
Revealing industry challenge and business response to
Covid-19: a text mining approach

Abstract

Purpose

This study aims to conduct a ‘real-time’ investigation with user-generated content

on Twitter to reveal industry challenges and business responses to the Covid-19 pan-

demic. Specifically, using the hospitality industry as an example, the study analyses

how Covid-19 has impacted the industry, what are the challenges and how the industry

has responded.

Design/methodology/approach

With 94, 340 tweets collected between October 2019 and May 2020 by a programmed

web scraper, unsupervised machine learning approaches such as structural topic mod-

elling are applied.

Findings

The results show that: (1) despite the adverse consequences from the pandemic, the

hospitality industry has shown increasing interests in finding ways to survive, such as

looking into novel technologies and adopting new business strategies; (2) the pandemic

has created an opportunity for organisations to jump out from their daily business

operations and rethink about the future development of the industry; (3) the Covid-19

impact is not only shown on the reduction in the job demand but also a change in the

demand structure of the job market; (4) the use of novel text mining approaches on

unstructured social media data is effective in identifying industry-level challenge and

response to public emergencies.
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Originality

This study contributes to the literature on business response during crises providing

for the first time a study of utilising unstructured content on social media for industry-

level analysis in the hospitality context.

Keywords: Covid-19, business challenge, hospitality industry, topic modelling,

social media, user-generated content

1 Introduction

The coronavirus disease 2019 (Covid-19) has had a major impact on the economy. It is

found that six weeks of social distancing would bring GDP down by 5.6% (Barrot et al.,

2020). Although the service demand in specific sectors such as healthcare has dramat-

ically increased during the pandemic, many other sectors such as hospitality, tourism

and airline have seen the demand dropped down dramatically (del Rio-Chanona et al.,

2020). In order to navigate the economic disruptions resulting from Covid-19 and get

business survive and revive in a post-Covid-19 world, governments have been trying

hard to provide support to business. For example, the UK government launched the

“eat out to help out” discount (BBC News, 2020). At the same time, organisations

and industry leaders have suggested innovative approaches for business to manage and

organise key resources (Budhwar & Cumming, 2020; Verbeke, 2020). A number of

industries have implemented novel approaches (e.g., virtual property viewing in the

real estate industry) to ensure the safe return of service provision and started to re-

design business strategies (e.g., menu redesign in the hospitality industry) in order to

stabilise business and promote consumer trust and confidence (Rivera, 2020). A study

by Shankar (2020) pointed that “this is a key moment for the management to look

at challenges and opportunities in the business in the short to medium term”; indeed,

the development of new business strategies needs to be built on a deep understanding

of industry challenges and opportunities caused by Covid-19 (Budhwar & Cumming,
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2020; Fong et al., 2020).

Researchers have developed and refined many methods to investigate crisis impact

and industry challenges. The most common methods rely on case studies, interviews,

or surveys (Timoshenko & Hauser, 2019). This set of methods have been implemented

in previous studies on a wide range of global crises such as the 2003 severe acute

respiratory syndrome (SARS) outbreak, the 2008 global economic crisis, and the 2015

Middle East Respiratory Syndrome (MERS) outbreak (see Chien & Law, 2003; A. Lee

& Cho, 2016). Further to the research about Covid-19, traditional methods continued

to be applied to play a main role in studying business challenge and response. For

example, in Bartik et al. (2020)’s research, they conducted a survey of more than 5,800

small businesses to investigate the impact of Covid-19 on small business outcomes

and how small businesses had been adjusting to the pandemic. Moreover, working on

the survey data collect from 512 Small and medium-sized enterprises (SMEs), Le et

al. (2020) evaluated how policy related factors affect the survival and development of

SMEs during the pandemic.

While most of prior studies rely on data collected from surveys, it is worth to

pay attention to the issues associated with this approach. Traditional methods such

as surveys are normally expensive and time-consuming, as it takes time to design,

distribute questionnaires and collect responses (Timoshenko & Hauser, 2019). Thus,

findings and conclusions are sometimes captured in delay (Stamolampros et al., 2019).

This could be a big issue for studies about crisis such as the Covid-19 pandemic, as

they emphasise research timeliness in order to support organisations on fast response

and decision-making (Shankar, 2020). Moreover, the data collection from surveys could

be biased as participants may be reluctant to speak the truth (Stamolampros et al.,

2019). Therefore, it becomes necessary to develop a novel approach to undertake a

‘real-time’ investigation on crisis impact and business response.

With the development of digital technologies, massive amounts of unstructured

data are generated every moment by individuals and organisations on social media
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platforms such as Twitter and Facebook. Most importantly, these are ‘real-time’ data

which can be applied to disclose the latest information and opinions raised by a crowd

of people and organisations (Chae, 2015; Marlowe et al., 2017). While previous studies

on crises have started to investigate how to tap into and leverage the value of user-

generated content, most of them developed their research from the sociology angles.

