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Abstract 
Modelling transient community-level peak energy 
demand event is often challenging, as it requires the 
acquisition and systematic analysis/modelling of 
electricity demand data across a large number of 
buildings. Electricity demand data with diverse demand 
characteristic can be analysed/modelled/aggregated (in 
time) to understand the impact of various micro-level 
activities (specifically, peak demand household-level 
activities occurring simultaneously across multiple 
dwelling at a specific time) on the community-level 
demand curve. However, in real-life applications, the 
availability of good-quality electricity demand data across 
a large number of multiple dwellings within a community 
is often challenging.  
This paper is aimed to investigate the potentials of k-
means clustering approach for developing a systematic 
sampling, weighting and demand aggregation strategy for 
projecting community-level demands with high precision, 
just by using a small sample of buildings and easily 
accessible contextual information (e.g. average monthly 
demand or various activity periods during a day). These 
selected samples of dwellings are processed with a novel 
system of demand synthesis model developed by authors, 
referred to as HMM_GP. Five different variants of k-
means clustering are developed using statistical mean, 
median and proportion of demand during four different 
periods of days. Corresponding to each variant five 
aggregation schemes are constructed. The HMM_GP 
model is underpinned by a hidden Markov model (HMM) 
for simulating synthetic demand and a Generalised 
Pareto (GP) distribution to effectively model dynamics 
of peak demand events. Aggregation schematics are 
demonstrated for 30-minutely demand dataset collected 
over four weeks in July 2017 for 74 dwellings for a case-
study community of Fintry (Scotland).  

Introduction 
Conventionally, monthly/quarterly meter readings were 
utilised by professionals and researchers to construct 
empirical electricity demand curves (Suganthi and 
Samuel 2012, Bhattacharyya and Timilsina 2009, 
Bhattacharyya and Timilsina 2010). These curves are 
widely used for understanding various temporal demand 
characteristics, however, with limited scope to 
accommodate any quality assurance for a highly uncertain 
future. This level of information is now in-adequate for 

addressing various challenges, uncertainty and complex 
issues (e.g. climate change, technological changes, 
policies, economy, infrastructure development,  
behavioural changes, etc.), that are at the heart of any 
long-term energy-related planning and sustainability 
discussions of a rapidly evolving modern society 
(McKenna, et al. 2018). With growing interest in energy-
focused community-level projects, not just at the local 
levels but at the global level as well, a large volume of 
electricity demand data (e.g. from the installation of smart 
meters) is now available. Smart meters are generating a 
large volume of data and can be used to extract various 
useful information/patterns for supporting various 
decision-making and planning activities to benefit both 
industry and society (Stankovic, et al. 2016). This can be 
achieved by improving the capabilities of existing 
approaches and, also by developing new efficient 
approaches for processing/analysing these large volumes 
of information/data in manageable/effective way. There is 
also a desire for the UK to lead innovation within these 
sectors (Industrial Strategy: building a Britain fit for the 
future 2017).  
In this context, this paper is aimed to demonstrate the 
potentials of a widely applied k-means based clustering 
approach (J. A. Hartigan 1975, Hartigan and Wong 1979) 
in developing efficient demand aggregation strategies. 
The underpinning idea is to select a considerably small 
sample of size 15% of individual demand profiles 
(informed by the k-means clustering using simple 
monthly-level statistics as characterising features) that 
can be processed with highly-efficient synthetic demand 
simulation models (such as the HMM_GP (Patidar, et al. 
2019) which can be applied to high-resolution individual 
demand profiles), to generate aggregated demand 
profiles with high accuracies.  
Need for such a model arises from various perspective, for 
example, in practical applications, smart meter data are 
still not available for several communities. In such a case, 
data collected for a small sample of buildings along with 
some monthly/quarterly-level statistics can be used to 
generate high-resolution aggregated demand profiles. 
Even for the communities/regions where smart meters are 
rolled out, simultaneous availability of good-quality 
electricity demand data, across a large number of 
buildings within the community (required for developing 
aggregated demand profiles) is often practically 
challenging. This is not just an issue for 
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developing/under-developed nations but is also a 
potential challenge for many developed nations. 
Nevertheless, the proposed approach can be also used to 
plan strategies for future roll-out of smart meters in 
developing/under-developed nations to selected buildings 
and thus optimising the resource allocation (Kshetri and 
Voas 2018). 
The next section will give an outline of the dataset and 
case-study used in the paper. Rest of the paper is 
organised to give an overview of research methodology, 
analysis, key results, and discussion.  

