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Abstract

Modal expansion techniques are typically used to expand the experimental modal displacements at sensor positions to
all unmeasured degrees of freedom. Since in most cases, sensors can be attached only at limited locations in a structure,
an expansion is essential to determine mode shapes, strains, stresses, etc. throughout the structure which can be used for
structural health monitoring. Conventional sensor placement algorithms are mostly aimed to make the modal
displacements at sensor positions of different modes as linearly independent as possible. However, under the presence
of modelling errors and measurement noise, an optimal location based on this criterion is not guaranteed to provide an
expanded mode shape which is close to the real mode shape. In this work, the expected value of normal distance between
the real mode shape and the expanded mode shape is used as a measure of closeness between the two entities. Optimal
sensor locations can be determined by minimizing this distance. This new criterion is applied on a simple cantilever
beam and an industrial milling tower. In both cases, by using an exhaustive search of all possible sensor configurations
it was possible to find sensor locations which resulted in a significant reduction in the distance when compared to a
conventional optimal sensor placement strategy. Sufficiently accurate sub-optimal sequential sensor placement
algorithm is also suggested as an alternative to the exhaustive search which is then compared with a genetic algorithm-
based search. The efficiency of this new sensor placement criterion is further verified using Monte Carlo simulations

for some realistic modelling error conditions.
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List of symbols

L Numerical mode shape

Real mode shape

Experimental mode shape at sensor locations
Expanded experimental mode shape

Transformation matrix for modal expansion

»n N0 € € €

Sensor configuration

o
=

Identity matrix of size n
Modelling error in mode shape

Measurement noise in mode shape

= ™

R Set of real numbers
Tr(A) Trace of a square matrix A
[IX]l, Sum of squares of all elements of vector X
C:  Number of s combinations from r when the order is not important
MSE  Mean square error
MAC Modal Assurance Criterion matrix

dof  Degrees of freedom

n Total number of degrees of freedom

s Number of sensors used

T Possible number of sensor positions

o Standard deviation of a probability density function

Mean of a probability density function

1. Introduction

Whether in conducting modal analysis tests or for structural health monitoring, a strategy for placement of sensors is of
vital importance. The number of sensors which can be employed in practice is limited by factors such as cost, availability
of power, accessibility of the structure, etc. Hence, the sensors which are deployed should be placed such that they
maximise their intended utility. Mode shape is an important structural characteristic to be estimated for all modal
analysis tests and in most health monitoring systems.

Based on the modal displacements evaluated at the sparse sensor positions, it may be required in some situations to
expand the mode shapes to all structural degrees of freedom (dof’). This is important as the expanded mode shapes can
be used to estimate the damage. For instance, Pandey et al. [1] and Kondo and Hamamoto [2] used the curvature of
mode shapes as a damage indicator. An accurate estimation of mode shapes also improves the estimation of stress in
structural members for fatigue analysis using vibration data. Pelayo et al. [3] evaluated stresses in a simply supported
glass beam and a rectangular glass plate pinned at three points using vibration data and compared them with those
estimated using strain gauges attached to some points on the structure. The estimated stresses were found to be in good
agreement with those calculated from the strain gauges. A similar study to estimate stresses in an off-shore structure
under operational conditions using modal expansion and vibration data was performed by Tarpg et al. [4,5].
Papadimitriou et al. [6] predicted the power spectral densities of stresses in all the locations of a truss by using vibration
data obtained at the sensor positions and a dynamic model of the structure. Dertimanis et al. [7] performed a similar

study to estimate stresses in a beam due to moving loads. Modal expansion can also be important in industrial structures
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wherein the condition of critical substructures such as tanks and pipelines need to be estimated based on the information
provided by sensors attached to the main structure.

Shah and Udwadia [8,9] proposed a methodology for determining the optimal sensor location for identification of
dynamic systems under the presence of measurement noise. The optimal configuration was decided as the one which
minimizes covariance of the parameter to be estimated. The method was subsequently used to determine the optimal
sensor configuration in order to estimate the stiffness of columns of a framed structure using vibration data. Kammer
[10] introduced a method which ranks sensor locations based on their contribution to the linear independence of modal
displacements. Iteratively, locations that do not contribute significantly are removed. The final sensor configuration
tends to maximize trace and determinant of the Fisher information matrix. The method was applied to the selection of
sensor locations for identification and correlation of a set of target modes for structural characterization of a large space
structure. The effect of both modelling error and measurement noise was further considered in the sensor placement
[11,12]. Several other criteria exist to measure the suitability of optimal sensor positions such as singular value
decomposition [13] and QR decomposition [14] of the modal matrix, the kinetic energy of modes at the sensor positions
[15], etc. Kalman filter-based optimal sensor placement methods for state estimation in linear structural systems
subjected to unmeasured excitations and noise-contaminated measurements obtained by minimizing the variance of the
state estimate are gaining importance [ 16-18]. In the context of state estimation, mean square error (MSE) based methods
are also widely used [19-21]. An excellent overview of previously used optimal sensor placement techniques are
available in Dongsheng [22], Ting-Hua and Hong-Nan [23], Mallardo and Aliabadi [24], Gomes et al. [25] and
Ostachowicz et al. [26].

In conventional vibration-based monitoring of structures, accelerometers are widely used and one of the commonly used
criteria to determine their optimal position involves maximising the linear independence between the modal
displacement vectors of different modes reduced to the sensor positions [27]. This is usually achieved by minimizing
some scalar metric corresponding to the off-diagonal elements of the Modal Assurance Criterion (MAC) [28] matrix
computed at the sensor positions [27,29,30]. However, to the best of authors’ knowledge, still, there is no definite proof
that such a criterion provides optimal configuration when a modal expansion is needed in the presence of modelling
error and measurement noise. Gomes et al. [31] studied a sensor placement criterion which takes mode shape expansion
into account for a plate structure. Modal displacements at sensor positions were expanded using splines and subsequently
compared with the complete numerical mode shape. The Frobenius norm of the difference between the expanded and
numerical mode shape was used as a measure of the quality of expansion. Similarly, Tong et al. [32] studied the sensor
placement in case of a slab structure by using the mean square error (MSE) between the numerical mode shapes and the
mode shapes expanded from the sensor positions using cubic interpolation schemes. Meo and Zumpano [33] used the
MSE between the numerical mode shape and the mode shapes expanded by spline interpolation in case of a bridge
structure to study the efficiency of different sensor placement criteria in modal expansion. The effect of measurement
noise and modelling errors were ignored in all these studies [31-33]. Murugan Jaya et al. [34] studied the robustness of
the conventional optimal configuration for modal expansion in the presence of modelling error and measurement noise
in case of a cantilever beam and an industrial milling tower. The similarity between the expanded and the real mode
shapes calculated in terms of the diagonal elements of the corresponding MAC matrix was used as a performance
criterion. It was observed that with an increase in modelling error and measurement noise, the correlation decreased
rapidly, indicating the expanded mode shape to be significantly different from the real mode shape, showing the need
for a robust sensor placement scheme.