Prior studies are interested in the topics such as information spread and detecting

people’s attitudes regarding crises (Alshaabi et al., 2020; Kouzy et al., 2020). Few

studies have investigated how organisations and industries utilise this ‘real-time’ data

to analyse business challenge and response in crisis period. One important reason is

pointed out by Terpstra et al. (2012): although the information being shared on social

media during crises is valuable, filtering and understanding the information content of

messages is highly challenging due to their unstructured text formation and massive

size (Kwon et al., 2020). The development of machine learning approaches addresses the

challenges and makes tapping the value of user-generated data on social media possible.

Therefore, by applying unsupervised machine learning approaches, this research aims

to present the value of unstructured user-generated data on emergency research and the

complementary benefits they offer for both academic research and business practice.

As one of the most severely affected industries by the pandemic (Rivera, 2020), the

hospitality industry is examined in this study. In particular, this study aims to answer

the following research questions:

RQ1: How to utilise unstructured textual data collected from social media platform

to investigate ‘real-time’ industry-level response to public emergencies?

RQ2: How to extract topics and analyse the challenges and response from the hospi-

tality industry to the Covid-19 pandemic?

RQ3: What are the challenges, concerns and response to the Covid-19 pandemic in

the hospitality industry?

In this study, we develop a Python-based web scraper which collected 141,516 Twit-

ter posts between October 1, 2019 and May 31, 2020 using hashtags #hospitalityin-
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dustry and #hospitality and keyword hospitality industry. The collected dataset rep-

resents a large amount of intelligence regarding the discussion about the hospitality

industry. Unsupervised machine learning approaches including the structural topic

modelling (M. E. Roberts et al., 2014) and network analysis (Blei & Lafferty, 2006) are

applied to our dataset and are utilised to extract the topics from the Twitter discus-

sion, depict the correlation among topics and analyse the changing trend of the topics

hidden in the unstructured big data.

2 Overview of relevant literature

The pandemic has negatively affected every single industry around the world, among

which hospitality industry is one of the most severely affected industries by the out-

break (Jones & Comfort, 2020). Travel restriction, lockdown and stay-at-home orders

restrict people’s mobility by rigid enforcement, which directly caused the severe disrup-

tion on the business of the hospitality industry (Dolnicar & Zare, 2020). By collecting

primary data from surveys, a number of studies have been developed with aims to

understand the Covid-19 impact and provide practice suggestions to the hospitality

industry. Through a questionnaire survey of 23 hotels in China with 1,594 collected

responses, Zhang et al. (2020) examined the effect of hotel safety leadership on em-

ployee safety behaviour during the COVID-19 pandemic. Moreover, Jia et al. (2019)

investigated the influence of socially responsible human resource management on em-

ployee fears of external threats during the COVID-19 outbreak based on a survey of

408 employees in Chinese hospitality and tourism firms. With a total of 170 U.S. adult

consumers recruited through Amazon Mechanical Turk, Huang & Liu (2020) examined

the effectiveness of donation appeals containing warmth focused versus competence-

focused messages in hospitality CSR marketing during the COVID-19 pandemic.

There are a number of studies attempted to tap into the value of unstructured

data on social media, however, all of them focus on the understanding of customers’
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opinions and behaviours in the epidemic. For example, Yu et al. (2020) reviewed 10,132

online comments related to Covid-19 and identified the key themes mostly discussed

by tourists are risk perception and public health.

Previous research suggest that social media platforms such as Twitter are effective

and efficient in terms of analysing issues related to crisis events (Abd-Alrazaq et al.,

2020; Alshaabi et al., 2020). Further to the research specifically on Covid-19, Ahmed et

al. (2020) performed social network analysis and content analysis of Twitter data from

a 7-day period to investigate the drivers of the 5G conspiracy theory and strategies

to deal with such misinformation. Rufai & Bunce (2020) utilised content analysis to

explore the role of Twitter as adopted by the Group of Seven (G7) world leaders in

response to Covid-19. By using 14 different trending hashtags and keywords related

to the Covid-19 pandemic, Kouzy et al. (2020) analysed the magnitude of misinforma-

tion spread on Twitter. Except for investigating information spread, Twitter is a good

option for organisational and industrial related research as most professionals and or-

ganisations own Twitter accounts which have been widely used for posting information

and communication (Vis, 2013). Various opinions and discussions can be observed on

Twitter which helps to set up a more comprehensive view (Bigné et al., 2019; Malhotra

et al., 2012). Further, because the posts on Twitter are frequently updated and rapidly

disseminated, Twitter textual data can be applied to reflect ‘real-time’ opinions and

concerns raised by people and organisations (Chae, 2015; Marlowe et al., 2017).