Case study  
To develop and demonstrate the proposed methodology, 
a case-study community, Fintry (Smith 2018, Howell 
2020) is selected. Fintry is a beautiful village in 
Stirlingshire, Central Scotland, surrounded by the Endric 
water, Fintry hills and the Campsie Fells. Fintry embraces 
approximately 350 households (c700 inhabitants) and is 
an off-gas grid community that mainly uses electric, oil 
and LPG based heating.  

Data Organisation 
With an inspiration to transform Fintry a carbon-neutral 
and sustainable community, Fintry Development Trust 
has been set up in 2007, which now has almost 250 active 
members. As part of various projects, FDT has 
contributed to the installation of various forms of 
renewable energy generation plants (e.g. Solar PV, 
Biomass and Wind) in the community. In particular, as 
part of the SMART Fintry project, funded from the 
Scottish Government Local Energy Challenge Fund 
(LECF), electricity demand data for 115 dwellings in the 
community at a temporal resolution of 30-minutes for 
almost a year were collected (Smith 2018). Following a 
thorough pre-analysis, a portfolio of 74 dwellings for July 
has been identified as good-quality (continuous dataset 
with less than 5% of missing values) dataset for the 
present study. Missing values are infilled using a logical 
algorithm developed by the authors and detailed as a step-
by-step procedure elsewhere (Debnath, et al. 2020). 

Research Methodology 
Research methodology involves the integration of K-
means clustering with the HMM_GP model. K-means 
approach is used for identifying a small suitable sample 
for constructing aggregation schematics and the 
HMM_GP model is used for generating synthetic demand 
from the sample. The HMM_GP model is highly technical 
involving a system of statistical approaches for processing 
high-resolution demand data. Further, details on the 
underpinning methodology for the HMM_GP model can 
be referred elsewhere (Patidar, et al. 2019). This paper 
will mainly focus on developing and identifying a suitable 
variant for K-means clustering. 

 
1 Other distance measurements are Squared Euclidean, 
Manhattan distance, Pearson correlation distance, 
Spearman correlation distance, Kendall correlation 
distance, Chebyshev. 

K-means Clustering 
A clustering approach is aimed to organise/partition the 
large collection of cases/items into a disjoint 
groups/clusters such that the items belonging to a cluster 
are alike to each other for some specified 
features/characteristics than the items in other clusters. 
Key underpinning methodology for constructing 
aggregation schematics here is based on a k-means 
clustering approach. K-means clustering performs 
unsupervised learning task to organise the collection of 
items across a fixed number (𝑘) of clusters by optimising 
the squared error function (Nisbet, Miner and Yale 2018). 
Key steps of the k-means clustering algorithm are briefly 
discussed as below and can be referred elsewhere (Larose 
and Larose 2014):  
a) Identify an optimum number of clusters. Elbow 

method is applied 
b) Allocate 𝑘 items (randomly) as initial cluster centres 

(centroid/mean). 
c) Allocate each item to their nearest cluster centre 

depending on “nearest” distance criterion (e.g. 
Euclidean distance 1 ), thus creating 𝑘  clusters, 
𝐶!, 𝐶", … , 𝐶# .  

d) Identify cluster centre (centroid), which is the mean 
value of all data point in the cluster 2 and update the 
cluster centre. 

e) Repeat above steps iteratively to minimise mean 
squared error (MSE) and until the algorithm 
converges, i.e. when cluster centre does not change 
or when no significant reduction is observed in MSE. 

