
High Precision Laser Fault Injection using Low-cost
Components.

Martin S. Kelly
Information Security Group

Smart Card Centre
Royal Holloway, University of London

Egham, TW20 0EX
United Kingdom.

Email: Martin.Kelly.2014@live.rhul.ac.uk

Keith Mayes
Information Security Group

Smart Card Centre
Royal Holloway, University of London

Egham, TW20 0EX
United Kingdom.

Email: Keith.Mayes@rhul.ac.uk

Abstract—This paper demonstrates that it is possible to execute
sophisticated and powerful fault injection attacks on micro-
controllers using low-cost equipment and readily available com-
ponents. Earlier work had implied that powerful lasers and high
grade optics frequently used to execute such attacks were being
underutilized and that attacks were equally effective when using
low-power settings and imprecise focus.

This work has exploited these earlier findings to develop a low-
cost laser workstation capable of generating multiple discrete
faults with timing accuracy capable of targeting consecutive
instruction cycles. We have shown that the capabilities of this
new device exceed those of the expensive laboratory equipment
typically used in related work.

We describe a simplified fault model to categorize the effects
of induced errors on running code and use it, along with the
new device, to reevaluate the efficacy of different defensive coding
techniques. This has enabled us to demonstrate an efficient hybrid
defense that outperforms the individual defenses on our chosen
target.

This approach enables device programmers to select an ap-
propriate compromise between the extremes of undefended code
and unusable overdefended code, to do so specifically for their
chosen device and without the need for prohibitively expensive
equipment. This work has particular relevance in the burgeoning
IoT world where many small companies with limited budgets
are deploying low-cost microprocessors in ever more security
sensitive roles.

I. INTRODUCTION

In earlier work [1] we have shown that, given accurate
synchronisation between instruction execution and laser pulse
generation, the errors induced in a running microprocessor
(µP) can be highly repeatable and that the dominant effect is
the skipping (or misreading) of the instruction being fetched
at the time of the pulse. Furthermore it was noted that these
repeatable effects can be observed at modest power settings
and with beam spot sizes that are readily achievable without
the need for expensive precision optics, a result also noted by
[2]. Limitations of our equipment at that time prevented us
from exploring the effects of multiple laser pulses.

Solid state lasers are available with fast switching character-
istics and offering sufficient power to compare with our previ-
ous findings (circa 2mJ per pulse). The solid state lasers are
not only much cheaper than the YAG laser cutter we previously

used, but they also overcome its main operational drawback,
namely the 20ms recharge time between consecutive laser
pulses. By using these fast laser diodes and suitable control
circuitry we have generated pulses as short as 5 ns (200MHz)
with sufficient power to induce errors in our sample µP s. This
enabled us to accurately synchronize laser pulses with each
and any instruction the µP was executing. Results from this
test rig compare favorably with our old equipment.

Section II provides a brief overview of the background and
motivation for the work which led to development of the test
rig. Section III describes the components used in the test rig.
Section IV demonstrates the capabilities of the test rig by
precisely controlling a series of conditional branch instructions
and in Section V we describe our simplified fault model and
characterize an extensive set of defensive coding techniques.
Our conclusions are summarized in Section VI.

II. BACKGROUND

The risks and consequences of errors in computation have
been well understood for a long time [3], [4]. As a conse-
quence it is common practice for software to perform sanity
checks on its own data and calculations. This is commonly
referred to as defensive programming. Trade organizations
such as EMVCo issue their own guidelines to application
developers to ensure the appropriate software defenses are uti-
lized in a secured smart card application [5]–[7]. Unfortunately
software defenses come at the cost of impaired performance
and increased code volume. Ultimately a compromise has to
be made between security, performance and cost.

With the exception of software bugs, errors occur in com-
putational results as a result of a malfunction of the processing
engine or corrupted data in memory. Deliberate induction of
errors in a semiconductor devices can be archived through a
variety of mechanisms. Momentary glitches affecting the µP ’s
clock signal or supply voltage [8] can cause execution errors.
Laser, Electro-Magnetic pulses or strong localized EM fields
can be equally effective at inducing errors in µP s, [9]–[12].

The use of lasers to induce errors is a ’semi-invasive’
attack. Here the chip’s packaging must be removed to enable
access to its surface but the chip itself is not modified. These

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/362203847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

techniques date back to the mid 1960’s and were used to
simulate the effects of intense radiation on silicon devices [9].
The primary interest back then was system reliability in hostile
environments. The use of a focused laser pulse as an attack
technique was first brought to academic attention at the turn
of this century [10].

Glitch attacks are ’non-invasive’ in that they can be per-
formed on the device in its unmodified packaging. The dis-
advantage of such non-invasive attacks is that the stimulus
is typically applied to the whole (or significant fraction of)
the target. Multiple sub-components can be affected and the
resulting disruption can have many side effects throughout the
chip giving the impression that induced errors are random in
nature. Semi-invasive attacks can be focused upon significantly
smaller active areas of the chip, producing localized effects. It
has been demonstrated that these local effects are non-random
and readily repeatable [1].

It is not always possible to induce errors using visible light
via the top-side of a silicon chip. The metal tracks connecting
the silicon structures frequently obscure vulnerable parts of
the chip, and in high security devices, such as smart cards,
metal layers are deliberately placed to shield the chip [13].
In these circumstances it is often possible to perform an
attack from the backside of the chip [14]. At near infrared
light wavelength (1064 nm) silicon is effectively transparent
and this enables access to the chip’s transistors behind any
metal features on the topside. [2] has demonstrated the same
localized and repeatable error effects on both AVR & ARM
µP s using this technique.

