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ABSTRACT
Relativistic effects in clustering observations have been shown to introduce scale-dependent corrections to the galaxy overdensity
field on large scales, which may hamper the detection of primordial non-Gaussianity fNL through the scale-dependent halo bias.
The amplitude of relativistic corrections depends not only on the cosmological background expansion, but also on the redshift
evolution and sensitivity to the luminosity threshold of the tracer population being examined, as parametrized by the evolution
bias be and magnification bias s. In this work, we propagate luminosity function measurements from the extended Baryon
Oscillation Spectroscopic Survey (eBOSS) to be and s for the quasar (QSO) sample, and thereby derive constraints on relativistic
corrections to its power spectrum multipoles. Although one could mitigate the impact on the fNL signature by adjusting the
redshift range or the luminosity threshold of the tracer sample being considered, we suggest that, for future surveys probing
large cosmic volumes, relativistic corrections should be forward modelled from the tracer luminosity function including its
uncertainties. This will be important to quasar clustering measurements on scales k ∼ 10−3 h Mpc−1 in upcoming surveys such
as the Dark Energy Spectroscopic Instrument (DESI), where relativistic corrections can overwhelm the expected fNL signature
at low redshifts z � 1 and become comparable to fNL � 1 in the power spectrum quadrupole at redshifts z � 2.5.
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1 IN T RO D U C T I O N

It is known that primordial non-Gaussianity (PNG), which encodes
dynamics of the inflationary period in the early Universe, leaves
an imprint in the large-scale structure (LSS) at late times not only
in higher order statistics such as the bispectrum, but also in the
clustering of virialized haloes by introducing a scale-dependent mod-
ification to the large-scale tracer bias (Dalal et al. 2008; Matarrese &
Verde 2008; Slosar et al. 2008). For the local type of PNG fNL,
although the strongest constraint yet comes from observations of the
cosmic microwave background (CMB) by Planck1 (fNL = 0.9 ± 5.1;
Planck Collaboration, Akrami et al. 2019), upcoming LSS probes
such as the Dark Energy Spectroscopic Instrument2 (DESI) and
Euclid3 are forecast to offer competitive constraints with uncer-
tainties of O(1) (Font-Ribera et al. 2014; Amendola et al. 2018;
Mueller, Percival & Ruggeri 2018), with current galaxy surveys such
as the extended Baryon Oscillation Spectroscopic Survey4 (eBOSS)
already achieving uncertainties of O(10) (Castorina et al. 2019).

Despite the relativistic nature of gravitational theories governing
structure formation, the Newtonian description of fluctuations in
the distribution of galaxies is usually adequate as relativistic effects
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are suppressed below the Hubble horizon scale. In the past, the
modelling of fully relativistic galaxy clustering has been unnecessary
to obtain cosmological parameter constraints, as cosmic variance
dominates over any corrections. With the next generation of galaxy
surveys probing far wider and deeper cosmic volumes, however,
such approximate prescriptions might no longer be sufficient to attain
unbiased constraints. The necessary relativistic corrections for galaxy
clustering observations have been derived by Yoo, Fitzpatrick &
Zaldarriaga (2009), Bonvin & Durrer (2011), and Challinor &
Lewis (2011). Many subsequent works have demonstrated their
importance for constraining cosmological parameters, in particular
fNL, as its scale-dependent signature on large scales can be disguised
as relativistic effects (Bertacca et al. 2012; Bruni et al. 2012; Jeong,
Schmidt & Hirata 2012; Alonso et al. 2015; Camera, Maartens &
Santos 2015; Fonseca et al. 2015; Raccanelli et al. 2016b, 2018;
Lorenz, Alonso & Ferreira 2018). On the other hand, the investigation
of relativistic corrections in itself is a valuable exercise, as it
offers tests of relativistic gravitational theories on cosmological
scales (Lombriser, Yoo & Koyama 2013; Bonvin 2014), including
the equivalence principle (Bonvin, Franco & Fleury 2020). Future
galaxy surveys like DESI are forecast to deliver the first detections
of these relativistic corrections (Beutler & Dio 2020).

One crucial aspect of relativistic corrections is that their total am-
plitude does not only depend on the cosmological and gravitational
models, but also on the background number density of the tracer pop-
ulation being examined through its redshift evolution and sensitivity
to the luminosity threshold of observations, as respectively captured
by parameters known as the evolution bias be and magnification
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bias s. Previous works have mostly only considered relativistic effects
in Fisher forecasts for fNL by assuming fiducial values of be and s,
but the exact dependence of these parameters on redshift and the
luminosity threshold, as well as how their uncertainties propagate to
the observed power spectrum, remains much less clear. In this work,
we concretize these considerations for quasars (QSO), which are an
ideal tracer for detecting fNL thanks to their high redshift range and
bias, and proceed as follows:

(i) We first review in Section 2 general relativistic corrections
in galaxy clustering to linear order, including contributions from
evolution bias be and magnification bias s which we shall formally
introduce. This motivates the need for determining the tracer lumi-
nosity function;

(ii) Based on the previous work by Palanque-Delabrouille et al.
(2016), we fit the quasar luminosity function with eBOSS QSO
measurements in Section 3, before deriving constraints on be, s and
thus relativistic corrections in Section 4;

(iii) In Section 5, we compare scale-dependent modifications to
the quasar power spectrum due to relativistic corrections and due
to fNL at different redshifts for two different magnitude thresholds,
and discuss in Section 6 the need to include luminosity function
constraints in forward modelling of relativistic clustering statistics
for future galaxy surveys.

