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  Abstract 

  Modal expansion techniques are typically used to expand the experimental modal displacements at sensor positions to 

  all unmeasured degrees of freedom. Since in most cases, sensors can be attached only at limited locations in a structure, 

  an expansion is essential to determine mode shapes, strains, stresses, etc. throughout the structure which can be used for 

  structural  health  monitoring.  Conventional  sensor  placement  algorithms  are  mostly  aimed  to  make  the  modal 

  displacements at sensor positions of different modes as linearly independent as possible. However, under the presence 

  of modelling errors and measurement noise, an optimal location based on this criterion is not guaranteed to provide an 

  expanded mode shape which is close to the real mode shape. In this work, the expected value of normal distance between 

  the real mode shape and the expanded mode shape is used as a measure of closeness between the two entities. Optimal 

  sensor locations can be determined by minimizing this distance. This new criterion is applied on a simple cantilever 

  beam and an industrial milling tower. In both cases, by using an exhaustive search of all possible sensor configurations 

  it was possible to find sensor locations which resulted in a significant reduction in the distance when compared to a 

  conventional  optimal  sensor  placement  strategy.  Sufficiently  accurate  sub-optimal  sequential  sensor  placement 

  algorithm is also suggested as an alternative to the exhaustive search which is then compared with a genetic algorithm-

  based search.  The efficiency of this new sensor placement criterion is further verified using Monte Carlo simulations 

  for some realistic modelling error conditions.   
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List of symbols  𝚽 Numerical mode shape 𝛗 Real mode shape 𝛙 Experimental mode shape at sensor locations 𝚿 Expanded experimental mode shape 𝐂 Transformation matrix for modal expansion 

S Sensor configuration 𝐈𝒏 Identity matrix of size 𝑛 𝛆 Modelling error in mode shape 𝛈 Measurement noise in mode shape ℝ Set of real numbers Tr(𝐀) Trace of a square matrix 𝐀 ‖𝐗‖2 Sum of squares of all elements of vector 𝐗 Csr Number of 𝑠 combinations from 𝑟 when the order is not important 𝑀𝑆𝐸 Mean square error 𝐌𝐀𝐂 Modal Assurance Criterion matrix 𝑑𝑜𝑓 Degrees of freedom 𝑛 Total number of degrees of freedom 𝑠 Number of sensors used 𝑟 Possible number of sensor positions 𝜎 Standard deviation of a probability density function 𝜇 Mean of a probability density function 

1. Introduction   

Whether in conducting modal analysis tests or for structural health monitoring, a strategy for placement of sensors is of  

vital importance. The number of sensors which can be employed in practice is limited by factors such as cost, availability  

of power, accessibility of the structure, etc. Hence, the sensors which are deployed should be placed such that they  

maximise their intended utility. Mode shape is an important structural characteristic to be estimated for all modal  

analysis tests and in most health monitoring systems.  

Based on the modal displacements evaluated at the sparse sensor positions, it may be required in some situations to  

expand the mode shapes to all structural degrees of freedom (𝑑𝑜𝑓). This is important as the expanded mode shapes can  

be used to estimate the damage. For instance, Pandey et al. [1] and Kondo and Hamamoto [2] used the curvature of  

mode shapes as a damage indicator. An accurate estimation of mode shapes also improves the estimation of stress in  

structural members for fatigue analysis using vibration data. Pelayo et al. [3] evaluated stresses in a simply supported  

glass beam and a rectangular glass plate pinned at three points using vibration data and compared them with those  

estimated using strain gauges attached to some points on the structure. The estimated stresses were found to be in good  

agreement with those calculated from the strain gauges. A similar study to estimate stresses in an off-shore structure  

under operational conditions using modal expansion and vibration data was performed by Tarpø et al. [4,5].  

Papadimitriou et al. [6] predicted the power spectral densities of stresses in all the locations of a truss by using vibration  

data obtained at the sensor positions and a dynamic model of the structure. Dertimanis et al. [7] performed a similar  

study to estimate stresses in a beam due to moving loads. Modal expansion can also be important in industrial structures  

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Papadimitriou%2C+Costas
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wherein the condition of critical substructures such as tanks and pipelines need to be estimated based on the information  

provided by sensors attached to the main structure.  

Shah and Udwadia [8,9] proposed a methodology for determining the optimal sensor location for identification of  

dynamic systems under the presence of measurement noise. The optimal configuration was decided as the one which  

minimizes covariance of the parameter to be estimated. The method was subsequently used to determine the optimal  

sensor configuration in order to estimate the stiffness of columns of a framed structure using vibration data. Kammer  

[10] introduced a method which ranks sensor locations based on their contribution to the linear independence of modal  

displacements. Iteratively, locations that do not contribute significantly are removed. The final sensor configuration  

tends to maximize trace and determinant of the Fisher information matrix. The method was applied to the selection of  

sensor locations for identification and correlation of a set of target modes for structural characterization of a large space  

structure. The effect of both modelling error and measurement noise was further considered in the sensor placement  

[11,12]. Several other criteria exist to measure the suitability of optimal sensor positions such as singular value  

decomposition [13] and QR decomposition [14] of the modal matrix, the kinetic energy of modes at the sensor positions  

[15], etc. Kalman filter-based optimal sensor placement methods for state estimation in linear structural systems  

subjected to unmeasured excitations and noise-contaminated measurements obtained by minimizing the variance of the  

state estimate are gaining importance [16-18]. In the context of state estimation, mean square error (𝑀𝑆𝐸) based methods  

are also widely used [19-21]. An excellent overview of previously used optimal sensor placement techniques are  

available in Dongsheng [22], Ting-Hua and Hong-Nan [23], Mallardo and Aliabadi [24], Gomes et al. [25] and  

Ostachowicz et al. [26].  

In conventional vibration-based monitoring of structures, accelerometers are widely used and one of the commonly used  

criteria to determine their optimal position involves maximising the linear independence between the modal  

displacement vectors of different modes reduced to the sensor positions [27]. This is usually achieved by minimizing  

some scalar metric corresponding to the off-diagonal elements of the Modal Assurance Criterion (𝐌𝐀𝐂) [28] matrix  

computed at the sensor positions [27,29,30]. However, to the best of authors’ knowledge, still, there is no definite proof  

that such a criterion provides optimal configuration when a modal expansion is needed in the presence of modelling  

error and measurement noise. Gomes et al. [31] studied a sensor placement criterion which takes mode shape expansion  

into account for a plate structure. Modal displacements at sensor positions were expanded using splines and subsequently  

compared with the complete numerical mode shape. The Frobenius norm of the difference between the expanded and  

numerical mode shape was used as a measure of the quality of expansion. Similarly, Tong et al. [32] studied the sensor  

placement in case of a slab structure by using the mean square error (𝑀𝑆𝐸) between the numerical mode shapes and the  

mode shapes expanded from the sensor positions using cubic interpolation schemes. Meo and Zumpano [33] used the  𝑀𝑆𝐸 between the numerical mode shape and the mode shapes expanded by spline interpolation in case of a bridge  

structure to study the efficiency of different sensor placement criteria in modal expansion. The effect of measurement  

noise and modelling errors were ignored in all these studies [31-33]. Murugan Jaya et al. [34] studied the robustness of  

the conventional optimal configuration for modal expansion in the presence of modelling error and measurement noise  

in case of a cantilever beam and an industrial milling tower. The similarity between the expanded and the real mode  

shapes calculated in terms of the diagonal elements of the corresponding 𝐌𝐀𝐂 matrix was used as a performance  

criterion. It was observed that with an increase in modelling error and measurement noise, the correlation decreased  

rapidly, indicating the expanded mode shape to be significantly different from the real mode shape, showing the need  

for a robust sensor placement scheme.   

In this work, a novel performance metric to measure the similarity between real and expanded mode shapes under the  

presence of modelling error and measurement noise is introduced which is subsequently minimized in order to obtain  
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the new optimal sensor locations. The resulting sensor configuration is the best possible choice for modal expansion  

which is then compared with the conventional optimal configuration. For this new metric, the performance of sequential  

and genetic algorithm-based search methods, which provides optimal/sub-optimal solutions with very low  

computational effort, is also evaluated. Furthermore, the efficiency of the new sensor placement criterion is also  

numerically evaluated using Monte Carlo simulations for some typical modelling error scenarios.    

2.   Optimal Sensor Placement for Modal Expansion  

The experimental modal displacements 𝛙ϵ ℝ𝑠 x 𝑚 evaluated at the 𝑠 sensor positions for 𝑚 modes, needs to be expanded  

to all the 𝑛 𝑑𝑜𝑓 in order to obtain the mode shape 𝚿ϵ ℝ𝑛 x 𝑚 of the complete structure. For this, any modal expansion  

technique can be used. The quality of expansion depends on the choice of sensor location and uncertainties in the  

determination of 𝛙 which can be due to measurement noise in sensors, numerical errors from system identification, etc.  

In cases where modal expansion is performed using the a priori information from a numerical model, the quality of  

expansion is also dependent on the errors in the numerical model. Thus, for a given error/uncertainty in the numerical  

model and modal displacement 𝛙, it is essential to determine the optimal location of sensors which leads to the most  

efficient modal expansion.    

2.1. Modelling error and measurement noise in mode shape  

A mismatch between the real mode shapes and the ones derived from a numerical model is always found in practice,  

typically because of incorrect modelling assumptions, unknown system dynamics, inaccurate knowledge of material  

properties and structural dimensions, and numerical errors arising from different sources (e.g. inadequate mesh size of  

finite element model, numerical errors in solver, round-off errors, etc.). The resulting net discrepancy between numerical  

and real mode shapes is represented by 𝛆 and is hereinafter referred at as the modelling error. Thus, numerical mode  

shapes 𝚽 ϵ ℝ𝑛 x 𝑚 are assumed to be equal to the real mode shapes 𝛗 ϵ ℝ𝑛 x 𝑚 corrupted by the modelling error  𝛆 ϵ ℝ𝑛 x 𝑚 as,  𝚽 =  𝛗 +  𝛆  

By using vibration data measured from the real structure using any sensor configuration 𝐒, the corresponding  

experimental modal displacements can be extracted. Due to measurement noise present in the sensors and numerical  

errors involved in the identification of mode shapes, the calculated modal displacements will also be different from the  

real values. This difference in the modal displacement at sensor locations is represented by the measurement noise 𝛈.   