More recently studies have focused on characterising the
nature of the faults observed in a chip under attack. By looking
at the Instruction Set Architecture (ISA) researchers have
categorized faults as ’load value corruption’ or ’instruction
replacement’ [15], [16]. These studies seek to understand the
mechanism underlying the faults whereas our interest remains
in the effects of the fault on subsequent computations. For
our model it matters not whether the µP failed to perform an
ADD instruction or if it added faulty data; either way the µP
continues its computations with erroneous data. This simple
fault model gives us an efficient mechanism for recognising
faults and measuring the efficacy of defenses.

Previously [17] constructed a very low-cost fault injector
using a flash gun and most significantly demonstrated its
capabilities against differing µP architectures. Unfortunately
this device suffers from a slow recharge time, limiting its
application to single fault events. Single fault events are
relatively easy to defend against in software.

To overcome sophisticated software defenses requires mul-
tiple closely timed error events. Our goal was to do precisely
this, and to do so on a limited budget. Thereby finally
dispelling the myth that localized semi-invasive optical fault
attacks are difficult to perform and prohibitively expensive for
attackers with a limited budget.

III. EQUIPMENT

We built our laser station using readily available low-
cost components to demonstrate that the attack capabilities
of such a system are practical and available to a wider
range of attackers than would have been possible with the
professional/commercial laser systems used in earlier work.

A. Components

The most readily available laser diodes offering power
outputs in the 4W range and capable of being switched at up to
200MHz are in the 400 ... 455 nm (violet ... blue) wavelength
range. We chose a 455 nm laser diode salvaged from a high-
intensity Nichia NUMB80 laser diode bank [18]. It offers up
to 4.3W of power and is capable of switching at 200MHz.
Available on Ebay for less than $40 in 2018.

Driving the laser-diode at full power requires a circuit
capable of switching a 3A current without creating excessive
spikes or reverse voltages which can be fatal to a diode. We
used a dedicated laser controller device, the iCHaus iCHG 3A
Laser switch [19], which is typically used for LiDAR and data
transmission. It is conveniently available through distributors
on an evaluation board for $70.

We used an FPGA to provide both the clock for the µP
and the laser trigger pulses. We programmed this device to
provide a number of high speed counters, giving us control
of both the timing and duration of multiple laser pulses. All
counters are synchronized with a synthesized 200MHz clock
signal which is also used to derive a 10MHz clock signal for
the target µP . We used an evaluation board [20] supporting a
Xilinx Spartan-6 gate array [21]. Available for $35.

Fig. 1. Laser Station

10: breq _H
11: _L: breq _LH
12: _LL: breq _LLH
13: _LLL: breq _LLLH
14: _LLLL: nop
15: nop
16: nop
17: nop
18: ldi r24,’0’
19: ret
20: _LLLH: nop
21: nop
22: nop
23: ldi r24,’1’
24: ret
25: _LLH: breq _LLHH
26: _LLHL: nop
27: nop
28: nop
29: ldi r24,’2’
30: ret
31: _LLHH: nop
32: nop
33: ldi r24,’3’
34: ret
35: _LH: breq _LHH
36: _LHL: breq _LHLH
37: _LHLL: nop
38: nop
39: nop
40: ldi r24,’4’
41: ret
42: _LHLH: nop
43: nop
44: ldi r24,’5’
45: ret
46: _LHH: breq _LHHH
47: _LHHL: nop
48: nop
49: ldi r24,’6’
50: ret
51: _LHHH: nop
52: ldi r24,’7’
53: ret
54:
55: _H: breq _HH
56: _HL: breq _HLH
57: _HLL: breq _HLLH
58: _HLLL: nop
59: nop
60: nop
61: ldi r24,’8’
62: ret
63: _HLLH: nop
64: nop
65: ldi r24,’9’
66: ret
67: _HLH: breq _HLHH
68: _HLHL: nop
69: nop
70: ldi r24,’A’
71: ret
72: _HLHH: nop
73: ldi r24,’B’
74: ret
75: _HH: breq _HHH
76: _HHL: breq _HHLH
77: _HHLL: nop
78: nop
79: ldi r24,’C’
80: ret
81: _HHLH: nop
82: ldi r24,’D’
83: ret
84: _HHH: breq _HHHH
85: _HHHL: nop
86: ldi r24,’E’
87: ret
88: _HHHH: ldi r24,’F’
89: ret

Fig. 2. Branch Test Code

The Laser diode was
mounted vertically on the
camera mounting point of a 40
year old trinocular Leitz SM-
LUX HL microscope obtained
via Ebay for approximately
$250.

Equally consistent results
were obtained with both the
10X or the 20X objective lenses
and in the end we performed
all of our characterization
experiments using the Leitz
Wetzlar NPL 10X lens.

One of the microscope’s eye-
pieces was replaced with a
CCD camera to enable adjust-
ments to be made while safely
viewing the laser. This CCD
camera also detects NIR light,
suggesting the apparatus will
also work for backside attacks.
Focus and alignment of the
laser was achieved by burning
small holes in paper targets.

Total cost of the laser sta-
tion, excluding the controlling
PC and the board supporting
the µP under investigation, was
under $500.