In this work, a novel performance metric to measure the similarity between real and expanded mode shapes under the

presence of modelling error and measurement noise is introduced which is subsequently minimized in order to obtain
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the new optimal sensor locations. The resulting sensor configuration is the best possible choice for modal expansion
which is then compared with the conventional optimal configuration. For this new metric, the performance of sequential
and genetic algorithm-based search methods, which provides optimal/sub-optimal solutions with very low
computational effort, is also evaluated. Furthermore, the efficiency of the new sensor placement criterion is also

numerically evaluated using Monte Carlo simulations for some typical modelling error scenarios.

2. Optimal Sensor Placement for Modal Expansion

The experimental modal displacements Pre RS *™

evaluated at the s sensor positions for m modes, needs to be expanded
to all the n dof in order to obtain the mode shape We R™*™ of the complete structure. For this, any modal expansion
technique can be used. The quality of expansion depends on the choice of sensor location and uncertainties in the
determination of Y which can be due to measurement noise in sensors, numerical errors from system identification, etc.
In cases where modal expansion is performed using the a priori information from a numerical model, the quality of
expansion is also dependent on the errors in the numerical model. Thus, for a given error/uncertainty in the numerical
model and modal displacement , it is essential to determine the optimal location of sensors which leads to the most

efficient modal expansion.

2.1. Modelling error and measurement noise in mode shape

A mismatch between the real mode shapes and the ones derived from a numerical model is always found in practice,
typically because of incorrect modelling assumptions, unknown system dynamics, inaccurate knowledge of material
properties and structural dimensions, and numerical errors arising from different sources (e.g. inadequate mesh size of
finite element model, numerical errors in solver, round-off errors, etc.). The resulting net discrepancy between numerical
and real mode shapes is represented by € and is hereinafter referred at as the modelling error. Thus, numerical mode
RTL XxXm

shapes @ €

e R*X™M g5,

are assumed to be equal to the real mode shapes ¢ € R™**™ corrupted by the modelling error

P =¢ + ¢
By using vibration data measured from the real structure using any sensor configuration S, the corresponding
experimental modal displacements can be extracted. Due to measurement noise present in the sensors and numerical
errors involved in the identification of mode shapes, the calculated modal displacements will also be different from the
real values. This difference in the modal displacement at sensor locations is represented by the measurement noise 1.
The experimental mode shapes § at the s measurement location extracted using vibration data from the real structure
is thus related to the real mode shapes of the structure at sensor locations @g € RS*™ as,

=@+
Reynders et al. [35, 36] studied uncertainties in modal displacements when using a Stochastic Subspace Identification
(SSI) algorithm on acceleration data collected from a beam. The uncertainty in the mode shapes for any mode was found
to be neither constant for all the dof nor were the values at each dof clearly proportional to the corresponding modal
displacement. Similarly, Dohler et al. [37, 38] obtained the confidence intervals for the mode shapes derived from the
SSI algorithm in case of a bridge. Results were similar to those obtained in [35]. This confirms that the variation of
errors in mode shapes from measurement noise and system identification cannot be easily generalised and represented
for the different dof .
Thus, for any mode [ of the system, the measurement noise ‘e RS*! is assumed to be Gaussian with 0 mean,
uncorrelated and with the same standard deviation gy at all sensor locations. Even though Tondreau et al., [39] have
shown that the errors in the identified mode shapes are correlated at some dof, in the present study this correlation is

not considered. Similarly, the modelling error gle R®* ! is also assumed to be Gaussian with 0 mean, uncorrelated and
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with the same standard deviation o, at all the dof. Thus, the error (both due to modelling and measurement noise) in
the mode shapes can be quantified using o, and o;,. As an example, Fig. 1 shows the 95% uncertainty bound on the real
mode shape @' of a cantilever beam for different values of o, when the maximum value of the numerical mode shape
is normalised to one. The probability density function (pdf) which follows a normal distribution with the standard

deviation o, is also plotted at the centre of the beam. A higher value of g, means higher uncertainty and vice versa.
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Fig. 1. 95% uncertainty bounds in real mode shape ¢' with standard deviation o, of 0.10 and 0.05 in case of
a cantilever beam for; (a) Mode-1 and (b) Mode-2
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2.2. Expansion of mode shapes from sparse measurements

Modal expansion is normally performed in two ways: (a) through a geometric curve fitting using splines or other higher-
order polynomial functions without using information from a numerical model or (b) based on the a priori information
available from a numerical model. The Guyan static reduction/expansion [40] is one of the first available methods for
reduction/expansion of any numerical model. However, since static expansion neglects the inertia of the unmeasured
dof, the mode shape predictions can be erroneous if significant masses are located at such dof [41]. This method was
extended to include the full equation of motion for modal expansion which resulted in more dynamically accurate
methods such as the dynamic expansion method [42]. The present study uses the System Equivalent Reduction
Expansion Process (SEREP) [43,44], which expands the mode shapes to unmeasured dof using the complete numerical
mode shapes. When the number of sensors s is greater than or equal to the number of modes m used for expansion, s
can be expanded to W defined at all the n dof as,
¥ =Cy ()

where C € R™*¢ is the SEREP transformation matrix given by,

C=odf
@, € R°*™ represents the numerical mode shape at the s sensor positions and <1>er represents the Moore-Penrose
pseudo-inverse (left-hand inverse) defined as ¢ST = (dDSTd)S)_ld)ST.
C is dependent on the sensor configuration S and the numerical mode shape ®. In the absence of measurement noise
and modelling error (g; = 0 and g, = 0), the experimental modal displacement at the sensor positions will be identical
to the corresponding numerical mode shape (Y = ®y). In this case, irrespective of the chosen sensor configuration, the
expanded mode shape W = @ (this can be verified by substituting Y = ®g in Eq. (1)). Thus, under this condition ¥,
@, and @ are all identical thereby making the modal expansion insignificant. The sensor placement problem, thus
involves, determination of a certain sensor configuration S to expand the reduced experimental modal displacements s
using the numerical mode shapes @, such that the expanded mode shapes W are as close as possible to the real mode

shapes of the structure ¢ for a non-zero modelling error and measurement noise (o, # 0 and o # 0).



2.3. Normal distance as a measure

In order to ensure that the expanded mode shapes W are close to the real mode shapes of the structure ¢, a quantitative
scalar measure of similarity is required. Consider a n dimensional coordinate system with axes being the dof of the
structure. For any mode [, the real mode shape @' € R®** and the corresponding expanded experimental mode shape
Pl e R™*1 can be represented as two vectors in this space. Figure 2(a) shows such a system for a 2 dof system when
@' and W' are distinct and Fig. 2(b) depicts them being identical but with different scaling. The similarity between these
vectors can be quantified measuring either the angle or the distance between them. The [*" diagonal element of MAC
matrix calculated between ¢ and W denote the angle, while distance can be measured either in terms of the Euclidean
or the normal distance. If the error between the vectors is given by e = ¢! — W!, the Euclidean distance ||(pl - ‘Pl” is
proportional to the square root of MSE' between them and sensor placement based on this criterion was previously used
by Papadimitriou et al. [19], Zhang et al. [20] and Soman et al. [21] to estimate stresses, strains, displacements, etc.
MSE' is dependent on the scaling of vectors ! and ¢! and since mode shapes are independent of scaling, in order to
use MSE! it should be ensured that both these vectors are scaled identically. Upon scaling the vectors, a closed form
expression for MSE' cannot be established easily unless some strong mathematical assumptions are made, which may
eventually limit the applicability. It follows from Fig. 2(b) that even when W! and ¢! are identical but with different
scaling, MSE" is not 0 while the normal distance ||(pl - AC‘PIH reduces to 0. The main advantage of using the normal
distance ||(pl - ?\C‘Pl” is that it allows for obtaining a closed form solution under the assumed measurement noise and
modelling errors. Thus, the optimal sensor configuration is the one which minimizes the normal distance between the
two vectors. Since both the vectors are defined stochastically, expected value of the normal distance is used for

optimization. At a later stage, in order to assess the efficiency of the obtained optimal sensor locations, MSE! is used in

a Monte Carlo framework wherein it is possible to scale the mode shape vectors identically.
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Fig. 2. Representation of real and expanded experimental mode shape (¢! and W!) in a coordinate system
with degrees of freedom as axes for a two degree of freedom system when; (a) @' and ¥! are different and
(b) @' and W! are identical but with different scaling

