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Abstract

The process ah vivo esterification of xanthophylls has proven to bamportant part
of the post-carotenogenesis metabolism which mesliiteir accumulation in plants.
The biochemical characterization of this procestheyefore necessary for obtaining
new and improved crop varieties with higher caroigncontents. This study
investigates the impact of postharvest storage itond on carotenoid composition,
with special attention to the esterified pigmentaoloesters diestersand their
regioisomers), in durum wheat and tritordeum, a ehogereal with remarkable
carotenoid content. For tritordeum grains, theltoé@otenoid content decreased during
the storage period in a clear temperature-depemdanher. On the contrary, carotenoid
metabolism in durum wheat was very much dependerthe physiological adaptation
of the grains to the imposed conditions. Interggyinwhen thermal conditions were
more intense (37 °C), a higher carotenoid retentvas observed for tritordeum, and
was directly related to theée novoesterification of the lutein induced by temperatur
The profile of lutein monoester regioisomers waastant during storage, indicating
that the regioisomeric selectivity of the XAT enzagnwas not altered by temperature.
These data can be useful for optimizing the storagwditions of grains favoring a

greater contribution of carotenoids from theselstégods.
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1. Introduction

Wheat is the most widespread cultivated cereahéenworld (FAO, 2014pand,
along with rice, constitutes the main source obohydrates for human consumption.
However, these staple foods not only represent rapoitant dietary source of
carbohydrates and proteins, but also provide miserdiber, vitamins and
phytochemicals, including carotenoids, phenolsppberols, sterols and phytates (Liu,
2007). Carotenoids are an important group of natpigments responsible for the
coloration of most fruits and vegetables and aesgmt in many parts of the plant:
fruits, flowers, roots, leaves, and seeds (Brittooxd Hornero-Méndez, 1997). Plant
carotenoids are fgisoprenoids (tetraterpenoids) with a polyene skaleonsisting of a
long conjugated double bond system, which consstthhie chromophore responsible for
the color that these pigments confer to most frand vegetables, and play an important
role in attracting animals to act as pollinatord aeed dispersion vehicles, including the
consumption of food by humans (Howitt and Pogsd@62. The known number of
naturally occurring carotenoids is about 750 anatioaes to rise (Britton et al., 2004).
Carotenoids can only be synthesiz#el novoby plants, certain bacteria, and fungi,
whereas animals are unable to synthesize carotgmsmdhey need to obtain them from
the diet. Carotenoids are essential componentseophotosynthetic apparatus and are
involved in the light harvesting process, as wslirathe photo-protection mechanisms
of plants (Cuttriss et al., 2011). When carotena@ds ingested, they show important
biological activities: antioxidant, inhibition ofaccinogenesis, enhancement of the
immune response and cell defense against reackygen species (ROS) and free
radicals, and the reduction in the risk for deveigpcardiovascular and other
degenerative diseases (reviewed by Britton e2809). In addition, some carotenoids

(B-carotenegp-carotenep-cryptoxanthin, etc) have provitamin A activity &h, 1989).
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Of particular interest are the epidemiological gadshowing an inverse correlation
between the progression of age-related macularmaegigon (AMD) and cataracts and
the high intake of lutein and zeaxanthin rich-vabéts, and both pigments are present
in high concentrations at the macula in the retihumans and primates (Landrum and
Bone, 2004).

