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ABSTRACT 

  As an advanced imaging technique, the polarization imaging has attracted more and more interests and many 

applications have been developed in the fields, such as biomedical diagnostics, target identification and remote sensing 

due to its unique ability to detect the polarization information of objects. On the other hand, the grating with its periodic 

spatial structure has been used widely in various imaging systems including but not limited to holographic imaging, 

Talbot effect of self-imaging, and imaging spectrometer. Furthermore, a sinusoidal amplitude grating is of considerable 

interest in image analysis and optical system characterization. Although many techniques with applications of the 

gratings have been developed in the last decades, few investigations have been made to the sinusoidal amplitude grating 

in a polarization imaging system with arbitrary illumination condition of polarization and coherence. In this paper, the 

polarization imaging of a sinusoidal amplitude object illuminated with a partially polarized and partially coherent light is 

investigated. With the help of the unified theory of polarization and coherence, we have extended the use of sinusoidal 

trace analysis in the evaluation of optical system performance and presented theoretical analysis on the Stokes images of 

a sinusoidal amplitude grating.  

Keywords: sinusoidal amplitude grating, polarization imaging, partially polarized and partially coherent light  

1.  INTRODUCTION 

   Since the introduction of transfer function techniques for image analysis, a variety of methods have been evolved for 

the measurement of the transfer function. The most popular methods have been scanning techniques of which one whole 

class involves the Fourier analysis of the image of sinusoidal gratings. An excellent review of this and other techniques 

for measuring transfer function are to be found in an article by MUKATA [1965]. Because of the importance of the use 

of sine wave targets in image analysis it is of some considerable interest to evaluate the image of such an object under 
various coherence conditions of the illumination. Two sets of authors have studied this problem from the point of view of 

examining the ambiguity of the transfer function of a system where the object is illuminated with partially coherent light 

(BECHERER and PARRENT [1967]; SWING and CLAY [1967]). Both sets of authors considered only a one-

dimensional imaging system for the sake of simplicity. The first named authors discussed the problem for an object with 

a sinusoidal amplitude transmittance. This, of course, is not the usual “sine wave target” which has been adopted to mean 

a sine wave in intensity - an outcome of the purely incoherent analysis. Following the work of Becherer and Parrent, 

Swing and Clay performed the same type of analysis for the more usual sine wave target with a sinusoidal intensity 

transmittance. Earlier HOPKINS [1953] had shown that the image of periodic line structures in partially coherent light 

requires for its specifications a set of cross transfer factors for each pair of frequencies. 

The literature contains a number of papers dealing with the image of a sinusoidal and the transfer function of a system 

for sine-wave object[1~6]. The use of sinusoidal trace analysis in the evaluation of system performance is now well 
established. All these authors showed the basic differences in the image of sine-wave object. But they don't consider the 

polarimetric properties of light. Theoretical results are presented about polarization image of sine wave with partially 

polarized and partially coherent light. The theoretical results are presented. The dependence of spatial frequency 

response upon the Stokes parameter and the obscuration ratio of the aperture have been discussed.  

2. NONLINEARITY IN IMAGING WITH PARTIALLY COHERENT LIGHT 

    The basic quantity in the vector theory of partial coherence is the generalized Stokes parameters defined by 
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 1 2,in

iS x x , 0,1,2,3i   is the generalized Stokes parameters in the object plane of an optical imaging system in Eq. (1). 

The sharp brackets in Eq. (1) indicate a long time average and E(x, t) is the analytic signal associated with the optical 

disturbance at the point x and time t. A more useful form for application to image analysis is obtained by considering the 

object to be transilluminated. This is certainly the case in all uses of microscopes, enlargers, and micro densitometers in 

image evaluation. For transilluminated objects, there p(x) is the amplitude transmittance of the object.  