2 R ELATIVISTIC CLUSTERING O F G ALAXI ES

Whilst the Newtonian description of galaxy clustering is appropriate
for observations on sub-horizon scales, as the clustering scale k−1

approaches the horizon scale H−1, where H(z) is the conformal
Hubble parameter at redshift z, the observed galaxy overdensity
field δ receives relativistic corrections of O(H/k) or higher that are
otherwise suppressed,

δ(r, z) = b1δm − 1

H r̂ · ∂rv

− g1(z)r̂ · v − (be − 3)H∇−2∇ · v

+ 1

H�′ − (2 − 5s)� + � + g1(z)� + · · · . (1)

Here b1(z) is the scale-independent tracer bias5 with respect to the
matter density contrast δm in the comoving synchronous gauge, v

is the peculiar velocity in the Newtonian gauge, Φ and Ψ are the
Bardeen potentials, g1(z) is a dimensionless quantity given by

g1(z) = H′

H2 + 2 − 5s

Hχ
+ 5s − be , (2)

χ (z) is the comoving distance, and
′

denotes a conformal time
derivative (Bonvin & Durrer 2011; Challinor & Lewis 2011). The
quantities be and s are the evolution and magnification biases, which
do not a priori follow from a background cosmological model but
are rather derived at a given redshift from

be(z) = −∂ ln n̄(z; <m̄)

∂ ln(1 + z)
, (3a)

s(z) = ∂

∂m

∣∣∣∣
m̄

lg n̄(z; <m) (3b)

with lg ≡ log10, where n̄(z; <m) is the underlying comoving number
density of the tracer population below a given absolute magnitude m,

5We will later consider scale-dependent modifications in Section 5.

and m̄ is the absolute magnitude threshold of the observed tracer
sample (Challinor & Lewis 2011).

In equation (1), we have neglected lensing magnification, time
delay and the integrated Sachs–Wolfe (ISW) effect, which are
integrated terms involving the Bardeen potentials and cannot be
easily included in a Cartesian power spectrum model. All of these
terms may affect cosmological parameter inference, as shown by
recent studies of their relative importance using the angular power
spectrum or correlation function (Namikawa, Okamura & Taruya
2011; Raccanelli et al. 2016a, b; Lorenz et al. 2018; Jelic-Cizmek
et al. 2020). In this work, we shall instead focus on the Doppler terms
involving the peculiar velocity and the local potential terms only,
and consider their scale-dependent signature in the plane-parallel
limit where μ ≡ k̂ · r̂ = k̂ · n does not vary for a fixed global line
of sight n. Using the linearized Einstein equations for a 
CDM
universe,

v = −i
H
k

f δm k̂ , (4a)

� = −3

2

(H
k

)2

δm , (4b)

H−1�′ =
( H′

H2 − 1

)(H
k

)2

f δm − � , (4c)

where f(z) is the linear growth rate and Φ = Ψ in the absence of
anisotropic stress (Bertacca et al. 2012; Bruni et al. 2012; Jeong
et al. 2012), we can recast equation (1) as

δ(k, z) =
[
b1 + f μ2 + i

H
k

g1(z)f μ +
(H

k

)2

g2(z)

]
δm(k, z) , (5)

where we have introduced a second dimensionless quantity

g2(z) ≡ −(be − 3)f +
( H′

H2 − 1

)[
g1(z) + f − (2 − 5s)

]
. (6)

By employing the Friedman equations,6 we can rewrite

H′

H2 = 1 − 3

2
�m (7)

in terms of the matter density parameter Ωm(z). The quantities
parametrizing relativistic corrections are thus

g1(z) = (
3 − be − 3

2 �m

) − (2 − 5s)
(

1 − 1
Hχ

)
, (8a)

g2(z) = (
3 − be − 3

2 �m

)
f − 3

2 �m

[
g1(z) − (2 − 5s)

]
, (8b)

and they depend not only on the cosmological density parameters
through the accelerating background expansion, but also on the tracer
sample in question through its evolution and magnification biases.

Therefore to determine the relativistic corrections in equation (1)
or (5), two ingredients are needed: (1) a background cosmological
model; (2) the tracer luminosity function (LF) φ(m, z) from which
the underlying comoving number density

n̄(z; <m̄) =
∫ m̄

−∞
dmφ(m, z) (9)

below the absolute magnitude threshold m̄ can be derived – this is
our focus in the next section.