B. Control

In this study we used an
Atmel AVR-Tiny841 [22]. The
AVR family of µP s is used
in both smart cards and in
SoCs targeting the IoT mar-
ket. The µP was mounted on
a PCB which itself mounted
on the FPGA evaluation board.
Both the µP and the FPGA
can be reset and reprogrammed
in-circuit by the controlling
PC. The FPGA provides the
10MHz clock for the µP and
the µP provides a start signal
that is used to synchronize the
laser pulse generation counters
with the executing test program.

For each experiment we
loaded a specific program into
the µP and repeatedly executed
it with different pulse counts and pulse timings programmed
into the FPGA. The output from each execution was fed back
to the control PC via an RS232 interface for collection and
analysis.

IV. PROOF OF PRINCIPLE

This experiment had two aims. i) To test the capabilities
of the equipment and ii) to confirm the predictions of earlier
work, namely that multiple suitably timed laser pulses would
induce multiple repeatable error effects.

We devised a simple branch matrix of four consecutive
conditional branch instructions leading to sixteen different
outcomes, see Figure 2.

In each test run the ZERO flag is set (or state High). The
code would therefore be expected to take all four branches
encountered, ultimately ending up at node HHHH, returning the
value ’F’. Additional NOP operations in the code ensure that
all paths take the same number of execution cycles to reach
the end point. This enables us fire the laser at all relevant
time intervals, as shown by the ’Pulse clk’ signal in Figure
3, without hitting the code that reports the outcome. Figure
3 also shows the execution paths leading to the 16 possible
outcomes.

By scanning all the possible timing patterns of 1 . . . 4 pulses
we demonstrated that we could hit all 16 possible end states.
As expected, where pulses coincide with the fetch cycle
for a branch instruction we see branch skipping exactly as
predicted. Where pulses coincide with the second cycle of a
branch instruction or with one of the NOPs we see no effect.
For example the ’0’ was reached consistently with the pulse
timings of 3, 7, 11 & 15. We see five paths reach outcome ‘1’,
requiring 3 well timed errors. 1 trace of 3 pulses gets there as
well as 4 traces of 4 pulses, where 3 of these pulses are well
timed and the fourth has no effect.

TABLE I: Jump Matrix Termination States

Outcome Errorsa Samples Pathsb

0 4 4 1
1 3 20 5
2 3 20 5
3 2 44 11
4 3 20 5
5 2 44 11
6 2 44 11
7 1 60 15
8 3 20 5
9 2 44 11
A 2 44 11
B 1 60 15
C 2 44 11
D 1 60 11
E 1 60 15
F 0 60 15
corrupt 0 0

Total 648 162
a Minimum number of errors required to reach this
outcome. b Unique pulse patterns that yielded this
outcome.

Fig. 3. Branch Test Execution Paths

From our earlier results [1] we had identified a specific
physical location on the µP ’s upper surface where instruction
skipping was reliably induced by a laser pulse synchronized
with the third quarter cycle of the µP ’s clock. Table I shows
the results for this location. Finding a ’sweet-spot’ like this
significantly reduces both the amount of data that needs to be
captured and more significantly the time required to perform
each experiment. The code under test took 8 cycles to execute
and we injected all possible combinations of 1 . . . 4 pulses
during this time frame. Each pulse pattern was repeated 4
times for good measure and this repetition proved unnecessary
as each group of 4 samples consistently gave the same result.

These early results confirmed that the laser station was
powerful enough and accurate enough to induce repeatable
errors in the µP ’s execution path. As far as pulse timings and
repetition rate are concerned it exceeded the capabilities of the
equipment it was designed to replace, and did so for a fraction
of the cost. Even though we chose to attack a single µP with
visible light from the topside, results from [17] indicate that
similar behaviour can be expected on differing architectures
and also when attacked from the backside with NIR light as
demostrated by [2].

V. APPLICATION

The µP s deployed in the consumer electronics world are
usually readily available to developers. This means a would-
be attacker has almost unlimited access to samples upon which
to run test code and to find an appropriately sensitive region
to focus the laser on. Locating such a ’sweet spot’ is the first
step in executing an attack.

Whilst the details of the mode of failure are interesting
[15], such knowledge is not required when considering the
consequences of an attack [2], and these attacks are therefore
accessible to a wide range of attackers, in particular those with
restricted resources.

It is unlikely that most attackers would have in-depth
knowledge of the µP ’s internal layout, or understanding of the
physical nature of the induced faults. However, as we show
here, this is not necessary and a simple interpretation of the
observed faults adequately categorizes the devices behaviour.

Working on this premise we devised a simplistic but highly
relevant fault model. This enabled us to measure the efficacy
of different software defensive structures without needing to
understand the precise nature of the induced error.

A. Fault Model

We considered an executing program to be in one of four
states as shown in Figure 4.

1) normal: Execution as expected. Unaffected by error
injection.

2) corrupted: Execution continues within our program but
some instructions may have been skipped and some
values may be incorrect.

3) trapped: The executing code has recognized it is in the
corrupted state and deliberately entered a trap. Here it
would be normal for a program to erase/protect valuable
assets and freeze execution.

4) crashed: The executing code is out of our program’s
control.

Transitions between the states occur as a consequence of
one of three events.

1) crash: may occur as a consequence of a single catas-
trophic error such as a skipped RET or as a result of
continued execution with corrupt data for example RET
from a function when the stack or frame pointers were
previously corrupted.