Then the expression for the generalized Stokes parameters  1 2,im

iS x x , 0,1,2,3i   in the image plane of an optical 

imaging system is 
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In Eq. (2),  1 2,im

iS x x  are the generalized Stokes parameters in the image plane,  p  is the amplitude transmittance of 

the object, and  xh  is essentially the spatially stationary amplitude impulse response of the imaging system. 

However, when the detection process is included in the analysis, the generalized Stokes parameters in the image plane 

are the quantity of interest. For transilluminated objects, this generalized Stokes parameters are found from Eq. (2) and 

the definition (1) to be 
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For the important practical case where 
1 2( , )in

iS   is spatially stationary, i.e., for 
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Eq. (3) can be written 
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From Eq. (5) it is clear that, for transilluminated objects, the transition from object intensity    2

*

1  pp  to image 

intensity ( )im

iS x  is nonlinear. The significance of this conclusion is that the customary image evaluation techniques and 

criteria are not, in general, applicable to such systems. Knowing how such a system images sine-wave does not permit us 

to describe how it images other objects. Furthermore, the same optical system and object could be expected to yield 

different polarization image ( )im

iS x  if the coherence of the illumination represented by 
1 2( )in

iS   were varied.  

Since systems of this type are inherently nonlinear, it is impossible to characterize them by a transfer function. 

Because of its usefulness, and because it outlines an analytical technique, it will be worthwhile to go through the 

transformation in detail. Symmetrical transforms will be employed. The spectra are given by.  
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When Eqs. (5) and (6) are combined, and the integrand regrouped, we find  
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Take ξ and σ to be conjugate variables in   and , respectively. We can then evaluate the inner integral. Thus, 
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When we insert this in Eq. (7) and regroup, we find 
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Take ξ and γ to be conjugate variables in . We can then evaluate the inner integral. Thus,  
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 When we insert this in Eq. (9) and make a final regrouping, we have 
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The inner integral can immediately be recognized as a Fourier transform with ξ2 and (fx -γ) as conjugate variables. Thus, 

the polarization image spectra for the one-dimensional case of image formation are given by 

 ddffff xx
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   Where the grouping of terms has been deliberate, to point out the source of the nonlinearity. The inner integral contains 

the optical-system and illumination characteristics. It is a function of two spatial frequencies and has been referred to as 

the "transmission cross coefficient". In only a vague sense does it constitute a transfer function, and is not used as one in 

Eq. (12). Therefore, for an arbitrary mutual polarization image, the behavior of an optical system is inherently nonlinear. 

The normal linear multiplicative relation between object spectrum and system transfer function is no longer applicable, 

and the current technique of optical system analysis through the cascading of component transfer functions is clearly 

subject to error. 

    In Eq. (12) the inner integral is characteristic of the instrument and the illumination while the factors  P  and 

 *

xf P  are determined solely by the object. However, the right side of Eq. (12) is not in the form of a product of 

object spectrum and transfer function as it would be if the system were linear. The inner integral in Eq. (12) has been 

referred to as a generalized transfer function, but that nomenclature is rather misleading since the function is not used as 

a transfer function. A better terminology may be the more cumbersome one introduced by Wolf, i.e., the "transmission 

cross coefficient." 

3. DESCRIPTION OF IMAGING SYSTEM 

   This section contains a description of an optical imaging system for which the transfer function is to be measured. The 

mutual intensity of the light incident on the object and the amplitude impulse response of the imaging system, and their 

Fourier transforms, are found in this section. These are used in the following sections to solve the imaging problem and 

to determine the apparent transfer functions for sinusoidal objects.  

  Figure 1 indicates a schematic diagram of polarization imaging of sine-wave object under illumination of a partially 

coherent and partially polarized light source.  

 

Fig.1. Schematic diagram for polarization imaging of sine-wave object illuminated by partially coherent and partially polarized light source. 

