively. 

The authors also explored an other type of interesting direction of study since the 

Blackman-Tukey spectral analysis is not adapted to nonlinear and nonstationary data 

sets. An adaptive data analysis method, called EMD, was developed to accommodate 

the variety of data generated by nonlinear and nonstationary processes. In this paper, 

EMD was used to analyze the fluctuations and the correlations between different time 

series. For example, the salinity observations were decomposed with the EMD method 

into a finite and small number of IMFs (19 IMFs) which represent different scales of the 

original time series. These are also physically meaningful modes since a group of tidal 

waves were detected. Compartsions with CWT are addressed. Furthermore, the 

decomposition into modes helps also to estimate how correlations vary among scales. In 

fact, the authors apply a recent methodology, based on EMD and called TDIC, in order 

to display patterns of correlations at different scales for different IMFs modes. Finally, 

to illustrate this approach, cross correlations between temperature and sea level time 

series are considered. For the semidiurnal wave, the TDIC is displayed and allows to 

detecting several periods of high correlation. 

We can mention here some perspectives opened by this work. Techniques of 

filtering will be investigated to study the high frequency or to concentrate on 

seasonalities. Classical Butterworth filters can be implemented or demerliac filters, 

already used by the “Service Hydrographique et Océanique de la Marine” (S.H.O.M) to 

calculate the daily mean sea level. Moreover, we have studied each parameter 

separately. A development of this approach will be to study the couplings between some 

parameters. Such coupling will be studied considering joint or conditional moments, 

joint probability density function, and joint spectral analysis.  

More generally, time series analysis methods could be implemented in an 

automated way in the environmental databases  in order to facilitate the data discovery 

as well as the investigation tools and techniques. 

 

Acknowledgments 

The authors would like to thank the Région Bretagne for financial support of the post-

doctoral fellowship (SAD MASTOC). They also thank the organizing committee of the 

MAREL Carnot symposium held in June 2014, Boulogne-Sur-Mer, France. Finally, we 

wish to thank the Editor, the Associate Editor, and the Referees for helpful comments.  
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 
29 

References  

ADDISON, P.S., “The Illustrated Wavelet Transform Handbook: Introductory Theory and 

Applications in Science, Engineering, Medicine and Finance”, Taylor & Francis, New 

York, 2010. 

AVDAKOVIC, S., ADEMOVIC, A., NUHANOVIC, A., “Correlation between Air Temperature and 

Electricity Demand by Linear Regression and Wavelet Coherence Approach: UK, Slovakia 

and Bosnia and Herzegovina Case Study”, Archives of Electrical Engineering, 62 (4), 521-

532, 2013. 

BERTHOME J. P., « Marel : un réseau automatisé de veille pour l'environnement littoral », 

Equinoxe (Nantes), n° 47-48, pp. 34-35, 1994. 

BLACKMAN R.B., and TUKEY J.,W., “The measurement of power spectra from the point of view 

of communication engineering”, Dover Publications, 190 pp, 1958. 

BURCHARD H., BAUMERT H., The formation of estuarine turbidity maxima due to density 

effects in the salt wedge. A hydrodynamic process study”, J. Phys. Oceanogr. 28, 309-321, 

1998. 

CHALLIS R. E.  and KITNEY R. I.,  “Biomedical signal processing (in four parts). Part 1 Time-

domain methods. Medical & Biological Engineering & Computing”, 28, November 1991. 

CHANG G., DICKEY T. D., “Optical and physical variability on timescales from minutes to the 

seasonal cycle on the new England shelf: July 1996 to June 1997”, J. Geophys. Res. 106, 

9435–9453, 2001. 

CHANT R. J., STONER A. W., “Particle trapping in a stratified flood-dominated estuary”, J. 

Marine Res. 59, 29-51, 2001. 

CHAVEZ F. P., PENNINGTON J. T., HERLIEN R., JANNASCH H., THURMOND G., and FRIEDERICH 

G. E., “Moorings and drifters for real-time interdisciplinary oceanography”, J. Atmos. 

Ocean. Technol. 14, 1199–1211, 1997. 

CHEN, X., WU, Z., HUANG, N.E., “The time-dependent intrinsic correlation based on the 

empirical mode decomposition”, Adv. Adapt. Data Anal. 2, 233–265, 2010. 

DÄTIG, M., SCHLURMANN, T., “Performance and limitations of the Hilbert–Huang 

transformation (hht) with an application to irregular water waves”, Ocean Eng. 31 (14), 

1783–1834, 2004. 

DICKEY T. D., “The emergence of concurrent high resolution physical and bio-optical 

measurements in the upper ocean and their applications”, Rev. Geophys. 29, 383–413, 

1991. 

DICKEY T.D., DOUGLASS R.H., MANOV D., and BOGUCKI D., “An experiment in duplex 

communication with a multi-variable moored system in coastal waters”, J. Atmos. Ocean. 

Tech, 10, 637-644, 1993. 

DICKEY D. A., FULLER W. A., “Distribution of the estimates for autoregressive time series with 

a unit root”,  J. Am. Stat. Assoc., 74, 427-431, June 1979. 