Expected value of the square of the normal distance G for a particular sensor configuration S and vectors ¢! and ! is

o)

given by,
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Derivation of G' is shown in Appendix-A. A small value of G denotes that real mode shape ¢! and the expanded mode
shape W' are close and vice versa, thereby making it the objective function in this study.

Based on the definition of modelling error and measurement noise in Section 2.1, Eq. (2) becomes,
2
(¢’Tc¢§ +r(E(elel) CT))

tr(CZy2CT) + @l CTCo!

3)

G' = no? +|[|@! " -

2 T _ o

where, Zy® = Iyon?, on® = 0.2 + 0, and ||<I>’||2 = ®! ®!. Appendix-B shows the expected value of individual
terms in Eq. (2) which when substituted back results in Eq. (3). Even though the standard deviation of error in modal
displacements o;, due to measurement noise was assumed to be identical for all the sensors, the effect of varying amount

of noises across the channels can also be analysed by using

[agz + 0y 17 0 0 ]
se| 0 mewt e 0
l 0 0 052 + Gr),szj
where 0y, 1,05 2, ... , 0y s are the standard deviations across all the s sensors.

T . : . .

E (slsé ) € R™*S is a rectangular covariance matrix between the modelling error at n dof and those at the s sensor
positions. As the modelling errors between the different dof are uncorrelated, elements in the i" row and j** column
of the matrix is defined as follows,

ele Y
s 0.2 i=j"measured dof

E( . lT) _ {0 i # j*" measured dof @
ij

By using the definition of C given in Section 2.2, Eq. (3) can be reduced to the following (Appendix-C shows the

derivation),
(lo]l, + agzm)z

oN> (m + tr (‘Dd(q)qu’s)_lq’dT)) + ||<l’l||22

2

G'= no.* +||@' " - (5)

where @4 and @ represents @ partitioned at the unmeasured and measured dof respectively.

It can be seen from Eq. (5) that when modelling error and measurement noise become zero (o, = 0 and 0, = 0), G L

also reduces to zero irrespective of the chosen sensor configuration as explained in Section 2.2. For any given non-zero
-1 ) . .

o¢ and oy, only the term tr (<1>d (CDSTCDS) CIJdT) is dependent on the sensor location. Thus, this term governs the

efficiency of each sensor configuration for modal expansion. In case of expanding m modes, the total G over all the

G=§;G’ (6)

modes is calculated as,

3. Optimization algorithms

Optimal sensor placement is a combinatorial optimization problem which involves the selection of an optimal set of s
sensor positions S from a set of r possible positions R (s < r and S € R). Thus, the optimal configuration has to be
chosen from a set of C; = r!/s!/(r — s)! possible number of sensor configurations. In this study, the optimal location
is first evaluated using a global search of all the C§ possible sensor configurations. While the formulation of the new
metric G is of paramount importance in this work, it is also necessary to understand how G performs when different
standard optimization strategies are used. Thus, computationally cheap sequential and meta-heuristic optimization

algorithm-based placement methods are introduced as an alternative to the exhaustive search.



3.1. Optimal location based on a global search

In order for the sensor configuration to yield a modal expansion which is as close as possible to the real mode shape,
the optimal configuration is calculated by minimizing the function G in Eq. (6). This can be obtained by performing an
exhaustive global search of all the C possible configurations. Let S¢ denotes the corresponding optimal configuration.
The conventional optimal sensor configuration S. based on minimizing the linear independence of the modal
displacements between the different modes at the sensor locations is also evaluated. This is obtained by minimizing the
peak off-diagonal elements of the MAC matrix evaluated for all the modes using the numerical mode shape ®;. Let G
and G represent the value of G corresponding to the optimal sensor configuration Sg and S, respectively.

Even though the calculation of the optimal configuration using an exhaustive search of all possible configurations
ensures that the resulting solution is the true global optimal, for a large value of possible sensor positions 7 and number
of sensors s, the value of C§ become exponentially large. When r >> s, C{ is of the order of r° /s!. In such cases, instead
of performing an exhaustive search, a sequential procedure or any heuristic optimization strategy can be a promising

alternative which can provide the optimal or sufficiently accurate sub-optimal results for the function G.

3.2. Sequential sensor placement

Sequential placement algorithm can be either of a forward or of a backward type depending on whether sensors are
added or removed from an initial optimal configuration. The forward sequential placement (FSP) algorithm starts by
first placing m (number of modes) sensors in the structure using an exhaustive search by evaluating all the C™
configurations as in Section 3.1 and choosing the configuration S;pjtia Which minimizes G. Now, the remaining s — m
sensors are placed in s —m stages to the remaining r — m positions. The (m + 1) sensor is placed such that the
resulting configuration consisting of Sy1+1 = [Sinitial’  Sme1]” Minimizes G. This position Sy, is obtained using an
exhaustive search by placing the m + 1" sensor in the remaining r — m positions. Once the m + 1 sensors are optimally
placed, the process is repeated to place the remaining s — (m + 1) sensors. The computational effort is now of the order
of r™/m! instead of r5/s! obtained for an exhaustive global search. Along the same lines, a backward sequential
placement (BSP) can also be performed by first keeping sensors at all the r dofs and then successively removing a
sensor in each stage by performing an exhaustive search at each of those stages. The BSP algorithm requires the use of
only r(r + 1)/2 — s(s + 1) /2 evaluations. Figure 3 shows a summary of these algorithms.

Both the sequential algorithms are computationally cheap. As an e.g., for placing 6 sensors in 20 possible sensor
locations in order to expand 4 modes require CS, = 38760 evaluations for an exhaustive search, while the FSP and
BSP requires evaluating only C5, + (20 — 4) + (20 — 5) = 4876 and 20 + 19 + ---+ 8 + 7 = 189 configurations,
respectively. It is to be also noted that the sensor configuration resulting from sequential placement is not guaranteed to
be the same as the true global optimal configuration discussed in Section 3.1. However, it was observed that the results
from the sequential placement are very close to the global optimal values obtained by the exhaustive search. Let Sggp
and Sggp be the optimal configurations obtained by minimizing G respectively from the FSP and the BSP algorithms

and Gggp and Gggp be the corresponding values of G.
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Fig. 3. Flowchart of sequential sensor placement algorithm; (a) Forward sequential placement and (b)
Backward sequential placement.