2) skip: occurs when an instruction fails to execute but
the program continues. Here there is a high likelihood
that some aspect of the program’s state will be corrupt.
It also possible that a fetched data value had been

corrupted as noted by [15]. Here we treat errors such as
failure to execute an ADD or, adding the wrong value,
as equivalent outcomes.

3) trap: the executing program detects its own corrupted
state. The efficacy and efficiency of this detection pro-
cess is the primary driver behind this study.

normal

corrupted

trapped

crashed

sk
ip crash

skip

trap

crash

skip

cra
sh

skip

tra
p

Fig. 4. Execution States.

Ideally programs will terminate in either the normal or
the trapped states. The risks associated with termination in
the corrupted state are well documented [3], [4]. Attempts
to cause a crash during data delivery is a long established
technique aimed at obtaining snapshots of a µP ’s memory
contents. Clearly, termination in either corrupted or crashed
states is undesirable.

Defensive coding therefore can be seen as a self-performed
software sanity check aimed at detecting the corrupted state
and entering the trapped state.

B. Evaluation of code defenses
We examined 15 code fragments, each employing a different

defense strategy. The set of defenses, described below, was
culled from an extensive portfolio of smart-card applications
that have all been independently reviewed and evaluated for ei-
ther EMV scheme or Common Criteria evaluation. Additional
defenses were created following recommendations in [6] and
[7] along with some described in [23] where a simulated attack
was performed on code implementing a range of defenses.

The exhaustive testing of all pulse patterns is prohibitively
time consuming thus some compromises have been made. The
test time rises geometrically with the number of execution
cycles to be examined. For a code fragment offering n intervals
in which to inject a pulse, the number of samples to collect
when using up to 4 pulses is given by

Samples =

4∑
p=1

(
n

p

)
where

(
n

p

)
=

n!

p!(n− p)!

Because of this the test code has been stripped down to
the bare minimum. It has been observed that defensive code
is frequently employed to protect small focused operations
such as double testing within a comparison. Thus these short
code samples still remain representative of real world defenses.
It is also worth noting that many of the defenses become
more effective when used in bigger more realistic modes.
For example, A checksum over a small data block hardly
differs from a duplicate data value, whereas when it is used
over a larger block it is itself likely to be vulnerable to a
miscalculation step. Thus signalling an attack even if the data
it protects is uncorrupted.

Careful attention was paid to code output from the compiler.
It was noted that, even with optimisations disabled, code was
frequently in-lined and repeat code was often omitted. These
compiler generated optimisations can totally remove defenses.

The code was also structured placing SecretOp code after
the defended code that selectively accessed it. This arrange-
ment was intended to expose the vulnerability of skipping
the final RET operation and falling through into the protected
code. It also engineered the scenario required for testing out-
of-sequence execution detection.

The full set defenses examined is described below.

// Unprotected

var Flag = FALSE

func test()

...
if (Flag == TRUE)

return SecretOp()
else

return EXPECTED
end

func SecretOp()

...
return SECRET

end

Fig. 5. Unprotected

1) Unprotected: This sam-
ple acts as the reference be-
haviour for the other test sam-
ples. The basic logic is that
a secret value is returned if
a flag variable in RAM has
a specific value. Under nor-
mal circumstances the secret
value should not be returned.
We would expect the secret
value to be erroneously re-
turned if either the pre-call test
was corrupted or if the func-
tion return failed and execu-
tion was to ’fall through’ into
the SecretOp code.

// Double Test

...
if (Flag == TRUE)

if (Flag == TRUE)
return SecretOp()

else
TRAPPED

else
return EXPECTED

Fig. 6. Double Test

2) Double Test: Here the
test is repeated. This defensive
construct is frequently used in
the EMV and JavaCard sample
code that we reviewed. The
technique is recommended in
[6] with caveats. The rational
is that if a test is skipped
the repeat should detect the
inconsistency and escape. The
cost of this defense is trivial,
it being one fetch and one conditional branch operation per
decision point.

// Retest in Target

func SecretOp()
if (Flag == TRUE)

...
return SECRET

else
TRAPPED

end

Fig. 7. Retest in Target

3) Retest in Target: This is a
slightly more sophisticated vari-
ant of Double Test. Here the
test is repeated within the called
function. As above, it tests a
property twice. Parameter related
function call overheads will also
add timing variability when this
technique is used to protect mul-
tiple functions. This variation has
the advantage of being able to detect out-of-order invocation of
the SecretOp code. The cost of this defense is comparable
to Double Test.

// Inverse Test

...
if (Flag == TRUE)

if (Flag != TRUE)
TRAPPED

else
return SecretOp()

else
return EXPECTED

Fig. 8. Inverse Test

4) Inverse Test: The test is
repeated in its negative form.
This has been recommended by
evaluators as an improvement
to the Double Test mechanism.
The intention is that to reach
the protected code a branch
must be taken and another not
taken. Thus attacks that rely
on falling through conditional
branches should fail. In practice
the resulting assembler output does not reflect the ’C’ source
code’s intention and we had to hand craft assembler code for
this test. This makes the strategy impractical for large projects
unless the compiler behaviour can be modified. The cost of
this defense is equivalent to Double Test.

