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Abstract

Background and aims

Inborn errors of purine and pyrimidine metabolism are a diverse group of disorders with pos-

sible serious or life-threatening symptoms. They may be associated with neurological symp-

toms, renal stone disease or immunodeficiency. However, the clinical presentation can be

nonspecific and mild so that a number of cases may be missed. Previously published

assays lacked detection of certain diagnostically important biomarkers, including SAICAr,

AICAr, beta-ureidoisobutyric acid, 2,8-dihydroxyadenine and orotidine, necessitating the

use of separate assays for their detection. Moreover, the limited sensitivity for some ana-

lytes in earlier assays may have hampered the reliable detection of mild cases. Therefore,

we aimed to develop a liquid chromatography–tandem mass spectrometry (LC-MS/MS)

assay that allows the simultaneous and sensitive detection of an extended range of purine

and pyrimidine biomarkers in urine.

Methods

The assay was developed and validated using LC-MS/MS and clinically tested by analyzing

ERNDIM Diagnostic Proficiency Testing (DPT) samples and further specimens from

patients with various purine and pyrimidine disorders.

Results

Reliable determination of 27 analytes including SAICAr, AICAr, beta-ureidoisobutyric acid,

2,8-dihydroxyadenine and orotidine was achieved in urine following a simple sample prepa-

ration. The method clearly distinguished pathological and normal samples and differentiated

between purine and pyrimidine defects in all clinical specimens.
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Conclusions

A LC-MS/MS assay allowing the simultaneous, sensitive and reliable diagnosis of an

extended range of purine and pyrimidine disorders has been developed. The validated

method has successfully been tested using ERNDIM Diagnostic Proficiency Testing (DPT)

samples and further clinical specimens from patients with various purine and pyrimidine dis-

orders. Sample preparation is simple and assay duration is short, facilitating an easier inclu-

sion of the assay into the diagnostic procedures.

Introduction

Purine and pyrimidine bases, nucleosides and nucleotides are essential components of the

nucleic acids DNA and RNA, and are associated with metabolic regulation, synthesis of

numerous biomolecules and other vital processes in cell physiology [1–3] (S1 Fig). Accord-

ingly, inborn errors of purine and pyrimidine metabolism can manifest with serious or life-

threatening symptoms that may include immunological, hematological, neurological and renal

pathology [1–3].

Purine and pyrimidine deficiencies are generally considered rare; however, their prevalence

is unknown and probably underestimated [1, 2]. One reason is that their clinical spectrum is

diverse and frequently overlapping with other disorders. Moreover, there is considerable het-

erogeneity in the phenotype and concentrations of biomarkers even within an affected family.

Third, although previously considered pediatric diseases, these disorders are now increasingly

being diagnosed in adults as milder presentations and mutations are recognized [1, 2]. This

underlines the importance of analytical assays that can detect biomarkers of purine and pyrim-

idine metabolism with sufficient sensitivity and specificity [1, 2]. For clinical diagnosis, liquid

chromatography–tandem mass spectrometry (LC-MS/MS) is the technique of choice [4], pre-

dominantly using urine as sample matrix [1, 2].

Despite the availability of clinical LC-MS/MS methods for purines and pyrimidines [5–9],

there is still significant need for improvement. First, previously published assays lacked detec-

tion of certain diagnostically important biomarkers, including SAICAr (succinyl-5-aminoimi-

dazole-4-carboxamide-1-ribonucleoside; a marker of adenylosuccinate lyase deficiency,

ADSL), not included in [5–9]; AICAr (5-aminoimidazole-4-carboxamide ribonucleoside; a

marker of AICAR transformylase/IMP cyclohydrolase deficiency, ATIC), not assayed in [5–9];

beta-ureidoisobutyric acid (beta-ureidopropionase deficiency, UPB1), not detected in [5, 7, 9];

2,8-dihydroxyadenine (adenine phosphoribosyltransferase deficiency, APRT), not included in

[5, 7–9] and orotidine (uridine monophosphate synthetase deficiency (UMPS) type III), not

assayed in [5–9]. Thus, in order to avoid missing cases, separate assays such as the Bratton-

Marshall-test for SAICAr [10] were recommended to be performed additionally for detection

of these additional metabolites. In addition, some analytes could only be measured with lim-

ited sensitivity in those earlier LC-MS/MS assays [5–9], potentially preventing reliable detec-

tion of milder disease forms.

Therefore, we aimed to develop an LC-MS/MS assay that allows the reliable diagnosis of an

extended range of purine and pyrimidine disorders while still maintaining sample preparation

simple and assay duration short for easier inclusion of the assay in the routine workflow. To

verify the clinical performance of the assay, we set out to analyze ERNDIM Diagnostic Profi-

ciency Testing (DPT) samples and further specimens from known patients.
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Abbreviations: ADA, adenosine deaminase

(deficiency); ADN, adenine; ADS, adenosine; ADSL,

adenylosuccinate lyase (deficiency); AICAr, 5-

aminoimidazole-4-carboxamide ribonucleoside;

AICAR, 5-aminoimidazole-4-carboxamide

ribonucleotide; ALLOP, allopurinol; APRT, adenine

phosphoribosyltransferase (deficiency); ATIC,

AICAR transformylase/IMP cyclohydrolase

(deficiency); BUIB, beta-ureidoisobutyric acid;