3.3. Genetic algorithm-based sensor placement

In the family of heuristic optimization algorithms used in sensor placement problems, genetic algorithm-based (GA)
methods are widely adopted [45-49] and thus is also used in this study. Holland [50, 51] introduced the concept of GA
which is a population-based stochastic search technique based on the principles of natural selection and genetics. The
method starts by randomly selecting a set of possible initial configurations Xy which then evolves towards the optimal
configuration in each generation. Figure 4 shows a simplified layout of the algorithm. From any generation i, the i + 1
generation is created by means of selection, mutation and crossover [52, 53]. Selection involves finding a set of solutions
from X; which gives the best fitness values. Such solutions are directly included in the next generation X, 1. Crossover
involves finding new solutions by combining the two best solutions from X;, while mutation involves generating new
solutions by applying random changes to the individual solution in X;. This process is repeated until some desired
convergence criterion is satisfied. In this study, an integer-valued (corresponding to the numbering given to sensor
locations) GA is implemented using MATLAB [54]. In order to ensure that the solutions remain integer, special
crossover and mutation function given by Deep et al. [55] is used. The fitness function, in this case, is defined as the
sum of the objective function (G) to be minimized and a special penalty function for constraint violations [54, 56].
Constraints are provided such that no two sensors takes the same position. Let Sga represent the optimal configuration

based on this method and G, denote the corresponding function G.

Generate a random | = 0 X;
initial population X,

i*h generation

e ———————————

Termination
criterion
satisfied ?

End )= Yes

SGA 3 GGA

Fig. 4. Flowchart of genetic algorithm-based optimization [49]

4. Performance Evaluation

By an exhaustive search of all possible configurations, the new optimal location S obtained by minimizing G is
compared with the conventional MAC-based sensor placement S.. Besides introducing a new metric which can be used

as a measure of the accuracy of expansion and thereby determine the new optimal configuration suitable for expansion,
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it is important to understand as to how the conventional optimal configuration S, perform in cases where a modal
expansion is required. To the best of the authors’ knowledge, optimal sensor placement algorithms for modal expansion
in the past has not considered the effect of modelling error and measurement noise and were based on the use of
mathematical interpolation algorithms (e.g. cubic, spline interpolation, etc.) for expansion. On the contrary, the present
sensor placement study considers the effect of both modelling error and measurement noise along with the SEREP
modal expansion technique and thus, the new optimal configuration Sq is not compared with the literature [31-33]. In
case of complex structures containing critical substructures, it may be needed to expand the modal displacement of these
substructures using the sensor data available only from the main structure. A mathematical interpolation-based
expansion may not be preferred in such cases and methods similar to SEREP expansion are needed.

The performances in modal expansion between the different methods are compared first using a simple cantilever model
and then with a real industrial milling tower. Smaller the function G, better is the similarity between the expanded and
the real mode shape. Percentage decrease I¢; in the function G, when using the optimal configurations Sg instead of
the conventional optimal configuration S, is computed as,

G. — Gg
Ieg = CG— x 100 (7)

c

For the function G, sequential and GA-based search is also performed. The reduction in G when using the sequential
and GA based search is quantified using I¢ psp, I¢ psp and I¢ ¢4 and are obtained by replacing G with Gpgp, Ggsp and
Gga respectively in Eq. (7). A smaller value of I ; denotes the performance of conventional optimal configuration S¢
in mode shape expansion to be closer to the new optimal configuration S and vice versa. In order to assess the efficiency
of the GA and the sequential sensor placement algorithms, the percentage difference in G; with G4, Grsp and Gggp is
evaluated as in Eq. (7) to obtain I, g, Irsp,g and Iggp ¢ by replacing G¢ with G4, Gpsp and Gggp respectively. Smaller
the value of these metrics, better the performance of the corresponding algorithm with respect to the exhaustive global
search and vice versa.

The optimal sensor locations based on G are insensitive to the values of o and g, (only when oy, is identical across all
the sensors). However, the magnitude of G increases with an increase in o, and 0y,. g, depends on many factors such as
knowledge of system dynamics, uncertainties in structure, modelling assumptions, etc. while a;, depends on the quality
of the sensors, cables and data acquisition devices, errors arising in system identification algorithms, etc. [57]. Due to
such randomness, the value of o, and g;, is highly problem dependent and thus cannot be generalized. This is also clear
from the uncertainty bounds estimated in the SSI of modal parameters for a bridge and a building reported in Reynders
et al. [35] where the obtained uncertainty bounds were found to be different for the two cases. Hence, in this study, the
modal expansion performance is evaluated for some range of g, and g, values shown in Table-1.

It is to be noted that while the magnitude of G is dependent on the modes considered and the values of g, and gy, the
optimal configuration S is independent of these factors. This is because the effect of sensor configuration is identical
in all the modes and thus finding the optimal configuration for a particular mode ensures that it is also optimal for other
modes considered in the formulation of the transformation matrix C. Unless mentioned explicitly, G is calculated with

respect to the first mode of the structure (G = G1).

Table — 1. Standard deviation combinations of measurement noise and modelling error

Combination I.D. 1 2 3 4 5 6 7 8 9
oy 001 001 001 005 005 005 010 0.10 0.10
O 001 0.05 0.10 001 005 010 0.01 0.05 0.10
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4.1. Cantilever beam

A 2D cantilever beam was considered, the numerical model of which was created using 100 2-noded Euler—Bernoulli
beam elements. Only the translational dof in Y direction was considered. The first four predominant modes were
considered for expansion and numerical mode shapes were scaled such that the maximum magnitude of displacement
in each mode was one. 20 possible locations to place sensors which are uniformly spaced along the span of the beam

were considered and are shown in Fig. 5.

Y 1 2 3 4 5 . 7 .8 9 10 11 12 13 14 15 16 17 18 19 20

# Possible sensor positions

X
Fig. 5. Cantilever beam showing 20 possible sensor locations S to keep uniaxial accelerometers in Y direction
A simple case of identifying the first 2 predominant modes in Y direction using 2 sensors is initially considered. An
exhaustive search of all the C3, = 190 configurations were carried out to find both the optimal configurations S¢ and

S¢. Figure 6 shows the variation of the function G for the first mode and standard deviation combination 9 (from Table-

1) with the position of both the sensors s; and s5.

Fig. 6. Variation of G (for mode 1 and standard deviation combination 9) with sensor positions s; and s,

It was found that Sc = [9 17]7 and S¢ = [11 20]” and the corresponding G was 2.52 and 2.08, respectively. In
this case, I ; = 17.5% which denotes a significant reduction in G. Thus, an optimization based on G is essential is

expected to provide the best sensor configuration for modal expansion.
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Fig. 7. Comparison of optimal configurations in case of the cantilever beam for different number of sensors;
(a) SC with SG and (b) SG with Spsp, SBSP and SGA