6We neglect radiation and spatial curvature.
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2600 M. S. Wang, F. Beutler and D. Bacon

3 QUA SAR LUMINOSITY FUNCTION

Determining the tracer luminosity function is not only important
for modelling relativistic corrections, it could also be a significant
source of uncertainty for constraining PNG. In this work, we examine
quasars as a single tracer for detecting fNL thanks to their high
tracer bias and redshift range. We attempt to recover their evolution
and magnification biases from their luminosity function, before
propagating these measurements to relativistic corrections to the
power spectrum multipoles.

To this end, we consider eBOSS QSO LF measurements obtained
by Palanque-Delabrouille et al. (2016, Table A.1 therein) for the
redshift range 0.7 < z < 4, which are corrected for observational
systematics such as completeness and bandpass redshifting of spectra
(i.e. K-correction). We describe the empirical quasar luminosity
function with the pure luminosity evolution (PLE) model (Boyle
et al. 2000; Richards et al. 2006; Palanque-Delabrouille et al. 2016),

φ(m, z) = φ∗
100.4(α+1)[m−m∗(z)] + 100.4(β+1)[m−m∗(z)]

, (10)

which is a double power law with bright- and faint-end in-
dices α and β that may differ depending on the redshift z relative
to the pivot redshift zp = 2.2. Here φ∗ is the overall normalization
constant, and

m∗(z) = m∗(zp) − 5

2

[
k1(z − zp) + k2(z − zp)2

]
(11)

is the characteristic absolute magnitude, where k1 and k2 are redshift
evolution parameters that can also differ between low redshift z < zp

and high redshift z > zp. Therefore this is a parametric model with
10 parameters, θ = {

φ∗, m∗(zp), αl, βl, k1l, k2l, αh, βh, k1h, k2h

}
,

where subscripts ‘l’ and ‘h’ denote ‘low redshift’ and ‘high redshift’
respectively.

3.1 Likelihood function

Without re-performing the iterative luminosity function fitting pro-
cedure on the raw quasar count data in Palanque-Delabrouille et al.
(2016), we adopt the likelihood inference approach outlined in
Pozzetti et al. (2016) for simplicity. For absolute magnitude and
redshift bins (mi, zi) indexed by i, the quasar number count N̂i

follows the Poisson distribution with logarithmic probability density
function (PDF)

ln P
(
N̂i |Ni

) = N̂i ln Ni − Ni − ln Γ
(
N̂i

)
(12)

with variance Var
(
N̂i

) = Ni , where Γ denotes the gamma function
and the expected number count is given by

Ni = 〈
N̂i

〉 =
∫

bin-i
dz

dV (z)

dz

∫
bin-i

dm φθ (m, z) . (13)

Here φθ (m, z) is the PLE luminosity function (10) with model
parameters θ and

dV (z) = 4πr2 dr

dz
dz (14)

is the differential comoving volume, where r(z) is the radial comov-
ing distance.

To obtain an approximate likelihood for the parametric lumi-
nosity function model, we first note that the binned luminosity
function φ̂ ∝ N̂ and thus the estimated uncertainty on ln φ̂ is
σ = N̂−1/2. Expanding the PDF (12) around its maximum, we obtain

Table 1. Posterior median estimates of the PLE model parameters (see
equation 10) for the eBOSS QSO LF measurements.

Parameter Redshift range
0.68–2.2 2.2–4.0

lg φ∗ −26.20+0.21
−0.20

m∗(zp) −5.76+0.09
−0.08

α −3.27+0.17
−0.19 −2.57+0.08

−0.09

β −1.40+0.06
−0.06 −1.21+0.10

−0.09

k1 −0.10+0.08
−0.09 −0.37+0.09

−0.09

k2 −0.40+0.06
−0.06 −0.01+0.06

−0.06

the quadratic form

lnL(θ ) − lnLmax � −1

2

∑
i

x2
i

σ 2
i

, (15)

where σ 2
i = 1

/
N̂i and

x2
i (θ ) = 2

[
1 − φθ (mi, zi)

φ̂i

+ ln
φθ (mi, zi)

φ̂i

]
. (16)

Therefore the likelihood function we shall use to infer the best-fitting
luminosity function model is

lnL(θ ) = −
∑

i

1

σ 2
i

[
1 − φθ (mi, zi)

φ̂i

+ ln
φθ (mi, zi)

φ̂i

]
, (17)

where we have neglected the additive normalization constant.