DIKS C., “Nonlinear Time Series Analysis: Methods and Applications”, World Scientific Press, 

180 pp, 1999. 

DUR G., SCHMITT  F., SOUISSI S., “Analysis of high frequency temperature time series in the 

Seine estuary from the Marel autonomous monitoring buoy”, Hydrobiologia, 588, 59-68, 

2007. 

EMERY W. J., and THOMSON R. E., “Data Analysis Methods in Physical Oceanography”, 2014.  

EZER, T., ATKINSON, L. P., CORLETT, W. B., BLANCO, J. L., “Gulf Stream’s induced sea level 

rise and variability along the U.S. mid-Atlantic coast”, J. Geophys. Res. Oceans, 118, 685–

697, 2013. 

FLANDRIN, P., GONÇALVÈS, P., “Empirical mode decompositions as data-driven wavelet-like 

expansions”, Int. J. Wavelets, Multires. Info. Proc. 2 (4), 477-496, 2004. 

FLANDRIN, P., RILLING, G., GONÇALVÈS, P., “Empirical mode decomposition as a filter bank”, 

IEEE Signal Proc. Lett. 11 (2), 112–114, 2004. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 
30 

FOREMAN M., “Manual for tidal heights analysis and prediction”, Technical Report Pacific 

Marine Report 77-10, Institute of Ocean Sciences, Patricia Bay Victoria, BC, Canada, 

1977, revised 1996. 

GONI M. A., CATHEY M. W., KIM Y. H., and VOULGARIS G., “Fluxes and sources of suspended 

organic matter in an estuarine turbidity maximum region during low discharge conditions”, 

Estuarine Coastal Shelf Sci., 63, 683–700, 2005. 

HUANG, N., SHEN, Z., LONG, S.R., WU, M.C., SHIH, H.H., ZHENG, Q., YEN, N., TUNG, C.C., 

LIU, H.H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and 

non-stationary time series analysis”, Proc. R. Soc. London, Ser. A 454 (1971), 903–995, 

1998. 

HUANG, N., SHEN, Z., LONG, S.R., “A new view of nonlinear water waves: the Hilbert 

spectrum”, Annu. Rev. Fluid Mech. 31 (1), 417–457, 1999. 

HUANG, Y., “Arbitrary-order Hilbert Spectral Analysis: Definition and Application to Fully 

Developed Turbulence and Environmental Time Series”, (Ph.D. thesis) Université des 

Sciences et Technologies de Lille — Lille 1, France & Shanghai University, China, 2009. 

HUANG, Y., SCHMITT, F.G., “Time dependent intrinsic correlation analysis of temperature and 

dissolved oxygen time series using empirical mode decomposition”, J. Mar. Syst., 130, 90–

100, 2014. 

HUANG, Y., SCHMITT, F., LU, Z., LIU, Y., “An amplitude–frequency study of turbulent scaling 

intermittency using Hilbert spectral analysis”, Europhys. Lett. 84, 40010, 2008. 

IBANEZ F., CONVERSI A., “Prediction of missing values and detection of ‘exceptional events’ in 

a chronological planktonic series: a single algorithm”, Ecol. Modelling, 154, 9-23, 2002. 

KANTZ H., and SCHREIBER T., “ Nonlinear Time Series Analysis”, Cambridge University Press, 

304 pp, 1997. 

KENDALL M. G., “Oscillatory movements in English agriculture (with discussion)”, Journal of 

the Royal Statistical Society, 106, 91-124, 1943. 

LAU K. M., WENG H., “Climate Signal Detection Using Wavelet Transform: How to make 

a Time Series Sing”, Bulletin of the American Meteorological Society, 76, 2391-2402, 1995. 

LOMB, N. R., “Least-Squares Frequency Analysis of Unevenly Spaced Data”, Astrophysical and 

Space Science, 39, 447-462, 1976. 

MACKINNON J., “Numerical distribution function for unit root and cointegration tests,” J. Appl. 

Econ.,  11, 601–618, 1996. 

MOGHTADERI, A., BORGNAT, P., FLANDRIN, P., “Trend filtering: empirical mode 

decompositions versus l1 and Hodrick–Prescott”, Adv. Adapt. Data Anal. 3 (01n02), 41–

61, 2011. 

MONIN A. S, “Theoretical Geophysical Fluid Dynamics”, 399 pp., Kluwer Acad. Publ., 

Dordrecht, 1990. 

NELSON C. and PLOSSER C., “Trends and random walks in macroeconomics time series: some 

evidence and implications”, J. Monet. Econ., 10, 130–162, 1982. 

NG S. and PERRON P., “Unit Root Tests in ARMA Models with Data-Dependent Methods for 

the Selection of the Truncation Lag”, Journal of the American Statistical Association, 90, 

268-281, 1995. 

PANOFSKY H. A. and BRIER, G. W., “Some applications of statistics to meteorology”, The 

Pennsylvania State University, College of Earth and Mineral Sciences, University Park, 

224 pp, 1968. 

PAPADIMITRIOU, S., SUN, J., YU, P.S., “Local correlation tracking in time series”, Proc. Sixth 

Int. Conf. Data Mining 456–465, 2006. 