The experimental mode shapes 𝛙  at the s measurement location extracted using vibration data from the real structure  

is thus related to the real mode shapes of the structure at sensor locations 𝛗𝐬 ϵ ℝ𝑠 x 𝑚 as,   𝛙 = 𝛗𝐬 +  𝛈   

Reynders et al. [35, 36] studied uncertainties in modal displacements when using a Stochastic Subspace Identification  

(SSI) algorithm on acceleration data collected from a beam. The uncertainty in the mode shapes for any mode was found  

to be neither constant for all the 𝑑𝑜𝑓 nor were the values at each 𝑑𝑜𝑓 clearly proportional to the corresponding modal  

displacement. Similarly, Döhler et al. [37, 38] obtained the confidence intervals for the mode shapes derived from the  SSI algorithm in case of a bridge. Results were similar to those obtained in [35]. This confirms that the variation of  

errors in mode shapes from measurement noise and system identification cannot be easily generalised and represented  

for the different 𝑑𝑜𝑓.  

Thus, for any mode 𝑙 of the system, the measurement noise 𝛈𝒍ϵ ℝ𝑠 x 1 is assumed to be Gaussian with 0 mean,  

uncorrelated and with the same standard deviation 𝜎𝜂 at all sensor locations. Even though Tondreau et al., [39] have  

shown that the errors in the identified mode shapes are correlated at some 𝑑𝑜𝑓, in the present study this correlation is  

not considered. Similarly, the modelling error 𝛆𝒍ϵ ℝ𝑛 x 1  is also assumed to be Gaussian with 0 mean, uncorrelated and  
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with the same standard deviation 𝜎𝜀 at all the  𝑑𝑜𝑓. Thus, the error (both due to modelling and measurement noise) in  

the mode shapes can be quantified using 𝜎𝜀 and 𝜎𝜂. As an example, Fig. 1 shows the 95% uncertainty bound on the real  

mode shape 𝛗𝒍 of a cantilever beam for different values of 𝜎𝜀 when the maximum value of the numerical mode shape  

is normalised to one. The probability density function (𝑝𝑑𝑓) which follows a normal distribution with the standard  

deviation 𝜎𝜀 is also plotted at the centre of the beam. A higher value of 𝜎𝜀 means higher uncertainty and vice versa.   

  
(a) (b) 

Fig. 1. 95% uncertainty bounds in real mode shape 𝛗𝐥 with standard deviation 𝝈𝜺 of 0.10 and 0.05 in case of 

a cantilever beam for; (a) Mode-1 and (b) Mode-2 

2.2. Expansion of mode shapes from sparse measurements  

Modal expansion is normally performed in two ways: (a) through a geometric curve fitting using splines or other higher- 

order polynomial functions without using information from a numerical model or (b) based on the a priori information  

available from a numerical model. The Guyan static reduction/expansion [40] is one of the first available methods for  

reduction/expansion of any numerical model. However, since static expansion neglects the inertia of the unmeasured  𝑑𝑜𝑓, the mode shape predictions can be erroneous if significant masses are located at such 𝑑𝑜𝑓 [41]. This method was  

extended to include the full equation of motion for modal expansion which resulted in more dynamically accurate  

methods such as the dynamic expansion method [42]. The present study uses the System Equivalent Reduction  

Expansion Process (SEREP) [43,44], which expands the mode shapes to unmeasured 𝑑𝑜𝑓 using the complete numerical  

mode shapes. When the number of sensors 𝑠 is greater than or equal to the number of modes 𝑚 used for expansion, 𝛙   

can be expanded to 𝚿 defined at all the 𝑛 𝑑𝑜𝑓 as,   𝚿 = 𝐂𝛙 (1) 

where 𝐂 ∈ ℝ𝑛 𝑥 𝑠 is the SEREP transformation matrix given by,   𝐂 = 𝚽𝚽𝐬† 𝚽𝐬 ∈ ℝ𝑠 𝑥 𝑚 represents the numerical mode shape at the 𝑠 sensor positions and 𝚽𝐬† represents the Moore-Penrose  

pseudo-inverse (left-hand inverse) defined as 𝚽𝐬† = (𝚽𝐬T𝚽𝐬)−1𝚽𝐬T.   𝐂 is dependent on the sensor configuration 𝐒 and the numerical mode shape 𝚽. In the absence of measurement noise  

and modelling error (𝜎𝜂 = 0 and 𝜎𝜀 = 0), the experimental modal displacement at the sensor positions will be identical  

to the corresponding numerical mode shape (𝛙 = 𝚽𝐬). In this case, irrespective of the chosen sensor configuration,  the  

expanded mode shape 𝚿 = 𝚽 (this can be verified by substituting 𝛙 = 𝚽𝐬 in Eq. (1)). Thus, under this condition 𝚿,  𝛗, and 𝚽 are all identical thereby making the modal expansion insignificant. The sensor placement problem, thus  

involves, determination of a certain sensor configuration 𝐒 to expand the reduced experimental modal displacements 𝛙  

using the numerical mode shapes 𝚽, such that the expanded mode shapes 𝚿 are as close as possible to the real mode  

shapes of the structure 𝛗 for a non-zero modelling error and measurement noise (𝜎𝜂 ≠ 0 and 𝜎𝜀 ≠ 0).  
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2.3. Normal distance as a measure  

In order to ensure that the expanded mode shapes 𝚿 are close to the real mode shapes of the structure 𝛗, a quantitative  

scalar measure of similarity is required. Consider a 𝑛 dimensional coordinate system with axes being the 𝑑𝑜𝑓 of the  

structure. For any mode 𝑙, the real mode shape 𝛗𝒍 ϵ ℝ𝑛 x 1 and the corresponding expanded experimental mode shape  𝚿𝒍 ϵ ℝ𝑛 x 1 can be represented as two vectors in this space. Figure 2(a) shows such a system for a 2 𝑑𝑜𝑓 system when  𝛗𝒍 and 𝚿𝒍 are distinct and Fig. 2(b) depicts them being identical but with different scaling. The similarity between these  

vectors can be quantified measuring either the angle or the distance between them. The 𝑙𝑡ℎ diagonal element of 𝐌𝐀𝐂  

matrix calculated between 𝛗 and 𝚿 denote the angle, while distance can be measured either in terms of the Euclidean  

or the normal distance. If the error between the vectors is given by 𝐞 = 𝛗𝒍 − 𝚿𝒍, the Euclidean distance ‖𝛗𝒍 − 𝚿𝒍‖ is  

proportional to the square root of 𝑀𝑆𝐸𝑙 between them and sensor placement based on this criterion was previously used  

by Papadimitriou et al. [19], Zhang et al. [20] and Soman et al. [21] to estimate stresses, strains, displacements, etc.   𝑀𝑆𝐸𝑙 is dependent on the scaling of vectors 𝚿𝒍 and 𝛗𝒍 and since mode shapes are independent of scaling, in order to  

use 𝑀𝑆𝐸𝑙 it should be ensured that both these vectors are scaled identically. Upon scaling the vectors, a closed form  

expression for 𝑀𝑆𝐸𝑙 cannot be established easily unless some strong mathematical assumptions are made, which may  

eventually limit the applicability. It follows from Fig. 2(b) that even when 𝚿𝒍 and 𝛗𝒍 are identical but with different  

scaling, 𝑀𝑆𝐸𝑙 is not 0 while the normal distance ‖𝛗𝒍 − λ𝑐𝚿𝒍‖ reduces to 0.  The main advantage of using the normal  

distance ‖𝛗𝒍 − λ𝑐𝚿𝒍‖ is that it allows for obtaining a closed form solution under the assumed measurement noise and  

modelling errors. Thus, the optimal sensor configuration is the one which minimizes the normal distance between the  

two vectors. Since both the vectors are defined stochastically, expected value of the normal distance is used for  

optimization. At a later stage, in order to assess the efficiency of the obtained optimal sensor locations, 𝑀𝑆𝐸𝑙 is used in  

a Monte Carlo framework wherein it is possible to scale the mode shape vectors identically.  

  

(a) (b) 

Fig. 2. Representation of real  and expanded experimental mode shape (𝛗𝒍 and 𝚿𝒍) in a coordinate system 

with degrees of freedom as axes for a two degree of freedom system when; (a) 𝛗𝒍 and 𝚿𝒍 are different and 

(b) 𝛗𝒍 and 𝚿𝒍 are identical but with different scaling 

Expected value of the square of the normal distance 𝐺𝑙 for a particular sensor configuration 𝐒 and vectors 𝛗𝒍 and 𝚿𝒍 is  

given by,  

𝐺𝑙 = E(𝛗𝒍𝑇𝛗𝒍) − (E (𝛗𝒍𝑇𝚿𝒍))𝟐
E (𝚿𝒍𝑇𝚿𝒍)  (2) 

https://www.sciencedirect.com/science/article/pii/S0266892004000529?via%3Dihub#!
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Derivation of 𝐺𝑙 is shown in Appendix-A. A small value of 𝐺𝑙 denotes that real mode shape 𝛗𝐥 and the expanded mode  

shape 𝚿𝒍 are close and vice versa, thereby making it the objective function in this study.   