3.2 Best-fitting models

By sampling the PLE model parameters from the likelihood func-
tion (17) with the Markov chain Monte Carlo (MCMC) sampler
ZEUS7 (Karamanis & Beutler 2020), we have re-fitted the quasar
luminosity function from the eBOSS QSO measurements. Because
of the exchange symmetry between the power-law indices α and β

in equation (10), we have imposed the constraint α < β to avoid a
multimodal posterior distribution. The PLE parameters are estimated
by the sample posterior medians, as reported in Table 1, with a
reduced chi-square value of χ2

/
d.o.f. = 105

/
77 ≈ 1.36 per degree

of freedom (d.o.f.).
We note that there appears to be some discrepancy between our

fitted parameters and the results in Palanque-Delabrouille et al.
(2016), so we compare both best-fitting models with the eBOSS
QSO measurements in Fig. 1. In all redshift bins the two fitted
models are in reasonable agreement with measurements and are vir-
tually indistinguishable across a wide magnitude range. Noticeable
differences only appear either at the very faint end below the limiting
absolute magnitude corresponding to the g-band apparent magnitude
cut g = 22.5,8 which is not constrained by any measurements, or at
the very bright end, where uncertainties are comparatively large. We
attribute such discrepancies to the fact that Palanque-Delabrouille
et al. (2016) were able to fit the raw quasar number counts corrected
for systematics whereas we have only fitted the binned luminosity

7github.com/minaskar/zeus
8The g-band apparent magnitude is normalized to the absolute magnitude
m̄(z) = g − μ(z) − [K(z) − K(z = 2)], where μ(z) is the distance modulus,
K(z) is the K-correction, and the normalization redshift z = 2 is close to
the median redshift of the eBOSS QSO sample (Palanque-Delabrouille et al.
2016).
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Relativistic impact on PNG signature 2601

Figure 1. Best-fitting quasar luminosity functions under the PLE model (10) in eBOSS QSO redshift bins. Measurements with uncertainties and the best-fitting
model shown in dashed blue lines are taken from Palanque-Delabrouille et al. (2016). The best-fitting model of this work (see Table 1) is shown in solid red
lines. The downward pointing arrows mark the limiting absolute magnitude corresponding to the apparent magnitude cut g = 22.5 in each redshift bin. The
vertical dotted lines mark the absolute magnitude threshold m̄ = −25 used in this work.

function reported in their final results.9 As we shall see in the next
section, constraints on the relativistic corrections propagated from
these best-fitting luminosity function models are broadly statistically
consistent and have no significant impact on the findings of our
analysis.

4 C ON STR A INTS O N R ELATIVISTIC
C O R R E C T I O N S

Having determined the quasar luminosity function, we now proceed
to constrain relativistic corrections to quasar clustering statistics by
propagating the sampled luminosity function parameters in the form
of MCMC chains to evolution and magnification biases. To do so,
we specify the Planck15 ΛCDM cosmology with (h, ΩΛ, 0, Ωm, 0) =
(0.6790, 0.6935, 0.3065) (Planck Collaboration, Ade et al. 2016),
which is a choice consistent with Palanque-Delabrouille et al. (2016).
We also specify a fiducial absolute magnitude threshold m̄ = −25
based on the last eBOSS QSO redshift bin.

9It is also worth mentioning that recently Caditz (2017) noted a possible
error in the K-correction applied to the eBOSS QSO data sets by Palanque-
Delabrouille et al. (2016), which could have an impact on the fitted luminosity
function.

4.1 Constraints on relativistic biases

We first compute the quasar comoving number density n̄(z) from
equation (9) by numerically integrating our best-fitting luminosity
function model φ(m, z) up to the absolute magnitude threshold m̄. In
Fig. 2, we show the derived measurements of n̄(z) from sampled
luminosity function parameters within the 95 per cent credible
interval across the redshift range 0.7 < z < 4; for the eBOSS
QSO redshift bins, we also show the measurements of n̄(z) with
error bars corresponding to the 68 per cent credible interval. The
small apparent discontinuity in n̄(z) corresponds to redshift z =
zp, which divides some subsets of the combined eBOSS QSO
data (Palanque-Delabrouille et al. 2016). The presence of the pivot
redshift zp is also a feature of the empirical models currently used
for the quasar luminosity function, where the model parameters can
suddenly change. This may have possible links to the physics of
quasar formation around that epoch in history and/or the fact that the
double power-law form assumed for the quasar luminosity function
is no longer adequate at higher redshifts (Caditz 2017, 2018).

Next, we compute the evolution bias be and magnification bias s
from equation (3) by numerical differentiation with redshift step
size �z = 0.001. We have found that, based on the eBOSS QSO
LF measurements, be can be an order of magnitude larger than s,
although both appear in relativistic corrections at the same orders in
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2602 M. S. Wang, F. Beutler and D. Bacon

Figure 2. Derived measurements of the quasar comoving number density
n̄(z) below the absolute magnitude threshold m̄ = −25 from the best-fitting
eBOSS QSO LF in this work (see Table 1). Data points with error bars are
measurements within the 68 per cent credible interval for the eBOSS QSO
redshift bins. The shaded grey regions show the 95 per cent credible interval.
The vertical dotted line marks the pivot redshift zp = 2.2.