Five variants of K-means clustering are constructed at 
five different periods: i)	𝑇!- 00:00 to 23:30; ii) 𝑇"- 00:00 
to 06:00; iii) 𝑇$- 06:30 to 12:00; iv) 𝑇%- 12:30 to 16:30; v) 
𝑇& - 17:00 to 23:30. Six statistics used for K-means 
clustering: i) mean (𝑚') , ii) median (𝑚()  [i-ii) both 
estimated at each of the five distinct periods	𝑇'  for 𝑖 ∈
1, 2, … , 5) ; iii) proportion (𝑝" ) of demand during the 
period	𝑇" to the total demand(𝑝!) during the entire day 
𝑇!; iv) proportion (𝑝$) of demand during the period	𝑇$ 
to	𝑝!; v) proportion (𝑝%) of demand during the period	𝑇% 
to	𝑝!; vi) proportion (𝑝&) of demand during the period 𝑇& 
to 𝑝! . Mean (𝑚') , median (𝑚() , and 𝑃'  for 𝑖 =
1, 2, … , 5,	are measured for 30-minutely demand date for 
each of the 74 dwellings and for the entire duration of 
July.  

Simulation and Analysis 
K-means clustering is applied using the functions 
“fviz_cluster”, available in R package “factoextra”. 
Further details on the theory and application of k-means 
procedure including its implementation in R can be 
referred elsewhere (Kassambara 2017).  

2 For 𝑛 data points 
(𝑎!, 𝑏!, …𝑚!), (𝑎", 𝑏", …𝑚"), … (𝑎), 𝑏), … ,𝑚)), 
centroid is found as 6∑+!

)
, ∑,!

)
, … , ∑-!

)
7. 
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The clustering variant I, represents the simplest possible 
grouping of 74 dwelling that includes basic and widely 
applied statistics, mean and median demand measured 
over the period	𝑇! for the entire duration of July.  
 

 
Figure 1: Elbow plot and k-means clustering variant I. 

Figure 1 illustrates the cluster analysis for the variant I. 
Top panel presents the plots of Elbow method, applied for 
obtaining an optimum number of cluster. The Elbow 
method estimate and plots the total within-cluster sum of 
squared errors (WCSS, explained later) for the different 
number of clusters. An optimum number of clusters is 
chosen when a change in WCSS is not significant for 
change in the number of clusters. Elbow method 
suggested 4 clusters as the optimum choice for clustering 
variant I. 
 

 
Figure 2: Elbow plot for k-means clustering variant II, 

III, IV and V for the time period 𝑇", 𝑇$, 𝑇% and 𝑇&, 
respectively labelled in the plot. 

‘Bottom panel’ of Figure 1, shows the distribution of 74 
dwellings across the four clusters in variant 1. All the four 
clusters are not overlapping and show a considerable 
variation between them. Dwellings in cluster 3 have 
considerably high mean and median than the dwelling in 
cluster 4. Further statistics and performance indicators for 
cluster variant 1 can be examined in Table 1 and 2. 
The architecture of the other four variants is mostly 
similar in the sense that they all are performing grouping 
based on mean and proportion of demand at four distinct 
periods of the day. Selection of time period is intended to 
reflect a different level of activities occurring across the 
day, specifically to investigate the hypothesis “k-means 
clustering if involves the feature that accounting in time 
periods with a comparatively large volume of peak 
demand activities can more effectively predict peaks 
demand in aggregated profiles”. From a pre-analysis of 
observed aggregated demand profiles, it appears that time 
periods 𝑇"  and 𝑇%  has comparatively low peak demand 
activities, whereas most of the peak demands (activities) 
are observed in the time period 𝑇$ and 𝑇&.  
 