Based on the definition of modelling error and measurement noise in Section 2.1, Eq. (2) becomes,  

𝐺𝑙 =  𝑛𝜎𝜀2 + ‖𝚽𝒍‖22 − (𝚽𝒍T𝐂𝚽𝒔𝒍 + tr (E (𝛆𝒍𝛆𝒔𝒍 T) 𝐂T))2
tr(𝐂𝚺𝚴2𝐂T) + 𝚽𝒔𝒍T𝐂T𝐂𝚽𝒔𝒍  (3) 

where, 𝚺𝚴2 = 𝐈𝐧𝜎Ν2, 𝜎Ν2 = 𝜎𝜀2 + 𝜎𝜂2 and ‖𝚽𝒍‖22 = 𝚽𝒍𝑻𝚽𝒍. Appendix-B shows the expected value of individual  

terms in Eq. (2) which when substituted back results in Eq. (3). Even though the standard deviation of error in modal  

displacements 𝜎𝜂 due to measurement noise was assumed to be identical for all the sensors, the effect of varying amount  

of noises across the channels can also be analysed by using   

ΣΝ2 = [   
 𝜎𝜀2 + 𝜎𝜂,12 00 𝜎𝜀2 + 𝜎𝜂,22 ⋯         0        ⋯         0        ⋮                   ⋮0                   0 ⋱ ⋮⋯ 𝜎𝜀2 + 𝜎𝜂,𝑠2]   

 
  

where 𝜎𝜂,1, 𝜎𝜂,2, … , 𝜎𝜂,𝑠 are the standard deviations across all the 𝑠 sensors.  E (𝛆𝒍𝛆𝒔𝒍 𝑇) ∈  ℝ𝑛 𝑥 𝑠 is a rectangular covariance matrix between the modelling error at 𝑛 𝑑𝑜𝑓 and those at the 𝑠 sensor  

positions. As the modelling errors between the different 𝑑𝑜𝑓 are uncorrelated, elements in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column  

of the matrix is defined as follows,  E (𝛆𝒍𝛆𝒔𝒍 𝑇)𝑖,𝑗 = {0     𝑖 ≠ 𝑗𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑜𝑓𝜎𝜀2 𝑖 = 𝑗𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑜𝑓 (4) 

By using the definition of C given in Section 2.2, Eq. (3) can be reduced to the following (Appendix-C shows the  

derivation),  

𝐺𝑙 =  𝑛𝜎𝜀2 + ‖𝚽𝒍‖22 − (‖𝚽𝒍‖22 + 𝜎𝜀2𝑚)2
𝜎Ν2 (𝑚 + tr (𝚽𝐝(𝚽𝐬T𝚽𝐬)−1𝚽𝐝T)) + ‖𝚽𝒍‖22 (5) 

where 𝚽𝐝 and 𝚽𝐬 represents 𝚽 partitioned at the unmeasured and measured 𝑑𝑜𝑓 respectively.  

It can be seen from Eq. (5) that when modelling error and measurement noise become zero (𝜎𝜀 = 0 and 𝜎𝜂 = 0), 𝐺𝑙  

also reduces to zero irrespective of the chosen sensor configuration as explained in Section 2.2.  For any given non-zero  σε and ση,  only the term tr (𝚽𝐝(𝚽𝐬T𝚽𝐬)−1𝚽𝐝T) is dependent on the sensor location. Thus, this term governs the  

efficiency of each sensor configuration for modal expansion. In case of expanding 𝑚 modes, the total 𝐺 over all the  

modes is calculated as,  

𝐺 = ∑𝐺𝑙𝑚
𝑙=1  (6) 

3. Optimization algorithms  

Optimal sensor placement is a combinatorial optimization problem which involves the selection of an optimal set of 𝑠  

sensor positions 𝐒 from a set of 𝑟 possible positions 𝐑 (𝑠 < 𝑟 and 𝐒 ⊂ 𝐑 ). Thus, the optimal configuration has to be  

chosen from a set of  Crs = 𝑟! 𝑠!/(𝑟 − 𝑠)!⁄  possible number of sensor configurations.  In this study, the optimal location  

is first evaluated using a global search of all the Crs possible sensor configurations. While the formulation of the new  

metric 𝐺 is of paramount importance in this work, it is also necessary to understand how 𝐺 performs when different  

standard optimization strategies are used. Thus, computationally cheap sequential and meta-heuristic optimization  

algorithm-based placement methods are introduced as an alternative to the exhaustive search.   
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3.1.  Optimal location based on a global search  

In order for the sensor configuration to yield a modal expansion which is as close as possible to the real mode shape,  

the optimal configuration is calculated by minimizing the function 𝐺 in Eq. (6). This can be obtained by performing an  

exhaustive global search of all the Crs possible configurations. Let 𝐒𝐆 denotes the corresponding optimal configuration.  

The conventional optimal sensor configuration 𝐒𝐜 based on minimizing the linear independence of the modal  

displacements between the different modes at the sensor locations is also evaluated. This is obtained by minimizing the  

peak off-diagonal elements of the 𝐌𝐀𝐂 matrix evaluated for all the modes using the numerical mode shape 𝚽𝒔. Let 𝐺𝐺  

and 𝐺𝐶 represent the value of 𝐺 corresponding to the optimal sensor configuration 𝐒𝐆 and 𝐒𝐜, respectively.  

Even though the calculation of the optimal configuration using an exhaustive search of all possible configurations  

ensures that the resulting solution is the true global optimal, for a large value of possible sensor positions 𝑟 and number  

of sensors 𝑠, the value of Cr s  become exponentially large. When 𝑟 ≫ 𝑠, Cr s  is of the order of 𝑟𝑠 𝑠!⁄ . In such cases, instead  

of performing an exhaustive search, a sequential procedure or any heuristic optimization strategy can be a promising  

alternative which can provide the optimal or sufficiently accurate sub-optimal results for the function 𝐺.   

3.2. Sequential sensor placement   

Sequential placement algorithm can be either of a forward or of a backward type depending on whether sensors are  

added or removed from an initial optimal configuration. The forward sequential placement (FSP) algorithm starts by  

first placing 𝑚 (number of modes) sensors in the structure using an exhaustive search by evaluating all the Crm  

configurations as in Section 3.1 and choosing the configuration 𝐒𝐢𝐧𝐢𝐭𝐢𝐚𝐥 which minimizes 𝐺. Now, the remaining 𝑠 − 𝑚  

sensors are placed in 𝑠 − 𝑚 stages to the remaining 𝑟 − 𝑚 positions. The (𝑚 + 1𝑡ℎ) sensor is placed such that the  

resulting configuration consisting of 𝐒𝐦+𝟏 = [𝐒𝐢𝐧𝐢𝐭𝐢𝐚𝐥𝑇 𝑠𝑚+1]𝑇 minimizes 𝐺. This position 𝐒𝐦+𝟏 is obtained using an  

exhaustive search by placing the 𝑚 + 1𝑡ℎ sensor in the remaining 𝑟 − 𝑚 positions. Once the 𝑚 + 1 sensors are optimally  

placed, the process is repeated to place the remaining 𝑠 − (𝑚 + 1) sensors. The computational effort is now of the order  

of 𝑟𝑚 𝑚!⁄  instead of 𝑟𝑠 𝑠!⁄  obtained for an exhaustive global search. Along the same lines, a backward sequential  

placement (BSP) can also be performed by first keeping sensors at all the 𝑟 𝑑𝑜𝑓𝑠 and then successively removing a  

sensor in each stage by performing an exhaustive search at each of those stages. The BSP algorithm requires the use of  

only 𝑟(𝑟 + 1) 2⁄ − 𝑠(𝑠 + 1) 2⁄  evaluations. Figure 3 shows a summary of these algorithms.   

Both the sequential algorithms are computationally cheap. As an e.g., for placing 6 sensors in 20 possible sensor  

locations in order to expand 4 modes require C20 6 = 38760 evaluations for an exhaustive search, while the FSP and  

BSP requires evaluating only C20 4 + (20 − 4) + (20 − 5) = 4876 and 20 + 19 + ⋯+ 8 + 7 =  189 configurations,  

respectively. It is to be also noted that the sensor configuration resulting from sequential placement is not guaranteed to  

be the same as the true global optimal configuration discussed in Section 3.1. However, it was observed that the results  

from the sequential placement are very close to the global optimal values obtained by the exhaustive search. Let 𝐒𝐅𝐒𝐏  

and 𝐒𝐁𝐒𝐏 be the optimal configurations obtained by minimizing 𝐺 respectively from the FSP and the BSP algorithms  

and 𝐺𝐹𝑆𝑃 and 𝐺𝐵𝑆𝑃 be the corresponding values of 𝐺.  
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(a)  (b)  

Fig. 3.  Flowchart of sequential sensor placement algorithm; (a) Forward sequential placement and (b) 

Backward sequential placement.  

3.3.  Genetic algorithm-based sensor placement  

In the family of heuristic optimization algorithms used in sensor placement problems, genetic algorithm-based (GA)  

methods are widely adopted [45-49] and thus is also used in this study. Holland [50, 51] introduced the concept of GA  

which is a population-based stochastic search technique based on the principles of natural selection and genetics. The  

method starts by randomly selecting a set of possible initial configurations 𝐗𝟎 which then evolves towards the optimal  

configuration in each generation. Figure 4 shows a simplified layout of the algorithm. From any generation 𝑖, the 𝑖 + 1  

generation is created by means of selection, mutation and crossover [52, 53]. Selection involves finding a set of solutions  

from 𝐗𝐢 which gives the best fitness values. Such solutions are directly included in the next generation 𝐗𝐢+𝟏. Crossover  

involves finding new solutions by combining the two best solutions from 𝐗𝐢, while mutation involves generating new  

solutions by applying random changes to the individual solution in 𝐗𝐢. This process is repeated until some desired  

convergence criterion is satisfied. In this study, an integer-valued (corresponding to the numbering given to sensor  

locations) GA is implemented using MATLAB [54]. In order to ensure that the solutions remain integer, special  

crossover and mutation function given by Deep et al. [55] is used. The fitness function, in this case, is defined as the  

sum of the objective function (𝐺) to be minimized and a special penalty function for constraint violations [54, 56].  

Constraints are provided such that no two sensors takes the same position. Let 𝐒𝐆𝐀 represent the optimal configuration  

based on this method and  𝐺𝐺𝐴 denote the corresponding function 𝐺.  

 

Fig. 4. Flowchart of genetic algorithm-based optimization [49] 

4. Performance Evaluation  

By an exhaustive search of all possible configurations, the new optimal location 𝐒𝐆 obtained by minimizing 𝐺 is  

compared with the conventional 𝐌𝐀𝐂-based sensor placement 𝐒𝐜. Besides introducing a new metric which can be used  

as a measure of the accuracy of expansion and thereby determine the new optimal configuration suitable for expansion,  
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it is important to understand as to how the conventional optimal configuration 𝐒𝐜 perform in cases where a modal  

expansion  is required. To the best of the authors’ knowledge, optimal sensor placement algorithms for modal expansion  

in the past has not considered the effect of modelling error and measurement noise and were based on the use of  

mathematical interpolation algorithms (e.g. cubic, spline interpolation, etc.) for expansion. On the contrary, the present  

sensor placement study considers the effect of both modelling error and measurement noise along with the SEREP  

modal expansion technique and thus, the new optimal configuration 𝐒𝐆 is not compared with the literature [31-33]. In  

case of complex structures containing critical substructures, it may be needed to expand the modal displacement of these  

substructures using the sensor data available only from the main structure. A mathematical interpolation-based  

expansion may not be preferred in such cases and methods similar to SEREP expansion are needed.      