BUP, beta-ureidopropionic acid; DHA, 2,8-

dihydroxyadenine; DHP, dihydropyrimidinase

(deficiency); DHT, 5,6-dihydrothymine; DHU, 5,6-

dihydrouracil; dAdo, 2-deoxyadenosine; dGui, 2-

deoxyguanosine; dIno, 2-deoxyinosine; dUrd, 2-

deoxyuridine; DPD, dihydropyrimidine

dehydrogenase (deficiency); DPT, Diagnostic

Proficiency Testing (ERNDIM); EQC, ERNDIM

external quality control; Guo, guanosine; HGPRT,

hypoxanthine-guanine phosphoribosyltransferase

(deficiency); HMU, 5-hydroxymethyluracil; Hypo,

hypoxanthine; Ino, inosine; IQC, internal quality

control; MoCoD, molybdenum cofactor deficiency;

Oro, orotic acid; Ord, orotidine; PNP, purine

nucleoside phosphorylase (deficiency); PRPPS,

phosphoribosylpyrophosphate synthetase

(superactivity); PSU, pseudouridine; SAICAr,

succinyl-5-aminoimidazole-4-carboxamide-1-

ribonucleoside; SAICAR, succinyl-5-

aminoimidazole-4-carboxamide-1-ribonucleotide;

SAdo, succinyladenosine; THD, thymidine; Thy,

thymine; TP, thymidine phosphorylase (deficiency);

UMPS, uridine monophosphate synthetase

(deficiency); UPB1, beta-ureidopropionase

(deficiency); URA, uracil; Xan, xanthine; XDH,

xanthine dehydrogenase (deficiency).
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Materials and methods

Reagents

Unlabeled standards were purchased from Sigma-Aldrich (St. Louis, MO, USA), except for

2,8-dihydroxyadenine, dihydrothymine, orotidine and succinyladenosine (Toronto Research

Chemicals, Toronto, ON, Canada) and pseudouridine (Berry & Associates, Dexter, MI, USA).

SAICAr was obtained from Dr. Marie Zikánová (Charles University, Prague, Czech Republic).

Deuterated internal standards (ISs) were acquired from Cambridge Isotope Laboratories

(Andover, MA, USA). Methanol, isopropanol and formic acid (all ULC-MS grade) were pur-

chased from Biosolve (Valkenswaard, The Netherlands). Ultrapure water (18.2 MO.cm), fil-

tered through a 0.22 μm pore size membrane, was obtained from a Thermo Barnstead

GenPure Pro UV-TOC/UF system (Thermo Fisher Scientific, Waltham, MA, USA).

Calibrators and quality controls

The analyte levels in calibrators Cal01 to Cal10 prior to sample preparation were as follows: 0,

1, 2, 4, 8, 16, 32, 64, 128 and 256 μM, respectively. During method validation and in subse-

quent analyses, we used the „Control Purines and Pyrimidines” material from ERNDIM (sup-

plier: MCA Laboratory, Queen Beatrix Hospital, Winterswijk, The Netherlands) as an

officially approved external quality control (EQC; the LOT 2015.010 was used for method

development). In order to monitor further analytes not included in the EQC, we also prepared

an internal QC (IQC) in-house that contained all metabolites of the EQC plus beta-ureidopro-

pionic acid, allopurinol, beta-ureidoisobutyric acid, 2,8-dihydroxyadenine and succinyladeno-

sine. Since analyte levels in the EQC represented the highly pathologic range, concentrations

in the IQC were chosen to be lower but still analytically relevant, i.e. 20 μM. All calibrators, the

IQC and EQC samples and the IS working solution were stored in aliquots at -20˚C. The prep-

aration of standard stock solutions, calibrators, IS stock and working solutions and QCs are

further detailed in the S1 Text.

Sample preparation

Urinary creatinine concentrations were determined with a Beckman Coulter AU480 Chemis-

try System, using a kinetic modification of the Jaffe procedure (Beckman Coulter Diagnostics,

Brea, CA, USA). Urine samples were centrifuged for 5 min at 400 × g in a Hettich Rotina 420R

centrifuge (Tuttlingen, Germany) at ambient temperature. Sample preparation was performed

in a 96-well Merck MultiScreen filter plate (pore size: 0.45 μm, volume: 2 ml), with a Merck

MultiScreen collection plate (volume: 2 ml). In order to obtain creatinine levels of 0.25 mM in

all samples at the first stage of sample preparation, appropriate volumes of urine samples

(based on creatinine levels) were diluted to 400 μl with water, whereas 100 μl aliquots of the

calibrators and QCs were mixed with 300 μl synthetic urine (creatinine 0.333 mM, Synthetic

Urine e. K., Nußdorf, Germany). Then, 100 μl 25 μM IS was added to all samples. Accordingly,

the final concentrations of creatinine and IS in the samples were 0.20 mM and 5 μM, respec-

tively, with a final sample volume of 500 μl.