Now, a further set of simulation using 4 modes and number of sensors s ranging from 4 to 10 is analysed to obtain the
optimal configurations S¢ and Sg, and thus study the influence of the number of sensors on mode shape expansion G.
Being a theoretical study, the upper limit on the number of sensors was chosen such that they are half the possible
number of sensor positions. For cases where s is between 5 to 10, FSP algorithm was used to obtain the optimal
configuration Sggp. BSP and GA was also used respectively in order to determine the optimal configurations Sggp and
Sca for s between 4 to 10. In case of GA, population size was taken as 50 and 200 for the case where the number of
sensors s is 4 and 10 respectively, while for the remaining cases, it was appropriately chosen between 50 and 200. 5%
of the best solutions from any generation was taken directly to the next. The remaining population was created using
80% of cross-over and 20% of mutation. The optimization was assumed to converge when the average change in the
fitness value over stall generations became less than a tolerance value (1E — 6) [54]. All the GA results shown in this
study are based on these settings. However, it is possible to further fine-tune the accuracy and computational cost of GA
by suitably adjusting these parameters [47-49, 58] and is not attempted here as it is beyond the scope of this paper.
Figure 7(a) shows the comparison between S¢ and S while Fig. 7(b) compares Sg with Sgsp, Spsp, and Sga-

Figure 8 shows the variation of G¢ and Gg for s varying from 4 to 10. It shows that with an increase in o, and g,), both
Gc and G increases. For any given g, and o, G¢ and Gg decreases with an increase in the number of sensors s. As
expected, Gg is always less than G¢. Figure 9(a) shows the variation of I ¢ for all standard deviation combinations and
it is found to vary between 3 to 24% making the configuration Sg the best choice for expansion. However, neither the
configuration Sg nor increasing the number of sensors help in offsetting the effect of high o, and o,. Given these

limitations, the configuration Sg is guaranteed to outperform the conventional optimal configuration Sc.
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Fig. 8. Comparison of G and G in the case of the cantilever beam for all standard deviation combinations
(number in parenthesis of G and G; denote the number of sensors s)

Figure 9(a) also shows the variation of I¢ gsp, I¢ gsp and I¢ ga for all standard deviation combinations. The performance
of sequential algorithms and GA can also be seen from Fig. 9(b-d) wherein the variation of Igsp g, Igsp,g and Iga g 18
plotted for different values of s. The maximum value of Igsp g and Igsp g is around 3% and occurs when s = 5. This
may be because, the difference between configuration Sg and configurations Sggp and Sggp (from Fig. 7(b)) is maximum
for this case. In the case with 7 and 10 sensors, it is seen that FSP provided the global optimal configuration Sg while
BSP provided the global optimal configuration for 4 and 7 number of sensors. This can be also seen from Iggp g and
Igsp G taking O for these configurations. For s taking values between 8 and 10, Igsp g and Igsp g is less than 1% for all
the standard deviation combinations, indicating that both the sequential algorithms are efficient for a larger number of
sensors. The GA method provided the true global optimal solution for s between 4 to 7. Maximum value of Iga g is
found to be around 4% which was reported when s = 8. The sequential algorithm provides the global optimal for all
values of s only if the optimal sensor configuration S when s = i — 1, is a subset of the optimal configuration for the
case with s = i. While this condition cannot be ensured for all structures, it can be seen from Fig. 7(a) that some sensors
maintain their positions as the number of sensors are increased because of which the sequential method provided optimal

solutions in some cases and good sub-optimal solutions in the remaining situations.
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Fig. 9. Comparison of different optimization algorithms for the cantilever beam. Variation of (a) I, I¢rsp,
I¢psp and I¢ g, (b) Igsp g (Igspg = O for s = 7 and 10), (¢) Igsp g (Igsp,c = 0 for s = 4 and 7), and (d) I¢a
(IGA,G =0fors=4to 7)

4.2. Industrial Milling Tower

The performance of the proposed sensor placement strategy is now evaluated for an industrial tower of the Birla Carbon
Italy SRL production plant in Trecate, Italy. The structure is made of steel with a floor dimension of 6 x 6.6 m and
approximately 25 m tall with 7 storeys. It houses two steel tanks at a height of 20 m and 10 m from the base. This main
tower is attached to a secondary tower which is 30 m tall with 10 storeys and a floor dimension of 2.5 x 4.8 m. An
expansion is essential in such a structure, especially if the condition of substructures such as the two tanks or other
internal pipelines needs to be estimated using sensors located on the main tower. The first and second bending modes
of the structure in both the X and Y directions are considered for expansion. Figure 10(a) shows a picture of the whole
structure while Fig. 10(b) shows the corresponding finite element (FE) model along with the coordinate system. The FE
model was created using 3D Euler—Bernoulli beam elements for all the beams and columns while the tanks were
modelled using shell elements. The model has 10876 translational dof in X and Y direction which is considered for
modal expansion. It was decided to provide an identical number of sensors in both the directions. As shown in Fig.
10(c), 22 possible locations for the placement of uniaxial accelerometers were identified in the main tower based on
accessibility and other practical constraints. As in the case of the cantilever beam, the effect of sensor configurations S,

S¢ and Sg are studied by using 4, 6, 8 and 10 sensors.

(b) (©
Fig. 10. (a) Milling tower in Birla Carbon Italy srl, (b) Corresponding finite element model and (c) 22
possible locations for the placement of uniaxial sensors

The mode shapes were normalized such that the maximum displacement in the main tower was one. Figure 11 shows
the comparison of the optimal configurations S¢, Sg, Sgsp, Sgpsp, and Sga. GA was implemented with parameters
identical to that used for the cantilever beam. Variation of both G and G for all the standard deviation combinations

were similar to that of the cantilever beam and thus is not reported here.
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(a) SC with SG and (b) SG with SFSP’ SBSP and SGA

Figure 12(a) shows the function I¢ g, I rsp, Ic,sp, and I¢ g4 for all standard deviation combinations and different values

of s. It was found that these indices ranged between 10% to 40%, showing a significant reduction in G when compared

to the conventional optimal configuration. Figure 12(b) and 12(c) shows the variation of Iggp  and Igsp g, the maximum

values of which was only around 2 % and 1 % respectively, while Fig. 12(d) depicts I, g, with a maximum value of

4% and occured for s = 10. The FSP method provided the global optimal configuration only in the case with 6 sensors

while the BSP method provided global optimal with 4 and 10 sensors. In spite of the fact that both the sequential methods

did not result in global optimal for some scenarios, the very low values of Iggp ¢ and Igsp ¢ indicates that they can still

be used. GA method provided the optimal configuration in the case with 4 and 6 sensors.
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Fig. 12. Comparison of different algorithms for the milling tower. Variation of (a) I¢ g, Icgsp, Icgsp and I¢ga,
(b) IFSP,G(IFSP,G =0fors = 6), (C) IBSP,G (IBSP,G = 0 for s = 4 and 10), and (d) IGA,G (IGA,G = 0 for s = 4 and
6)

By using the GA based optimization on the function G for both the cantilever beam and the milling tower, it was seen
that, the method reached the global optimal solution for cases when the number of sensors are not large, while both the
FSP and BSP provided global optimal solution only in certain cases. Still the very low values of Igsp ¢ and Igsp ¢ indicate
the closeness of the solutions from the sequential method to the global optimal values. Figure 13 compares the number
of configurations evaluated for the cantilever beam and the milling tower when using the different methods. As stated
before, the optimization performed using an exhaustive search of all possible configurations becomes expensive as the
number of sensors increases. The GA method was found to be computationally cheap for a smaller number of sensors,
while with an increase in sensors, it becomes expensive than the sequential methods. As mentioned before, the
performance of GA can be further improved by tuning their properties such as the population size, number of elite
children, crossovers, and mutations, etc. The BSP is found to be the most computationally efficient method. The FSP is
better than GA only for a larger number of sensors. The comparatively better estimation of G coupled with the low

computational cost makes the BSP an efficient procedure for optimization in these case studies.
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Fig. 13. Comparison of number of sensor combinations evaluated for different optimization algorithms
in case of; (a) The cantilever beam and (b) The milling tower