Moreover, a few studies have demonstrated the suitability of using Twitter tex-

tual data to identify discussion topics and concerns which are raised by people and

organisations in a certain industry. For example, in Chae (2015)’s research, the top-

ics which are widely discussed and shared in the supply chain industry are extracted

through a content analysis on Twitter posts and metadata collected using the hash-

tag #supplychain. A few studies in the hospitality industry have started to tap into

the value of Twitter textual data. Most of them are developed based on the applica-

tion of sentiment analysis: Philander & Zhong (2016) created a sentiment index and
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demonstrated the application of sentiment analysis on Twitter data to build low-cost

and real-time measures of customer perceptions in the hospitality industry. Kirilenko

& Stepchenkova (2017) provided a comprehensive description of the public discourse

about Sochi 2014 Winter Olympics on Twitter and and found the differences in pre-

and post-Games sentiment towards issues surrounding the Olympics. Guercini et al.

(2014) processed 67,953 publicly shared tweets to identify customer sentiment about

the services of four airline companies. However, extant studies mainly focus on using

Twitter data to understand customers’ concerns and demands such as (Ćurlin et al.,

2019) which looks into the tourism industry. To the best of our knowledge, few study

has investigated how to extract topics from Twitter posts in the hospitality context

and how to gain insights about industry-related concerns. This study aims to fill the

research gap by utilising text mining approaches to analyse the challenges and response

from the hospitality industry to the Covid-19 pandemic.

3 Data and methods

3.1 Sample and preprocessing

To collect the tweets discussing hospitality-related topics and events, we programmed a

web scraper using Python. The scraper can take keyword and hashtag searches as input

for specifying which tweets to collect. By conducting a series of keyword and hashtag

searches, we find hashtags #hospitality, #hospitalityindustry and keyword hospitality

industry are the most prevalent ones used on Twitter, we thus use them in our data

collection. By setting language as English and posting date between October 1, 2019

and May 31, 2020 with a focus on the first pandemic wave, a sample of 141, 516 tweets

are collected by our scraper. Although the coronavirus was reported and officially

named at the end of December 2019, we collected data from October 2019 to understand

what people talked about before the pandemic; then, we are able to compare the
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topic changes in people’s discussions due to the pandemic. Moreover, no geographical

limitation was applied to the data collection in order to investigate our research problem

from a global picture.

After removing retweets, the final dataset contains 94, 340 tweets. It is worth noting

that the dataset contains the tweets posted by ordinary users and also users who own

business accounts. Although the study focuses on business response to the pandemic,

we did not remove the tweets posted by ordinary users in our analysis. The reason is

that ordinary users’ reactions and discussions are also important intelligence for under-

standing the industry challenge as well as how they feel about the business response

made to the pandemic in the hospitality industry. Table 1 presents the summary

statistics of the dataset.

The collected dataset include the tweets text content and their metadata, such as

tweets created time, hashtags, whether a tweet has media, whether a tweet has been

replied, URLs, retweet count, likes count, follower count, user id, user screen name,

etc. The text of each tweet is considered as a document and the overall tweets are seen

as a whole corpus which is a collection of individual documents. We applied a set of

common natural language processing techniques widely used by text analysis research

(e.g., Berliner et al., 2018) to pre-process the documents, making them compatible with

the unsupervised text mining techniques used below. Our pre-processing steps include

(i) normalisation, (ii) stemming and (iii) character removing. More specifically, words

in the tweets text content are normalised by transforming all letters to lower case in

order to obtain a more uniform form and reduce the size of the vocabulary. Then, the

words are stemmed by removing affixes, followed by the character removing step where

stopwords, numbers and punctuation are removed. After the pre-processing, a corpus

with 94, 340 processed tweets documents and 47, 259 unique words (i.e., vocabulary) is

finalised.
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3.2 Model set-up

Topic models, as one stream of unsupervised machine learning approach has been found

suitable for analysing user-generated content, such as customer online reviews (Büschken

& Allenby, 2016). This stream of methods examine the co-occurrence relationship

among words and output the collections of words with high probability of co-occurrence,

i.e., the topics. We choose Structural Topic Modelling (STM) (M. E. Roberts et

al., 2014) among other approaches in this method category because of its advan-

tage of allowing incorporating the metadata of data sample to explain topical preva-

lence (Büschken & Allenby, 2016; M. E. Roberts et al., 2016). For example, in our case

metadata refer to the information associated with the twitter posts, e.g., tweets created

time, likes count, retweet count, whether a tweet has media, whether a tweet had been

replied, etc. Figure 1 presents the plate diagram of STM and visualises the process for

text analysis. The key process of STM can be summaries as follows (M. E. Roberts et

al., 2014).

The STM is a hierarchical model in which a document d’s prevalence of each topic

(denoted by θd) is drawn from a logistic-normal distribution whose mean is a function

of document covariates Xd. Here a document d represents a tweet in our study.

θd ∼ LogisticNormal(Xdγ ,Σ) .

Then, given the topic-prevalence vector, one specific topic zd,n is associated with the

position which needs to be filled through the following process where n is the index of

each word in the document d:

zd,n ∼ Multinomial(θd) .