The samples were sealed with an adhesive foil (ChromSystems, Gräfelfing, Germany),

mixed and incubated for 10 min at ambient temperature. Then, the samples were filtered

using a 96-well Plate Vacuum Manifold (Phenomenex, Torrance, CA, USA). The collection

plate was sealed with a pre-slit adhesive foil (ChromSystems, Gräfelfing, Germany) and placed

directly into the autosampler. Results of the LC-MS/MS analysis were reported in mmol/mol

creatinine.
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LC-MS/MS instruments and settings

A Waters Acquity I-Class UPLC system (Binary Solvent Manager, thermostatic Column Man-

ager and FTN Sample Manager) and a Waters TQ-S triple quadrupole MS/MS were used, con-

trolled by MassLynx 4.1 software (all Waters, Milford, MA, USA). MS/MS data were evaluated

with TargetLynx 4.1 software (Waters, Milford, MA, USA).

The chromatographic separation of the analytes was performed on an ACE Excel C18-AR

100×3.0mm; 1.7 μm analytical column (Advanced Chromatography Technologies, Aberdeen,

Scotland). Eluent A consisted of ultrapure water plus 0.4% formic acid (ULC-MS grade). Elu-

ent B consisted of methanol/water 50/50 (methanol ULC-MS grade). Both eluents were pre-

pared weekly. The column was tempered to 25˚C. The autosampler settings were the

following: injection volume: 1 μl; sample compartment temperature: 5˚C. Gradient elution at a

flow of 200 μl/min was performed by changing %B as follows: 0.0-1.1 min: 10%; 1.1-6.0 min:

10% to 80%; 6.0-6.1 min: 80% to 100%; 6.1-8.0 min: 100%; 8.0-8.5 min: 100% to 10%; 8.5-14.0

min: 10%. The flow was directed to waste in the first 2 min and the last 5.5 min of each acquisi-

tion. Further experience with columns, eluents and centrifugal filter cups obtained during

method development are provided in the S1 Table.

MS/MS settings were optimized by means of consecutive syringe infusions of 1 μM solu-

tions for each analyte and IS, dissolved in methanol/water 50/50. Optimized MS/MS settings,

including electrospray ion (ESI) modes of purines and pyrimidines and related metabolites are

summarized in Tables 1 and 2, respectively. In the final MS/MS method, all MRMs were

acquired within 3 min acquisition windows (retention time ±1.5 min), with dwell times of 5

ms for each MRM. The final ion source settings were the following: desolvation gas flow = 800

L/h; cone gas flow = 150 L/h; nebulizer = 6.0 bar; capillary voltage = 2.5 kV; desolvation

temperature = 650˚C; source temperature = 150˚C.

Application of the LC-MS/MS assay on ERNDIM Diagnostic Proficiency

Testing (DPT) samples and further patient specimens

Diagnostic testing of the LC-MS/MS assay was first performed by analyzing the levels of

purines and pyrimidines in ERNDIM Diagnostic Proficiency Testing (DPT) samples (n = 10).

Subsequently, further urine specimens from patients (n = 10) referred for routine purine-

pyrimidine determination using a previously published method [6] were re-assayed with the

present method. All procedures followed were in accordance with the ethical standards of the

Helsinki Declaration of 1975, as revised in 2000 and approved by the Ethical Committee of the

University of Heidelberg (071/2005). Written consent was obtained from ERNDIM as an

approval to use the DPT samples in method development.

Results

Method validation

The linearity (coefficient of determination, R2), the limit of detection (LOD) and the lower

and upper limits of quantitation (LLOQ, ULOQ) were tested after serial dilution and subse-

quent sample preparation of calibrators (n = 10) (S2 Table). LOD was defined as S/N = 3;

LLOQ was defined as the lowest concentration measured with a coefficient of variation (CV)

lower than 20%; ULOQ was defined as the upper end of the range where the response of a

given analyte was linear, i.e. where the coefficient of determination (R2) was higher than 0.99.

The chromatographic resolution (Rs) of critical analyte pairs showing MS/MS interference

was calculated via the following equation: Rs = 1.18(t2-t1)/(w0.5,1+w0.5,2) where t1 and t2 are the
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retention times of the respective peaks and w0.5,1 and w0.5,2 are the peak widths at half peak

height [11]. Baseline resolution (Rs�1.5) was achieved for all critical pairs (S2 Table).

Table 1. Optimized MS/MS settings of purines and related metabolites.

Analyte Internal standard ESI mode Quantifier/

Qualifier

Parent mass

(Da)

Daughter mass

(Da)

Cone voltage

(V)

Collision voltage

(V)