5. Performance of the new optimal sensor configuration in modal expansion: A numerical study

Efficiency in modal expansion using the new optimal sensor locations Sg over the conventional locations S is evaluated
numerically for some typical realistic modelling error scenarios using a Monte Carlo framework [34]. In contrast with
the definition of real mode shape ¢ in Section 2.1, here ¢ is obtained directly from the real structural model, which is

assumed to be identical to the numerical model with the exception of a known modelling error (bias). The experimental
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mode shape P follows the same definition as in Section 2.1 whereby it is assumed to be ¢ corrupted with a Gaussian
measurement noise 1 of zero mean and a given standard deviation g;, (this is a reasonable assumption, as 1 is not
affected by any bias). For a given magnitude of measurement noise, modelling error and number of sensors, the expected
value of mean square error MSE between ¢ and ¥ evaluated using Monte Carlo simulations is used as a measure of the
quality of expansion. Figure 14 shows the algorithm to calculate the same. While the function G was based on the normal
distance between the two mode shape vectors, here MSE can be adopted as a metric as both the vectors can be easily
normalized. Also, it will be further shown that both MSE and G are analogous. The cantilever beam and the milling
tower are again used as case studies. In each case, the configurations Sg and S¢ are first determined for a given s.
Subsequently for different values of modelling error in the numerical model and measurement noise, MSE

corresponding to Sg and S are evaluated respectively as MSE; and MSE.

Repeat N times
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Fig. 14. Flowchart of the Monte Carlo simulations

5.1. Cantilever beam with modelling error

A beam identical to that used in Section 4.1 is considered. The rotational stiffness at the fixed end is an important source
of uncertainty in such beams (flexible boundary condition). It is assumed that the difference between the numerical and
the real structural model is solely attributed to this uncertainty. At the left end of the beam shown in Fig. 5, translational
dof in X and Y is restrained and a rotational spring Ky ; acting along the Z direction (perpendicular to the plane of the
beam) is introduced. The numerical model is formulated by assuming Ky ; = 1000 Nm/rad. However, the real value
of Ky 7 is not known and the difference between the numerical and real model is only due to the uncertainty in the values
of Kg 7. In this study, Gaussian distributions with mean py, , = 1000 Nm/rad and different values for the coefficient
of variation COV, (ratio of the standard deviation to the mean) are used to represent the real values of Ky ;. As in Section
2.1, measurement noise 1 in mode shape is characterised by a zero-mean Gaussian process with a standard deviation
g, Based on a sensitivity analysis, the number of simulations N required for Monte Carlo simulations was set to 10000.
In order to identify and expand the first four modes, optimal configurations Sg and S¢ are calculated fors = 4, 6,8 and
10 using an exhaustive global search and are shown in Table-2.

Table — 2. Optimal sensor location in beam for Monte Carlo study

S Type Sensor location
Sc [4 9 14 18]T
4 Sg [5 10 15 20]"
Sc [4 7 10 13 16 19]7
6 S [4 7 10 14 16 20]T
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Sc 1 4 6 9 11 14 16 19]"

8 Se 4 5 8 10 11 15 16 20]"
Sc 2 4 6 8 10 12 14 15 18 19]"
10 Se [4 5 6 9 10 11 15 16 17 201"

Monte Carlo simulations are then performed as in Fig. 14 to obtain the MSE,; and MSE of the first four modes (scaled
for unit modal displacement at the free end) for different values of s and various combinations of COV, (COV; =
0.01,0.50,1.00 and 2.00) and oy (0, = 0.01, 0.05,0.10,0.20 and 0.50). Percentage difference in the MSE values when
using the new configuration Sq instead of S¢ is further calculated as Iz;s5. Table-3 shows the corresponding values of
MSE;, MSE. and I3sg. Similar to the variation of G observed in Section 4.1, both MSE; and MSE, are found to

increase with an increase in COV; and g;) while decreasing with an increase in the number of sensors s. For a given
COVg, oy, and s, MSE{; is significantly lower than MSE(. This is clear from the values of Iy, whose maximum and

minimum values are in the order of 42% and 13.9% respectively.

Table — 3. MSE;, MSE cand I35 in case of the beam

COV, of Ko
0.01 0.50 1.00 2.00
S O’n
WSE. MSE. F sE. WMSE. " WSE. WSE. F WSE. WMSE. MoF

0.01 0.035 0.061 426 0.046 0.077 403 0.054 0.090 400 0.063 0.104 394
0.05 0.884 1527 421 0.899 1551 42.0 0919 1581 419 0945 1.623 418
4 0.10 3526 5320 337 3540 5337 337 3,557 5360 336 3584 5393 335
020 11.772 14938 212 11.780 14.958 21.2 11.794 14984 213 11.814 15.020 21.3
0.50 34.811 42261 17.6 34.814 42296 17.7 34.820 42336 17.8 34.833 42391 17.8
0.01 0.026 0.032 188 0.035 0.044 205 0.042 0.053 208 0.050 0.063 20.6
0.05 0.642 0811 208 0.657 0.829 20.7 0.675 0.852 208 0.698 0.881 20.8
6 010 2584 3200 193 2598 3215 192 2616 3236 192 2643 3265 19.1
020 8.893 9933 105 8903 9944 105 8917 9959 105 8939 9982 104
0.50 26.309 28.692 83 26321 28.704 83 26336 28.720 83 26361 28746 83
0.01 0.020 0.028 28.6 0.029 0.040 275 0.036 0.048 250 0.044 0.058 24.1
0.05 0498 0708 29.7 0513 0725 292 0531 0746 288 0553 0.774 28.6
& 010 2006 2818 28.8 2.021 2834 287 2040 2854 285 2.069 2885 283
020 7.085 8833 198 7.094 8845 19.8 7.108 8860 19.8 7.130 8.883 19.7
0.50 20.794 25.257 17.7 20.804 25.271 17.7 20.818 25.286 17.7 20.839 25.313 17.7
0.01 0.017 0.022 227 0.027 0.033 182 0.034 0.041 17.1 0.043 0.051 15.7

0.05 0426 0542 214 0442 0561 212 0460 0582 21.0 0482 0.608 20.7
10 o010 1714 2177 21.3 1730 2197 213 1751 2222 212 1782 2257 21.0
020 6.139 7228 15.1 6.148 7.242 15.1 6.163 7.260 15.1 6.185 7.286 15.1
0.50 17.929 20.790 13.8 17.934 20.811 13.8 17.946 20.834 139 17965 20.867 139

Contrary to the assumptions of identical modelling error o, on the real mode shape ¢ at all the dof in Section 2.1 (Fig.
1), it was found from the Monte Carlo simulations that the uncertainty bounds on ¢ with respect to the numerical mode
shape @ is not constant across all the dof. This is clear from Fig. 15 which shows the uncertainty bounds of ¢ for
different values of COV,. Even though such significant simplifying assumptions on the effect of modelling error on the
real mode shape were made in the formulation of Eq. (5), and thereby the optimal sensor positions Sg, the significantly

large values of I3z in Table-3 still demonstrate the usefulness of the new optimal configurations.
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Fig. 15. 95% uncertainty bounds on real mode shapes of the cantilever beam from Monte Carlo simulations
for; (a) Mode-1, (b) Mode-2, (c) Mode-3 and (d) Mode-4

While the sensor placement criterion in this study was based on G, MSE and G are analogous, except that while the

former measures the square of Euclidean distance between two vectors, the latter measures the square of the normal

distance (which is the shortest distance). As an example, VMSE! and VG for the first four modes of the beam

corresponding to some particular values of COV, o, and s are given in Table-4 for both the configurations Sg and Sc.