For mathematical simplicity, all the treatments here are restricted to one-dimensional variations for light source, object, 

apertures and images. An incoherent source in the   plane illuminates an object in the   plane. The   plane is imaged 
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onto the x, y plane by an imaging system with exit pupil in the   plane. The distance in image space is normalized by 

the lateral magnification of the imaging system and the positive direction in image space is opposite to that in object 

space. This is done to make the ordinate of a given object point equal to that of its corresponding image point.  

An incoherent source (S) with side length 20  illuminates sine-wave object located far away with a distance of
oz . 

For such a light source with uniform irradiance, its Stokes parameters can be written as Eq. (13) with
2

i i ii
s S S   

being the normalized Stokes parameters for the tensor wave of light source. 
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A sine-wave object is imaged onto the viewing screen located at a distance of 
iz  by an imaging system of the lens (L) 

with its exit pupil of 20 .  The generalized Stokes parameters of the incident beam at the object plane is found from the 

well-known van Cittert-Zernike theorem to be given to a good approximation by 

                                               1 22

1 2( , )= ( )e ( 0 3)oi zin

i iS S d i
    

   


                                              (14) 

For points 
1  and 

2  close to the optical axis, here 
oz  is the distance between the incoherent-source plane   and the 

object plane . When Eq. (13) is used to evaluate Eq. (14), the generalized Stokes parameters of the incident beam at the 

object plane is found to be 

                                                     1 2 0 1 2( , )=const sinc 2 ( 0 3)in

i oS i z i                                                (15) 

 

The distance from the center to the first zero of the generalized Stokes parameters of the incident beam at the object 

plane in Eq. (15) will be referred to as the coherence interval of the object illumination. 

The Fourier transform of the generalized Stokes parameters of the incident beam at the object plane Eq. (15) is 
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Equation (16) serves to define the parameter
1f .  

    To emphasize the coherence effects and to minimize the complications arising from aberrations, the restriction to 

diffraction-limited optics is imposed. The amplitude in the exit pupil of the imaging system due to a point object is taken 

to be 
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Where 
0  is constant. Under the usual approximations which characterize Fraunhofer diffraction, the amplitude impulse 

response corresponding to Eq. (17) is 

 2
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Where 
iz  is the distance from the plane   of the exit pupil to the image plane x. The distance from the center to the 

first zero of the impulse response function in Eq. (18) will be referred to as the size of the imaging system's diffraction 

pattern. The Fourier transform of Eq. (18) is 
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Equation (19) serves to define the parameter 0f . 

4. POLARIZATION IMAGE FOURIER TRANSFORM FOR SINE WAVE OBJECT 

The object to be considered is a sinusoidal object with amplitude transmittance  

                                                             0
( ) 1 cos 2 xp f   

                                                                              
(20)

 

where
0xf is the spatial frequency. The Fourier transform of Eq. (20) is 
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 The corresponding intensity transmittance of this object is 

0 0

2
( ) 3 2 2cos 2 1 2(cos 2 2 )x xp f f      

                                                    
(22) 

The intensity transmittance of the sine-wave object often used in laboratory measurements of the optical transfer 

function has a single spatial-frequency component rather than the two-spatial-frequency components which appear in Eq. 

(22). When the imaging system is linear, there is no fundamental difference between these two objects. When the system 

becomes nonlinear, the sine-wave loses its value as a test object.  

The necessity of specifying the amplitude transmittance of the object for use in Eqs.(10) or (11) when the illumination 
is partially coherent makes a simple object of the form shown by Eq. (20) particularly suitable for the present analysis. 

The object represented by Eqs. (20) and (22) is, of course, physically realizable. 

 Since the object illumination is partially coherent, it is necessary to describe the experiment very carefully. The 

resulting image is shown to have an intensity function of the form 

               0 0
( ) cos 2 cos 2 2

i

im

i i x i xS x A B f x C f x   
                                               

（23） 

Where, of course, Ai, Bi, and Ci are yet to be determined. The ratio of the image modulation in terms of intensity to the 

object modulation, in terms of intensity, will be calculated. This ratio will be calculated for both spatial frequency 

components separately, following the practice which would be used under the condition of incoherent object illumination 

for an object whose intensity contained more than one spatial-frequency component. If the system was linear in intensity, 

these modulation ratios for the components of frequency 
0xf and 

0
2 xf  should be the same except for the scale factor of 

2 in spatial frequency.  