The performances in modal expansion between the different methods are compared first using a simple cantilever model  

and then with a real industrial milling tower. Smaller the function 𝐺, better is the similarity between the expanded and  

the real mode shape. Percentage decrease 𝐼𝐶,𝐺  in the function 𝐺, when using the optimal configurations 𝐒𝐆 instead of  

the conventional optimal configuration 𝐒𝐜, is computed as,  𝐼𝐶,𝐺 = 𝐺𝑐 − 𝐺𝐺𝐺𝑐  𝑥 100 (7) 

For the function 𝐺, sequential and GA-based search is also performed. The reduction in 𝐺 when using the sequential  

and GA based search is quantified using 𝐼𝐶,𝐹𝑆𝑃, 𝐼𝐶,𝐵𝑆𝑃 and 𝐼𝐶,𝐺𝐴 and are obtained by replacing 𝐺𝐺 with 𝐺𝐹𝑆𝑃, 𝐺𝐵𝑆𝑃 and  𝐺𝐺𝐴 respectively in Eq. (7). A smaller value of 𝐼𝐶,𝐺 denotes the performance of conventional optimal configuration 𝐒𝐂  

in mode shape expansion to be closer to the new optimal configuration 𝐒𝐆 and vice versa. In order to assess the efficiency  

of the GA and the sequential sensor placement algorithms, the percentage difference in 𝐺𝐺 with 𝐺𝐺𝐴, 𝐺𝐹𝑆𝑃 and 𝐺𝐵𝑆𝑃 is  

evaluated as in Eq. (7) to obtain 𝐼𝐺𝐴,𝐺, 𝐼𝐹𝑆𝑃,𝐺  and 𝐼𝐵𝑆𝑃,𝐺 by replacing 𝐺𝐶 with 𝐺𝐺𝐴, 𝐺𝐹𝑆𝑃 and 𝐺𝐵𝑆𝑃 respectively. Smaller  

the value of these metrics, better the performance of the corresponding algorithm with respect to the exhaustive global  

search and vice versa.  

The optimal sensor locations based on 𝐺 are insensitive to the values of 𝜎𝜀 and 𝜎𝜂 (only when 𝜎𝜂 is identical across all  

the sensors). However, the magnitude of 𝐺 increases with an increase in 𝜎𝜀 and 𝜎𝜂. 𝜎𝜀 depends on many factors such as  

knowledge of system dynamics, uncertainties in structure, modelling assumptions, etc. while 𝜎𝜂 depends on the quality  

of the sensors, cables and data acquisition devices, errors arising in system identification algorithms, etc. [57]. Due to  

such randomness, the value of 𝜎𝜀 and 𝜎𝜂 is highly problem dependent and thus cannot be generalized. This is also clear  

from the uncertainty bounds estimated in the SSI of modal parameters for a bridge and a building reported in Reynders  

et al. [35] where the obtained uncertainty bounds were found to be different for the two cases. Hence, in this study, the  

modal expansion performance is evaluated for some range of 𝜎𝜀 and 𝜎𝜂 values shown in Table-1.   

It is to be noted that while the magnitude of 𝐺 is dependent on the modes considered and the values of 𝜎𝜀 and 𝜎𝜂, the  

optimal configuration 𝐒𝐆 is independent of these factors. This is because the effect of sensor configuration is identical  

in all the modes and thus finding the optimal configuration for a particular mode ensures that it is also optimal for other  

modes considered in the formulation of the transformation matrix 𝐂. Unless mentioned explicitly, 𝐺 is calculated with  

respect to the first mode of the structure (𝐺 = 𝐺1).   

Table – 1. Standard deviation combinations of measurement noise and modelling error 

Combination I.D. 1 2 3 4 5 6 7 8 9 𝜎𝜂 0.01 0.01 0.01 0.05 0.05 0.05 0.10 0.10 0.10 𝜎𝜀 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 
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4.1.  Cantilever beam   

A 2D cantilever beam was considered, the numerical model of which was created using 100 2-noded Euler–Bernoulli  

beam elements. Only the translational 𝑑𝑜𝑓 in Y direction was considered. The first four predominant modes were  

considered for expansion and numerical mode shapes were scaled such that the maximum magnitude of displacement  

in each mode was one. 20 possible locations to place sensors which are uniformly spaced along the span of the beam  

were considered and are shown in Fig. 5.    

 

Fig. 5. Cantilever beam showing 𝟐𝟎 possible sensor locations 𝐒 to keep uniaxial accelerometers in 𝒀 direction 

A simple case of identifying the first 2 predominant modes in Y direction using 2 sensors is initially considered. An  

exhaustive search of all the C202 = 190 configurations were carried out to find both the optimal configurations 𝐒𝐂 and  𝐒𝐆. Figure 6 shows the variation of the function 𝐺 for the first mode and standard deviation combination 9 (from Table- 

1) with the position of both the sensors 𝑠1 and 𝑠2.   

 

Fig. 6. Variation of 𝑮 (for mode 1 and standard deviation combination 9) with sensor positions 𝒔𝟏 and 𝒔𝟐  

It was found that 𝐒𝐂 = [9 17]𝑇 and 𝐒𝐆 = [11 20]𝑇 and the corresponding 𝐺 was 2.52 and 2.08, respectively. In  

this case, 𝐼𝐶,𝐺 = 17.5% which denotes a significant reduction in 𝐺. Thus, an optimization based on 𝐺 is essential is  

expected to provide the best sensor configuration for modal expansion.   

 

(a) 
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(b) 

Fig. 7. Comparison of optimal configurations in case of the cantilever beam for different number of sensors; 

(a) 𝐒𝐂 with 𝐒𝐆 and (b) 𝐒𝐆 with 𝐒𝐅𝐒𝐏, 𝐒𝐁𝐒𝐏 and 𝐒𝐆𝐀 

Now, a further set of simulation using 4 modes and number of sensors 𝑠 ranging from 4 to 10 is analysed to obtain the  

optimal configurations 𝐒𝐂 and 𝐒𝐆, and thus study the influence of the number of sensors on mode shape expansion 𝐺.  

Being a theoretical study, the upper limit on the number of sensors was chosen such that they are half the possible  

number of sensor positions. For cases where 𝑠 is between 5 to 10, FSP algorithm was used to obtain the optimal  

configuration 𝐒𝐅𝐒𝐏. BSP and GA was also used respectively in order to determine the optimal configurations 𝐒𝐁𝐒𝐏 and  𝐒𝐆𝐀 for 𝑠 between 4 to 10. In case of GA, population size was taken as 50 and 200 for the case where the number of  

sensors 𝑠 is 4 and 10 respectively, while for the remaining cases, it was appropriately chosen between 50 and 200. 5%  

of the best solutions from any generation was taken directly to the next. The remaining population was created using 

80% of cross-over and 20% of mutation. The optimization was assumed to converge when the average change in the  

fitness value over stall generations became less than a tolerance value (1E − 6) [54]. All the GA results shown in this  

study are based on these settings. However, it is possible to further fine-tune the accuracy and computational cost of GA  

by suitably adjusting these parameters [47-49, 58] and is not attempted here as it is beyond the scope of this paper.  

Figure 7(a) shows the comparison between 𝐒𝐂 and 𝐒𝐆 while Fig. 7(b) compares 𝐒𝐆 with 𝐒𝐅𝐒𝐏, 𝐒𝐁𝐒𝐏, and 𝐒𝐆𝐀.  

Figure 8 shows the variation of 𝐺C and 𝐺G for 𝑠 varying from 4 to 10. It shows that with an increase in 𝜎𝜀 and 𝜎𝜂, both  𝐺C and 𝐺G increases. For any given 𝜎𝜀 and 𝜎𝜂, 𝐺C and 𝐺G decreases with an increase in the number of sensors 𝑠. As  

expected, 𝐺G is always less than 𝐺C. Figure 9(a) shows the variation of 𝐼C,G for all standard deviation combinations and  

it is found to vary between 3 to 24% making the configuration 𝐒𝐆 the best choice for expansion. However, neither the  

configuration 𝐒𝐆 nor increasing the number of sensors help in offsetting the effect of high 𝜎𝜀 and 𝜎𝜂. Given these  

limitations, the configuration 𝐒𝐆 is guaranteed to outperform the conventional optimal configuration 𝐒𝐂.  
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Fig. 8. Comparison of 𝑮𝐂 and 𝑮𝐆 in the case of  the cantilever beam for all standard deviation combinations 

(number in parenthesis of 𝑮𝐂 and 𝑮𝐆 denote the number of sensors 𝒔) 

Figure 9(a) also shows the variation of 𝐼C,FSP, 𝐼C,BSP and 𝐼C,GA for all standard deviation combinations. The performance  

of sequential algorithms and GA can also be seen from Fig. 9(b-d) wherein the variation of  𝐼FSP,G, 𝐼BSP,G and 𝐼GA,G is  

plotted for different values of 𝑠. The maximum value of 𝐼FSP,G and 𝐼BSP,G is around 3% and occurs when 𝑠 = 5. This  

may be because, the difference between configuration 𝐒𝐆 and configurations 𝐒𝐅𝐒𝐏 and 𝐒𝐁𝐒𝐏 (from Fig. 7(b)) is maximum  

for this case. In the case with 7 and 10 sensors, it is seen that FSP provided the global optimal configuration 𝐒𝐆 while  

BSP provided the global optimal configuration for 4 and 7 number of sensors. This can be also seen from 𝐼FSP,G and  𝐼BSP,G taking 0 for these configurations. For 𝑠  taking values between 8 and 10, 𝐼FSP,G and 𝐼BSP,G is less than 1% for all  

the standard deviation combinations, indicating that both the sequential algorithms are efficient for a larger number of  

sensors. The GA method provided the true global optimal solution for 𝑠 between 4 to 7. Maximum value of 𝐼GA,G is  

found to be around 4% which was reported when 𝑠 = 8. The sequential algorithm provides the global optimal for all  

values of 𝑠 only if the optimal sensor configuration 𝐒𝐆 when 𝑠 = 𝑖 − 1, is a subset of the optimal configuration for the  

case with 𝑠 = 𝑖. While this condition cannot be ensured for all structures, it can be seen from Fig. 7(a) that some sensors  

maintain their positions as the number of sensors are increased because of which the sequential method provided optimal  

solutions in some cases and good sub-optimal solutions in the remaining situations.   