Adenine Xanthine-IS (1,3-15N2) Positive QUANT 136.0 92.0 66 24

Positive qual 136.0 119.1 66 20

Hypoxanthine Hypoxanthine-IS (13C5) Positive QUANT 137.1 110.1 42 18

Positive qual 137.1 81.9 42 18

Allopurinol Hypoxanthine-IS (13C5) Positive QUANT 137.1 54.1 56 22

Positive qual 137.1 110.0 56 18

Hypoxanthine-IS (13C5) n.a. Positive QUANT 142.0 114.1 40 20

Positive qual 142.0 124.1 40 20

Xanthine Xanthine-IS (1,3-15N2) Positive QUANT 153.1 110.1 26 18

Positive qual 153.1 136.0 26 12

Xanthine-IS (1,3-15N2) n.a. Positive QUANT 155.1 137.1 20 14

Positive qual – – – –

2,8-Dihydroxyadenine Xanthine-IS (1,3-15N2) Positive QUANT 168.1 125.0 66 18

Positive qual 168.1 150.8 66 18

Deoxyadenosine Guanosine-IS (15N5) Positive QUANT 252.1 119.0 18 38

Positive qual 252.1 136.1 18 16

AICAr Guanosine-IS (15N5) Positive QUANT 259.2 110.1 26 22

Positive qual 259.2 127.1 26 10

Adenosine Guanosine-IS (15N5) Positive QUANT 268.2 119.0 30 44

Positive qual 268.2 136.1 30 18

Guanosine-IS (15N5) ESI+ n.a. Positive QUANT 289.1 139.1 20 40

Positive qual 289.1 157.1 20 14

Deoxyinosine Guanosine-IS (15N5) Negative QUANT 251.1 135.1 56 22

Negative qual 251.1 161.1 56 24

Deoxyguanosine Deoxyguanosine-IS (13C10
15N5)

Negative QUANT 266.1 150.0 54 20

Negative qual 266.1 133.1 54 28

Inosine Inosine-IS (15N4) Negative QUANT 267.1 135.1 58 20

Negative qual 267.1 92.0 58 34

Inosine-IS (15N4) n.a. Negative QUANT 271.1 139.1 20 20

Negative qual – – – –

Deoxyguanosine-IS (13C10
15N5)

n.a. Negative QUANT 281.1 160.1 20 20

Negative qual 281.1 142.1 20 30

Guanosine Guanosine-IS (15N5) Negative QUANT 282.1 150.0 48 18

Negative qual 282.1 133.1 48 30

Guanosine-IS (15N5) ESI– n.a. Negative QUANT 287.1 155.1 20 18

Negative qual 287.1 137.1 20 30

SAICAr Guanosine-IS (15N5) Negative QUANT 373.1 355.1 20 18

Negative qual 373.1 294.1 20 20

Succinyladenosine Guanosine-IS (15N5) Negative QUANT 382.1 206.2 40 20

Negative qual 382.1 134.1 40 30

ESI: electrospray ionization; IS: internal standard; AICAr: 5-aminoimidazole-4-carboxamide ribonucleoside; SAICAr: succinyl-5-aminoimidazole-4-carboxamide-

1-ribonucleoside; n.a.: not applicable. Note that guanosine-IS is measured in both ESI+ and ESI-.

https://doi.org/10.1371/journal.pone.0212458.t001
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Carryover was tested by injecting blank samples (methanol) after the highest calibrator

Cal10. No peaks were detected in the blank samples.

Interday and intraday precisions, variations between multiple injections of a single sample

extract and recoveries were examined using both the IQC and the EQC samples (n = 10) (S3

Table and Table 3, respectively). To highlight the reliability of the method, the interday repro-

ducibility data were calculated and reported from 10 measurements on 10 consecutive weeks,

Table 2. Optimized MS/MS settings of pyrimidines and related metabolites.

Analyte Internal standard ESI mode Quantifier/

Qualifier

Parent mass

(Da)

Daughter mass

(Da)

Cone voltage

(V)

Collision voltage

(V)

Uracil Uracil-IS (1,3-15N2) Positive QUANT 113.0 70.0 50 14

Positive qual 113.0 96.1 50 14

Dihydrouracil Dihydrouracil-IS (13C4
15N2) Positive QUANT 115.0 55.0 40 15

Positive qual 115.0 73.0 40 10

Uracil-IS (1,3-15N2) n.a. Positive QUANT 115.1 71.0 30 14

Positive qual 115.1 97.1 30 14

Dihydrouracil-IS (13C4
15N2) n.a. Positive QUANT 121.0 58.0 40 16

Positive qual 121.0 77.0 40 12

Thymine Thymine-IS (D4) Positive QUANT 127.0 110.0 50 16

Positive qual 127.0 84.1 50 14

Dihydrothymine Dihydrothymine-IS (D3

+ methyl-D3)

Positive QUANT 129.0 112.0 34 10

Positive qual 129.0 69.0 34 14

Thymine-IS (D4) n.a. Positive QUANT 131.1 114.1 40 15

Positive qual 131.1 88.1 40 16

Beta-Ureidopropionic acid Uracil-IS (1,3-15N2) Positive QUANT 133.0 90.1 20 8

Positive qual 133.0 72.2 20 12

Dihydrothymine-IS (D3

+ methyl-D3)

n.a. Positive QUANT 135.1 74.1 30 14

Positive qual 135.1 90.1 30 13

Beta-Ureidoisobutyric acid Uracil-IS (1,3-15N2) Positive QUANT 147.0 86.0 24 14

Positive qual 147.0 129.0 24 8

5-Hydroxymethyluracil Orotic Acid-IS (1,3-15N2) Negative QUANT 141.0 123.1 42 12

Negative qual 141.0 42.0 42 14

Orotic acid Orotic Acid-IS (1,3-15N2) Negative QUANT 155.0 111.0 34 10

Negative qual 155.0 42.0 34 20

Orotic Acid-IS (1,3-15N2) n.a. Negative QUANT 157.1 113.1 30 10

Negative qual 157.1 43.1 30 20

Deoxyuridine Guanosine-IS (15N5) Negative QUANT 227.0 184.1 44 12

Negative qual 227.0 94.1 44 22

Thymidine Thymidine-IS (13C10
15N2) Negative QUANT 241.1 42.0 44 12

Negative qual 241.1 151.1 44 10

Pseudouridine Orotic Acid-IS (1,3-15N2) Negative QUANT 243.0 153.1 36 12

Negative qual 243.0 183.1 36 14

Thymidine-IS (13C10
15N2) n.a. Negative QUANT 253.1 160.1 30 10

Negative qual 253.1 44.1 30 12

Orotidine Orotic Acid-IS (1,3-15N2) Negative QUANT 287.1 111.1 20 15

Negative qual 287.1 42.1 20 22

ESI: electrospray ionization; IS: internal standard; n.a.: not applicable.