Despite having a low carotenoid content when caethavith the majority of
fruits and vegetables, the consistent daily intakeereals and other staple foods may
have an important impact on the nutritional stadisconsumers, which can be
especially significant in developing countries, weheereals and cereal-based foods are
the main constituents of the diet. Thus, therereagpotential for providing health
benefits to consumers without significantly altgriheir dietary habits by manipulating
the carotenoid content of foods such as cer@dl®witt and Pogson, 2006). The
endosperm color of cereal grains, which is mainlg tb carotenoid accumulation, is an
important quality criterion in wheat breeding pragris. Common wheafT(iticum
aestivumL.) varieties have been traditionally selected foeir white color since
consumers prefer white flours for bread makingcdémtrast, durum wheaf iticum
turgidum ssp durum is selected for high yellow pigment content (YP&) it is a
desirable property for pasta products (Troccollet2000). In previous works (Atienza
et al., 2007; Mellado-Ortega and Hornero-MéndeZ,220we have characterized the
carotenoid composition of tritordeunxTritordeum Ascherson et Graebner), a novel
cereal obtained as an amphiploid (2n=6x=42, AABBY) resulting from the cross
between a wild barleyHordeum chilens®oem. & Schult.) and durum wheat (Martin
and Sanchez-Monge Laguna, 1982). As observed im spesies of th&riticum genus,
lutein BR,3'R,6'Rp,e-carotene-3,3-diol) is the main carotenoid presantitordeum,

showing a lutein content 5-8 times higher than dumvheat (Atienza et al., 2007,



94  Mellado-Ortega and Hornero-Méndez, 2012). Moreokdras been found that lutein in
95 tritordeum grains is characterized by presentingjséinctive profile of esterification
96  with specific fatty acids (palmitic and linoleicids), whereas the esters are absent or at
97 very low concentration levels in durum wheat graifsr the first time in a cereal, the
98 analysis of the mass spectrometry fragmentatioteqabf lutein has recently allowed
99 for the unambiguous structural identification oé tlutein esters present in tritordeum,
100  which consisted of four monoesters (luteinGBlinoleate, lutein 39-linoleate, lutein
101  3-O-palmitate, lutein 3-palmitate) and four diesters (lutein dilinoledigein 3'-O-
102  linoleate-30-palmitate, Iutein 3©O-palmitate-3O-linoleate, lutein dipalmitate)
103  (Mellado-Ortega and Hornero-Méndez, 2012). Tritarde exhibits agronomic,
104  morphological, chemical, physico-chemical and rbgwal characteristics similar to
105  bread wheat (Martin et al., 1999). These propentagether with the enormous genetic
106  variability potentially available for breeding thisew crop, make tritordeum a
107  promising cereal for agriculture and food procegsifhe xanthophyll esterification
108  process in tritordeum, which seems be a key mechanism for the carotenoid
109  accumulation in the endosperm, has already beelactieaized as a post-developmental
110  grain proces$Rodriguez-Suarez et al., 2014). The high degreetein esterification in
111  tritordeum grains at harvest may reveal the adtimabf a carotenoid sequestering
112 mechanism probably leading to the absence of miktabeedback to inhibit the
113  carotenoid biosynthetic pathway. So the completeh®mical characterization of the
114  molecular mechanism underlying the formation obtamoid esters is important for the
115  improvement of cereals and other vegetables wighdri carotenoid content.

116 Reports about the occurrence of lutein acylestemshieat and other cereals, as
117  well as the studies of their metabolism changesnduhe storage of grains are very

118 scarce (Kaneko et al., 1995; Kaneko and Oyanad@5)19Recently, a more complete
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study conducted by Ahmad et al. (2013) has repatiedformation of lutein esters
during storage under a wide range of temperatureshigh lutein wheat developed at
The Waite Campus, The University of Adelaide. Cemgains are stored for long
periods and consequently they may undergo imporfamgsical, chemical and
physiological modifications promoted by the storagenditions, i.e. temperature,
moisture content, oxygen content, light and miabbactivity. Seeds deteriorate
following a time dependent process termed “agingiich has led some researchers to
investigate these changes in seeds during natBnatiGo et al., 1999) or accelerated
aging (Galleschi et al., 2002), the last one gyiakiimicking the long-term storage
effects which are observed under industrial coodgiand the impact on the viability of
seeds. After harvesting, the kernels are storesilas, where they are maintained at
15.5% moisture or less in order to minimize micablgrowth and to favor conservation
over time (Galleschi et al., 2002). In spite ofsthpronounced chemical changes take
place, and some antioxidant compounds such asscaids are degraded by both direct
and lipoxygenase (EC 1.13.11.12) mediated oxidafidbnblado-Maldonado et al.,
2012). Limited information is available in the l#ture on the carotenoid pigment
metabolism in cereal grains during the immediat&iparvest storage (Burt et al., 2010).
The exploration of this period may shed light oa tarotenoid metabolism in grains in
which perhaps physiological maturity has still been reached. Thus, in this study we
have investigated the influence of postharvesagmiconditions (temperature and time)
on the carotenoid stability and metabolism in tdeum and durum wheat grains. The
role of esterification on the stability of luteis also discussed. With this aim, the
carotenoid content and profile of the grains okéhdurum wheat varieties and three
advanced tritordeum lines were measured during tfestharvest storage for up to 90