 

(a) 

   

(b) (c) (d) 
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Fig. 9. Comparison of different optimization algorithms for the cantilever beam. Variation of (a) 𝑰𝐂,𝐆, 𝑰𝐂,𝐅𝐒𝐏, 𝑰𝐂,𝐁𝐒𝐏 and 𝑰𝐂,𝐆𝐀, (b) 𝑰𝐅𝐒𝐏,𝐆 (𝑰𝐅𝐒𝐏,𝐆 = 𝟎 for 𝒔 = 𝟕 and 𝟏𝟎), (c) 𝑰𝐁𝐒𝐏,𝐆 (𝑰𝐁𝐒𝐏,𝐆 = 𝟎 for 𝒔 = 𝟒 and 𝟕), and (d) 𝑰𝐆𝐀,𝐆 

(𝑰𝐆𝐀,𝐆 = 𝟎 for 𝒔 = 𝟒 to 𝟕) 

4.2. Industrial Milling Tower  

The performance of the proposed sensor placement strategy is now evaluated for an industrial tower of the Birla Carbon  

Italy SRL production plant in Trecate, Italy. The structure is made of steel with a floor dimension of 6 x 6.6 m and  

approximately 25 m tall with 7 storeys. It houses two steel tanks at a height of 20 m and 10 m from the base. This main  

tower is attached to a secondary tower which is 30 m tall with 10 storeys and a floor dimension of 2.5 x 4.8 m. An  

expansion is essential in such a structure, especially if the condition of substructures such as the two tanks or other  

internal pipelines needs to be estimated using sensors located on the main tower. The first and second bending modes  

of the structure in both the X and Y directions are considered for expansion. Figure 10(a) shows a picture of the whole  

structure while Fig. 10(b) shows the corresponding finite element (FE) model along with the coordinate system. The FE  

model was created using 3D Euler–Bernoulli beam elements for all the beams and columns while the tanks were  

modelled using shell elements. The model has 10876 translational 𝑑𝑜𝑓 in X and Y direction which is considered for  

modal expansion. It was decided to provide an identical number of sensors in both the directions. As shown in Fig.  

10(c), 22 possible locations for the placement of uniaxial accelerometers were identified in the main tower based on  

accessibility and other practical constraints. As in the case of the cantilever beam, the effect of sensor configurations 𝐒𝐂,  𝐒𝐆 and 𝐒𝐒 are studied by using 4, 6, 8 and 10 sensors.  

   
(a) (b) (c) 

Fig. 10. (a) Milling tower in Birla Carbon Italy srl, (b) Corresponding finite element model and (c) 22 

possible locations for the placement of uniaxial sensors 

The mode shapes were normalized such that the maximum displacement in the main tower was one. Figure 11 shows  

the comparison of the optimal configurations 𝐒𝐂, 𝐒𝐆, 𝐒𝐅𝐒𝐏, 𝐒𝐁𝐒𝐏, and 𝐒𝐆𝐀. GA was implemented with parameters  

identical to that used for the cantilever beam. Variation of both 𝐺C and 𝐺G for all the standard deviation combinations  

were similar to that of the cantilever beam and thus is not reported here.  
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(a) 

 

(b) 

Fig. 11. Comparison of optimal configurations in case of the milling tower for different number of sensors; 

(a) 𝐒𝐂 with 𝐒𝐆 and (b) 𝐒𝐆 with 𝐒𝐅𝐒𝐏, 𝐒𝐁𝐒𝐏 and 𝐒𝐆𝐀 

Figure 12(a) shows the function 𝐼C,G, 𝐼C,FSP, 𝐼C,BSP, and 𝐼C,GA for all standard deviation combinations and different values  

of 𝑠. It was found that these indices ranged between 10% to 40%, showing a significant reduction in 𝐺 when compared  

to the conventional optimal configuration. Figure 12(b) and 12(c) shows the variation of 𝐼FSP,G and 𝐼BSP,G, the maximum  

values of which was only around 2 % and 1 % respectively, while Fig. 12(d) depicts 𝐼GA,G, with a maximum value of  

4% and occured for 𝑠 = 10. The FSP method provided the global optimal configuration only in the case with 6 sensors  

while the BSP method provided global optimal with 4 and 10 sensors. In spite of the fact that both the sequential methods  

did not result in global optimal for some scenarios, the very low values of 𝐼FSP,G and 𝐼BSP,G indicates that they can still  

be used. GA method provided the optimal configuration in the case with 4 and 6 sensors.   

 

(a) 
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(b) (c) (d) 

Fig. 12. Comparison of different algorithms for the milling tower. Variation of (a) 𝑰𝐂,𝐆, 𝑰𝐂,𝐅𝐒𝐏, 𝑰𝐂,𝐁𝐒𝐏 and 𝑰𝐂,𝐆𝐀, 

(b) 𝑰𝐅𝐒𝐏,𝐆(𝑰𝐅𝐒𝐏,𝐆 = 𝟎 for 𝒔 = 𝟔), (c) 𝑰𝐁𝐒𝐏,𝐆 (𝑰𝐁𝐒𝐏,𝐆 = 𝟎 for 𝒔 = 𝟒 and 𝟏𝟎), and (d) 𝑰𝐆𝐀,𝐆 (𝑰𝐆𝐀,𝐆 = 𝟎 for 𝒔 = 𝟒 and 𝟔) 

By using the GA based optimization on the function 𝐺 for both the cantilever beam and the milling tower, it was seen  

that, the method reached the global optimal solution for cases when the number of sensors are not large, while both the  

FSP and BSP provided global optimal solution only in certain cases. Still the very low values of 𝐼FSP,G and 𝐼BSP,G indicate  

the closeness of the solutions from the sequential method to the global optimal values. Figure 13 compares the number  

of configurations evaluated for the cantilever beam and the milling tower when using the different methods. As stated  

before, the optimization performed using an exhaustive search of all possible configurations becomes expensive as the  

number of sensors increases. The GA method was found to be computationally cheap for a smaller number of sensors,  

while with an increase in sensors, it becomes expensive than the sequential methods. As mentioned before, the  

performance of GA can be further improved by tuning their properties such as the population size, number of elite  

children, crossovers, and mutations, etc. The BSP is found to be the most computationally efficient method. The FSP is  

better than GA only for a larger number of sensors. The comparatively better estimation of 𝐺 coupled with the low  

computational cost makes the BSP an efficient procedure for optimization in these case studies.   

  

(a) (b) 

Fig. 13. Comparison of number of sensor combinations evaluated for different optimization algorithms 

in case of; (a) The cantilever beam and (b) The milling tower 

5. Performance of the new optimal sensor configuration in modal expansion: A numerical study  

Efficiency in modal expansion using the new optimal sensor locations SG over the conventional locations SC is evaluated  

numerically for some typical realistic modelling error scenarios using a Monte Carlo framework  [34]. In contrast with  

the definition of real mode shape 𝛗 in Section 2.1, here 𝛗 is obtained directly from the real structural model, which is  

assumed to be identical to the numerical model with the exception of a known modelling error (bias). The experimental  
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mode shape 𝛙 follows the same definition as in Section 2.1 whereby it is assumed to be 𝛗𝒔 corrupted with a Gaussian  

measurement noise 𝛈 of zero mean and a given standard deviation 𝜎𝜂 (this is a reasonable assumption, as 𝛈  is not  

affected by any bias). For a given magnitude of measurement noise, modelling error and number of sensors, the expected  

value of mean square error 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  between 𝛗 and 𝚿 evaluated using Monte Carlo simulations is used as a measure of the  

quality of expansion. Figure 14 shows the algorithm to calculate the same. While the function 𝐺 was based on the normal  

distance between the two mode shape vectors, here 𝑀𝑆𝐸 can be adopted as a metric as both the vectors can be easily  

normalized. Also, it will be further shown that both 𝑀𝑆𝐸 and 𝐺 are analogous. The cantilever beam and the milling  

tower are again used as case studies. In each case, the configurations SG and SC are first determined for a given 𝑠.  

Subsequently for different values of modelling error in the numerical model and measurement noise, 𝑀𝑆𝐸̅̅ ̅̅ ̅̅   

corresponding to SG and SC are evaluated respectively as 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 and 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶.   

 

Fig. 14. Flowchart of the Monte Carlo simulations 

5.1. Cantilever beam with modelling error  

A beam identical to that used in Section 4.1 is considered. The rotational stiffness at the fixed end is an important source  

of uncertainty in such beams (flexible boundary condition). It is assumed that the difference between the numerical and  

the real structural model is solely attributed to this uncertainty. At the left end of the beam shown in Fig. 5, translational  𝑑𝑜𝑓 in X and Y is restrained and a rotational spring 𝐾𝜃,𝑍 acting along the Z direction (perpendicular to the plane of the  

beam) is introduced. The numerical model is formulated by assuming 𝐾𝜃,𝑍 = 1000 𝑁𝑚/𝑟𝑎𝑑. However, the real value  

of 𝐾𝜃,𝑍 is not known and the difference between the numerical and real model is only due to the uncertainty in the values  

of 𝐾𝜃,𝑍.  In this study, Gaussian distributions with mean 𝜇𝐾𝜃,𝑍 = 1000 𝑁𝑚/𝑟𝑎𝑑 and different values for the coefficient  

of variation 𝐶𝑂𝑉𝜀 (ratio of the standard deviation to the mean) are used to represent the real values of 𝐾𝜃,𝑍. As in Section  

2.1, measurement noise 𝛈 in mode shape is characterised by a zero-mean Gaussian process with a standard deviation  𝜎𝜂. Based on a sensitivity analysis, the number of simulations 𝑁 required for Monte Carlo simulations was set to 10000.  

In order to identify and expand the first four modes, optimal configurations 𝐒𝐆 and 𝐒𝐂 are calculated for 𝑠 =  4, 6, 8 and  10 using an exhaustive global search and are shown in Table-2.   