https://doi.org/10.1371/journal.pone.0212458.t002
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not 10 consecutive days. Note, that the IQC sample included additional analytes, as compared

with the ERNDIM EQC sample.

Unprepared calibrators and QCs were stable with CV<15% for all analytes for at least 6

months if stored aliquoted at -20˚C.

The stability of the prepared samples during storage was evaluated by aliquoting a set of cal-

ibrators and QCs immediately after sample preparation, with one aliquot measured both

immediately and following 48h of storage at 5˚C in the autosampler and another aliquot

assayed after 7 days of storage at -20˚C. There were no significant differences in the peak inten-

sities, the linear curve equations or the calculated concentrations of the QCs.

Reference intervals

For determination of normal biomarker ranges, urine samples (n = 251) referred for routine

purine-pyrimidine measurements using a previously published method [6] were re-assayed

with the present method. The specimens (collected between 0-18 years of age) were randomly

chosen and anonymized prior to the analysis. Reference intervals and cutoffs were determined

according to the following statistical procedure.

Table 3. Assay validation using the ERNDIM „Control Purines and Pyrimidines” external quality control samples (EQC; LOT used for method development:

2015.010) (n = 10).

Analyte Analyte level (μM) CV (%) interday CV (%) intraday CV (%) between injections of a single sample extract Recovery (%)

Uracil 71.8 3.7 3.0 4.1 105.1

Dihydrouracil 65.1 6.2 4.4 3.6 118.4

Thymine 39.5 3.4 2.5 4.3 107.7

Dihydrothymine 70.5 3.9 3.4 2.7 108.7

Beta-Ureidopropionic acid� n.a. n.a. n.a. n.a. n.a.

Adenine 28.0 4.8 2.8 2.6 123.8

Hypoxanthine 116.0 4.6 2.9 3.2 94.5

Allopurinol� n.a. n.a. n.a. n.a. n.a.

Beta-Ureidoisobutyric acid� n.a. n.a. n.a. n.a. n.a.

Xanthine 95.9 3.9 3.5 3.6 107.1

2,8-Dihydroxyadenine� n.a. n.a. n.a. n.a. n.a.

Deoxyadenosine 38.0 4.7 4.3 4.3 119.7

AICAr 52.5 5.7 4.0 1.9 94.1

Adenosine 34.8 6.3 4.6 2.7 110.6

5-Hydroxymethyluracil 49.7 8.5 5.9 6.9 103.4

Orotic acid 80.0 4.1 2.3 3.6 97.8

Deoxyuridine 43.1 8.6 3.9 3.2 92.8

Thymidine 22.8 8.8 11.6 9.7 89.4

Pseudouridine 90.3 6.3 2.2 3.1 108.4

Deoxyinosine 38.4 2.6 1.3 3.0 101.3

Deoxyguanosine 37.9 3.0 4.4 3.1 100.5

Inosine 50.0 3.5 2.9 2.8 97.0

Guanosine 56.4 3.4 2.8 2.0 95.7

Orotidine 14.0 5.9 5.4 4.3 82.9

Succinyladenosine� n.a. n.a. n.a. n.a. n.a.

� Analyte not included in the ERNDIM EQC sample.

CV: coefficient of variation; AICAr: 5-aminoimidazole-4-carboxamide ribonucleoside; n.a.: not applicable.

https://doi.org/10.1371/journal.pone.0212458.t003
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The R environment for statistical computing and graphics was used to analyze data [12].

Initially, for each metabolite, values above 99.5th percentile were excluded. The 97.5th percen-

tile of the remaining data defined the upper cutoff of an analyte. For pseudouridine, a lower

cutoff was also defined as the 2.5th percentile. The possible age dependency of the cutoffs was

tested as follows. A one-way analysis of variance (ANOVA) based on the 97.5th percentile and,

additionally for pseudouridine, on the 2.5th percentile was computed [13] to test if the cutoffs

differed significantly between the age groups 0-1, 1-3, 3-6 and 6-18 years, respectively. Where

quantile ANOVA detected significantly different 97.5th (or 2.5th) percentiles between certain

age groups and metabolic specialists also rated the difference as clinically relevant, age-related

cutoffs were defined for the respective groups. The cutoff values are provided in Table 4.

Testing of the present assay with ERNDIM Diagnostic Proficiency Testing

(DPT) samples and further clinical specimens

The levels of purines and pyrimidines were measured in ERNDIM Diagnostic Proficiency

Testing (DPT) samples (n = 10). The new assay clearly identified the pathological and the

Table 4. Cutoff values of the measured analytes.