   To begin, the integral in Eq. (11) is again written in the form 

 
 dfdrrfrfrf xx

in

ixx

im

i )()(])()()([)( *HHSPPS   
                          

(24) 

Where Eq. (18) and Eq. (20) have been used to write h=h* and p=p*. By substituting  Eq. (21) into Eq. (24), using Eq. 

(19) to write ( )= ( ) H H , and taking the inverse Fourier transform of both sides of Eq. (24), we find that  

0 0

0 0 0 0

0 0 0

0

1
4

1
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) cos 2

( ) (2 ) ( ) cos 2 2

cos 2 cos 2

im in

i i

in in

i x i x

in in

i x x i x x

in

i x x x

i i x i

S x d

f f d

f f f d f x

f f d f x

A B f x C

   

     

      

    



  

         

       

    

  









S H H

H S H S H

S H S H H

S H H

0
2 xf x

              
 
(25)

 

where the coefficients Ai, Bi, and Ci are determined by using Eq. (16) and (19) to evaluate the integrals in Eq. (25). The 

result is 
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Thus, the polarization image spectra for the one-dimensional case of image formation are given by
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0
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f
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 is to be read “ 0f  or 1f , whichever is smaller.”  

5. POLARIZATION IMAGES OF SINE WAVE OBJECT WITH DIFFERENT LIGHT 

ILLUMINATION 

Figure 2 shows plots of the normalized magnitudes    0im im

i xS S with    
2

0 0im im

ii
 S S  being the 

normalized Stokes parameters at the viewing plane of this apparent Fourier Spectra for various values of
0 1=R f f . The 

x-axis represents the normalized natural frequency of the grating, and 2f0 is taken as the normalized value, and 2f0 is also 

the cutoff frequency of the grating signal. 

From examination of the description of the imaging system in the previous section, it is seen that the parameter R is 

the ratio of the coherence interval of the object illumination to the size of the imaging system's diffraction pattern.  

When the normalized Stokes parameters for the tensor wave of light source are as follows:
0 =0.89s , 

1=0.25s , 

2 = 0.32s  , and 
3 = 0.2s  , which means Fourier spectra of polarization images of a sinusoidal object with partially 

polarized light illumination. 

Figure 2(a)-(d) show plots of the Fourier spectra of the Stokes images of sine-wave object for various values of R  

indicating the ratio of coherence degree at the object illumination to the size of the imaging system’s diffraction pattern. 

When a sine-wave object is illuminated by partially polarized light, their normalized magnitudes Fourier spectra of 

polarization images change with various values of R and the cutoff frequency of the grating signal, which means more 

information and details about the object can be recognized and detected.  
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Fig.2. The normalized Fourier spectra for Stokes images of a sinusoidal object illuminated by partially polarized light for various values of

0 1=R f f

and the normalized frequency
0 02xf f  . 

6. CONCLUSIONS AND RESULTS 

In summary, the polarization imaging as an advanced sensing technique has attracted more and more interests due to 

its unique ability to detect the polarization information of objects, which will be beneficial to many applications, such as 

biomedical diagnostics and target detection, recognition and identification. In all the above figures, when the normalized 

frequency 
0 02xf f  is greater than 0.5, the double frequency disappears. When R=2 and the normalized frequency 

0 02xf f  is greater than about 0.75, the frequency once and frequency twice disappear altogether, leaving only the DC 

component. When the normalized frequency is the same, Stokes intensity of R=0.5 almost coincides with that of R=1 

while Stokes intensity decreases obviously when R=2. 
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