equation (8). One interesting comparison one could make for be(z) is
with the analytic estimate from the universal mass function (UMF) of
haloes, although the validity of this approach is only limited to tracer
sample selection that is insensitive to the halo merger history (Jeong
et al. 2012). The evolution bias predicted from the UMF is given by

be(z) = δcf (z)[b1(z) − 1] , (18)

where δc ≈ 1.686 is the critical density of spherical collapse. Here
we consider a simple redshift evolution model for the quasar linear
bias b1(z) = 1.2

/
D(z) , whose value increases from 1.7 to 4.7 almost

linearly in the eBOSS QSO redshift range 0.7 < z < 4. This bias
model is based on the DESI baseline survey (DESI Collaboration,
Aghamousa et al. 2016) and does not account for possible luminosity
dependence. Based on power-law fitting to observed quasar cluster-
ing amplitudes, studies have found that the luminosity dependence of
quasar bias appears to be rather weak, at least at low and intermediate
redshifts possibly because quasars reside in a broad range of haloes
of different masses (White et al. 2012; Shen et al. 2013; Krolewski &
Eisenstein 2015). However, some current models and observations
hint at a greater level of luminosity dependence at higher redshifts
and luminosity ranges, but such quasars are rare and the luminosity
dependence of their bias can only be better constrained with larger
future data sets (Croton 2009; Shen 2009; Conroy & White 2012;
Timlin et al. 2018).

In Fig. 3, we show the derived measurements of be and s for 0.7 <

z < 4 within the 95 per cent credible interval and their measurements
in eBOSS QSO redshift bins with 68 per cent level uncertainties,
together with the UMF prediction. Similar to the constraints on
comoving number density n̄(z), uncertainties of be and s at each
redshift are derived from samples of their values calculated from
MCMC chains of the luminosity function parameters (which may
differ on different sides of the pivot redshift zp). We note that,
although the UMF prediction is in reasonable agreement with our
measurements at high redshifts, it does not capture the behaviour
of the negative evolution bias values below redshift z � 2. This is
perhaps unsurprising given the limitation of the UMF prediction
and the simplicity of our quasar bias model. As is the case for

Figure 3. Derived measurements of evolution bias be and magnification
bias s at the absolute magnitude threshold m̄ = −25 from the best-fitting
eBOSS QSO LF in this work (see Table 1). Data points with error bars are
measurements within the 68 per cent credible interval for the eBOSS QSO
redshift bins. The shaded grey regions show the 95 per cent credible interval.
The vertical dotted lines mark the pivot redshift zp = 2.2. The cause of the
discontinuities at zp in both be and s is unclear and could be attributed to
unknown systematics in the high-redshift QSO sample (Kulkarni et al. 2019).

comoving number density, there is an apparent discontinuity at the
pivot redshift zp = 2.2 in both be and s. However, these discontinuities
are now large enough that even the 95 per cent uncertainty bounds
are inconsistent across the pivot redshift. Unfortunately, we have
checked that this problem still persists with the luminosity functions
fitted by Palanque-Delabrouille et al. (2016) and Caditz (2017), so
it is not due to our fitting procedure. Although the cause of these
discontinuities has been attributed to the form of the empirical
luminosity function, the largeness of the discrepancies could indicate
unknown systematics in the eBOSS QSO sample at high redshifts, as
noted by Kulkarni, Worseck & Hennawi (2019). Future survey data
may hopefully be able to resolve this issue.

In Section 3.2, we have also noted that our best-fitting luminosity
function under the PLE model is somewhat discrepant from that of
Palanque-Delabrouille et al. (2016) for the same underlying eBOSS
QSO sample (possibly affected by unknown systematics), although
the parameter estimates have similar uncertainties. To investigate
the impact of this on the measured relativistic bias parameters, we
shift our sampled luminosity function parameter chains so that the
shifted posterior median estimates would coincide precisely with the
best-fitting PLE parameters in Palanque-Delabrouille et al. (2016),
and then we propagate the resultant parameter samples to constraints
on be and s. In Fig. 4, we show that the joint (be, s) constraints
at redshift z = 2 from our original parameter samples and the
shifted samples are broadly consistent. This is particularly the case
for evolution bias be, which we shall see dominates the relativistic
corrections over magnification bias s. We have also checked that
the joint (be, s) constraints from the original and shifted samples are
consistent at other redshifts, e.g. z = 0.87, 3.75 which are respectively
the lowest and highest eBOSS QSO redshift bins.
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Relativistic impact on PNG signature 2603

Figure 4. Constraints on evolution bias be and magnification bias s at
redshift z = 2 and absolute magnitude threshold m̄ = −25 from the eBOSS
QSO LF under the PLE model (10). The solid green contours show the
68 per cent and 95 per cent credible regions of the joint posterior distribution
sampled from the likelihood function (17) (this work). The dashed purple
contours are from the same samples except shifted to coincide with the
best-fitting PLE model parameters from Palanque-Delabrouille et al. (2016)
(shifted samples). The shaded regions in the top and right-hand panels show
the 68 per cent credible intervals of the marginal posterior distributions.

