Pharmacol Res 2020 Oct; 160:105070. doi: 10.1016/j.phrs.2020.105070. Epub 2020 Jul 10.

β-radiating radionuclides in cancer treatment, novel insight into promising approach

Samieh Asadian¹, Hamed Mirzaei², Bagher Aziz Kalantari³, Mohamad Reza Davarpanah⁴, Morteza Mohamadi⁵, Anastasia Shpichka⁶, Leila Nasehi⁷, Hamidreza Aboulkheyr Es⁸, Peter Timashev⁹, Mustapha Najimi¹⁰, Nematollah Gheibi¹¹, Moustapha Hassan¹², Massoud Vosough¹³

Affiliations

¹Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

²Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.

³Department of Organic Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran. ⁴Faculty of Nuclear Engineering, Shahid Beheshti University, Tehran, Iran.

⁵Department of Physical Chemistry, Faculty of Science, University of Tehran, Tehran, Iran. ⁶Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry

Department, Lomonosov Moscow State University, Moscow, Russia.

⁷Department of Medical Laboratory Sciences, Zanjan University of Medical Sciences, Zanjan, Iran.

⁸School of Biomedical Engineering, University of Technology Sydney, 2007, Sydney, Australia.
⁹Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry

Department, Lomonosov Moscow State University, Moscow, Russia; Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia. Electronic address: timashev.peter@gmail.com.

¹⁰Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium.

¹¹Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran. Electronic address: ngheibi@qums.ac.ir.

¹²Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.

¹³Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic address: <u>masvos@Royaninstitute.org</u>.

Pharmacol Res 2020 Oct; 160:105070. doi: 10.1016/j.phrs.2020.105070. Epub 2020 Jul 10.

Abstract

Targeted radionuclide therapy, known as molecular radiotherapy is a novel therapeutic module in cancer medicine. β-radiating radionuclides have definite impact on target cells via interference in cell cycle and particular signalings that can lead to tumor regression with minimal off-target effects on the surrounding tissues. Radionuclides play a remarkable role not only in apoptosis induction and cell cycle arrest, but also in the amelioration of other characteristics of cancer cells. Recently, application of novel β-radiating radionuclides in cancer therapy has been emerged as a promising therapeutic modality. Several investigations are ongoing to understand the underlying molecular mechanisms of β -radiating elements in cancer medicine. Based on the radiation dose, exposure time and type of the β -radiating element, different results could be achieved in cancer cells. It has been shown that β -radiating radioisotopes block cancer cell proliferation by inducing apoptosis and cell cycle arrest. However, physical characteristics of the β -radiating element (half-life, tissue penetration range, and maximum energy) and treatment protocol determine whether tumor cells undergo cell cycle arrest, apoptosis or both and to which extent. In this review, we highlighted novel therapeutic effects of β-radiating radionuclides on cancer cells, particularly apoptosis induction and cell cycle arrest.

Keywords: Apoptosis; Cancer therapy; Cell cycle arrest; Nuclear medicine; Selective radionuclide therapy; β -radiating radionuclides.