// Double Data

...
if ((FlagA == FALSE) &&

(FlagB == FALSE))
return EXPECTED

elseif ((FlagA == TRUE) &&
(FlagB == TRUE))

return SecretOp()
else

TRAPPED

Fig. 9. Double Data

5) Double Data: This mecha-
nism duplicates critical data vari-
ables in memory. The simple ra-
tional behind this mechanism is
that if a variable becomes cor-
rupted in memory or while be-
ing fetched it is unlikely that
its shadow copy will be simi-
larly corrupt. A variable’s value
is only trusted when both copies
match. The runtime cost of this
defense is equivalent to Double
Test thus it has minimal impact of performance. The 100%
duplication of data however is likely to prove impractical in
resource constrained environments typical of µP deployments.

// Inverse data

...
if (Flag != ~InvFlag)

TRAPPED
elseif (Flag == TRUE)

return SecretOp()
elseif (Flag == FALSE)

return EXPECTED
else

TRAPPED

Fig. 10. Data Inverse

6) Data Inverse: This is a
theoretical improvement on the
Double Data mechanism. Here
the shadow copy is the logical
inverse of the primary data. The
state variables are only trusted
when the two copies are com-
plementary. The presumption is
that if both copies of a variable
can be corrupted in memory or
during a fetch then it is unlikely
that the two corrupted instances

will be mutually complimentary. The cost of this defense is
the same as that for the Double Data defense.

// Checksum over data

...
CrcVerify_TrapOnError()

...
if (Flag == TRUE)

return SecretOp()

else
return EXPECTED

Fig. 11. Checksum Data

7) Checksum: The 100% re-
dundancy of the Double Data,
and Data Inverse defenses can be
avoided by maintaining a check-
sum over a set of variables.
This checksum is verified before
the variables are used and re-
calculated and set whenever the
variables are updated. The run-
time cost of this defense is very
high as verifying and calculating
checksums over blocks of data is
computationally expensive. However for large data blocks it
has a low demand on resources. This defense has been seen
defending large blocks of critical data as a one time operation
before a complex algorithm proceeds. For example to verify
cryptographic keys.

// Redundant Representation

const STRUE = 0xA5
const SFALSE = 0xA7

...
if (Flag == STRUE)

return SecretOp()
elseif (Flag == SFALSE)

return EXPECTED
else

TRAPPED

Fig. 12. Redundant Rep-
resentation

8) Redundant Representation:
This technique aims to detect
corrupted data by inserting
redundant data bits (sometimes
referred to as sentinels) within
a value’s representation. If the
sentential bits do not match
the expected pattern then the
value as a whole must have been
corrupted. The technique can be
used to encode multiple flags
into a single word but is most
frequently deployed to represent
a single flag value where the sentinels and value can be tested
in a single operation. The cost of this defense is very low. It
requires very little storage as sentinels can be encoded within
in the redundant bits of a variable’s storage word. Similarly
the testing of sentinel values can be performed in parallel
with the associated data, or in the worst case, after logical
masking and comparison operations.

// Repeated Calculation

...
u16 nTmp1 = SecretOp()
u16 nTmp2 = SecretOp()

if (nTmp1 != nTmp2)
TRAPPED

else
return nTmp2;

Fig. 13. Repeat Calcula-
tion

9) Repeat Calculation: Errors
in computation can be detected
by performing an operation twice
and confirming that both calcula-
tions yield the same result. The
technique is computationally in-
efficient but may be appropri-
ate when invoking hardware as-
sisted calculations using periph-
erals such as co-processors. Rep-
etition has its own drawbacks and
Inverse Calculation may be more
appropriate.

// Modified & Compensated

...
Tmp1 = Calculation(Rnd1)
Tmp2 = Calculation(Rnd2)
Tmp3 = Clear(Tmp1, Rnd1)
Tmp4 = Clear(Tmp2, Rnd2)

if (Tmp3 != Tmp4)
TRAPPED

else
return Tmp3

Fig. 14. Modified Com-
pensated

10) Modified Compensated:
In this technique an input
parameter affects the result of
a calculation in a way that
can be easily compensated
for by the caller. This enables
the caller to invoke a function
multiple times, yielding
different answers and still be
able to confirm the accuracy
of the results. If the function
is entered accidentally during
out-of-order processing then the returned value is likely to be
modified by an unknown input. This provides an additional
level of defense beyond the ability to check the accuracy
of the calculation. The computational cost of this defense
depends on the complexity of removing the input’s bias from
the result.

// Alternative Algorithm

...
Tmp1 = Method1()
Tmp2 = Method2()

if (Tmp1 != Tmp)
TRAPPED

else
return Tmp2

Fig. 15. Alternative Algo-
rithm

11) Alternative Algorithm:
This technique aims to over-
come the primary weakness in-
herent in Repeat Calculation.
Namely that the power profile
of repeat calculations is likely
to be similar and therefore rec-
ognizable. Thus enabling an at-
tacker to synchronize attacks
on the same moments in both
invocations of a function. By
using different algorithms it is
less likely that an attacker could
influence both to yield matching erroneous results. This is
a very costly defense in terms of both code volume and
processing time. Performing two calculations and comparing
their results must take more than double the time of a single
execution of the optimal algorithm.

// Inverse Calculation

...
Tmp1 = Method(Input)
Tmp2 = InvMethod(Tmp1)

if (Input != Tmp2)
TRAPPED

else
return Tmp1

Fig. 16. Inverse Calcula-
tion

12) Inverse Calculation:
For some algorithms the
inverse calculation can be
significantly quicker than
the normal calculation. In
this situation it is possible
to confirm computational
accuracy by ensuring the input
data can be recovered and
verified from the deliverable
result. The confirmation step
also avoids repetition of
the primary computation. A
surprising result is that the cost of this defense is not always
as high as the Alternative Algorithm defense. For example
with RSA signature generation; verifying the signature using
the public key is significantly faster than repeating the signing
calculation. Given the high cost of failure, see [3], this
defense is frequently deployed.