Analyte Cutoff (μM)

Uracil 30.0

Dihydrouracil 0-1y: 34.0; >1y: 12.0

Thymine 1.2

Dihydrothymine 6.0

Beta-Ureidopropionic acid 0-1y: 32.0; >1y: 12.0

Adenine 1.0

Hypoxanthine 52.0

Allopurinol n.d.

Beta-Ureidoisobutyric acid 0-1y: 9.0; >1y: 2.5

Xanthine 0-1y: 43.0; >1y: 31.0

2,8-Dihydroxyadenine 4.0

Deoxyadenosine 1.0

AICAr 1.1

Adenosine 2.0

5-Hydroxymethyluracil 1.0

Orotic acid 4.0

Deoxyuridine 3.0

Thymidine 1.0

Pseudouridine 0-1y: 37.0–110.0; >1y: 30.0–110.0

Deoxyinosine 1.0

Deoxyguanosine 1.0

Inosine 0-3y: 5.0; >3y: 2.0

Guanosine 1.0

Orotidine 4.7

SAICAr 0.8

Succinyladenosine 5.0

AICAr: 5-aminoimidazole-4-carboxamide ribonucleoside; SAICAr: succinyl-5-aminoimidazole-4-carboxamide-

1-ribonucleoside.

https://doi.org/10.1371/journal.pone.0212458.t004
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normal metabolite patterns and correctly differentiated between purine-pyrimidine disorders

in all cases (Fig 1).

Results of the analyses of further patient specimens (n = 10) are depicted in Fig 2. The new

LC-MS/MS assay clearly distinguished the pathological samples from normal ones and cor-

rectly diagnosed purine-pyrimidine disorders in all tested specimens. Selected clinical data of

the patients are given in S2 Text.

To investigate the possible effects of urine pH on the LC-MS/MS results, we tested urine

samples with very low creatinine levels, which allowed testing the highest possible amount of

urine in the sample preparation. Three aliquots were prepared in each of two urine samples.

20 μl of 0.1M formic acid, 0.1M NaOH or water was added to the aliquots, respectively, result-

ing in a ±1 unit shift of the original urine pH (originally 6 and 7 for the two urine samples,

respectively). There were no differences between the calculated concentrations of the three

corresponding aliquots.

Representative LC-MS/MS chromatograms of a calibrator, a healthy proband and patients

with ADSL, HGPRT, UPB1 and APRT deficiencies, respectively, are presented in Fig 3.

Discussion

Inborn errors of purine and pyrimidine metabolism are characterized by a broad phenotypic

spectrum, in line with the ubiquitous presence and biochemical importance of these

Fig 1. Results of the ERNDIM Diagnostic Proficiency Testing (DPT) samples (n = 10). Numbers on the cylinders show how many times a given result exceeded

the respective cutoff for that biomarker. PP: purine-pyrimidine disorder. Further abbreviations are provided in the List of Abbreviations Section. Note that orotidine

is not pathognomonic for HGPRT (sample E04) but is accumulated as a result of allopurinol treatment.

https://doi.org/10.1371/journal.pone.0212458.g001
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metabolites [1–3]. Clinically, purine and pyrimidine deficiencies can present with serious

immunological, hematological, neurological and renal symptoms including delayed develop-

ment, epilepsy, muscular hyper- or hypotonicity, mental retardation, dysmorphic features,

neurogastrointestinal symptoms, ophthalmoplegia, muscle atrophy and polyneuropathy [1–3].

However, the clinical presentation can be nonspecific and mild which may result in missing

the diagnosis [1, 2].

Nucleotides within cells break down to form the respective nucleosides and bases, which

are transported into the extracellular fluids [1]. Thus, the diagnosis of purine and pyrimidine

disorders is generally performed by detecting the related nucleosides, bases or degradation

products associated with the enzyme defect. Urinary excretion profiles are most commonly

used but application of plasma, serum or cerebrospinal fluid have also been published [1, 2].

Only very few disorders were reported to be detectable from dried blood spots which could

possibly allow their inclusion in newborn screening [14–16].

Traditionally, common methods for the detection of purine and pyrimidine metabolites

applied HPLC combined with diode array or UV detection or, for pyrimidine degradation

products, GC-MS. 1H-NMR was also reported to be appropriate for the diagnosis of many

but not all of these disorders [17], still the most applied technique currently is LC-MS/MS

[4].

Fig 2. Results of urine samples from patients with known diagnosis (n = 10). Numbers on the cylinders show how many times a given result exceeded the respective

cutoff for that biomarker. Abbreviations are provided in the List of Abbreviations Section. The Y-axis has been cut at 45 for a better visibility. Note that orotidine is not

pathognomonic for HGPRT (sample P05) but is accumulated as a result of allopurinol treatment.

https://doi.org/10.1371/journal.pone.0212458.g002
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To the best of our knowledge, the LC-MS/MS assay developed and presented here is the

first one published to include the biomarkers SAICAr, AICAr, beta-ureidoisobutyric acid,

2,8-dihydroxyadenine and orotidine in a single method, in addition to the previously reported

panel of purines and pyrimidines. This extension is expected to facilitate the detection of the

disorders ADSL [1, 3], ATIC [1, 3], UPB1 [2, 3], APRT [1, 3] and UMPS [2, 18, 19], respec-

tively, together with the deficiencies of HGPRT [1, 3], molybdenum cofactor (MoCoD) [1, 3],

thymidine phosphorylase (TP) [2, 3], dihydropyrimidine dehydrogenase (DPD) [2, 3] and

dihydropyrimidinase (DHP) [2, 3]. Based on the analyte panel, the presented assay should

additionally be able to detect deficiencies of adenosine deaminase (ADA) [1, 3], purine nucleo-

side phosphorylase (PNP) [1, 3] and xanthine dehydrogenase (XDH) [1, 3], as well as phos-

phoribosylpyrophosphate synthetase (PRPPS) superactivity [1, 3]. However, this should be

confirmed using patient samples with these disorders, which were not available for the authors

of the present paper.