The variation of both VMSE! and VG! is identical. [-—= and I , which respectively measures the percentage
Juset e pectively percentag

reduction in VMSE! and VG! from the two different sensor configurations, are also calculated. The pattern of [ —=

VMSE!

and /Gl is found identical, with a difference only in their magnitudes. This indicates that the sensor configurations

obtained by minimizing G and that from minimizing MSE should be similar.

Table — 4. VMSE! and VG! in case of cantilever beam for the first four modes when; (a) COV . = 0.01,
0, =0.01,s =4 and (b) COV, = 2.00, 0, = 0.50, s = 10.

(a)
Mode — —_—
Number, [ VMSE!g VMSE!¢ VGl VGlc I\/MSEI (%) I\/E (%)
1 0.0842 0.1093 0.0668 0.0789 23.01 15.28
2 0.0841 0.1042 0.0676 0.0769 19.29 12.03
3 0.0849 0.1020 0.0685 0.0764 16.84 10.39
4 0.0867 0.1045 0.0698 0.0788 17.06 11.37
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(b)
Mode g—— —_—
Number, [ VMSE!; VMSE!¢ VGlg VGic I\/MSEI (%) I\/a (%)

1 1.9825 2.1673 1.6693 1.8662 8.53 10.55
2 1.9860 2.1401 1.6786 1.8447 7.20 9.00
3 1.9686 2.1293 1.6689 1.8460 7.55 9.59
4 1.9946 2.0819 1.7334 1.8289 4.19 5.22

5.2. Milling Tower

In case of the milling tower described in Section 4.2, it is assumed that the rotational stiffness at the connections between
the tower and the ground is uncertain. Thus, Monte Carlo simulations similar to those for the cantilever beam are
performed by introducing a modelling error in the rotational stiffness at the base of the tower. Translational dof in the
nodes of the tower at the base are restrained in all the three directions. Torsional springs of identical stiffness value Ky
are used to model the rotational boundary conditions in all the three axes, the real value of which is unknown. The
numerical model is build assuming Kg = 1E + 06 Nm/rad while, for the real model, Gaussian distributions with mean
Uk, = 1E + 06 Nm/rad and COV; values of 0.01, 0.10, 0.50 and 1.00 is adopted. For gy, values of 0.01, 0.05, 0.10,
0.50 and 1.00 are used and 4, 6 and 8 number of sensors are considered. The optimal configurations for identifying the

first four modes are obtained and are shown in Table-5.

Table — 5. Optimal sensor location in milling tower for Monte Carlo study

s Type Sensor location
Sc [3 6 17 18]"
* S [6 11 19 20]"
Sc [5 6 10 13 21 22]7
° S¢ [6 11 13 16 19 20]"
Sc 2 4 5 9 11 14 18 19]7
8 S¢ [6 8 11 13 19 20 21 22]"

Table-6 shows the variation of MSE;, MSE. and I3;z5 of the first four modes (modal displacement scaled such that the
maximum displacement is unity), and it follows the same pattern as in case of the cantilever beam. The maximum and
minimum value of I35z are in the order of 60.5% and 18.4%, which shows a considerable reduction of the MSE when

using the new configuration Sg instead of the conventional configuration Sc.

Table — 6. MSE;, MSE cand I35z in case of milling tower

COV. of K
0.01 0.10 0.50 1.00
s oy
s Trem AMSE e e IMSE o e IMSE o —or IMSE
MSE; MSE MSE; MSE MSE; MSE MSE; MSE
G c (%) G C (%) G c (%) G C (%)

0.01 2.5 6.2 59.7 2.7 6.7 59.7 3.0 7.7 61.0 34 8.6 60.5
005 622 1567 603 664 1641 595 727 1700 572 787 1740 548

4 0.10 2455 5545 557 2563 5629 545 2632 566.0 535 2680 568.5 529
0.50 4287.1 61474 303 42979 6149.8 30.1 4303.0 61664 30.2 43062 61745 30.3

1.00 87114 9408.6 7.4 8722.1 94513 7.7 87287 94689 7.8 8739.0 94842 7.9

6 001 1.8 2.1 14.3 2.0 23 13.0 23 2.7 14.8 2.6 3.1 16.1
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0.05 459 539 148 490 577 151 537 633 152 584 69.2 156
0.10 183.0 2151 149 1907 229.0 16.7 1960 2456 202 1995 2583 228
0.50 3342.8 40089 16.6 3345.1 4099.0 184 33524 41659 19.5 3359.6 4201.5 20.0
1.00 7436.7 84849 124 7438.0 85862 134 7441.8 8632.0 13.8 7446.1 8683.2 14.2
0.01 14 1.9 26.3 1.5 2.1 28.6 1.8 24 25.0 2.0 2.8 28.6
0.05 34.1 477 285 365 509 283  40.0 56.0 28.6 438 61.1 283
g 010 1369 1907 282 1438 1999 281 151.0 2074 272 1564 212.6 264
0.50 27022 3730.5 27.6 27219 37348 27.1 27448 3750.1 26.8 27604 3762.4 26.6
1.00 6747.0 83155 189 67754 8342.1 18.8 6806.7 83523 18.5 6827.6 8367.7 184

The Monte-Carlo simulations shows that the optimal configuration Sg obtained using the novel metric G, are robust
with respect to both realistic modelling errors and measurement noise in comparison to the conventional configuration
Sc. Even when the uncertainty bounds of the real mode shapes vary drastically across the different dof in contrast to
the assumption of identical values for all the dof’, I35 values of the order of 41 % and 60 % were obtained for cantilever
beam and milling tower respectively. This indicates that using Sg, a significant improvement in the quality of mode
shape expansion is acheived. However, by ensuring maximum linear independence of mode shapes, the conventional
configuration S¢ is the best suitable choice for identification problems. Even though the new configuration S¢ provides
linearly independent modes, it will not be efficient for identification problems as the conventional configuration S..

When both mode shape expansion and identification are equally important, a Pareto optimization may be performed.

6. Conclusions

Expanding modal displacements from a specific set of sensors to all the degrees of freedom is essential in certain
structural health monitoring applications. Most of the commonly used conventional optimal sensor placement strategy
aims at maximising the independence of the modal displacements at the sensor positions. However, this is not guaranteed
to make the expanded mode shape close to the real mode shape under the presence of modelling error and measurement
noise and to date, this specific problem has not been addressed.