 
Figure 3: K-means clustering of variant II, III, IV and V. 
Figure 2 illustrates the Elbow plot for clustering variant 
II, III, IV and V for the other four distinct time periods 
period 𝑇" , 𝑇$ , 𝑇%  and 𝑇& , respectively. Interestingly, for 
all the four variants, Elbow plot suggested an optimum 
cluster size of 4. Figure 3 shows the simulation results of 
k-means clustering for all the four variants II, III, IV and 
V. From the visual inspection of Figure 4, all the four 
variants were successful in organising 74 dwellings in 
four distinct, non-overlapping, compact clusters. For all 
the cluster variants (II-V), 𝑥-axis scales comparatively in 
the ranges of a mean demand of 0.1-1.7 kW whereas 𝑦-
axis appears to vary in the range of 0.1 to 0.4 for variant 
III and IV and in the range of 0.0 – 0.6 for variant II and 
V.  
Table 1 presents three key overall performance indicators 
for the five variants of k-means clustering described 
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above. These are i) Total sum of square (TSS) measures 
the total variance in the data; ii) Total withing-cluster sum 
of square (WCSS) measures total withinness of clusters, 
as the average squared distance of all point within a 
cluster; and iii) Between-cluster Sum of Squares (BCSS) 
measure the average squared distance between all the 
centroids. 
 

Table 1: Performance indicator for k-means clustering 
 

K-means 
variant 

 
I 
 

II III IV V 

Statistic 
used for 

clustering 

𝑚!, 
𝑚" 

𝑚#, 
𝑝# 

𝑚$, 
𝑝$ 

𝑚%, 
𝑝% 

𝑚&, 
𝑝& 

TSS 12.22 8.07 10.40 7.03 11.32 
WCSS 1.37 0.86 1.10 0.81 1.12 
BCSS 10.85 7.20 9.30 6.22 10.20 

On the performance scale, a low score of TSS is an 
indicator of the less total variance in the overall process. 
Table 1 indicates that the cluster variant IV attains the 
minimum variance, which is closely followed by variant 
II. Notably, both the variants II and IV are designed using 
the periods with comparatively less peak demand 
activities. Further on assessing WCSS, the smallest score 
that indicating less variance within the cluster (i.e. 
compact clustering) is achieved for cluster variant IV 
which is again closely followed by cluster II. Thus, a low 
score for WCSS indicates both the variants IV and II are 
comparatively performing better than variant III, V and I. 

Table 2: Performance indicator for clusters 
 

Cluster 1 2 3 4 
K-means variant I for the time period 𝑻𝟏 00:00 – 23:00 

Count 28 9 3 34 
Total demand 12364 7065 3383 8793 

Mean 0.59 1.05 1.52 0.35 
Median 0.38 0.74 1.15 0.18 
WCSS 0.44 0.31 0.02 0.6 

     K-means variant II for the time period 𝑇# 00:00 – 06:00 
Count 23 4 6 41 

Total demand 11121 4181 4115 12187 
Mean 0.49 1.31 0.95 0.20 

Avg. Proportion 0.22 0.26 0.34 0.15 
WCSS 0.30 0.03 0.24 0.30 

     K-means variant III for the time period 𝑇$ 06:30 – 12:30 
Count 24 16 28 6 

Total demand 5270 9365 10453 6067 
Mean 0.28 0.88 0.55 1.55 

Avg. Proportion 0.23 0.29 0.28 0.29 
WCSS 0.39 0.25 0.22 0.25 

     K-means variant IV for the time period 𝑇% 12:30 – 16:30 
Count 34 15 17 8 

Total demand 12350 7946 3961 7348 
Mean 0.46 0.75 0.22 1.21 

Avg. Proportion 0.19 0.20 0.15 0.19 
WCSS 0.28 0.16 0.15 0.22 

     

K-means variant V for the time period 𝑇& 17:00 – 23:30 
Count 13 24 25 12 

Total demand 2491 7400 11267 10448 
Mean 0.25 0.51 0.78 1.43 

Avg. Proportion 0.30 0.37 0.38 0.36 
WCSS 0.14 0.19 0.37 0.42 

*Total demand is measured in kWh for all 74 dwellings 
in entire July 2017. 