days at three different temperatures (4, 20 antC37
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2. Materials and methods
2.1. Plant material, stor age conditions and sample prepar ation

Three advanced tritordeum lines (HT630, HT621 @s#ros et al., 2005) and
HT609), developed in the Cereal Breeding Progranhef Institute for Sustainable
Agriculture (IAS-CSIC, Cérdoba, Spain), charactediby a high carotenoid content in
the endosperm, and three durum wheat varieties @uaino, Simeto and Claudio) were
used for the present study. Plants were first grawma climate chamber under
controlled conditions (at 22/16 °C day/night witB/112 h Light/darkness) and then
transplanted to field conditions, following a comiely randomized block design with 3
replications. The harvested grains were subseques#d for the storage experiments
as follows. Three separated batches (300 g) ohgrikom each field replicate were
placed in open containers under controlled tempezatonditions (4, 20 and 37 °C),
maintaining low relative humidity for a period oD 3days. Samples were taken at
monthly intervals. A control sample (t=0 days), sisting of 6 subsamples (three
batches by duplicate), was taken for each line aety and stored at -30 °C until
analysis. Grains were milled by using a spice hailj and the resulting whole flour

was used for carotenoid extraction.

2.2. Chemicals and reagents

HPLC-grade acetone was supplied by BDH Prolabo RvVWiternational
Eurolab, S.L., Barcelona, Spain), and HPLC-graderileed water was produced with a
Milli-Q 50 system (Millipore Iberica S.A., Madridgpain). The rest of reagents were all

of analytical grade.

2.3. Extraction of carotenoids
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The extraction of carotenoids was carried out atiogr to the method of
Atienza et al. (2007) with some modifications (Melb-Ortega and Hornero-Méndez,
2012). Briefly,1 g of milled grain sample was placed in a roungbea polypropylene
15-mL centrifuge tube, and extracted with 4 mL oétane (containing 0.1% BHT) for
2 min by vortexing, following sonication for 1 miithe mixture was centrifuged at
4,500<g for 5 min at 4 °C. The extraction operation waseadpd three times, and the
acetone fractions were pooled. The solvent wasly@vaporated under a nitrogen
stream, and the pigments were dissolved in 1.0l of acetone for durum wheat
and tritordeum samples, respectively. Prior to ¢heomatographic analysis, samples
were centrifuged at 13,080 for 5 min at 4 °C. The analyses were carried out i
duplicate for each sample. All operations were grened under dimmed light to

prevent isomerization and photo-degradation ofteamds.

2.4. Pigment identification
The procedures for the isolation and identificatwdrcarotenoid pigments and its
esters have already been described in previoussw@enza et al., 2007; Mellado-

Ortega and Hornero-Méndez, 2012).

2.5. HPL C analysis of carotenoids

HPLC quantitative analysis of carotenoids was edrrout according to the
method of Minguez-Mosquera and Hornero-Méndez (1988 some modifications
(Atienza et al., 2007)The HPLC system consisted of a Waters 2695 Alliance
chromatograph fitted with a Waters 2998 photodiaday detector, and controlled with
Empower2 software (Waters Cromatografia, S.A., 8arta, Spain). A reversed-phase

