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ABSTRACT

This paper presents a fast object detection algorithm for 3D
single-photon Lidar data. Lidar imaging acquires time-of-
flight (ToFs) events in different spatial locations to build a 3D
image of the observed objects. However, high ambient light
or obscurants, might affect the reconstruction quality of the
3D scene. This paper proposes a solution by first detecting
the pixels containing photons reflected from a object/surface,
allowing a higher level processing of the data while only
accounting for informative pixels. In contrast to histogram
based approaches, the proposed algorithm operates on the
detected photon events allowing a reduction in memory re-
quirements and computational times. A Bayesian approach
is considered leading to analytical estimates that can be com-
puted efficiently. Results on simulated and real data highlight
the benefit of the proposed approach when compared to a
state-of-the-art algorithm based on histogram of counts.

Index Terms— 3D Lidar imaging, Bayesian approach,
target detection, sparse photon regime, single-photon events.

1. INTRODUCTION

Single-photon 3D laser detection and ranging (Lidar) imag-
ing has emerged as a candidate technology for a number of
application areas including defence, automotive [1], and en-
vironmental sciences [2]. This imaging system builds a high-
resolution 3D image of the observed objects by sending laser
pulses and collecting the reflected photons from a surface
while measuring their time-of-flight (ToFs). The ToFs con-
tain information about the system-target distance while the
number of collected photons inform on the reflectivity of the
observed scene. It is also common to pre-process the detected
ToFs events into a histogram of counts and to apply differ-
ent processing strategies on the resulting waveforms. How-
ever, this data representation is memory inefficient especially
in the sparse photon regime, and requires an additional com-
putational cost to convert photon events to histograms. This
paper operates on the raw ToFs photon events to ensure an op-
timized exploitation of the available computational resources.
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Thanks to their good resolution and low sensitivity to
noise, time-correlated single-photon counting (TCSPC) Lidar
systems are currently used to perform long-range imaging
[3] in addition to imaging through obscurants [4–7]. Several
pixels are scanned in both cases, however, some pixels might
only contain background counts due to ambient light, reflec-
tion from the observation environment (air, water, etc.) or
dark events due to the detector noise. Therefore, several algo-
rithms have been designed to detect pixel with useful photons,
i.e., photons reflected from an object or a surface. Such ap-
proaches include the Markov chain Monte-Carlo (MCMC)
method proposed in [8], which is time consuming due to
the use of a sampling MCMC strategy. Two fast algorithms
were recently proposed in [9, 10], which use a Bayesian
formulation to output a per-pixel probability of target pres-
ence. These algorithms showed state-of-the-art performance,
however, they operated on a histogram of counts which is
not an optimal data representation given limited computing
resources.

This paper proposes a new fast algorithm for per-pixel
object detection. We adopt a Bayesian approach operating
on the raw ToFs data and defining as parameters the target
depth (if present), a signal-to-background related parameter
and a binary parameter indicating the presence or absence
of a target. A probability mixture model is considered for
the likelihood, while appropriate prior distributions are cho-
sen for each model parameters to express their known proper-
ties. The resulting model selection problem is then solved by
marginalizing the depth and SBR parameters, leading to an-
alytical expressions for the probability of detecting a target.
The resulting analytical expressions are however combinato-
rial, and an approximation is introduced to ensure fast compu-
tations. The proposed approach is validated on simulated and
real Lidar data showing good performance when compared to
the algorithm [9] in terms of computational cost and detection
performance.