Finally, on accessing BCSS, smallest score is achieved for 
variant IV and II. A high score of BCSS indicates a good 
separation between the different clusters, thus according 
to BCSS based assessment, cluster I is performing best. 
Though it should be noted that total variance is also 
highest for clustering variant I, so these values are 
expected to be consequently high for variant I. To further 
assess and compare these five clustering variants, 
performance indicators specific to individual clusters for 
all the five variants are detailed in Table 2. Interestingly, 
as expected, the average proportion of demand is highest 
for cluster variant V for all the four clusters. Information 
presented in Table 2 is used to design aggregation 
schematics (discussed in the next subsection). 

Designing Aggregation schematics 
The cluster-specific measurements, such as counts, total 
demand, and average proportion are used to draw sample 
dwellings from the clusters and for designing a systematic 
logical aggregation schematic. A sample size of 15% of 
74 (i.e. total number of dwellings) ~ 11 dwellings is 
chosen. Five aggregation schematics corresponding to 
five cluster variants are designed and thoroughly 
analysed. For each of the five distinct clustering variants, 
a selection of 11 sample dwellings is conducted from the 
four different clusters using a logical cluster weighting 
formula, given as below: 

𝑊. = 𝑠 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑃/, 𝑃0, 𝑃1), 
where,	𝑊. is the number of dwellings to be selected from 
a cluster 𝑐, 𝑠 is the total size of the sample required, 𝑃2 is 
the proportion of cluster size to the total number of 
dwellings (i.e. 74), 𝑃0 is the proportion of total demand 
accounted in the cluster 𝑐, 𝑃1 is the average proportion of 
the cluster. For the purpose of demonstration, the sample 
selection procedure for Aggregation schematic 2 
(corresponding to cluster variant II) is presented here. In 
Aggregation schematic 2, the number of dwellings to be 
sampled from cluster 1, 2, 3 and 4 are respectively 
estimated as: 

𝑊! = 11 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 6"$
3%
, !!!"!
$!45&

, 0.227 = 3.23~3;  

𝑊" = 11 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 6 %
3%
, %!6!
$!45&

, 0.267 = 1.63~2; 

𝑊$ = 11 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 6 4
3%
, %!!&
$!45&

, 0.347 = 2.02~2; 

𝑊% = 11 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 6%!
3%
, !"!63
$!45&

, 0.157 = 3.99~4. 

Further, Figure 3 has been used to randomly select sample 
dwellings from each of the clusters to ensure selection is 
considerably varied. Please note that, for aggregation 
schematic 1, an only average of 𝑃2 and 𝑃0 are used. The 
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same procedure is applied to select a sample of 11 
dwellings for each of the five aggregation schematic.   

Synthetic simulation of demand  
For all the five different Aggregation schematics, 
aggregated demand profiles are compiled by generating a 
suitable number of synthetic demand profiles through the 
application of the HMM_GP model. The sample of 
dwellings selected from each of the clusters (as specified 
above) is processed with the HMM_GP model to generate 
the required number of synthetic demand profiles. With 
reference to the above example, in aggregation schematic 
2, a sample of three dwellings selected from cluster 1 is 
simulated using HMM_GP model to generate 23 synthetic 
demand profiles. 30 minutely observed demand profiles 
over the entire July are used for all the three samples and 
8 synthetic demand profiles (30 minutely over the entire 
July) are generated corresponding to each of the observed 
sample dwellings. With the same analogy, a total of 4, 6 
and 41 synthetic demand profiles are generated using 
HMM_GP model from the sample of 2, 2 and 4 observed 
sample profiles drawn from the cluster 2, 3 and 4 
respectively.  

Result Analysis (Aggregation Schematics) 
To assess the potential impacts of different clustering 
variants in designing an efficient aggregation schematic 
(with capabilities in effectively estimating peak 
demands), a thorough performance analysis of all the five 
Aggregation schematics is performed.  Figure 4 presents 
a visual comparison of aggregated demand profiles 
(composed by temporal addition of 74 observed 30-
minutely individual demand profiles) with the 74 
synthetically constructed aggregated demand profiles for 
a week. Synthetic aggregated demand profiles are 
constructed by adding individual synthetic demand 
profiles generated from HMM_GP model for the sample 
of 11 dwellings (samples selected using clustering-based 
information as specified above).  
 