column (Mediterranea SEA18,3n, 20x0.46 cm; Teknokroma, Barcelona, Spain) was
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used. Separation was achieved by a binary-gradiatibn using an initial composition
of 75% acetone and 25% deionized water, which wazased linearly to 95% acetone
in 10 min, then raised to 100% in 2 min, and mamad constant for 10 min. Initial
conditions were reached in 5 min. An injection wvokiof 10uL and a flow rate of 1
mL/min were used. Detection was performed at 450 ama the online spectra were
acquired in the 350-700 nm wavelength range. Qfieation was carried outising
calibration curves prepared with lutein; and -carotene and zeaxanthin standards
isolated and purified from natural sources (MingMersquera and Hornero-Méndez,
1993). Calibration curvewere prepared in the pigment concentration range.®#5
pg/ml. Lutein esters contents were estimated bygusine calibration curve for free
lutein, since the esterification of xanthophylisttwiatty acids does not modify the
chromophore properties. The calibration curve eéfiutein was also used to determine

the concentration of th&isomers of lutein. Data were expressegdglg fresh weight.

2.6. Statistical analysis

The compositional data of total and individual pegpts are expressed as mean and
standard error of the mean (SEM). The existencsigiificant differences between
means was determined by one-way ANOVA, followed ébyost-hoc test of mean
comparison using the Duncan test for a confideaeellof 95% (p <0.05) utilizing the

STATISTICA 6.0 software (StatSoft Inc.).

3. Resultsand discussion
3.1. Carotenoid composition
In the present study, lutein was confirmed as tr@nntarotenoid pigment

(>85%) found in both tritordeum and durum wheatrgggT ables 1 and2). However,
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as shown in the respective HPLC chromatograms fsgere 1 at t=0 days), the
carotenoid profiles were clearly different for bdfipes of samples, in agreement with
our previous studies (Atienza et al., 2007). Inithold to lutein (86.1%, sum d&- and

Z- isomers), durum wheat grains also contained zebia(10.7%) and lower amounts
of B-carotene (1.8%) and-carotene (1.4%), the latter being absent in glgom. In
tritordeum grains, lutein showed the characterissterification pattern described in
previous works, and total lutein (sum of free astegfied forms) accounted for up to
98.9% of the total carotenoid composition, the (&st%) pertained t@-carotene. The
structural assignment of the lutein esters in fidom, including their regioisomeric
forms, has been recently investigated in our laiooyaand consisted of monoesters and
diesters (homodiesters and heterodiesters) witmipal (C16:0) and linoleic (C18:2)
acids (Mellado-Ortega and Hornero-Méndez, 2012).a@erage, the total carotenoid
content of the tritordeum lines (6®/g fw) was significantly higher, about 8 times,
compared to durum wheat varieties (Ag/g fw), which is in accordance with previous
results (Atienza et al., 2007). The initial caratiehcontents at the harvest stage (t=0
days) are summarized irables 1 and2 for durum wheat and tritordeum, respectively.
We have recently characterized (Mellado-Ortega atmtnero-Méndez, 2015) the
carotenoid profile oH. chilense the other parent of tritordeum, confirming thae t
high level of carotenoids and the esterificatiotgra of tritordeum is a genetic trait
derived from this parent. Strikingly, the carotehgrofile of both parentsH. chilense
and durum wheat) included zeaxanthin, thus indigatinat the absence of this pigment
in the amphiploid could be due to the over-actatiof the B,e- branch of the
biosynthetic pathway, which leads to the formatdrutein, at the expense of tife3-
branch, leading to the formation of zeaxanthin.sTpssibility seems more likely than

the amphiploid inability to synthesize zeaxantlsince tritordeum has detectable levels