The paper is structured as follows. Section 2 introduces
the observation model of the detected photon events. Section
3 presents the proposed Bayesian model for target detection.
The computation of the marginal probabilities are described
in Section 4. Results and conclusions are finally reported in
Sections 5 and 6.
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2. OBSERVATION MODEL

Single-photon Lidar systems generally emit laser pulses and
detect the reflected photons, together with their ToFs, from
the target for each spatial location/pixel. The detected pho-
tons and measured ToFs provide useful information regard-
ing the distance of the observed target and its reflectivity,
allowing the construction of 3D images of the observed
scene. It is common to gather the measured ToFs into a his-
togram of counts yn,t, for the nth pixel and tth bin where
n ∈ {1, · · · , N} and t ∈ {1, · · · , T}, which is modelled
using a Poisson distribution given by

yn,t ∼ P [rn g (t− dn) + bn] (1)
where P(.) denotes a Poisson distribution, dn ∈ {1, · · · , T}
represent target range’s position, rn ≥ 0 the reflected counts
from the target, bn ≥ 0 denotes the background and dark
counts of the detector, g is the system impulse response (SIR)
assumed to be known from a calibration step and normalized
(
∑T
t=1 g (t) = 1) and T is the length of the ToFs histogram.

In the absence of a target, i.e. rn = 0, the measured histogram
reduces to background counts yn,t ∼ P (bn). In this paper,
we approximate the SIR with a Gaussian shape as it helps ob-
tain analytical probability results in Section 4. Model (1) has
been used in many studies, however, it assumes the availabil-
ity of histograms which in practice should be built from the
raw detected photons and ToFs and thus involve additional
computational cost. In addition, modelling the data using his-
tograms is memory consuming especially in the sparse photon
regime where only few photons are detected per-pixel. In this
paper, we aim to design a low memory and fast detection al-
gorithm, thus we directly model the detected list of photons
sn,m for the nth pixel and for m ∈ {1, · · · , ȳ}, using a mix-
ture of densities as in [11, 12]

P (sn,m|wn, dn) =
(1− wn)

T
+ wng (sn,m − dn) (2)

where wn = rn
rn+bnT

represents the probability of the de-
tected photon to belong to a target or a uniform background
and ȳ the total number of photons detected in the nth pixel.
Model (10) shows that in absence of a target in the nth pixel
(i.e., rn = wn = 0), the ToFs will be uniformly distributed as
follows

P (sn,m|wn = 0, dn) = 1/T. (3)
Assuming the independence of the observed ToFs leads to the
joint likelihood distribution

P (sn|wn, dn) =

ȳ∏
m=1

P (sn,m|wn, dn). (4)

where sn = (sn,1, · · · , sn,ȳ) gathers all detections for the nth
pixel. Given a ToFs list denoted by sn, our goal is to design
a fast target detection algorithm to decide if 0 < wn ≤ 1
or wn = 0, i.e, if there is a target or not. Note that this is
an ill-posed inverse problem, since the parameters (wn, dn)
are unknown in practice, and we propose to solve it using a
Bayesian strategy as detailed in the next section.

3. BAYESIAN MODEL FOR TARGET DETECTION

This section introduces a Bayesian model for target detection.
The Bayesian framework assigns prior distributions to the un-
known parameters to include additional information and reg-
ularize the ill-posed inverse problem. The next section intro-
duces the proposed prior distributions for the unknown pa-
rameters.

3.1. Prior distribution for w

The parameter 0 ≤ wn ≤ 1 represents the probability of the
detected ToFs to belong to a background (wn = 0) or a target
(0 < wn ≤ 1). To satisfy these constraints, we assign this
parameter a common spike and slab prior distribution [13] as
follows

p(wn|un) = δ(wn)(1− un) + unBeta(α, β) (5)

where δ(.) denotes the Dirac delta distribution centred in 0,
Beta(α, β) is the beta distribution with known shape param-
eters α, β > 0 and un ∈ {0, 1} is a binary variable that
indicates the presence (un = 1) or absence (un = 0) of a
target. In this work, the parameters α, β > 0 are assumed
known and fixed to reflect our prior knowledge on the param-
eter wn. The latter parameter is directly related to the signal
to background (SBR) level (as follows wn = SBR

1+SBR , where
SBR= rn/(bnT )) which allow fixing the hyper-parameters
from calibration measurements. In what follows, we assume
non-informative prior and fix the parameters to α = β = 1.

3.2. Prior distribution for un

The parameter un is assigned a Bernoulli distribution with a
probability of target presence π, i.e., p(un = 1) = π and
p(un = 0) = 1 − π. The parameter π is fixed to 0.5 in
what follows, reflecting the absence of additional information
regarding this parameter.