Next, the words of each document wd,n are assigned to the topics:
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wd,n ∼ Multinomial(βd,z)

where βd,z is the probability of choosing vocabulary word w to fill a position in doc-

ument d given the topic assignment variable z. The stm package (M. Roberts et al.,

2018) in R programming language is used to set up the model for our analysis where

tweets text content and unique words are inputted as documents and vocabulary words

respectively. The prevalence function is set as follows.

prevalence ∼ likes count + s(tweets created time) ,

where s is the smooth function of time, and likes count is one of the topical prevalence

covariates indicating how many likes a tweet had received. It is worth noting that the

covariate is replaced by other metadata items (e.g., retweet count and whether the

tweet had been replied) when checking the robustness of the results. As the results are

nearly the same, we only report the results under this setting for simplicity.

Next, we decide on the number of topics K which is an important user-specified pa-

rameter of STM and helps to achieve substantive interpretation of the outcomes of the

modelling (Li et al., 2013). Using function searchK from the stm and furrr (Vaughan

& Dancho, 2018) packages in R, we evaluate the models trained on a sparse matrix in

parallel with a range of different values of K. By quantitatively evaluating the model

outputs using three criteria: (i) the semantic coherence of topics, (ii) held-out likeli-

hood and (iii) residuals across a range of different topic numbers, an optimal number

of topics for our corpus is found in the range of K = [30, 40]. We follow the extant

applications (Berliner et al., 2018) on guarding against overfitting and by applying the

one standard error rule (Reinsel, 2003), K = 30 is selected.
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3.3 Topics

Our model identifies 30 topics which best characterise the content of 94, 340 tweets

during the eight-month period between October 1, 2019 and May 31, 2020. Each topic

represents an underlying word distribution where every word in our documents is given

a probability of assignment to that topic, as described in the previous section. The

model outputs a list of top words for each topic which are the words that have the

highest probability of appearing in the topic but least probability in other topics. Two

extra researchers in hospitality research were recruited in our project for topic label

assignment. By looking at the top words and close reading of a substantial number of

tweets examples for each topic, the labels were discussed and assigned by the research

team. We report these labels, along with each topic’s proportion and top seven words

in Table 2.

3.4 Network analysis

To examine the relationship between the topics identified by the STM analysis, we

conduct a network analysis which has been applied in a number of content analysis

studies for modelling the connections between discussion topics and categories based

on words co-occurrence (e.g., Ibrahim & Wang, 2019). Network analysis is defined

as a set of techniques to depict the relations among entities and can help researchers

to analyse the structures that emerge from the recurrence of these relations (Chiesi,

2015). In this study, network analysis is performed to detect the correlation between

the identified topics and to investigate the strength of the correlations. The analysis is

based on the results generated from our STM model. More specifically, we computed

the Pearson correlation of the maximum a posteriori probability (MAP) estimates for

the document-topic proportions θ which yields the marginal correlation of the varia-

tional distribution (P. M. Lee, 1989). By setting a threshold as 0.01, the edge between

two topics is dropped if the correlation coefficient falls below the threshold.
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Figure 2 illustrates the network analysis result, wherein the nodes represent the

identified topics, and the edges indicate the correlation. The size of nodes represents

the topic proportion with the biggest node Topic 9 Covid-19 impact, and the smallest

node Topic 10 on furniture-related discussion. The length of the edges represents the

strength of the correlation: the shorter the edge, the stronger the correlation. If two

topics are not connected, the correlation is below the threshold 0.01. Three main topic

clusters are formed by grouping together topics with correlation value over 0.4.

4 Results and analysis

In this section, we firstly overview the identified topics and their connections, then

provide greater detail on the topic clusters and analyse the changes in topic proportions

over time affected by the Covid-19 pandemic.

As shown in Figure 2, 19 topics are connected with Topic 30 Generic industry

discussion which contains tweets on the discussion about the hospitality industry in

general. An example tweet in this topic is presented as follows.

“Looking to learn more about the best industry in the world? Take a few mo-

ments to download, like, and share The Hospitality Spirit podcast. #Travel

#Tourism #Hospitality #Podcasting”

Except for Topic 30, the rest topics are more specific, related to certain areas, such

as Topic 24 on the opening of new hotels, Topic 29 about catering jobs opportunities.

Moreover, most of them are grouped into three clusters based on their correlation with

other topics. Topic 28 IIHM-related is not connected with any other topic. The tweets

in this topic are found related to a hotel management institute (called IIHM) in India.

The topic cluster on the left side of Figure 2 is the biggest cluster, including eight

topics which account for 34.2% of all tweets in our sample dataset. This cluster is

highly related to the Covid-19 pandemic as two of the eight topics are specifically
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about the impact of Covid-19 (i.e., Topic 9) and how to cope with the pandemic (i.e.,

Topic 16). Interestingly, the cluster at the top of Figure 2 groups together the topics

on job advertisements and food service. Six topics fall into this cluster and account for

22.5% of all tweets. The last cluster which is positioned on the right side of Figure 2

contains six topics and is related to hospitality event hosting and planning. This cluster

accounts for 18.1% of all tweets in our sample dataset. In order to show the variation

in the prevalence of each topic over time, we plot the prevalence of each topic as a

smooth function of tweets’ created time and present the results in Figure 3.