4.2 Constraints on the relativistic correction function

In Section 2, we have shown that relativistic corrections of
O(H/k) and O(H2/k2) to the galaxy overdensity field at different
redshifts and scales are modulated by the functions fg1(z) and g2(z)
respectively, which can be constrained from the relativistic bias
measurements obtained above under the Planck15 cosmology. In
Fig. 5, we show the derived bounds on fg1(z) and g2(z) within the
95 per cent credible interval and their measurements in eBOSS QSO
redshift bins with 68 per cent level uncertainties. The discontinuities
in the derived g1(z) and g2(z) have the same origin as those discussed
previously. The values and uncertainties of g1(z) and g2(z) are both
dominated by contributions from evolution bias be, which can be an
order of magnitude larger than s(z) as shown in Fig. 3. To assess the
importance of be and s, we have also shown in Fig. 5 two interesting
fiducial cases: (be, s) = (0, 0), i.e. no account of the redshift evolution
and luminosity dependence of the tracer number density; (be, s) = (0,
2/5), i.e. the comoving number density is constant and the common
factor (2 − 5s) vanishes in relativistic corrections, corresponding
to the so-called ‘diffuse background’ scenario where the effects of
lensing magnification and volume distortions partly cancel (Jeong
et al. 2012). Comparisons with these cases demonstrate that evolution
bias be drives relativistic corrections at both low and high redshifts;
unless (2 − 5s) vanishes, terms containing the (Hχ )−1 factor are also
important and increasingly so at lower redshift (especially beyond the
redshift range shown in the figures towards z = 0). This highlights
the importance of including accurate models of both be and s in
relativistic corrections to galaxy clustering.

Having propagated quasar luminosity function measurements
through to constraints on relativistic corrections, we shall investigate
in the following section how they modify the quasar clustering power
spectrum multipoles on large scales.

Figure 5. Derived measurements of the relativistic correction functions
fg1(z) and g2(z) (see equation 8) at the absolute magnitude threshold m̄ = −25
from the best-fitting eBOSS QSO LF in this work (see Table 1). The data
points with error bars are measurements within the 68 per cent credible
interval for the eBOSS QSO redshift bins, and the shaded region shows
the 95 per cent credible interval. For comparison, the dashed red lines show
the results with (be, s) = (0, 0) and the dash-dotted blue lines with (be, s) =
(0, 2/5). The vertical dotted line marks the pivot redshift zp = 2.2.

5 SC A L E - D E P E N D E N T M O D I F I C AT I O N TO
POWER SPECTRU M MULTI POLES

In the presence of local primordial non-Gaussianity fNL, the linear
tracer bias b1(z) receives a scale-dependent modification

�b(k, z) = 3fNL(b1 − p)
1.27δc�m,0H

2
0

c2k2T (k)D(z)
, (19)

where p is a parameter that depends on the tracer sample (here we
adopt p = 1.6 for quasars), H0 is the Hubble parameter at present, c
is the speed of light, and T(k) is the matter transfer function (Slosar
et al. 2008). The numerical factor 1.27 arises as we normalize the
linear growth factor D(z) to unity at present. As k → 0, T(k) → 1
and �b ∝ k−2, so the signal of fNL is enhanced on large scales.

Under the plane-parallel approximation, Kaiser (1987) showed the
anisotropic clustering power spectrum in redshift space is

P K(k, μ) = (
b + f μ2

)2
Pm(k) (20)

on large scales, where Pm is the linear matter power spectrum. By
considering the Legendre multipoles with respect to the angle vari-
able μ, PK(k, μ) is equivalent to the combination of the monopole

P K
0 (k) =

(
b2 + 2

3
bf + 1

5
f 2

)
Pm(k) , (21a)

the quadrupole

P K
2 (k) =

(
4

3
bf + 4

7
f 2

)
Pm(k) (21b)

and the hexadecapole P K
4 (k) which we neglect as it does not depend

on the tracer bias. Note that here the total bias b now includes both
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b1 and the scale-dependent modification �b ∝ k−2, which changes
the standard Kaiser multipoles P K

� with only the scale-independent
bias b1 by

�P0(k) = [(
2b1 + 2

3 f
)
�b + �b2

]
Pm(k) , (22a)

�P2(k) = 4

3
�bf Pm(k) . (22b)

In contrast to the quadrupole which only receives a modification pro-
portional to k−2, the monopole receives modifications proportional
to both k−2 and k−4 when fNL 
= 0.