10
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of B-carotene, its precursor. Besides, zeaxanthin tiscthel in tritordeum during grain
development (Rodriguez-Suarez et al. 2014). Theacotigation ofp,e- branch along
with the existence of active sequestering mechanisram the high degree of
esterification may result in the fact that the toygtation step for the formation of
lutein is very active. This could explain the alisenfa-carotene in tritordeum as well.
Regarding the esterified fraction in tritordeumsttepresented about 16% of the
total lutein with a greater contribution from thenoesters. The relative abundance of
the individual esterified xanthophylls with respéatthe total carotenoids was: lutein
monopalmitate (10.1%), lutein monolinoleate (4.8M)ein dipalmitate (0.5%), lutein
linoleate palmitate (0.4%) and lutein dilinoleat8.2%0). Regioisomers of lutein
monoesters at position 3 (lutein€Blinoleate and lutein-®-palmitate) were found at
higher concentration levels than the monoesteposition 3' (lutein-3©-linoleate and
lutein-3'-O-palmitate), which is consistent with the regiomgr profile described for
lutein monoesters in advanced tritordeum lines [Miel-Ortega and Hornero-Méndez,
2012). The analysis of the diester fraction shovisgher presence of the homodiester
with palmitic acid (lutein dipalmitate, ~ 50% oftéb diesters) and much lower for its
counterpart with linoleic acid (lutein dilinoleate,14% of total diesters), suggesting a
greater affinity for the esterification with palmitacid. As proposed in previous works
(Mellado-Ortega and Hornero-Méndez, 2012), theseilt® indicate the preferential
acylating action of the responsible enzymes (XA@nthophyll acyltransferase) over
the B-end ring of lutein compared to theend ring, as well as a higher selectivity for
palmitic acid. The average ratios for the regioiesnof monoesters at positions 3 and
3' reached values of 4.3 and 2.2 for lutein momddiate and lutein monopalmitate,
respectively. This suggests that while the estdth palmitic acid are always more

abundant than those with linoleic acid, the retffinity of XAT enzymes between

11
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positions 3 and 3' of lutein molecules is more prorced for the monoesters with
linoleic acid.

It is important to note that the chromatographicakpeassigned as the
heterodiester lutein linoleate-palmitate consistddtwo regioisomers, lutein-B-
linoleate-30-palmitate and lutein-3D-palmitate-30-linoleate (38% of total diesters).
The use of the C18 column for the chromatographialyesis did not allow for the
resolution of these two regioisomers, and therefeeecannot establish whether there

are differences in their relative abundance.

3.2. Changes in the carotenoid content during the postharvest storage of durum
wheat and tritordeum grains

The evolution of the total carotenoid conteRiglre 2), resulting from the
balance between the carotenogenic and catabolicepses, was markedly different
between the two groups of cereals. For the tritamidines, the carotenoid content
decreased progressively throughout the storagedeshowing some dependence on
the applied temperature. Thus, the average decreabe carotenoid content for the
tritordeum lines reached a maximum value of 24%atend of the storage period (90
days) at 37 °C. In the case of durum wheat culivalr was noticed that such a
biosynthetic/catabolic balance was displaced, fagoithe anabolic ones, and the
degradation of carotenoids was compensated by dh#enogenesis activated during
the adaptation of the grains to the storage candtipossibly due to a certain degree of
immaturity of the harvested durum wheat grains.seh@sults are consistent with other
studies on durum wheat (Ramachandran et al., 200}z phenomenon was very
evident at the lower storage temperature (4 °Ch witnet increase in the carotenoid

content after the first 30 days of storage, of 6886 31% for Claudio and Simeto,

12
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respectively. These changes might be the adapteggponse of the grains to the newly
imposed storage conditions, especially for gratesesl at 4 °C (a temperature very
different from the harvest temperature), suggesdimgetabolic activation or dormancy
breakage of grains, a process during which therevidence of general increases in
antioxidant contents (Howitt and Pogson, 2006).o€samoids play a protective role
against the action of free radicals and preventapmg of the seeds, in this case
contributing to their germination success. Sevestaldies have shown a direct
correlation between antioxidant contents, includiagptenoids, and aging or vegetative
state of the seed (Galleschi et al., 2002; Pineinal., 1999). An average decrease of
30% was observed at the end of the storage peti8d &C in durum wheat compared
with 24% in tritordeum. In any case, the observeghér retention of carotenoid in
tritordeum grains at the end of the storage peab87 °C seems to be more directly
related to the esterification of lutein, rathemthhe differences at pigment level for both
cereals, an aspect which is discussed below.