The following sections describe the three topic clusters and several selected topics

in greater detail. We devote particular attention to the topics which had a big change

in their prevalence between October 1, 2019 and May 31, 2020.

4.1 Topic cluster related to Covid-19

A recent study assessed the impact of the Covid-19 pandemic on the hospitality in-

dustry through interpretation of a human rights lens (Baum & Hai, 2020). The study

shows that people’s rights to participate in hospitality and tourism have been chal-

lenged as never before due to the events including borders closing, curtailment of

travel, closure of tourism facilities, and rescinding of consumer protection rights relat-

ing to areas such as refunds, compensation and insurance (Murray, 2020). Yu et al.

(2020) have observed an increase in the communication of hospitality related issues

discussed on social media. Our results confirm the findings. More specifically, Topic 9

- Covid-19 impact is detected as the largest topic, accounting for 7.3% of all tweets. It

primarily relates to the discussion on how the Covid-19 pandemic had been influencing

the hospitality industry. It is found that this topic has a huge and dramatic increase

in its proportion starting from mid January and reached over 10% of proportion in

April, indicating people’s increasing interests and concerns on the Covid-19 pandemic

in hospitality contexts.
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Further, as shown in Figure 2, Topic 9 is a central node which connects to other five

topics directly within the cluster. These five topics are Topic 8: Sector changes, Topic

11: Technology trend, Topic 16: Coping with Covid-19, Topic 18: Sector support, and

Topic 20: Advice and experience sharing for success. An example of each of the five

topics are presented as follows.

[Topic 8 Sector changes] “We’re in the midst of a cultural change about

women in leadership – it’s an on-going negotiation on many levels, and

that’s challenging for women building careers and their managers. – Peggy

Berg of @CastellProject #hospitality”

[Topic 11 Technology trend] “How #AugmentedReality Is Revolutionizing

the #Hospitality Industry (From Inside Out)”

[Topic 16 Coping with Covid-19] “Get caught up on all @CornellSHA C&I

webinars at. . . Watch for insights on how the #hospitality industry is Coping

with Covid-19, and what industry leaders are doing to move forward with

hope and determination.”

[Topic 18 Sector support]“A number of support measures are being ad-

ministered by local authorities, including #business rate relief for #retail,

#hospitality and #leisure businesses, and a £10,000 grant for businesses

receiving Small Business Rate Relief”

[Topic 20 Advice and experience sharing for success]“If increasing revenue

for your hotel is your primary concern, then improving #guestexperience

should be your foremost focus. Read more to know how it helps you:

. . . #GuestLoyalty #hoteliers #Hotelogix #HotelManagement #Hospital-

ity”

It is found that four of these five topics (i.e., Topic 8, 11, 16, and 18) which are

closely connected with Topic 9 Covid-19 impact also show an upward trend over time

(see Figure 3). More specifically, the proportion of Topic 8 Sector changes did not
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change much at the beginning but started increasing from March and has been keeping

increasing. This finding is in line with recent studies which suggest that discussions

are around the changes in hospitality industry due to the pandemic (Yu et al., 2020).

Topic 11 Technology trend and Topic 18 Sector support presented an upward trend

between January and early April but then went downwards slightly between April

and May, and then went upwards again from late May. In terms of Topic 16 Coping

with Covid-19, as shown in our analysis, the changing pattern in its topic proportion

matched with the changing pattern of Topic 9 Covid-19 impact: the proportion reached

its highest (i.e., almost 5.0%) quickly in March, but started going downwards from

May. This is in line with the finding of Tsionas (2020), who finds that as the closure

of tourism facilities and restaurants posed great difficulty for the industry, business

owners and industry workers tried to seek ways to reduce the negative impact and

receive governmental subsidies.

Topic 24 New hotel opening which is connected to the cluster but sits outside of

the cluster, accounts for 5.3% of all tweets in our sample dataset. It has been trending

downwards from late December, while another topic - Topic 14 Travel booking which

has direct connection with Topic 24 only experienced a downward trend between mid

December and March and has been keeping increasing strongly since April. The tweets

in Topic 14 are primarily hotel and restaurant booking advertisements. , for example:

“Recapture your cancelled bookings with GuestTalk and promote your stay-

cation to guests, giving them something to look forward to. See how we can

help you#hospitality #staycation #travel

The results of the prevalence change in Topic 24 (New hotel opening) and 14 (Travel

booking) may suggest that as influenced by the Covid-19 pandemic, fewer new hotels

were launched, but hotels and restaurants were posting more advertisements when the

lockdown policy was eased in some countries in order to attract more customers and

save their business.
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4.2 Topic cluster related to employment and food services

This is the second largest topic cluster, containing seven topics, and are notable for

their focus on job opportunities in hospitality industry (i.e., Topic 5 Manager job ads,

Topic 7 General job ads, Topic 29 Catering job ads) and food services (i.e., Topic 3

Restaurant survival guide, Topic 13 Food delivery, Topic 25 Sports event). Topic 23

Hotel for sale is included in the cluster but has a correlation with only Topic 7 General

job ads.