In Section 2, we have shown that relativistic corrections similarly
leave a scale-dependent signature. By considering the two-point
function of expression (5), we see that relativistic corrections only
change the Kaiser monopole and quadrupole by

�P0(k) =
[(

2b1g2 + 2

3
fg2 + 1

3
f 2g2

1

)

×
(H

k

)2

+ g2
2

(H
k

)4]
Pm(k) , (23a)

�P2(k) = 2

3

(
2fg2 + f 2g2

1

)(H
k

)2

Pm(k) . (23b)

By comparing equations (22) and (23), it is evident that rel-
ativistic corrections can mimic the effect of fNL in both the
monopole and quadrupole of the clustering power spectrum on
large scales; the extent to which relativistic corrections can wash
out the fNL signal depends on the precise amplitudes of g1(z)
and g2(z).

Since we have obtained constraints on g1(z) and g2(z) in the
previous section, we can make a concrete comparison between the
power spectrum multipole modifications due to fNL and relativistic
corrections. To this end, we consider a fiducial value fNL = 1 at which
level different classes of inflation models can be distinguished (Mal-
dacena 2003; Alvarez et al. 2014). As the fiducial case, we continue
to adopt the Planck15 cosmology, the absolute magnitude threshold
m̄ = −25 for the quasar sample, and b1(z) = 1.2

/
D(z) as the base-

line assumption for DESI (DESI Collaboration, Aghamousa et al.
2016), which is also used in the UMF prediction (see Section 4.1).

In Fig. 6, we show the power spectrum multipoles for k ∈
[10−4, 10−1] h Mpc−1 in the presence of these modifications at two
redshifts, z = 0.87 and 3.75, which we recall are respectively
the lowest and highest eBOSS QSO redshift bins. At the lower
redshift, relativistic effects dominate over the fNL signal and obscure
the PNG signature. At the higher redshift, although the relativistic
modification is almost comparable to the fNL effect in the quadrupole,
the fNL signal is larger in the monopole. This offers a hint that, at
least for the quasar sample, pushing the upper redshift range may
help mitigate some potential contamination of the fNL signal from
part of the relativistic corrections; however, we caution that lensing
convergence and non-local potential terms have not been included
in our analysis, and these integrated contributions might hamper the
detection of PNG again at higher redshifts (see e.g. Namikawa et al.
2011; Lorenz et al. 2018; Raccanelli et al. 2018).

To have a broader view of how the relative amplitudes of relativistic
and PNG modifications evolve with redshift, in Fig. 7 we compare
the change in power spectrum multipoles, �P�, as a fraction of
the standard Kaiser prediction P K

� across the eBOSS QSO redshift
range 0.7 < z < 4 at a fixed wavenumber k = 10−3h Mpc−1 – this
is close to the largest scale which DESI and Euclid may access
(DESI Collaboration, Aghamousa et al. 2016; Euclid Consortium,
Laureijs et al. 2011). In addition to our fiducial absolute magnitude

threshold m̄ = −25, we also consider a less conservative cut at m̄ =
−22, which is the limiting magnitude of the lowest eBOSS QSO
redshift bin. The discontinuities seen in Fig. 7 have the same origin
as those found in relativistic bias constraints in the previous section.
We summarize the key findings from the figure as follows:

(i) For both monopole and quadrupole, relativistic corrections
dominate over the effect of fNL at low redshifts z � 1, and values
of �P� due to relativistic effects and fNL reach parity at some
intermediate redshift below z = 1.5. The dominance of relativistic
effects at lower redshifts is mainly driven by the large evolution
bias be (see Fig. 3) and the geometric factor (Hχ )−1 when s 
= 2/5.
If be = 0 and s = 2/5, relativistic effects will be much smaller than
the fNL signal overall;

(ii) Although relativistic corrections are comparable to the fNL ef-
fect at most redshifts in the quadrupole, the fNL signal is stronger
at higher redshifts in the monopole, mainly because of the redshift
evolution of linear tracer bias b1(z) and the fact that �P0 due to
fNL contains contributions proportional to b2

1. If the tracer bias is
constant, say b1 = 2, then at higher redshifts, relativistic effects with
be 
= 0 and s 
= 2/5 will wash out the fNL signal, and can slightly
reduce the fNL signal even with be = 0 and s = 2/5;

(iii) Raising the absolute magnitude threshold tends to reduce
the relativistic corrections at all redshifts: we have checked that
both evolution and magnification bias decreases in absolute values
with increasing magnitude threshold, suggesting that future surveys
with sensitivity to detect more fainter objects could also help with
constructing tracer samples with subdued relativistic effects.

It is worth mentioning that in the limit k → 0, Grimm et al.
(2020) have recently shown that the full relativistic effects actually
vanish as a consequence of the equivalence principle, and thus they
do not contaminate the PNG signature. The apparent divergence
in �P� as k → 0 in equation (23) is due to the exclusion of non-
local contributions as well as contributions at the observer position.
However, for finite clustering scales accessible to galaxy surveys,
these relativistic effects do exist and thus should be taken into account
in PNG analysis.