// Jump ID

func ProtectedFn()
if (!IdVerify(CALL_F))

TRAPPED
else

...
IdSet(RET_F)
return Result

end

...
IdSet(CALL_F)
Val = ProtectedFn()
if (IdVerify(RET_F))

TRAPPED

else
return Val

Fig. 17. Jump Id

13) Jump Id: This technique
aims to detect out of order exe-
cution. Function entry and exit
code is augmented with addi-
tional parameters to demonstrate
the caller’s intent to invoke the
function. If the execution path
accidentally enters the function,
for example by skipping a RET
and falling through to adjacent
code then the executing func-
tion can recognize this is not
deliberate and enter the trapped
state. Similar behaviour at the
function exit enables the caller
to confirm the return occurred
from the correct function. This defense is relatively expensive
as each defended function’s invocation, entry, exit & return
state must be instrumented with various data set, get and
comparison operations.

// Waymark - Late Test

WM = IV
...

WM += M1
...

WM += Mx
...

if (WM != IV+M1+...Mx)
TRAPPED

else
return nRetVal

Fig. 18. Waymark Late
Test.

14) Waymark Late Test:
Whenever execution passes a
particular point a waymark
variable is updated. At the end
of the calculation the waymark
can be examined to confirm
that all the critical points of the
proceeding execution path were
executed. This technique is
well suited for code containing
loops and function calls where
different fields within the
waymark can be manipulated
independently and where the
final value is constant and predictable at compile time. The
overhead is minimal and the test is performed at the end of
the processing.

// Waymark - On the fly

func Waymark(n)
if (n != nNextWM)

TRAPPED
else

nNextWM++
end

...
Waymark(10)
...
Waymark(11)
...
Waymark(12)
return Result

Fig. 19. Waymark on the
fly.

15) Waymark On the fly: An
alternative waymark mechanism
enables the early detection of
unexpected or skipped code.
Here, each time a waymark
is updated, its current expected
state is simultaneously verified.
Frequent inline tests throughout
the whole code body make this
mechanism able to detect of out
of order processing and it can
be used to switch a crashed
program to a trapped state. It
is marginally slower than the
Waymark Late Test variant but
has the advantage of noticing the
effects of skipped code at the earliest possible opportunity.

C. Test and Analysis

The test code was designed to return different values de-
pending on the execution state at the end of the run. Three
coded return values identified i) an expected value, ii) a secret
value that should not be returned, and iii) an indicator to signal
that a trap had been reached. These values corresponded to the
normal, corrupted and trapped states of our execution state
model. We we also treated unexpected return values as being
corrupt. Failure to reply, or excessive data bursts, were treated
as identifying the crashed state.

Each code sample was executed to determine the execution
time of the algorithm under test and then subjected to all
possible time and count combinations of 1 . . . 4 laser pulses
within this time window. The number of samples we obtained
per algorithm varied from the low thousands to hundreds of
thousands as the execution times of the tests varied. The
total number of samples collected and the corresponding
terminating states are presented in Table II. These results are
presented again in Fig 20 separating the results by the number
of pulses injected and showing the percentage of the samples
terminating in particular states.

The laser was focused on a previously identified ’sweet spot’
that reliably caused the µP to misread memory fetches. This
gave us a high probability that each laser pulse would cause
some form of error, either instruction skip or a faulty operand
fetch. Each pulse pattern was repeated several times during
each run of the experiment.

TABLE II: Test Samples

Termination State
Defense Ca Sb Nc Td Coe Crf

Undefended 11 2244 376 0 1420 448
Double test 12 3172 629 452 1451 640
Retest ’target 22 36432 9542 2363 15496 9031
Data inverse 15 7760 1212 2448 3072 1028
Checksum 33 187748 84212 30228 53138 20170
Inverse 11 2244 1019 0 605 620
Double data 18 16188 3608 5217 6694 669
Redundant 12 3172 1094 0 833 1245
Repeat calc. 32 165792 32967 70031 34576 28218
Mod. comp. 25 61100 11004 0 10262 39834
Alt. alg. 31 145824 31614 55853 26538 31819
Inv. calc. 46 717784 102436 153007 82206 380135
Jump id 30 127720 22430 59467 30495 15328
Waymark late 27 83412 19177 40321 16335 7579
Waymark ’fly 35 238140 32366 140350 54933 10491

a Instruction Cycles. b Samples. c Normal. d Trapped. e Corrupt.
f Crashed.

D. Results

Figure 20 shows the termination states of the test programs
after 1. . . 4 pulses were injected. For each run of the exper-
iment the pulses were injected at all combinations of time
intervals.