As analysed by Dube et al. (2020), sit-in guests in restaurants dropped to zero in

many countries because of the social distancing initiatives, movement restrictions and

lockdowns, which led to an unprecedented loss of employment and revenue. Topic 5,

7 and 29 are all related to job opportunities, where Topic 5 focuses on Manager-level

jobs accounting for 4.5% of all tweets, Topic 7 focuses on various levels of jobs (such

as hotel receptionist and customer service assistant) accounting for 1.7% of all tweets

and Topic 29 is about catering jobs with topic proportion of 4.6%. Topic 7 and 29

have been showing a downward trend since the outbreak of the Covid-19. Moreover,

the percentage of the decrease is greater for Topic 29 Catering job ads compared

with Topic 7 General job ads, indicating that the demand of catering jobs had been

decreasing more significantly. Chetty et al. (2020) observed similar situations where

businesses laid off most of their low-income employees during the pandemic through

analysing anonymised data from private companies. In addition, our analysis finds the

decrease in Topic 7’s proportion has been slowing down from mid April. Interestingly,

the prevalence of Topic 5 Manager job ads shows a complete different changing pattern:

its topic proportion started going upwards from February and reached its highest in

May, accounting for 6.3% of all tweets. It might suggest that although the Covid-19

pandemic has a negative influence on the hospitality job market, its impact on the job

demand at manager level is different.

Apart from Topic 7 (General job ads) and 29 (Catering job ads), Topic 5 (Manager
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job ads) is correlated with Topic 13 Food delivery which discussed the food delivery

services provided by restaurants, pubs and cafes. An example of Topic 13 is presented

in the following.

“Pizza Punks of Glasgow now Delivering with Sweetheat Heated Delivery

Bags #sweetheatheateddeliverybags #homedelivery #takeaway #fastfood

#restaurant #hospitality #chef #pizzeria #glasgow #pizza #scotlandpic”

As shown in Figure 3, the proportion of the topic has been increasing since De-

cember 2019 over the whole period of Covid-19 pandemic, indicating a great interest

in food delivery services. This finding confirms the assumption raised in Gössling et

al. (2020)’s study, which estimated that the easing of social distancing might benefit

take-away and fast food business over fine-dining restaurants. Unlike Topic 13, Topic

26 Drinks which is also in the cluster and accounts for 2.6% of all tweets in our sample

dataset, shows a downward trend over the examination period.

The rest topics in this cluster are Topic 3 Restaurant survival guide and Topic 23

Hotel for sale, accounting for 1.3% and 2.4% respectively of all tweets in our sample

datasets. Most tweets in these two topics are related to Topic 30 Generic industry

discussion but focus more on how restaurants could survive during the crisis and the

news on what hotels are for sale. Two representative examples of Topic 3 and 23 are

presented as follows.

[Topic 3 Restaurant survival guide] “With survival on the line, restaurants

may rethink financing - #restaurants #hospitality #restaurantbusiness”

[Topic 23 Hotel for sale] “Hopefully the industry will be open soon and new

owners can be found. Three Scottish hotels up for sale amid ’dramatic’

impact of Covid-19 #stocktakerguy #hospitality #hospitalityproud #unit-

edwestand #hotels”

In terms of the change in their prevalence over time, Topic 3 showed an upward

trend from November 2019 to February 2020, and then started going downwards until
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late May. However, Topic 23 has a relatively slow downward trend, but had an increase

in the topic proportion in May 2020.

4.3 Topic cluster related to event planning and hosting

The study by Chetty et al. (2020) suggested that the Covid-19 pandemic affected all

parts of the hospitality value chain. Moreover, cancelling or postponing events such as

major conferences, festivals and sports, and bans on gatherings of people over certain

numbers had been immediately felt by the hospitality industry (Gössling et al., 2020).

The third cluster relates to event planning, hosting and special day celebration. As

shown in Figure 2, it consists of six topics: Topic 22 Event hosting, Topic 2 Event

planning, Topic 12 Special day celebration, Topic 25 Sports event, Topic 19 Booking

offers and Topic 21 Business running tips. Among all these topics, Topic 22 and 12

are connected with over three other topics within the cluster while the rest topics have

only one or two connections.

Interestingly, the prevalence of Topic 22 (Event hosting), 12 (Event planning) and

19 (Booking offers) trended downwards over the examination period between October

2019 and May 2020, in line with the findings presented by Gössling et al. (2020).

Moreover, the percentage of the decrease is greater between mid January and late

May, indicating that the Covid-19 pandemic further affected events hosting. With

regard to Topic 2 (Event planning), 21 (Business running tips) and 25 (Sports event),

their prevalence fluctuated over the examination period but showed a downward trend

during the Covid-19 pandemic. The results suggest that the topics in this cluster

received less interests on Twitter during the examination period, which aligns with the

findings of Chetty et al. (2020).