In this paper, the normal distance between the expanded and the real mode shape is proposed as a novel tool to quantify
their similarity. A new set of optimal configurations were obtained by minimizing this normal distance. The applicability
of sequential and genetic algorithm-based techniques for determining the optimal location were also evaluated. It was
found that the resulting new configuration, when compared to the conventional configuration, was able to reduce the
square of the normal distance by up to 24% and 40% respectively in case of the cantilever beam and the milling tower.
The efficiency of the obtained sensor locations under some realistic modelling error scenarios were further demonstrated
using Monte Carlo simulations. It was also seen that the optimal normal distance increased significantly with an increase
in measurement noise and modelling error. However, for a given modelling error and measurement noise, it was possible
to improve the quality of modal expansion by increasing the number of sensors. Also, it is to be understood that neither
the new optimal configuration nor an increase in the number of sensors is able to balance the increase in the normal
distance due to the increase in modelling error and measurement noise. At any rate, for a given modelling error,
measurement noise and number of sensors, the new optimal solution will be the best available choice in cases where an
expansion is required, ensuring an expansion which is as close as possible to the real mode shape. The numerical Monte
Carlo framework for assessing the efficiency of the expansion, may be enhanced by an experimental case study on a

benchmark problem in the future.
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Appendix — A

A.1. Expected value of normal distance

Let A represent an arbitrary scaling applied to W!. As the Euclidean distance between two distinct vectors is a positive
function, minimizing this function is equivalent to minimizing its square. For any sensor configuration S, square of the

Euclidean distance f between vectors ¢! and AW! is given by,

2 2
flo'2¥h)" =o' -2
The expected value of square of the Euclidean distance is given as,

E(f(e'2%)") = E(||o* - 2w!")

= E(¢" ') - 22E (" W) + 2E (¥ w!) (A1)
Differentiating Eq. (A1.1) with respect to A (for a given @' and ¥?) gives,
G%E (F(ot2w1)*) = —2.E(o" ') + 225 (w! @)
(o)

The stationary point of Eq. (AL.1),is 4, = ———=—=<
E(w!w!)

The second derivative of Eq. (A1.1) with respect to A is,

dz 2 T

— Lyl =2E(P'w!)>ovel+0

—E(f(ohaw!)”) = 2E(¥¥)
The second derivative is always positive since the expanded mode shape W! can never be a zero vector. Thus, 1, =
E ((plT‘l’l) /E (‘l’lT‘l’l) corresponds to the minimum of the expected value of the Euclidean norm for mode shapes
expanded using a particular sensor configuration S. This happens when the Euclidean norm becomes the normal distance

between the two vectors. The square of the expected value of the normal distance G* for a particular sensor configuration

S and vectors @' and ! can thus be obtained by substituting A, in Eq. (A.1.1) as,

(2 (o)

6t =E(r(e!2c%1)") = E(o" o) - (w"wt)
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Appendix — B

B.1. Definition of E ((p’T(p’)
From the relation between the real mode shape ¢! and the numerical mode shape ®!,
A IO NCIE)
=ol'@pl— @l — el @l + gl g
— ool 20! el 4 £l gl
E(¢"¢!) =E(o" @' —20" e+ ¢
E(e! @) - 2E (0! &) +E(e &)

E([@,") - 20 E(e!) + E (e &)

E([@!,”) - 20" E(e) + (el + &’ + -+ £7)
where, g = [¢} & . g7

E(o" o) =[@!," - 20" E@e) + (0,02 +0u®+ - +0,%) + (a? +® + -+ 1y ?)
Since, the modelling error is 0 mean with the same standard deviation o, at all the dof

E(o"¢!) =[@!,° -0+ no2+0

= no? + ||q>l||22

. .o T
B.2. Definition of E (‘Pl ll'l)
From the definition of experimental modal displacement, P! = @L +n! = ®L — €l +n' = ®! - N!
where, N! = &L — ! is the net difference of modelling error and measurement noise at the s sensor positions. Since
both € and 1 are assumed to be 0 mean Gaussian process with the same standard deviations g, and g, at all the relevant
dof, N! will also be a 0 mean Gaussian process with variance matrix given as,
IN = oyl
where, oy® = 0.% + 0% .
Now,
E(P') =p, =E(®l—NY) =@l —E(N!) = @}
vyl —g!'cTey!  (Since W! = Cyh
E(w'w!) =E(y' cTey!)

E <(¢' - ul,,,)T cre(w! - u¢1)> + 1yt TCTCp (from Section B.2.1)
=E <tr (C (lIJ’ — ”tl:’) (lIJ’ — uq,z)T CT)> + 1yt TCTCpy

T
- <CE ((q,z ~gt) (- ) )c) + iy TCT Oy
= tr(CZNZCT) + uq,zTCTCuq,z , where Zy% € RS*S is the covariance matrix of .

E(¥"w!) =tr(cEy’CT) + @l el
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B.2.1. Proof that E ((1[11 — ) CTC(Pt - u,,,l)) + T CTCpy = E (:p’TcTap’)

E <(¢l - uq,,)T c’c (q;’ - l‘w')) + 1y TCTCp

~ E (q;chch;’ — P CTCpy — pyTCTCY! + 1y TCTCu ) + 1y TCTChy,

= E(w! cTey!) — E(¥) CTCuyr — mya"CTCE(WY) + g1yt "CTCRy + g1y TCTCR,
E (q;’Tcch;’) — My TCTCRy — 1y TCTChy + g TCTC e+ g TCTCpy

= E (lIJlTCTClIJl)

B.3. Definition of E ((plT‘Pl)

E(¢"w!) =E(@")E(W!) +tr(cov(e! W)
where cov((pl, ‘Pl) is the covariance matrix between ¢! and W!
E(¢"'®!) =E(¢" )E(Cy’) +tr(cov(g!, )

=o' cdl +tr (cov(cp’, qul)) (Since E(¢@') = @' and E(¢') = @} )

tr (COV(q’l’ Cll’l)) - (E (((pl - u“’l) (cq:’ - Cuwl)T>)

— (B (0! — e = 1) (@ — gl + —¢g)TcT)>
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Appendix — C

C.1. G' when using SEREP modal expansion
In case of SEREP expansion, Cd>£ = @!. Thus,
ol col = ol @l = |@!| * (C.1.1)

ol cTcol = (col) col = o' @l = ||o! ° (C.12)
The mode shape matrix ®! can be partitioned based on the measured and unmeasured dof as <I>1T = [q;éT cptliT]
where @} € R?* ! refers to the unmeasured dof and s +d = n.
Now from Egq. (4),

tr (E (s’séT) ) =u ([“eéls] cT) where 0 € R** is a null matrix
=tr (["Eé's] Oy (0,TD,)  [@," <1>dT])
= 0.2tr (@y(@,T0;) " @)
Since tr (®(@,T@;) " @) = m,

tr (E (slng) ") =0 m (C.1.3)
If all the sensor noises are assumed to be identical,
tr(CZy*CT) = oy2tr(ccT)
= oy’tr (@(@,T®,) @,". 0 (@, @) @7)
(] -1
= gy 2tr ([ ¢Z] (@ @) [T cpdT])
= o) 2 (tr ((I)S(CDSTd)s)_l(DST) +tr ((pd(q)qu)s)_lq)dT))
= g\2 (m +tr (cpd(cpqu:S)‘lcpdT)) (C.1.4)
Substituting Eq. (C.1.1-C.1.4) in Eq. (3),
2
(I@!,” + o.>m)

oN? (m +tr (‘Dd(d)qu’s)_lq’dT)) +[l@!l,”

G' = no + ||, -
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