For cosmological parameter inference from clustering measure-
ments made on very large scales, the control of large-scale systemat-
ics should closely accompany the inclusion of relativistic corrections.
For instance, the plane-parallel limit for power spectrum multipoles
has been taken to simplify arguments in this work, but wide-angle
effects due to variation of the line of sight have been shown to
be critical on very large scales (Szalay, Matsubara & Landy 1998;
Szapudi 2004; Pápai & Szapudi 2008; Yoo & Seljak 2015). Therefore
in a practical analysis, wide-angle corrections need to be included
perturbatively (Castorina & White 2018; Beutler, Castorina & Zhang
2019), or a spherical Fourier analysis could prove advantageous
(Fisher et al. 1995; Heavens & Taylor 1995; Yoo & Desjacques 2013;
Wang et al. 2020). Meanwhile, we have only considered quasars as a
single tracer for detecting relativistic effects and the PNG signature
in this work; to extract maximal information from future LSS probes,
a multitracer approach can enhance the signal-to-noise ratio and thus
prove more beneficial (McDonald & Seljak 2009; Seljak 2009).

6 C O N C L U SIO N

Motivated by recent studies of relativistic effects in LSS observations
and the prospect of constraining PNG through galaxy redshift surveys
to the level of precision competitive with CMB experiments in the
near future, we have sought to quantify relativistic corrections to
clustering statistics on very large scales, with quasars as a concrete
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Relativistic impact on PNG signature 2605

Figure 6. Large-scale quasar clustering power spectrum monopole P0(k) and quadrupole P2(k) at redshift z = 0.87 (left-hand column) and z = 3.75 (right-hand
column) with magnitude threshold m̄ = −25. The Kaiser RSD model is shown by the solid black lines. The effect of relativistic corrections without local
non-Gaussianity fNL is shown by the dashed red lines with the shaded red regions showing the 95 per cent credible interval derived from the best-fitting eBOSS
QSO LF in this work (see Table 1). The effect of fNL = 1 (fiducial value) without relativistic corrections is shown by the dash-dotted blue lines. The vertical
dotted lines mark the horizon scale k = H.

Figure 7. Scale-dependent modifications ΔP� to the quasar clustering power spectrum monopole and quadrupole as a fraction of the Kaiser RSD model P K
� at

wavenumber k = 0.001h Mpc−1 with absolute magnitude threshold m̄ = −25 (left-hand column) and m̄ = −22 (right-hand column). Relativistic corrections
without local non-Gaussianity fNL are shown by the dashed red lines with the shaded red regions showing the 95 per cent credible interval derived from the
best-fitting eBOSS QSO LF in this work (see Table 1). Modifications due to fNL = 1 (fiducial value) without relativistic corrections are shown by the dash-dotted
blue lines.

example. These corrections do not only depend on the cosmological
expansion history, but also on the redshift evolution of the underlying
quasar number density and its sensitivity to the luminosity threshold,

which are parametrized by evolution bias be and magnification bias
s. To this end, we have refitted the eBOSS QSO luminosity function
and derived measurements on both be and s, before propagating
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their constraints to relativistic corrections to the power spectrum
multipoles. Our assessment of the impact of relativistic effects on
the fNL signature affirms the results of previous works mentioned
in Section 1, but this agreement is reached after a more realistic
treatment for evolution and magnification bias contributions, in
particular their uncertainties.

We have found that relativistic corrections can indeed be mistaken
for fNL-induced scale-dependent bias modifications, especially at low
redshifts and in the power spectrum quadrupole. By using tracer
samples at higher redshifts or with a fainter luminosity threshold,
relativistic effects can be reduced to some extent. We have also
found that, at least for the quasar population, the impact of evolution
bias be and its uncertainties on clustering statistics is greater than that
of magnification bias s. However, the latter also appears in lensing
contributions to the observed galaxy overdensity field, which we have
neglected in this work along with other integrated terms involving
the gravitational potential; these contributions can be important
especially at higher redshifts, and are best studied in future works
with alternative statistics such as the angular or spherical power
spectrum.

For future clustering measurements of the DESI quasar sample
with apparent magnitude limit similar to the one considered in this
work (DESI Collaboration, Aghamousa et al. 2016), relativistic cor-
rections can be an order-of-magnitude larger than the modifications
induced by fNL � 1 on scales k ∼ 10−3 h Mpc−1 at lower redshifts z �
1; at higher redshifts z� 2, relativistic corrections remain comparable
to or larger than the fNL � 1 modification in the power spectrum
quadrupole for absolute magnitude threshold up to m̄ = −22 at least.
We have seen in Section 4 how potential systematics in the quasar
luminosity function can affect the relativistic bias parameters, and
therefore the accurate determination of tracer luminosity functions
is crucial to constraining relativistic corrections and local primor-
dial non-Gaussianity. We suggest that forward modelling from the
tracer luminosity function to relativistic corrections should be fully
included in future cosmological analysis. For this purpose, we have
made the code implemented in this work publicly available as a
Python package, HORIZONGROUND.10
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Relativ. Gravit., 48, 84
Raccanelli A., Montanari F., Bertacca D., Doré O., Durrer R., 2016b, J.
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