In addition, Topic 12 Special day celebration is correlated with Topic 17 Guest

experience which sits outside the cluster. It is found that both Topic 17 and its con-

nected topic - Topic 4 Guest praise have been experiencing a decrease in their topic
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prevalence, indicating fewer discussion were on guest experience as well as the services

provided by hotels and restaurants. This might be caused by the closure of hotels and

restaurants due to the lockdown policy introduced by many countries.

5 Discussion and conclusions

5.1 Conclusions

This study aims to conduct a ‘real-time’ investigation with user-generated content on

Twitter to identify the main concerns in the hospitality industry during the Covid-19

pandemic, and gain a better understanding of the business challenges and responses

from the industry. With 94,340 tweets collected between October 2019 and May 2020

by a programmed web scraper, unsupervised machine learning approaches such as

structural topic modelling are applied in this research. The analysis results demonstrate

the feasibility and effectiveness of applying the structural topic modelling approach

to Twitter unstructured data, and disclose a number of novel findings which have

important meanings for both hospitality industry and academia.

5.2 Theoretical implications

This research exhibits significant contributions on theoretical implications in the re-

search area of hospitality and tourism management. Firstly, it demonstrates the fea-

sibility and effectiveness of using unsupervised machine learning approach, structural

topic modelling to gain insights from the large amount of user-generated content in hos-

pitality research. In particular, the procedures and methodologies that are introduced

and developed in this research fill the research gap of how the value of unstructured

‘real-time’ data can be leveraged for investigating the industry’ response to crises.

Secondly, this study answers a number of key research questions regarding the ef-

fects of the Covid-19 pandemic on the hospitality industry. Our results show that the
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information and discussions about the topic Covid-19 impact have increased signifi-

cantly during the examination period, indicating a rise in the concerns on how the

pandemic has been affecting the hospitality industry. We further find that four topics

(i.e., Coping with Covid-19, Technology trend, Sector changes, and Sector support)

which are closely connected to the topic of Covid-19 impact also exhibited an up-

ward trend during the examination period. These results extend on current studies

on how the hospitality industry has been responding to the pandemic (Martins et al.,

2020; Kim et al., 2020) and what efforts have been made for overcoming the challenges

caused by the pandemic (Rivera, 2020). In particular, increasing attention were paid

to how novel technologies (e.g., Virtual reality, Internet of Things) could be used to

solve industry challenges. This result is consistent with the finding of Jiang & Wen

(2020) which argued that to thrive post-Covid-19, hospitality business need to gain

new strengths and have plan to compete in a new world.

Thirdly, this study extends the conclusions of current studies by providing new

insights. In particular, complicated results are found about the impact of Covid-19 on

job market in the hospitality industry. It is widely believed that the Covid-19 out-

break severely affected the hospitality job demand (Baum & Hai, 2020). Moreover, an

industry investigation estimates there could be tens of millions of people lost their jobs

and the negative impact may continue even after the end of the pandemic (McKinsey

& Company, 2020). Evidences are found in our research to support the conclusion of

the negative impact of Covid-19 on job market. In particular, we find that the propor-

tions of the topics of Catering job ads and General job ads have reduced significantly

since the outbreak of Covid-19. However, the proportion of Topic 5 Manager job ads

exhibited a rapid growth starting from the beginning of the Covid-19 pandemic, which

creating new insights on the impact of the pandemic on employment (Chetty et al.,

2020; Guerrieri et al., 2020; Montenovo et al., 2020).

We further investigated the reason that might trigger the growth, and find that

this topic is closely connected to the topic of Food delivery which also experienced
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a significant growth during the examination period. This finding may indicate that

the increase in the demand of manager-level jobs might be related to the growth of

food delivery business. As restaurants and hotels are temporarily closed following the

lockdown and stay-at-home orders adopted by many countries (Gössling et al., 2020), a

large number of business in the hospitality industry have changed their strategies and

started to provide food delivery services. The rapid change of business strategy may

bring management challenges particularly for the restaurants and hotels which did not

have management experience on food delivery service. Therefore, it becomes necessary

for them to enhance their management capability by recruiting staff with management

experience.

5.3 Practical implications

Firstly, this study provides solutions for hospitality industry practitioners to transform

social media data into useful business insights. For the case of Covid-19 pandemic

analysed in the research, the findings help the practitioners to understand what the

industry has focused on and what are the opportunities for the industry with regards

to the pandemic.

Secondly, this study detects significant change of focus in the hospitality industry.

More specifically, we find that people and organisations have switched their attention

from the topics which are more related to daily operations to the topics focusing on

the macro level of the hospitality industry. For example, the discussion on the topics

of Interior design and Guest experience have reduced on Twitter since the Covid-

19 outbreak, while the tweets related to the topics of Technology trend and Sector

changes increased at the same time. These findings may indicate that the impact

of Covid-19 has pushed people and organisations in hospitality industry to pay more

attention to the macro-level topics instead of the micro-level ones. The result deepens

our understanding of the role of crises on creating opportunities for industries to rethink
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about the future development (Melvin & Taylor, 2009; Devece et al., 2016).

Thirdly, this study discloses other areas in the hospitality industry which have

been affected by the Covid-19 pandemic, and identifies evidence of industry recovery.