Many previously published LC-MS/MS methods aimed to assay several metabolites simul-

taneously in order to be able to diagnose multiple disorders [5–9] but all of them lacked detec-

tion of one or other of the above biomarkers. Even in assays using emerging techniques for the

detection of a broad range of analytes, such as LC-QTOF [20–22], the number of currently

diagnosable purine and pyrimidine disorders was substantially lower than in the present assay.

As an example, the detection of SAICAr, a marker of ADSL deficiency, is commonly per-

formed using the Bratton-Marshall-test [10]. However, this color reaction test is neither quan-

titative nor specific as it may give positive results with a number of structurally related purine

intermediates [10]. Previously, only few assays were reported for the quantitative measurement

of SAICAr [14; 23; 24] which, in turn, allowed the detection of a much lower number of addi-

tional analytes.

To improve the quantitation of purines and pyrimidines, we have used a large number of

isotopically labeled ISs (total: 11) as compared with earlier reports [5, 6, 8, 9]. The use of multi-

ple ISs has not only improved the reliability of quantitation for analytes having an own labeled

analog, but also allowed us to select the most appropriate IS for those analytes where a labeled

analog was not commercially available. The selection was based on numerous factors, includ-

ing the long-term stability of calibration, linearity (absence of saturation) and similarities in

structure and retention time [25, 26].

In line with the above approach, we have decided to omit the labeled analogs of adenine

and adenosine following extensive testing, despite being commercially available. The exclusion

of labeled adenine-IS and adenosine-IS eliminated crosstalk between these single labeled ISs

and their unlabeled counterparts, having mass differences of only one Da [25] and also helped

to decrease ion suppression for high analyte levels [26]. Instead, xanthine-IS and guanosine-IS,

respectively, were found to perform well as ISs, exhibiting an improved stability of calibration

and a wider linear range.

Note that even if 2,8-dihydroxyadenine had been included in the calibrators during assay

validation, it was omitted from the standard row later. The variable responses of 2,8-dihydrox-

yadenine, observable exclusively among distinct charges of calibrators, were presumably

related to the very poor solubility of 2,8-dihydroxyadenine [1]. In turn, the responses of

2,8-dihydroxyadenine in urine samples were stable under the current assay conditions. Thus,

this issue could have been resolved by using the same calibration settings obtained during vali-

dation to quantify 2,8-dihydroxyadenine in subsequent sample preparations. In accordance,

we could correctly identify the ERNDIM Diagnostic Proficiency Testing (DPT) sample E08

having elevated adenine and 2,8-dihydroxyadenine levels, characteristic for APRT deficiency

(Fig 2). The same approach was used for the quantitation of SAICAr due to difficulties in the
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availability of the standard substance. In line, two patient specimens with ADSL deficiency

(P09 and P10) were correctly identified (S3 Table).

Another limitation of the present assay is that the inclusion and quantitation of uric acid,

the end-product of purine degradation, was not possible under the current sample preparation

and LC conditions. In addition to the low temperature in the autosampler, otherwise favorable

in terms of stability for most analytes, a low pH was also associated with a decreased solubility

of uric acid [27]. On the other hand, acidic conditions were shown to be important not only

for the adequate chromatographic separation of the analytes in the present assay but were also

critical for the stability of dihydrouracil and dihydrothymine which would have been degraded

to beta-ureidopropionic acid and beta-ureidoisobutyric acid under higher pH (see also S1

Text) [28]. Since uric acid can routinely be measured using traditional techniques such as col-

orimetric or enzymatic assays, we opted to maintain the pH in the acidic range throughout

sample preparation and measurement in favor of all other analytes.

The use of a well-chosen column and dedicated method development allowed us to achieve

ultra-high performance in terms of sensitivity, resolution and clinical reliability and to still

remain in pressure ranges close to but not exceeding the limits of conventional high-perfor-

mance liquid chromatography (HPLC). This approach, together with simple sample prepara-

tion, is expected to facilitate an easier inclusion of this assay in the daily routine and to

improve transferability among laboratories. The ongoing prospective evaluation of the pre-

sented method in our laboratory and a wider range of patient samples can provide further

experience on the reliability of the assay to identify patients in the routine setting.

Conclusions

An LC-MS/MS assay allowing the simultaneous, sensitive and reliable diagnosis of an extended

range of purine and pyrimidine disorders has been developed. The validated assay has been

tested using ERNDIM Diagnostic Proficiency Testing (DPT) samples and further clinical spec-

imens from patients with various purine and pyrimidine disorders. The method clearly distin-

guished the pathological and normal samples and differentiated between purine and

pyrimidine defects in all tested specimens. Sample preparation is simple and assay duration is

short, facilitating an easier inclusion of the method in a routine workflow. The prospective

evaluation of the described method is currently being continued in our laboratory.