Table – 2. Optimal sensor location in beam for Monte Carlo study 𝑠 Type Sensor location 

4 
𝐒𝐂 [4 9 14 18]𝑇 𝐒𝐆 [5 10 15 20]𝑇 

6 
𝐒𝐂 [4 7 10 13 16 19]𝑇 𝐒𝐆 [4 7 10 14 16 20]𝑇 
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8 
𝐒𝐂 [1 4 6 9 11 14 16 19]𝑇 𝐒𝐆 [4 5 8 10 11 15 16 20]𝑇 

10 
𝐒𝐂 [2 4 6 8 10 12 14 15 18 19]𝑇 𝐒𝐆 [4 5 6 9 10 11 15 16 17 20]𝑇 

Monte Carlo simulations are then performed as in Fig. 14 to obtain the 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 and 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 of the first four modes (scaled  

for unit modal displacement at the free end) for different values of 𝑠 and various combinations of 𝐶𝑂𝑉𝜀 (𝐶𝑂𝑉𝜀 = 0.01, 0.50, 1.00 and 2.00) and 𝜎𝜂 (𝜎𝜂 = 0.01, 0.05, 0.10, 0.20 and 0.50). Percentage difference in the 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  values when  

using the new configuration 𝐒𝐆 instead of 𝐒𝐂 is further calculated as 𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅ . Table-3 shows the corresponding values of  𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺, 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 and 𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅ . Similar to the variation of 𝐺 observed in Section 4.1, both 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 and 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 are found to  

increase with an increase in 𝐶𝑂𝑉𝜀 and 𝜎𝜂 while decreasing with an increase in the number of sensors 𝑠. For a given  𝐶𝑂𝑉𝜀, 𝜎𝜂 and 𝑠, 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 is significantly lower than 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶. This is clear from the values of  𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅ , whose maximum and  

minimum values are in the order of 42% and 13.9% respectively.  

Table – 3. 𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅𝑮, 𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅𝑪and 𝑰𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅  in case of the beam 

𝑠 𝜎𝜂 

𝐶𝑂𝑉𝜀 of 𝐾𝜃,𝑍 

0.01 0.50 1.00 2.00 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 
𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 
𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 

𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 
𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 

𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 
𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 

𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 

4 

0.01 0.035 0.061 42.6 0.046 0.077 40.3 0.054 0.090 40.0 0.063 0.104 39.4 

0.05 0.884 1.527 42.1 0.899 1.551 42.0 0.919 1.581 41.9 0.945 1.623 41.8 

0.10 3.526 5.320 33.7 3.540 5.337 33.7 3.557 5.360 33.6 3.584 5.393 33.5 

0.20 11.772 14.938 21.2 11.780 14.958 21.2 11.794 14.984 21.3 11.814 15.020 21.3 

0.50 34.811 42.261 17.6 34.814 42.296 17.7 34.820 42.336 17.8 34.833 42.391 17.8 

6 

0.01 0.026 0.032 18.8 0.035 0.044 20.5 0.042 0.053 20.8 0.050 0.063 20.6 

0.05 0.642 0.811 20.8 0.657 0.829 20.7 0.675 0.852 20.8 0.698 0.881 20.8 

0.10 2.584 3.200 19.3 2.598 3.215 19.2 2.616 3.236 19.2 2.643 3.265 19.1 

0.20 8.893 9.933 10.5 8.903 9.944 10.5 8.917 9.959 10.5 8.939 9.982 10.4 

0.50 26.309 28.692 8.3 26.321 28.704 8.3 26.336 28.720 8.3 26.361 28.746 8.3 

8 

0.01 0.020 0.028 28.6 0.029 0.040 27.5 0.036 0.048 25.0 0.044 0.058 24.1 

0.05 0.498 0.708 29.7 0.513 0.725 29.2 0.531 0.746 28.8 0.553 0.774 28.6 

0.10 2.006 2.818 28.8 2.021 2.834 28.7 2.040 2.854 28.5 2.069 2.885 28.3 

0.20 7.085 8.833 19.8 7.094 8.845 19.8 7.108 8.860 19.8 7.130 8.883 19.7 

0.50 20.794 25.257 17.7 20.804 25.271 17.7 20.818 25.286 17.7 20.839 25.313 17.7 

10 

0.01 0.017 0.022 22.7 0.027 0.033 18.2 0.034 0.041 17.1 0.043 0.051 15.7 

0.05 0.426 0.542 21.4 0.442 0.561 21.2 0.460 0.582 21.0 0.482 0.608 20.7 

0.10 1.714 2.177 21.3 1.730 2.197 21.3 1.751 2.222 21.2 1.782 2.257 21.0 

0.20 6.139 7.228 15.1 6.148 7.242 15.1 6.163 7.260 15.1 6.185 7.286 15.1 

0.50 17.929 20.790 13.8 17.934 20.811 13.8 17.946 20.834 13.9 17.965 20.867 13.9 

Contrary to the assumptions of identical modelling error 𝜎𝜀 on the real mode shape 𝛗 at all the 𝑑𝑜𝑓 in Section 2.1 (Fig.  

1), it was found from the Monte Carlo simulations that the uncertainty bounds on 𝛗 with respect to the numerical mode  

shape 𝚽 is not constant across all the 𝑑𝑜𝑓. This is clear from Fig. 15 which shows the uncertainty bounds of 𝛗 for  

different values of 𝐶𝑂𝑉𝜀.  Even though such significant simplifying assumptions on the effect of modelling error on the  

real mode shape were made in the formulation of Eq. (5), and thereby the optimal sensor positions 𝐒𝐆, the significantly  

large values of 𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  in Table-3 still demonstrate the usefulness of the new optimal configurations.   
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(a) (b) 

  

(c) (d) 

Fig. 15. 95% uncertainty bounds on real mode shapes of the cantilever beam from Monte Carlo simulations 

for; (a) Mode-1, (b) Mode-2, (c) Mode-3 and (d) Mode-4 

While the sensor placement criterion in this study was based on 𝐺, 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  and 𝐺 are analogous, except that while the  

former measures the square of Euclidean distance between two vectors, the latter measures the square of the normal  

distance (which is the shortest distance). As an example, √𝑀𝑆𝐸𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅
 and √𝐺𝑙 for the first four modes of the beam  

corresponding to some particular values of 𝐶𝑂𝑉𝜀, 𝜎𝜂 and 𝑠 are given in Table-4 for both the configurations 𝐒𝐆 and 𝐒𝐂.  

The variation of both √𝑀𝑆𝐸𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅
 and √𝐺𝑙 is identical. 𝐼√𝑀𝑆𝐸𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐼√𝐺𝑙 , which respectively measures the percentage  

reduction in √𝑀𝑆𝐸𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅
 and √𝐺𝑙  from the two different sensor configurations, are also calculated. The pattern of 𝐼√𝑀𝑆𝐸𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

and 𝐼√𝐺𝑙 is found identical, with a difference only in their magnitudes. This indicates that the sensor configurations 

obtained by minimizing 𝐺 and that from minimizing 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  should be similar.  

Table – 4.  √𝑴𝑺𝑬𝒍̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and √𝑮𝒍 in case of cantilever beam for the first four modes when; (a) 𝑪𝑶𝑽𝜺 = 𝟎. 𝟎𝟏, 𝝈𝜼 = 𝟎. 𝟎𝟏, 𝒔 = 𝟒 and (b) 𝑪𝑶𝑽𝜺 = 𝟐. 𝟎𝟎, 𝝈𝜼 = 𝟎.𝟓𝟎, 𝒔 = 𝟏𝟎. 

(a) 

Mode 

Number, 𝑙 √𝑀𝑆𝐸𝑙𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
  √𝑀𝑆𝐸𝑙𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 √𝐺𝑙𝐺 √𝐺𝑙𝐶 𝐼√𝑀𝑆𝐸𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (%) 𝐼√𝐺𝑙 (%) 

1 0.0842 0.1093 0.0668 0.0789 23.01 15.28 

2 0.0841 0.1042 0.0676 0.0769 19.29 12.03 

3 0.0849 0.1020 0.0685 0.0764 16.84 10.39 

4 0.0867 0.1045 0.0698 0.0788 17.06 11.37 
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(b) 

Mode 

Number, 𝑙 √𝑀𝑆𝐸𝑙𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
  √𝑀𝑆𝐸𝑙𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 √𝐺𝑙𝐺 √𝐺𝑙𝐶 𝐼√𝑀𝑆𝐸𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (%) 𝐼√𝐺𝑙 (%) 

1 1.9825 2.1673 1.6693 1.8662 8.53 10.55 

2 1.9860 2.1401 1.6786 1.8447 7.20 9.00 

3 1.9686 2.1293 1.6689 1.8460 7.55 9.59 

4 1.9946 2.0819 1.7334 1.8289 4.19 5.22 

5.2. Milling Tower  

In case of the milling tower described in Section 4.2, it is assumed that the rotational stiffness at the connections between  

the tower and the ground is uncertain. Thus, Monte Carlo simulations similar to those for the cantilever beam are  

performed by introducing a modelling error in the rotational stiffness at the base of the tower. Translational 𝑑𝑜𝑓 in the  

nodes of the tower at the base are restrained in all the three directions. Torsional springs of identical stiffness value 𝐾𝜃  

are used to model the rotational boundary conditions in all the three axes, the real value of which is unknown. The  

numerical model is build assuming 𝐾𝜃 = 1𝐸 + 06𝑁𝑚/𝑟𝑎𝑑 while, for the real model, Gaussian distributions with mean  𝜇𝐾𝜃 = 1𝐸 + 06 𝑁𝑚/𝑟𝑎𝑑 and 𝐶𝑂𝑉𝜀 values of 0.01, 0.10, 0.50 and 1.00 is adopted. For 𝜎𝜂, values of 0.01, 0.05, 0.10,  

0.50 and 1.00 are used and 4, 6 and 8 number of sensors are considered. The optimal configurations for identifying the  

first four modes are obtained and are shown in Table-5.    