In particular, the information and discussions about topics such as New hotel opening,

Event hosting and Event planning have dramatically reduced on Twitter since the

Covid-19 outbreak. Furthermore, we find that the topics such as Marketing news and

Travel booking started trending upwards from May after the significant reduction in

their topic proportions between the beginning of the Covid-19 outbreak (i.e., January)

and April 2020. This finding could be considered as an evidence showing recovery signs

of the hospitality industry from the pandemic.

5.4 Limitations and future research

Despite the valuable insights obtained by the study, there are several limitations. We

did not look at the types of twitter account which may generate different types of

information and discussion. Moreover, the use of twitter data alone cannot capture a

whole picture of business response from the industry to the pandemic. This research can

be extended to analyse different twitter accounts and incorporate qualitative research

involving stakeholders of the industry as well as customers to investigate the Covid-19

impact more comprehensively. Finally, due to the rise in global hospitality and tourism,

examining the specific language use in tweets and linking it with the identified topics

may provide additional insights.
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Table 1: Summary statistics of tweets sample
# of tweeets Percentage

Whether a tweet has media
Yes 46,792 49.60%
No 47,548 50.40%
How many likes a tweet had received
0 52,894 56.07%
1 18,101 19.19%
2 8,294 8.79%
3 4,592 4.87%
4 2,887 3.06%
5 1,728 1.83%
>5 5,844 6.19%
How many times a tweet had been retweeted
0 64,814 68.70%
[1, 10] 29,070 30.81%
[11, 50] 429 0.45%
[51, 100] 13 0.01%
>100 14 0.01%
The length of tweets (# of characters)
(18, 100] 2,444 2.59%
(100, 200] 27,245 28.88%
(200, 300] 47,969 50.85%
(300, 400] 15,796 16.74%
>400 886 0.94%
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Table 2: Topic summary: 94, 340 tweets between October 1, 2019 and May 31, 2020
Topic No. Topic Label Topic Proportions Top Words
Topic 9 Covid-19 impact 7.3% covid, coronavirus, pandem, hospit, will, covid-, hoteli
Topic 15 Marketing news 5.8% hospit, new, market, brand, podcast, blog, live
Topic 20 Advice and experience sharing for success 5.3% can, custom, way, help, technolog, use, busi
Topic 24 New hotel openning 5.3% hotel, resort, success, hostel, hoteli, entrepreneur, luxuri
Topic 13 Food delivery 5.2% restaur, deliveri, hospit, food, pub, foodservic, cafe
Topic 18 Sector support 4.9% hospit, busi, sector, retail, award, leisur, govern
Topic 29 Catering job ads 4.6% career, job, cater, look, recruit, full, chef
Topic 5 Manager job ads 4.5% job, manag, open, latest, hire, check, click
Topic 17 Guest experience 4.4% hospit, guest, experi, welcom, stay, love, servic
Topic 12 Special day celebration 4.3% thank, day, work, team, year, love, happi
Topic 22 Event hosting 4.0% hospit, great, event, meet, follow, venu, forward
Topic 28 IIHM-related 3.7% chef, hospit, food, iihm, iihmhotelschool, iihmbestyear, cater
Topic 6 Solution and training 3.5% learn, manag, train, solut, student, career, join
Topic 21 Business running tips 3.4% hospit, week, next, want, start, tip, give
Topic 14 Travel booking 3.3% travel, holiday, tourism, data, vacat, book, insight
Topic 27 Interior design 3.2% design, hospit, interiordesign, project, interior, light, architectur
Topic 19 Booking offers 3.1% offer, today, book, contact, visit, profession, call
Topic 16 Coping with Covid-19 3.0% need, support, pleas, help, let, save, local
Topic 8 Sector changes 2.6% hospit, consum, will, chang, launch, health, continu
Topic 26 Drinks 2.6% resourc, bar, free, drink, get, wine, cocktail
Topic 23 Hotel for sale 2.4% hospit, sale, locat, just, clean, citi, nation
Topic 25 Sports event 2.1% good, news, intern, season, sport, premier, beyond
Topic 4 Guest praise 1.8% hospit, perfect, qualiti, suit, weekend, inn, enjoy
Topic 11 Technology trend 1.8% industri, trend, impact, interest, transform, iot, smart
Topic 7 General job ads 1.7% group, outdoor, ireland, compass, cateringjob, rvpark, campground
Topic 30 Generic industry discussion 1.6% look, take, come, like, care, futur, readi
Topic 3 Restaurant survival guide 1.3% restaurantbusi, staff, wait, guid, edinburgh, medic, cornwal
Topic 2 Event planning 1.2% eventprof, realli, happen, what, tonight, eventplann, forget
Topic 1 Pakistan/Caribbean food 1.1% total, pakistan, caribbean, gorgeous, die, accorhotel, infoappli
Topic 10 Furniture 0.8% hospit, furnitur, cafe, horeca, decorcom, piec, customfurnitur
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Figure 3: Topic prevalence over time
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