Two features immediately stand out and are worthy of
further explanation.
− The large number of normal terminations initially appears

to be surprising given the high probability of inducing

0 20 40 60 80 100

Undefended. pulse × 1
× 2
× 3
× 4

Double test 1
2
3
4

Retest ’target 1
2
3
4

Data inverse 1
2
3
4

Checksum 1
2
3
4

Inverse 1
2
3
4

Double data 1
2
3
4

Redundant 1
2
3
4

Repeat calc. 1
2
3
4

Mod. comp. 1
2
3
4

Alt. alg. 1
2
3
4

Inv. calc. 1
2
3
4

Jump id 1
2
3
4

Waymark late 1
2
3
4

Waymark ’fly 1
2
3
4

Time in msNormal Trapped Corrupted Crashed

Fig. 20. Termination States

errors at the chosen target site. Examination of the
execution trace and the pulse times shows that these
normal terminations occur when the pulses coincide with
instructions that take multiple clock cycles to execute.
Here the vulnerable pre-fetch is not performed on every
cycle. Similarly on conditional branch operations the
potentially erroneous pre-fetched fall-through option may
be discarded in favour of the calculated branch-taken
address.

− Secondly the trend for crashed to increase with the num-
ber of pulses. Similar analysis of the probable execution
path and the pulse times suggests that execution entered
the trapped state causing an early return from the test.
In these cases the result reporting functionality is itself
subjected to later pulses, resulting in erroneous result
delivery and consequently being interpreted as crashed.

Clearly none of the defenses are infallible. By close exami-
nation of the pulse injection times and the presumed execution
paths it is possible to infer modes of failure and strengthen the
defenses accordingly. The most notable failure mechanisms
seen across the range of tests are:

− Out-of-order processing. Here a section of code is exe-
cuted at an unexpected time. For example ’fall-through’,
where, after skipping a RET operation, execution will
continue into the neighboring function. In many cases the
next RET encountered will mean the program returns to
the original caller and resumes normal operation. Similar
effects occur when a function call is skipped.

− Skipping of comparisons. This is a specific example of
out-of-order processing when execution falls through to
conditional code regardless of the state of the condi-
tion. All of the defenses ultimately rely on comparison
operations to decide whether to proceed or not. This
decision process is unrelated to the data representation
or algorithm used. Disrupting this decision negates the
defense and duplicated tests can be defeated by repeating
the pulses.

We have seen that waymark based defenses offer a robust
defense against out of order processing. In particular Waymark
on the fly. The accumulative nature of the state representation
means that even if one test is bypassed subsequent tests will
still identify the error state. This property of waymarks also
makes them effective at recognising and trapping a crashed
program. Waymarks however cannot defend against erroneous
calculations caused by the skipping of arithmetic or faulty
storage access operations.

// Hybrid Defense

func Calculation(WP)
Waymark(WP)
...
Waymark(WP+1)
return EXPECTED

func TestEQ(WP, V1, V2)
Waymark(WP)
return (V1 == V2)

...
A = Calculation(1)
B = Calculation(3)
if (TestEQ(5, A, B))

if (TestEQ(6, B, A))
Waymark(7)
return A

TRAPPED

Fig. 21. Hybrid Defense

Based on these observations
we combined the most ef-
fective defenses to create a
testable hybrid defense. We
used waymarks because they
are computationally efficient
and relatively effective at de-
tecting skipped or out-of-order
code; Repeat Calculation be-
cause it was quick while
recognising an alternative data
integrity test may be more ap-
propriate depending on the al-
gorithm being defended; and,
the simple Double Test aug-
mented with waymarks to ver-
ify the result. Finally the
trapped state reporting code was also modified to ensure that

the reporting of the termination state did not occur while pulses
may still be expected.

The test program took 102 instruction cycles to execute
resulting in 17, 706, 112 samples that took 7 weeks to collect
at 4 tests per second. Table III and Figure 22 show the results
of this experiment.

TABLE III: Hybrid Test

Termination State
Defense C S N T Co Cr

Hybrid 102 17706112 893790 16659489 2684 150149

Such comprehensive coverage of all pulse patterns was only
possible after the discovery of the ’sweet spot’ as it would be
impractical to cover all timings over all physical locations. As
a consequence we recognize we are looking at a specific single
mode of failure. Earlier work on this particular µP suggests
that the errors induced here relate to a corrupted read from
non-volatile storage. This effect has also been noted by [16] on
a different µP architecture. The phenomenon affects fetching
of both instructions and data from non-volatile memory, but
does not affect data fetches from RAM or Registers. Our test
calculation deliberately employed non-volatile data fetching to
mitigate the effect of this bias and ensure faulty data as well
as code influenced the results.

We also rely on the time invariance to correlate pulse pat-
terns with executing code. A jittering CPU clock would require
the collection of many more samples but would ultimately be
expected to give the same end state ratios.

VI. CONCLUSIONS

This study has demonstrated that intricate error injection
attacks combining multiple pulses and high repetition rates
with precision timing can be achieved using low cost and
readily available components. As a tool for error injection
attacks our budget device’s capabilities far exceed those of the
expensive YAG laser cutter it replaces. Thankfully this same
equipment can be used to characterize the efficacy of software
defenses. This characterization can then be used to prescribe
efficient combinations of defenses, thereby removing much
of the guesswork currently involved in formulating defensive
code.

This study has highlighted the generic flaw in most defenses
relating to data accuracy. Namely that they boil down to
a final decision point. Redundant data representations and
repeated/modified calculations, ultimately rely on a late go/no-
go decision. This is their Achilles’ heel. Here we have

0 20 40 60 80 100

Hybrid Defense 1
2
3
4

Time in msNormal Trapped Corrupted Crashed

Fig. 22. Hybrid defense termination states

demonstrated an effective double test construct that exploits
the strengths of waymarking to provide additional confidence
that these tests are being performed.