3.3. Prior distribution for dn

A non-informative uniform prior distribution is assigned for
the discrete variable dn, as follows p(dn) = 1/T, ∀n. How-
ever, this choice can be changed in presence of additional in-
formation regarding the target position.

3.4. Posterior distribution and decision rule

Using Bayes rule, the posterior distribution can be expressed
as follows

f(wn, dn, un|sn) ∝ f(sn|dn, wn)f(dn)f(wn|un)f(un)
(6)

where ∝ means “proportional to”. To perform target detec-
tion, we are interested on the marginals of the variable un and



build our test rule as in [9]

f(un = 0|sn)
H0

≷
H1

f(un = 1|sn) (7)

where H0, (resp. H1) represents the absence (resp. presence)
of a target and

f(un|sn) =

T∑
dn=1

∫ 1

0

f(wn, dn, un|sn)dwn (8)

The next section introduces the details to compute (8)

4. COMPUTATION OF DETECTION
PROBABILITIES

Our goal is to compute the marginals in (8). It is straightfor-
ward to show that

p(un = 0|sn) =
1− π
T ȳ

. (9)

To compute p(un = 1|sn) we first note that the joint like-
lihood distribution can be expressed as a polynomial, as fol-
lows

p(sn|wn, dn) = wȳn

ȳ∏
m=1

[xn + g (sn,m − dn)]

= wȳn

ȳ∑
m=0

anm(dn)xmn (10)

where xn = (1−wn)
Twn

, and anm(dn) > 0 are expressed
with respect to the sum and product of the coefficients
rdnm = g (sn,m − dn) using the Vieta’s formulas given by

anm(dn) =
∑

1≤i1≤i2≤···≤ik≤ȳ

rdni1 r
dn
i2
...rdnik (11)

At this stage, we approximate the SIR g (which is playing
the role of signal counts distribution) by a Gaussian distribu-
tion with standard deviation σ as follows g (sn,m − dn) =
Ndn(sn,m, σ

2). This is a common approximation that has
been used in several previous studies [14] [15]. It is worth
mentioning that using a continuous Gaussian distribution to
represent the discrete ToF values has a limited effect on the
performance of the proposed approach, this is due to the time
resolution of single-photon detectors being generally very
small compared to σ. Under these assumptions, Eq. (11) re-
duces to a sum and products of Gaussian distributions which
is analytically available. The marginalization in (8) can be
analytically done leading to

p(un = 1|sn) = π
TBeta(α,β)

×
∑ȳ
m=0

[
Beta(ȳ+α−m,β+m)

T i ānm

]
(12)

Fig. 1. Comparison of false alarm probability for the pro-
posed method with different approximation levels, and the
histogram-based method in [9].

where ānm is the result of marginalizing the Gaussians in
anm(dn) with respect to dn, where we have assumed the tar-
get location dn is far from the observation window edges lead-
ing to

∑
dn
Ndn(µ, σ2) ≈ 1. Although Eq. (12) shows an

analytical formula for the probability of detection, it should
be noted that it is a sum of combinatorial products (see (11))
that can not be computed efficiently for large ȳ > 10. Several
strategies can be adopted to solve this problem and we distin-
guish two promising directions, (i) an iterative estimation ap-
proach where (12) is evaluated for a small number of photons
M , the resulting probability is then used to update our prior
distribution by setting πt+1

n = p(utn = 1|stn). The procedure
can be repeated iteratively to account for all detected photons
ȳ. The second strategy, which is adopted in this paper, is to
approximate p(un = 1|sn) by limiting the number of terms
summed in (11) to K =

(
M
M/2

)
= M !

(M/2)!(M/2)! , where M is
a user fixed parameter ensuring better approximation for large
values and ! denotes the factorial operator. Note that the com-
plexity of the proposed algorithm is proportional to the small
number of detected photons instead of the size of observation
window "T" as in [9].