PAPARELLA F., “Filling gaps in chaotic time series”, Phys. Lett. A, 346, 47-53, 2005. 

PAWLOWICZ R., BEARDSLEY B., and LENTZ S., “Classical tidal harmonic analysis including 

error estimates in MATLAB using T_TIDE”, Computers and Geosciences 28, 929-937, 

2002. 

PRESS W.H., TEUKOLSKY S.A., VETTERLING W.T., “Numerical Recipes in Fortran 77. 

Cambridge University Press, Cambridge, 1992. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 
31 

RODO, X., RODRIGUEZ-ARIAS, M.A., “A new method to detect transitory signatures and local 

time/space variability structures in the climate system: the scale-dependent correlation 

analysis”, Clim. Dyn. 27, 441–458, 2006. 

SCARGLE J. D., “Studies in Astronomical Time Series Analysis. I. Modeling Random Processes 

in the Time Domain”, The Astrophysical Journal Supplement Series 45, 1–71, 1981. 

SCARGLE J. D., “Studies in Astronomical Time Series Analysis. II. Statistical Aspects of 

Spectral Analysis of Unevenly Spaced Data”, The Astrophysical Journal 263, 835–853, 

1982. 

SCARGLE J. D., “Studies in Astronomical Time Series Analysis. III. Fourier Transforms, 

Autocorrelation Functions, and Cross-Correlation Functions of Unevenly Spaced Data”, 

1989. 

SCHMITT F. G., DUR  G., SOUISSI  S., BRIZARD ZONGO S., “Statistical properties of turbidity, 

oxygen and pH fluctuations in the Seine river estuary (France)”, Physica A: Statistical 

Mechanics and its Applications, 387, 6613-6623, 2008. 

SCHMITT, F.G., HUANG, Y., LU, Z., LIU, Y., FERNANDEZ, N., “Analysis of velocity fluctuations 

and their intermittency properties in the surf zone using empirical mode decomposition”, J. 

Mar. Syst. 77, 473–481, 2009. 

SCHULZ M., STATTEGGER K., “SPECTRUM: Spectral Analysis of Unevenly Spaced 

Paleoclimatic Time Series”, Computers & Geosciences 23, 929-945, 1998. 

SCHUREMAN P., “Manual of Harmonic Analysis and Prediction of Tides”, Special Publication 

98, Coast and Geodetic Survey, U.S. Dept. of Commerce, Washington, D.C., 317 pages, 

1958. (Revised 1940 Edition with corrections; first published in 1924). 
SCHWERT W., “Test for Unit Roots: A Monte Carlo Investigation”, Journal of Business and 

Economic Statistics, 7, 147-159, 1989. 

THOMSON SIR WILLIAM (LORD KELVIN), “Report of the Committee for the purpose of 

promoting the extension, improvement and harmonic analysis of Tidal Observations”, In: 

Report of the 38th Meeting of the BAAS, 1868, 489-510, John Murray, London, 1869. 

THOMSON SIR WILLIAM (LORD KELVIN), “The tide gauge, tidal harmonic analyzer and tide 

predicter”, Proceedings Institute of Civil Engineering, London, 65, 4-74, 1881. 

TONG H., “Nonlinear Time Series Analysis”, Oxford University Press, 564 pp. Windrows, B., 

and S. D. Stearns, 1985: Adaptive Signal Processing. Prentice Hall, 474 pp, 1990. 

TORRENCE, C., COMPO, G., “A practical guide to wavelet analysis”, Bulletin of the American 

Meteorological Society 79 (1), 61–78, 1998. 

WELCH P.D., “The Use of Fast Fourier Transform for the Estimation of Powerspectra: A 

Method Based on Time Averaging over Short, Modified Periodograms”, IEEE Trans. 

Audio Electroacoustics AU-15, 70-73, 1967. 

WOERTHER P., « Marel, Mesures Automatisées en Réseau pour l'Environnement Littoral », 

L'eau, l'Industrie, les Nuisances, 217, 67-71, 1998. 

WOLD H., “A study in the analysis of stationary time series”, Uppsala: Almqvist & Wiksell, 

1938. 

WU, Z., HUANG, N.E., “A study of the characteristics of white noise using the empirical mode 

decomposition method”, Proc. R. Soc. Lond. Ser. A 460, 1597–1611, 2004. 

WU, Z., HUANG, N.E., LONG, S.R., PENG, C., “On the trend, detrending, and variability of 

nonlinear and non-stationary time series”, PNAS 104 (38), 14889, 2007. 

YIN, L., QIAO, F., ZHENG, Q., “Coastal-trapped waves in the East China Sea observed by a 

mooring array in winter 2006”, J. Phys. Oceanogr., 44, 576–590, 2014. 

YULE G. U., “Why do we sometimes get nonsense correlations between time series? - A study 

in sampling and the nature of time series (with discussion)”, Journal of the Royal Statistical 

Society, 89, 1-63, 1926. 

ZONGO S., SCHMITT F., “Scaling properties of pH fluctuations in coastal waters of the English 

Channel: pH as a turbulent active scalar”, Nonlinear Processes in Geophysics, 18, 82, 

2011. 