 
Figure 4: Comparing observed dynamically aggregated 

demand profiles for 74 dwellings for a week in July 
(dark thick lines) with synthetically generated 

aggregated demand profiles (lightly shaded line) for five 
Aggregation schematics. 

 

In Figure 4, observed aggregated demand profiles are 
presented using thick dark lines (‘Maroon’ for 
Aggregation 1, ‘Navy’ for Aggregation 2, ‘Green’ for 
Aggregation 3, ‘Violet’ for Aggregation 4, and ‘Brown’ 
for Aggregation 5). Corresponding synthetic aggregation 
profiles are presented with the light shade of thin lines 
(‘Pink’ for Aggregation 1, ‘blue’ for Aggregation 2, ‘light 
green’ for Aggregation 3, ‘purple’ for Aggregation 4, and 
‘yellow’ for Aggregation 5). Visually all the aggregation 
scheme appears to perform reasonably good in capturing 
transient dynamics of observed aggregated profiles. 
However, on closely observing their behaviour for 
capturing the dynamics of peak demands it appears that 
Aggregation scheme 5 often over-estimate large peaks.  

 
Figure 5: Comparing violin plots for assessing error 

distribution for five aggregation schematics in 
predicting observed aggregated demand in three ranges. 
To further assess the model performance a thorough 
statistical analysis of aggregation error term is conducted. 
Aggregation error at time instance 𝑡 is defined as  𝐸(𝑡) 	=
	𝑂(𝑡)	– 	𝑆(𝑡) , where 𝑂(𝑡)  is the observed aggregated 
demand at time 𝑡  and 𝑆(𝑡)  is the synthetic aggregated 
demand at time 𝑡. Errors are estimated for each of the 
half-hourly aggregated demand values for the July and 
error analysis is performed for three observed aggregated 
demand value (ranges): a) Less than 40 kW, b) between 
40-60 kW and c) between 60-80 kW. Results are 
illustrated in Figure 5 using the violin plots.  
Violin plots are comprehensive illustrations used to 
present the density distribution of data along with the box 
plot (Hintze and Nelson 1998). A box plot presents the 
five summary statistics, minimum, 25th percentile (1st 
quartile), 50th percentile (Median), 75th percentile (3rd 
quartile) and Maximum. In addition to the box plot, a 
violin plot also provides a kernel probability density 
(frequency) distribution of data at different values on the 
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𝑦-axis. The violin plots presented here are generated in R-
package ‘ggplot2’ (Pedersen 2020). In each of the violin 
plots, box plots are marked as boundaries (in dark black 
lines) outlining a box shape.  Lower and Upper bars on 
the box presents (1st and 3rd quartiles respectively) 
interquartile ranges, a dark line passing within the box 
indicate the median value, and a red empty star symbol 
indicating mean of the error distribution. Extended lines 
from the box emanating from lower and upper quartile 
indicates the variability of data and reach to mark the 
minimum and maximum values respectively. Black solid 
filled dots are outliers. Area enveloping the box plot 
(forming a violin-like structure) and filled in with 
different colours here shows the kernel density 
distribution of error.  A ‘pink’ infill is used for 
demonstrating error distribution for Aggregation 1. 
Similarly, a ‘blue’ infill is used for Aggregation 2, ‘light 
green’ for Aggregation 3, ‘light purple’ for Aggregation 
4, and ‘yellow’ is used for Aggregation 5.  
Figure 5 ‘Upper panel’ shows the violin plot of error 
distribution corresponding to aggregated load values in 
the range of less than 40 kW. ‘Middle panel’ shows results 
for load values in the range of 40-60 kW and ‘Bottom 
panel’ shows results for load values between 60-80 kW.  
For less than 40 kW (Figure 5, Upper Panel), ‘purple’ 
shaded violin plot appears to have the smallest spread 
while and the ‘yellow’ shaded violin plot appears to have 
the longest spread.  This implies that the Aggregation 
Scheme 4 estimate load values with error distributed at 
most in the ranges of 15 kW whereas for Aggregation V 
scheme some values are estimated with high error ranges. 
Box plot spreads are compact and comparatively similar 
for all the cases indicating most of the error (more than 
75%) are within the ranges of 10kW. Also, the peak 
around 5 kW further suggests out of these 75% values 
most are distributed to an error around 5 kW, which is 
considerably low.  
For Between 40-60 kW (Figure 5, Middle Panel), violin 
plots are mostly spread in the ranges of 20 kW and most 
of the error values are in the range of 10 kW (more than 
75%). Same as above, kernel distribution plots are mostly 
peaking round error values of 5 kW. Kernel distribution 
plots for Aggregation 1, 2 and 3 have mostly similar 
structure while distribution plot for Aggregation 4 appears 
to have a slightly flatter peak and smooth tail. 
Aggregation 5 again seems to have the longest spread and 
several outlier values.   
Between 60-85 kW (Figure 5, Bottom Panel), the 
distribution shape of violin plots has a bimodal shape for 
Aggregation 1, 3 and 5. Also tail for Aggregation 2 and 4 
is smoothly decaying rather than a sharp decay notice 
above. Box plots are within the range of 20kW 
(suggesting around 75% values less than 20 kW error). 
Box plots appear to have the smallest spread for 
Aggregation 2. Aggregation scheme 5, once again is 
underperforming with the highest median value, the 
longest spread of error and two modes.  
Nevertheless, in all the cases results are encouraging and 
proposed modelling scheme appears to simulate the 