Table – 5. Optimal sensor location in milling tower for Monte Carlo study 𝑠 Type Sensor location 

4 
𝐒𝐂 [3 6 17 18]𝑇 𝐒𝐆 [6 11 19 20]𝑇 

6 
𝐒𝐂 [5 6 10 13 21 22]𝑇 𝐒𝐆 [6 11 13 16 19 20]𝑇 

8 
𝐒𝐂 [2 4 5 9 11 14 18 19]𝑇 𝐒𝐆 [6 8 11 13 19 20 21 22]𝑇 

Table-6 shows the variation of 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺, 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 and 𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  of the first four modes (modal displacement scaled such that the  

maximum displacement is unity), and it follows the same pattern as in case of the cantilever beam. The maximum and  

minimum value of 𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  are in the order of 60.5% and 18.4%, which shows a considerable reduction of the 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  when  

using the new configuration 𝐒𝐆 instead of the conventional configuration 𝐒𝐂.  

Table – 6. 𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅𝑮,𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅𝑪𝐚𝐧𝐝 𝑰𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅  𝐢𝐧 𝐜𝐚𝐬𝐞 of milling tower 

𝑠 𝜎𝜂 

𝐶𝑂𝑉𝜀 of 𝐾𝜃 

0.01 0.10 0.50 1.00 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 
𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 
𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 

𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 
𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 

𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 
𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐺 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝐶 

𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

(%) 

4 

0.01 2.5 6.2 59.7 2.7 6.7 59.7 3.0 7.7 61.0 3.4 8.6 60.5 

0.05 62.2 156.7 60.3 66.4 164.1 59.5 72.7 170.0 57.2 78.7 174.0 54.8 

0.10 245.5 554.5 55.7 256.3 562.9 54.5 263.2 566.0 53.5 268.0 568.5 52.9 

0.50 4287.1 6147.4 30.3 4297.9 6149.8 30.1 4303.0 6166.4 30.2 4306.2 6174.5 30.3 

1.00 8711.4 9408.6 7.4 8722.1 9451.3 7.7 8728.7 9468.9 7.8 8739.0 9484.2 7.9 

6 0.01 1.8 2.1 14.3 2.0 2.3 13.0 2.3 2.7 14.8 2.6 3.1 16.1 
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0.05 45.9 53.9 14.8 49.0 57.7 15.1 53.7 63.3 15.2 58.4 69.2 15.6 

0.10 183.0 215.1 14.9 190.7 229.0 16.7 196.0 245.6 20.2 199.5 258.3 22.8 

0.50 3342.8 4008.9 16.6 3345.1 4099.0 18.4 3352.4 4165.9 19.5 3359.6 4201.5 20.0 

1.00 7436.7 8484.9 12.4 7438.0 8586.2 13.4 7441.8 8632.0 13.8 7446.1 8683.2 14.2 

8 

0.01 1.4 1.9 26.3 1.5 2.1 28.6 1.8 2.4 25.0 2.0 2.8 28.6 

0.05 34.1 47.7 28.5 36.5 50.9 28.3 40.0 56.0 28.6 43.8 61.1 28.3 

0.10 136.9 190.7 28.2 143.8 199.9 28.1 151.0 207.4 27.2 156.4 212.6 26.4 

0.50 2702.2 3730.5 27.6 2721.9 3734.8 27.1 2744.8 3750.1 26.8 2760.4 3762.4 26.6 

1.00 6747.0 8315.5 18.9 6775.4 8342.1 18.8 6806.7 8352.3 18.5 6827.6 8367.7 18.4 

The Monte-Carlo simulations shows that the optimal configuration 𝐒𝐆 obtained using the novel metric 𝐺, are robust  

with respect to both realistic modelling errors and measurement noise in comparison to the conventional configuration  𝐒𝐂. Even when the uncertainty bounds of the real mode shapes vary drastically across the different 𝑑𝑜𝑓 in contrast to  

the assumption of identical values for all the 𝑑𝑜𝑓, 𝐼𝑀𝑆𝐸̅̅ ̅̅ ̅̅  values of the order of 41 % and 60 % were obtained for cantilever  

beam and milling tower respectively. This indicates that using 𝐒𝐆, a significant improvement in the quality of mode  

shape expansion is acheived. However, by ensuring maximum linear independence of mode shapes, the conventional  

configuration 𝐒𝐂 is the best suitable choice for identification problems. Even though the new configuration 𝐒𝐆 provides  

linearly independent modes, it will not be efficient for identification problems as the conventional configuration 𝐒𝐜.  

When both mode shape expansion and identification are equally important, a Pareto optimization may be performed.  

6. Conclusions  

Expanding modal displacements from a specific set of sensors to all the degrees of freedom is essential in certain  

structural health monitoring applications. Most of the commonly used conventional optimal sensor placement strategy  

aims at maximising the independence of the modal displacements at the sensor positions. However, this is not guaranteed  

to make the expanded mode shape close to the real mode shape under the presence of modelling error and measurement  

noise and to date, this specific problem has not been addressed.   

In this paper, the normal distance between the expanded and the real mode shape is proposed as a novel tool to quantify  

their similarity. A new set of optimal configurations were obtained by minimizing this normal distance. The applicability  

of sequential and genetic algorithm-based techniques for determining the optimal location were also evaluated. It was  

found that the resulting new configuration, when compared to the conventional configuration, was able to reduce the  

square of the normal distance by up to 24% and 40% respectively in case of the cantilever beam and the milling tower.  

The efficiency of the obtained sensor locations under some realistic modelling error scenarios were further demonstrated  

using Monte Carlo simulations. It was also seen that the optimal normal distance increased significantly with an increase  

in measurement noise and modelling error. However, for a given modelling error and measurement noise, it was possible  

to improve the quality of modal expansion by increasing the number of sensors. Also, it is to be understood that neither  

the new optimal configuration nor an increase in the number of sensors is able to balance the increase in the normal  

distance due to the increase in modelling error and measurement noise. At any rate, for a given modelling error,  

measurement noise and number of sensors, the new optimal solution will be the best available choice in cases where an  

expansion is required, ensuring an expansion which is as close as possible to the real mode shape. The numerical Monte  

Carlo framework for assessing the efficiency of the expansion, may be enhanced by an experimental case study on a  

benchmark problem in the future.  
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Appendix – A  

A.1. Expected value of normal distance  

Let 𝜆 represent an arbitrary scaling applied to 𝚿𝒍. As the Euclidean distance between two distinct vectors is a positive  

function, minimizing this function is equivalent to minimizing its square. For any sensor configuration 𝐒, square of the  

Euclidean distance 𝑓 between vectors 𝛗𝒍 and 𝜆𝚿𝒍 is given by,  𝑓(𝛗𝒍, 𝜆𝚿𝒍)2
 = ‖𝛗𝒍 − 𝜆𝚿𝒍‖2

  

The expected value of square of the Euclidean distance is given as,  E (𝑓(𝛗𝒍, 𝜆𝚿𝒍)2) =  E (‖𝛗𝒍 − 𝜆𝚿𝒍‖2) =  E (𝛗𝒍𝑇𝛗𝒍) − 2𝜆E (𝛗𝒍𝑇𝚿𝒍) + 𝜆2E(𝚿𝒍𝑇𝚿𝒍) (A.1.1) 

Differentiating Eq. (A1.1) with respect to 𝜆 (for a given 𝛗𝒍 and 𝚿𝒍) gives,  dd𝜆 E (𝑓(𝛗𝒍, 𝜆𝚿𝒍)2) = −2. E (𝛗𝒍𝑇𝚿𝒍) +  2𝜆E(𝚿𝒍𝑇𝚿𝒍)  

The stationary point of Eq. (A1.1), is 𝜆𝑐 = E (𝛗𝒍T𝚿𝒍)E (𝚿𝒍T𝚿𝒍) 

 

The second derivative of Eq. (A1.1) with respect to 𝜆 is,  d2d𝜆2 E (𝑓(𝛗𝒍, 𝜆𝚿𝒍)2) = 2E (𝚿𝒍𝑇𝚿𝒍) > 0 ∀ 𝚿𝒍 ≠ 0  

The second derivative is always positive since the expanded mode shape 𝚿𝒍 can never be a zero vector. Thus, 𝜆𝑐 = E (𝛗𝒍T𝚿𝒍) E (𝚿𝒍T𝚿𝒍)⁄  corresponds to the minimum of the expected value of the Euclidean norm for mode shapes  

expanded using a particular sensor configuration 𝐒. This happens when the Euclidean norm becomes the normal distance  

between the two vectors. The square of the expected value of the normal distance 𝐺𝑙 for a particular sensor configuration  𝐒 and vectors 𝛗𝒍 and 𝚿𝒍 can thus be obtained by substituting 𝜆𝑐 in Eq. (A.1.1) as,  

𝐺𝑙 = E(𝑓(𝛗𝒍, 𝜆𝑐𝚿𝒍)2) =  E (𝛗𝒍𝑇𝛗𝒍) − (E (𝛗𝒍𝑇𝚿𝒍))𝟐
E (𝚿𝒍𝑇𝚿𝒍)   
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Appendix – B  

B.1. Definition of 𝐄 (𝛗𝒍𝐓𝛗𝒍)  

From the relation between the real mode shape 𝛗𝒍 and the numerical mode shape 𝚽𝒍, 𝛗𝒍T𝛗𝒍 = (𝚽𝒍 − 𝛆𝒍)T(𝚽𝒍 − 𝛆𝒍) 

 = 𝚽𝒍T𝚽𝒍 − 𝚽𝒍T𝛆𝒍 − 𝛆𝒍T𝚽𝒍 + 𝛆𝒍T𝛆𝒍 
 = 𝚽𝒍T𝚽𝒍 − 2𝚽𝒍T𝛆𝒍 + 𝛆𝒍T𝛆𝒍 E (𝛗𝒍T𝛗𝒍) = E(𝚽𝒍T𝚽𝒍 − 2𝚽𝒍T𝛆𝒍 + 𝛆𝒍T𝛆𝒍) 

 = E(𝚽𝒍T𝚽𝒍) − 2E(𝚽𝒍T𝛆𝒍) + E (𝛆𝒍T𝛆𝒍) 

 = E(‖𝚽𝒍‖22) − 2𝚽𝒍TE(𝛆𝒍) + E (𝛆𝒍T𝛆𝒍) 