This study has also emphasized the importance of freezing
execution as soon as erroneous behaviour has been detected.
Continuing execution within a trapped state gives the attacker
an extended opportunity to induce a compromising error.

No software defense can be infallible in an environment
where each and every µP operation is effectively optional. In
common with cryptography, the strength of software defenses
ultimately lies in the practical infeasibility of testing all
combinations.

The low cost and relative ease of construction of our laser
error injector suggests that developers of IoT devices need
to seriously consider the likelihood and consequences of an
attack on their products. This study should encourage IoT
developers to use defensive coding as normal practice, and
in many cases consider using devices with physical defenses
against this category of attack. This is crucial, because it must
be assumed that these attack techniques are readily available
to criminals, malicious attackers, and amateur hackers.

REFERENCES

[1] M. S. Kelly, K. Mayes, and J. F. Walker, “Characterising a cpu fault
attack model via run-time data analysis,” in 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pp. 79–
84, IEEE, 2017.

[2] F. Schellenberg, M. Finkeldey, N. Gerhardt, M. Hofmann, A. Moradi,
and C. Paar, “Large laser spots and fault sensitivity analysis,” 2016
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 203–208, 2016.

[3] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults (extended abstract),” in
Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding (W. Fumy, ed.), vol. 1233 of
Lecture Notes in Computer Science, pp. 37–51, Springer, 1997.

[4] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings (B. S. K. Jr., ed.), vol. 1294 of Lecture
Notes in Computer Science, pp. 513–525, Springer, 1997.

[5] EMVCo, LLc, Issuer and Application Security Guidelines, November
2007.

[6] MasterCard Worldwide, Security Guidelines for M/Chip Advance De-
velopers, 5 March 2010.

[7] Visa Inc., Visa Security Guidelines - Multi-application Platforms, March
2009.

[8] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault
attacks on rsa with crt: Concrete results and practical countermeasures,”
in International Workshop on Cryptographic Hardware and Embedded
Systems, pp. 260–275, Springer, 2002.

[9] D. H. Habing, “The use of lasers to simulate radiation-induced transients
in semiconductor devices and circuits,” IEEE Transactions on Nuclear
Science, vol. 12, no. 5, pp. 91–100, 1965.

[10] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers (B. S. K. Jr., Ç. K. Koç, and C. Paar, eds.), vol. 2523
of Lecture Notes in Computer Science, pp. 2–12, Springer, 2002.

[11] R. Omarouayache, J. Raoult, S. Jarrix, L. Chusseau, and P. Maurine,
“Magnetic microprobe design for em fault attack,” in Electromagnetic
Compatibility (EMC EUROPE), 2013 International Symposium on,
pp. 949–954, IEEE, 2013.

[12] P. Maurine, K. Tobich, T. Ordas, and P. Y. Liardet, “Yet Another
Fault Injection Technique : by Forward Body Biasing Injection,” in
YACC’2012: Yet Another Conference on Cryptography, (Porquerolles
Island, France), Sept. 2012.

[13] M. Tunstall, “Attacks on smart cards.” Web,
http://www.wisdom.weizmann,ac.il/-tromer/acoustic, 2008.

[14] N. Vashistha, M. T. Rahman, O. P. Paradis, and N. Asadizanjani, “Is
backside the new backdoor in modern socs?: Invited paper,” in 2019
IEEE International Test Conference (ITC), pp. 1–10, Nov 2019.

[15] J. Proy, K. Heydemann, F. Majéric, A. Cohen, and A. Berzati, “Studying
em pulse effects on superscalar microarchitectures at isa level,” arXiv
preprint arXiv:1903.02623, 2019.

[16] B. Colombier, A. Menu, J.-M. Dutertre, P.-A. Moëllic, J.-B. Rigaud,
and J.-L. Danger, “Laser-induced single-bit faults in flash memory:
Instructions corruption on a 32-bit microcontroller?,” IACR Cryptology
ePrint Archive, Report 2018/1042 (2018), 2018.

[17] O. M. Guillen, M. Gruber, and F. De Santis, “Low-cost setup for
localized semi-invasive optical fault injection attacks,” in Constructive
Side-Channel Analysis and Secure Design (S. Guilley, ed.), (Cham),
pp. 207–222, Springer International Publishing, 2017.

[18] Nichia Corporation, Tokushima 77-8601, Japan, Datasheet - Specifica-
tions for Nichia BULE laser diode bank. NUBM08, UTZ-SF0119E.

[19] iC Haus Gmbh., Datasheet - iC-HG. 3A Laser Switch, 2014. Rev. B2.
[20] Numato Systems, LLC, Datasheet - Spartan-6 Family Overview.,

February 2016. Mimas - Spartan 6 FPGA Development Board,
https://numato.com/docs/mimas-spartan-6-fpga-development-board/.

[21] Xilinx Inc, Datasheet - Spartan-6 Family Overview., October 2011.
DS160 (v2.0).

[22] Atmel Corporation, ATtiny841 Datasheet – 8-bit AVR Microcontroller
with 4/8K Bytes In-System Programmable Flash, 05 2014. Rev. 8495H.

[23] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl, “Compre-
hensive analysis of software countermeasures against fault attacks,” in
Design, Automation and Test in Europe, DATE 13, Grenoble, France,
March 18-22, 2013 (E. Macii, ed.), pp. 404–409, EDA Consortium San
Jose, CA, USA / ACM DL, 2013.