Finally we mention that the obtained probability maps re-
sults from an independent processing of pixels. Assuming
a similar number of surfaces for adjacent pixels [9, 16], the
probability maps can be post-processed to enforce spatial cor-
relation between pixels using a total-variation regularization
as in [9]. The latter procedure leads to better visual results as
shown in the next section.

5. RESULTS

We first evaluate the performance of the proposed algorithm,
denoted ETD for event based target detection, on simulated
data. We generate the data according to model (10) with
T = 2500bins, σ = 20, while varying SBR in the range
[0.01, 100] and the total photons ȳ in the range [1, 1000]. The
proposed strategy is evaluated for two approximation levels
M ∈ {8, 10} and is compared to the histogram based TD
algorithm (HTD) introduced in [9] as it showed state-of-the-
art results with reduced computational time. All results are



Fig. 2. Comparison of true positive (TP) probability for (left)
the proposed method with M=10 and (right) the histogram-
based method in [9]).

Fig. 3. Comparison of the computational time of the pro-
posed method with different approximation levels, and the
histogram-based method in [9].

obtained on Matlab 2018a on a Mac Quad-Core Intel Core
i7@3.1GHz, 16 GB RAM. Fig. 1 shows the probability of
false alarm (PFA) of the two algorithms highlighting the good
results of the proposed strategy. The true positive (TP) proba-
bilities are presented in Fig. 4 where the algorithm [9] shows
more detection for low photons leading to better TP at the
expense of a higher PFA. The main benefit of the proposed
algorithm is the reduced computational time of the order of
1ms per-pixel for M=10, as illustrated in Fig. 3, which shows
an improvement factor of 10 compared to the algorithm [9].
Fig. 3 shows however that the proposed algorithm complexity
is proportional to the approximation coefficient M , and to the
number of detected photons, showing best performance for
ȳ < 100 per pixel.

The proposed strategy is also validated on real data. Akin
to [9], we consider the mannequin face scene measured at
a stand-off distance of 325 metres at midday in Heriot-Watt

Fig. 4. Detected maps for the mannequin face with 3ms ac-
quisition time per pixel (yelow: a detected target, blue: no
target ).

University, in bright conditions. The data has 200x200 pix-
els, T=1700 bins, an SBR of 0.29 with a 5th-95th percentile
interval of (0.05,0.67). We focus on the data with 3ms acqui-
sition time per pixel which has 61 average photon-per-pixel,
and we refer the reader to [8,9] for more details regarding this
dataset. Results in Table 1 shows the PD, PFA and computa-
tional cost of the studied methods (when enforced, spatial reg-
ularization is denoted by TV) showing good performance for
the proposed strategy (for M=10) especially in term of com-
putational cost. Fig. 4 shows the obtained detection maps
with ETD, HTD [9] and Altmann et al[8] indicating similar
performance, before and after applying spatial regularization.

Table 1. Probability of detection (PD), false alarm (PFA) and
computational times (in ms) of the two methods on real data
with different acquisition times. The processing time is indi-
cated in ms for each pixel while assuming a parallel process-
ing. The TV regularization requires 31ms for the full image.

HTD HTD-TV ETD ETD-TV

3ms PD(%) 80 92 85 93

data PFA(%) 4 0.07 6 0.11
Time 6 6+ 1 1+
(ms) 31 (TV) 31 (TV)

6. CONCLUSIONS

This paper has introduced a new algorithm for fast target de-
tection in single-photon Lidar data. In contrast to histogram
based methods, the proposed strategy operates on single-
photon ToF events to reduce memory requirements and en-
sure fast processing. The proposed algorithm showed good



performance especially in presence of few photons per pixel,
which is a common scenario for rapid or long-range imaging.
The algorithm can serve as a building block for higher-level
applications such as adaptive sampling to improve data ac-
quisition [17], and can be used as a pre-processing step to
several reconstruction algorithms [11, 14, 18–21]. Future
work includes the consideration of a different approach to
enforce spatial regularization between pixels. Considering an
iterative approach to approximate the marginal posterior is
also interesting for the fast online processing of the detected
photons. A generalization to imaging through obscurants will
also be investigated.
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