dynamics of aggregated demand profiles with high 
accuracies in all the demand ranges. These results indicate 
that a simple mean/median-based or a simple time-of-use 
based features can be used to simulate a k-mean based 
clustering module for selecting a suitable sample for 
achieving optimum results with demand aggregation.  

Conclusion 
This paper intended to investigate the potentials for a k-
mean based clustering approach to support demand 
synthesising tools/models and designing of an 
aggregation schematic for community-level energy 
demand modelling. Five different variants of the k-mean 
clustering are constructed using some basic/standard 
information available for 74 dwellings within a case-study 
community. A logical framework is designed to select a 
suitable sample from the clusters using some statistical 
and clustering information. The sample dwellings are 
simulated using a demand synthesising tool (HMM_GP). 
The demand synthesising tool (HMM_GP) is a purely 
data-driven system of statistical approaches that simply 
needed a continuous time series of electricity demand to 
simulate a user-specified number of synthetical demand 
series. The simulated series owns the same statistical 
characteristics as the parent series and thus represent a 
realistically possible scenario, which can be attributed to 
a different household with similar statistical properties. In 
this context, this paper provided a logical framework for 
identifying and selecting sample dwellings (that can 
optimally capture the diversity of the community) for 
demand aggregation module in the community demand 
modelling.  
The paper presented a thorough examination of clustering 
results by comparing various performance indicators and 
graphs. All the schemes performed reasonably well, 
suggesting a wide range of information can be used for 
designing smart aggregation schemes if processed 
effectively with k-means.  Corresponding to each of the 
clustering variants an aggregation schematic is 
constructed and further investigated. To assess the 
performance of aggregations scheme and role of 
clustering variants in providing a strong sample for 
demand aggregation, five synthetics aggregation demand 
series are generated and thoroughly analysed. All 
schemes appear to provide encouraging results thus 
confirming the potentials of a k-mean based clustering 
approach for constructing aggregation schematics.  Most 
interestingly, all these findings collectively provide 
enough pieces of evidence to reject the hypothesis “k-
means clustering if involves a feature that accounting in 
time periods with a comparatively large volume of peak 
demand activities can more effectively predict peaks 
demand in aggregated profiles”.  
Finally, the paper demonstrates the scope for further 
investigating a range of socio-economic and geomorphic 
information/factors in improving the potentials of data-
driven modelling schemes for community-level demand 
modelling. Since a very basic analysis and clustering 
structure (using only two factors) is used, this work has 
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immense potential for future investigation with a different 
form of clustering approaches and clustering with several 
factors,  such as clustering with PCA (Ding and He 2004).  
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