 = E(‖𝚽𝒍‖22) − 2𝚽𝒍TE(𝛆𝒍) + E (𝜀1𝑙2 + 𝜀2𝑙 2 + ⋯+ 𝜀𝑛𝑙 2) 

where, 𝛆𝒍 = [𝜀1𝑙 𝜀2𝑙 ⋯ 𝜀𝑛𝑙 ]𝑇 E (𝛗𝒍T𝛗𝒍) = ‖𝚽𝒍‖22 − 2𝚽𝒍TE(𝛆𝐥) + (𝜎𝜀1𝑙 2 + 𝜎𝜀2𝑙 2 + ⋯+ 𝜎𝜀𝑛𝑙 2) + (𝜇𝜀1𝑙 2 + 𝜇𝜀2𝑙 2 + ⋯+ 𝜇𝜀𝑛𝑙 2) 

Since, the modelling error is 0 mean with the same standard deviation 𝜎𝜀 at all the 𝑑𝑜𝑓,  E (𝛗𝒍T𝛗𝒍) = ‖𝚽𝒍‖22 − 0 +  𝑛𝜎𝜀2 + 0 

 =  𝑛𝜎𝜀2 + ‖𝚽𝒍‖22
 

B.2. Definition of 𝐄 (𝚿𝒍𝐓𝚿𝒍)  

From the definition of experimental modal displacement, 𝛙𝒍 = 𝛗𝒔𝒍 + 𝛈𝒍 = 𝚽𝒔𝒍 − 𝛆𝒔𝒍 + 𝛈𝒍 = 𝚽𝒔𝒍 − 𝚴𝒍  

where, 𝚴𝒍 = 𝛆𝒔𝒍 − 𝛈𝒍 is the net difference of modelling error and measurement noise at the 𝑠 sensor positions. Since  

both 𝛆 and 𝛈 are assumed to be 0 mean Gaussian process with the same standard deviations 𝜎𝜀 and 𝜎𝜂 at all the relevant  𝑑𝑜𝑓, 𝚴𝒍 will also be a 0 mean Gaussian process with variance matrix given as,  𝚺𝚴2 = 𝜎Ν2𝐈𝐬   

where, 𝜎Ν2 = 𝜎𝜀2 + 𝜎𝜂2 .  

Now,  E(𝛙𝒍) = 𝛍𝛙𝒍 = E(𝚽𝒔𝒍 − 𝚴𝒍) = 𝚽𝒔𝒍 − E(𝚴𝒍) =  𝚽𝒔𝒍 𝚿𝑙T𝚿𝑙 = 𝛙𝒍T𝐂T𝐂𝛙𝒍 (Since 𝚿𝑙 =  𝐂𝛙𝒍) E (𝚿𝒍T𝚿𝒍) = E(𝛙𝒍T𝐂T𝐂𝛙𝒍) = E((𝛙𝒍 − 𝛍𝛙𝒍)T 𝐂T𝐂(𝛙𝒍 − 𝛍𝛙𝒍)) + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍  (from Section B.2.1) 

= E(tr (𝐂 (𝛙𝒍 − 𝛍𝛙𝒍) (𝛙𝒍 − 𝛍𝛙𝒍)T 𝐂T)) + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 
= tr (𝐂E((𝛙𝒍 − 𝛍𝛙𝒍) (𝛙𝒍 − 𝛍𝛙𝒍)T)𝐂T) + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 = tr(𝐂𝚺𝚴𝟐𝐂T) + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 , where  𝚺𝚴𝟐 ∈  ℝ𝑠 𝑥 𝑠 is the covariance matrix of 𝛙𝒍. E (𝚿𝒍T𝚿𝒍) = tr(𝐂𝚺𝚴𝟐𝐂T) + 𝚽𝒔𝒍T𝐂T𝐂𝚽𝒔𝒍 
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B.2.1. Proof that 𝑬((𝝍𝒍 − 𝝁𝝍𝒍)𝑻𝑪𝑻𝑪(𝝍𝒍 − 𝝁𝝍𝒍)) + 𝝁𝝍𝒍𝑻𝑪𝑻𝑪𝝁𝝍𝒍 =  𝑬 (𝝍𝒍𝑻𝑪𝑻𝑪𝝍𝒍)  

E((𝛙𝒍 − 𝛍𝛙𝒍)𝑇 𝐂𝑇𝐂 (𝛙𝒍 − 𝛍𝛙𝒍)) + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 
 =  E (𝛙𝒍T𝐂T𝐂𝛙𝒍 − 𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 − 𝛍𝛙𝒍T𝐂T𝐂𝛙𝒍 + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍) + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 
 =  E (𝛙𝒍T𝐂T𝐂𝛙𝒍) −  E (𝛙𝒍T)𝐂T𝐂𝛍𝛙𝒍 − 𝛍𝛙𝒍T𝐂T𝐂E(𝛙𝒍) + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 
 =  E (𝛙𝒍T𝐂T𝐂𝛙𝒍) − 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 − 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 + 𝛍𝛙𝒍T𝐂T𝐂𝛍𝛙𝒍 
 =  E (𝛙𝒍T𝐂T𝐂𝛙𝒍) 

B.3. Definition of 𝐄 (𝛗𝒍𝐓𝚿𝒍)   E (𝛗𝒍T𝚿𝒍) = E(𝛗𝒍T)E(𝚿𝒍) + tr (cov(𝛗𝒍,𝚿𝒍))  

where cov(𝛗𝒍,𝚿𝒍) is the covariance matrix between 𝛗𝒍 and 𝚿𝒍 E (𝛗𝒍T𝚿𝒍) = E(𝛗𝒍T)E(𝐂𝛙𝒍) + tr (cov(𝛗𝒍, 𝐂𝛙𝒍))  

 = 𝚽𝒍T𝐂𝚽𝒔𝒍 + tr (cov(𝛗𝒍, 𝐂𝛙𝒍))  (Since E(𝛗𝒍) = 𝚽𝒍 and E(𝛙𝒍) = 𝚽𝒔𝒍  ) 
tr (cov(𝛗𝒍, 𝐂𝛙𝒍))  = tr (E((𝛗𝒍 − 𝛍φ𝑙) (𝐂𝛙𝒍 − 𝐂𝛍𝛙𝒍)T)) 

 = tr (E ((𝚽𝒍 − 𝛆𝒍 − 𝚽𝒍)(𝚽𝒔𝒍 − 𝛆𝒔𝒍 + 𝛈𝒍 − 𝚽𝒔𝒍)T𝐂T)) 

 = tr (E ((− 𝛆𝒍)(−𝛆𝒔𝒍 + 𝛈𝒍)T𝐂T)) 

 = tr (E (𝛆𝒍(𝛆𝒔𝒍 − 𝛈𝒍)T)𝐂T) 

 = tr (E (𝛆𝒍𝛆𝒔𝒍 T)𝐂T) (Since E (𝛆𝒍𝛈𝒍T) = 0, as they are uncorrelated) E (𝛗𝒍T𝚿𝒍) = 𝚽𝒍T𝐂𝚽𝒔𝒍 + tr (E (𝛆𝒍𝛆𝒔𝒍 T) 𝐂T) 
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Appendix – C  

C.1. 𝑮𝒍 when using SEREP modal expansion  

In case of SEREP expansion, 𝐂𝚽𝒔𝒍 = 𝚽𝒍. Thus,  𝚽𝒍T𝐂𝚽𝒔𝒍 = 𝚽𝒍T𝚽𝒍 = ‖𝚽𝒍‖22
 (C.1.1) 𝚽𝒔𝒍T𝐂T𝐂𝚽𝒔𝒍 = (𝐂𝚽𝒔𝒍)T𝐂𝚽𝒔𝒍 = 𝚽𝒍T𝚽𝒍 = ‖𝚽𝒍‖22

 (C.1.2) 

The mode shape matrix 𝚽𝒍 can be partitioned based on the measured and unmeasured 𝑑𝑜𝑓 as 𝚽𝒍𝑻 = [𝚽𝒔𝒍T 𝚽𝒅𝒍 T]  

where 𝚽𝒅𝒍 ∈ ℝ𝑑 𝑥 1 refers to the unmeasured 𝑑𝑜𝑓 and 𝑠 + 𝑑 = 𝑛.   

Now from Eq. (4),  tr (E (𝛆𝒍𝛆𝒔𝒍 T)𝐂T) = tr ([𝜎𝜀2𝐈𝐬𝐎 ]𝐂T) where 𝐎 ∈ ℝ𝑑 𝑥 𝑠 is a null matrix 

 = tr ([𝜎𝜀2𝐈𝐬𝐎 ]𝚽𝐬(𝚽𝐬T𝚽𝐬)−1[𝚽𝐬T 𝚽𝐝T]) 

 = 𝜎𝜀2tr (𝚽𝐬(𝚽𝐬T𝚽𝐬)−1𝚽𝐬T) 

Since tr (𝚽𝐬(𝚽𝐬T𝚽𝐬)−1𝚽𝐬T) = 𝑚, tr (E (𝛆𝒍𝛆𝒔𝒍 T)𝐂T) = 𝜎𝜀2𝑚 (C.1.3) 

If all the sensor noises are assumed to be identical,   tr(𝐂𝚺𝚴2𝐂T) = 𝜎Ν2tr(𝐂𝐂T) 

 = 𝜎Ν2tr (𝚽(𝚽𝐬T𝚽𝐬)−1𝚽𝐬T.𝚽𝐬(𝚽𝐬T𝚽𝐬)−1𝚽T) 

 = 𝜎Ν2tr ([𝚽𝐬𝚽𝐝] (𝚽𝐬T𝚽𝐬)−1[𝚽𝐬T 𝚽𝐝T]) 

 = 𝜎Ν2 (tr (𝚽𝐬(𝚽𝐬T𝚽𝐬)−1𝚽𝐬T) + tr (𝚽𝐝(𝚽𝐬T𝚽𝐬)−1𝚽𝐝T)) 

 = 𝜎Ν2 (𝑚 + tr (𝚽𝐝(𝚽𝐬T𝚽𝐬)−1𝚽𝐝T)) (C.1.4) 

Substituting Eq. (C.1.1-C.1.4) in Eq. (3),   

𝐺𝑙 =  𝑛𝜎𝜀2 + ‖𝚽𝒍‖22 − (‖𝚽𝒍‖22 + 𝜎𝜀2𝑚)2
𝜎Ν2 (𝑚 + tr (𝚽𝐝(𝚽𝐬T𝚽𝐬)−1𝚽𝐝T)) + ‖𝚽𝒍‖22  
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