Supporting information

S1 Fig. Biochemical pathways of purine and pyrimidine metabolism (simplified). Metabo-

lites detected by the presented method are printed in bold.

Purines:

Enzymes of the de novo purine synthesis: PRPPS: phosphoribosyl pyrophosphate synthetase;

ADSL: adenylosuccinate lyase (adenylosuccinase); ATIC: AICAR transformylase/IMP

Fig 3. LC-MS/MS chromatograms of A: the Cal06 calibrator (16 μM) and urine specimens from B: a healthy proband; C: a

patient with ADSL deficiency; D: a patient with HGPRT deficiency; E: a patient with UPB1 deficiency; and F: a patient with

APRT deficiency. All intensities (Y-axes) have been normalized to 1.5�108 cps for better comparability and have been plotted

against retention time (X-axes). Analytes have been numbered as follows: 1. URA; 2. DHU; 3. Thy; 4. DHT; 5. BUP; 6. ADN; 7.

Hypo; 8. ALLOP; 9. BUIB; 10. Xan; 11. DHA; 12. dAdo; 13. AICAr; 14. ADS; 15. HMU; 16. Oro; 17. dUrd; 18. THD; 19. PSU; 20.

dIno; 21. dGui; 22. Ino; 23. Guo; 24. Ord; 25. SAICAr; 26. SAdo. The ISs have been marked by an asterisk (�) after the number of

the respective unlabeled analyte. Note that guanosine-IS has been measured in both ESI+ and ESI-. ADSL: Adenylosuccinate lyase

deficiency; HGPRT: Hypoxanthine-guanine phosphoribosyltransferase deficiency; UPB1: beta-Ureidopropionase deficiency;

APRT: Adenine phosphoribosyltransferase deficiency. Further abbreviations are provided in the List of Abbreviations Section.

Chromatograms were generated by MassLynx 4.1 (Waters, Milford, MA, USA) and modified using Inkscape 0.91pre4 (Open

Source Software licensed under the GNU General Public License).

https://doi.org/10.1371/journal.pone.0212458.g003
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cyclohydrolase; ADSS: adenylosuccinate synthetase. Enzymes of purine catabolism: AMPA:

AMP deaminase; 5NT: 5’-nucleotidase(s); ADA: adenosine deaminase; PNP: purine nucleo-

side phosphorylase; XDH: xanthine dehydrogenase (xanthine oxidase); GDA: guanine deami-

nase; IMPDH: IMP dehydrogenase. Enzymes of purine salvage: HGPRT: hypoxanthine-

guanine phosphoribosyltransferase; dGUOK: deoxyguanosine kinase; APRT: adenine phos-

phoribosyltransferase; ADK: adenosine kinase.

Pyrimidines:

Enzymes of the de novo pyrimidine synthesis: CPS2: carbamoylphosphate synthetase II: ATC:

aspartate transcarbamoylase; DHO: dihydroorotase (CAD is comprised of CPS2, ATC and

DHO); DHODH: dihydroorotate dehydrogenase; OPRT: orotate phosphoribosyltransferase;

OMPDC: OMP decarboxylase (UMPS = uridine monophosphate synthetase is comprised of

OPRT and OMPDC). Enzymes of pyrimidine catabolism: 5NT: 5’-nucleotidase(s); UP: uridine

phosphorylase(s); TP: thymidine phosphorylase; DPD: dihydropyrimidine dehydrogenase;

DHP: dihydropyrimidinase; UPB1: beta-ureidopropionase. Enzymes of pyrimidine salvage:

PUS: pseudouridine synthase; TDO: thymine dioxygenase. Ribonucleotide reductase (RNR)

and thymidylate synthetase (TYMS) are used in the synthesis of deoxynucleotides.

AMP: adenosine-5’-monophosphate; AICAr: 5-aminoimidazole-4-carboxamide ribonucleo-

side; AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; CMP: cytidine-5’-monophos-

phate; GMP: guanosine-5’-monophosphate; IMP: inosine-5’-monophosphate; OMP:

orotidine-5’-monophosphate; PRPP: phosphoribosylpyrophosphate; SAICAr: succinyl-5-ami-

noimidazole-4-carboxamide-1-ribonucleoside; SAICAR: succinyl-5-aminoimidazole-4-car-

boxamide-1-ribonucleotide; S-AMP: adenylosuccinate; TMP: thymidine-5’-monophosphate;

UMP: uridine-5’-monophosphate; XMP: xanthosine-5’-monophosphate.

Drawn using Inkscape 0.91pre4 (Open Source Software licensed under the GNU General Pub-

lic License).

(TIF)

S1 Text. Preparation of unlabeled standard and internal standard (IS) solutions, calibra-

tors and Quality Controls (QCs).

(DOC)

S2 Text. Selected clinical data of the examined patients with known diagnosis (n = 10).

(DOC)

S1 Table. Extended details of method development.

(DOC)

S2 Table. Assay validation using calibrators (n = 10) and chromatographic resolution of

critical analyte pairs with mass spectrometric interference.

(DOC)

S3 Table. Assay validation using the internal quality control samples (IQC) (n = 10).

(DOC)
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