The evolution of individual carotenoid pigments g@et in the grains of the
durum wheat varieties and tritordeum lines are showl ables 1 and2. The behavior
of the three durum wheat varieties was consistettih wthe changes in the total
carotenoid content. As a general trend, durum whaaéties showed a net increase in
the concentration of all pigments at 4 °C in agreethhwith the observation for total
carotenoid content, suggesting a general activatibthe carbon flux through the
carotenoid pathway. Likewise, the decrease in tmeentration of pigments was more
evident at 37 °C, so that, at the end of the stopgiod (90 days), the net loss for all-
E-lutein amounted to 37% in the Don Pedro and Sinwetigeties and 25% for the
Claudio variety. With respect to d-zeaxanthin a decline of around 23% in the Don

Pedro and Simeto varieties and 12% in Claudio waseiwed. In contrasZ-lutein

13
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isomers experienced a smaller drop in all threeetias tharE-lutein and the rest of the
pigments. This is consistent with the fact thatE® Z isomerization of carotenoids is
a frequent transformation taking place during ttegagie and processing of fruits and
vegetables (Liaaen-Jensen and Lutnaes, 2008).hEarase of carotenes, storage at 37
°C for three months resulted in greater changesoimcentration, so thai- and -
carotene registered losses of around 40% in SismetioDon Pedro varieties, and even
64% in Claudio. These results indicate a greatstability of carotenes compared to
xanthophylls. For tritordeum grains, the most digant changes were observed in the
contents of free lutein (including dHutein andZ-lutein) and lutein esterd @ble 2).

All tritordeum lines experienced an increase in theno- and diesterified lutein
fractions with a concomitant decrease in the lee¢lfee lutein Figure 3). For both
fractions, monoesters and diesters, their relateatents increased following a
temperature-dependent manner, thus their incresees more pronounced at 37 °C,
coinciding with a decrease in &Hutein levels in the range of 40-60% comparecht® t
levels observed at 4 and 20 °Cable 2). This finding indicates a positive and
modulating effect of temperature on the vivo process of the esterification of
xanthophylls. Recently, Ahmad et al. (2013), inwdg assessing lutein ester synthesis
over a wide temperature range in bread wheat andrdwheat grains, concluded that
the optimum temperature for lutein esterificatiothwminimum loss was in the range
30 to 60 °C. In addition, these authors reporteat #torage at 37 °C for 8 weeks
significantly promoted the esterification of lutel@ur results clearly showed that the
diester fraction experienced higher increases tharmonoester fraction, which was at
its maximum at the end of the storage period at@G7at 6.99, 9.87 and 9.31 times
higher compared to the initial values for HT630, 2T and HT609, while the

monoesterified fraction increased its concentratipn 1.58, 2.33 and 2.09 times,

14
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respectively Figure 3). As observed for durum wheaEZ-lutein isomers were
characterized by a smooth rate of degradation, gimgbdue to the compensation of
catabolism by thé& to Z isomerization that compensates net degradatiomallfzj note
that-carotene showed a general trend towards degragaitoording to a free pigment

(Table?2).

3.3. Effect of postharvest storage on the esterified lutein fractionsin tritordeum.
Based on the above, it is worthwhile to analyze atelution of the different
lutein monoesters and diesters identified in titertteum lines in more detail, in order
to distinguish the corresponding regioisomers of thonoesters T@ble 2). The
evolution of the esterified lutein fractions atfdient temperatures coincided with a
gradual rise, with a very marked increase at 37n°@ll cases at the end of the storage
period (90 days). In addition, the lutein monop&dt@ content was higher than lutein
monolinoleate, and experienced a higher increasmighout storage (1.4, 1.3 and 1.6
times for HT621, HT609 and HT630, respectively)e3é data again confirm a higher
affinity of the involved enzyme systems (XAT) foalmitic acid versus linoleic acid,
although the latter is the most abundant fatty acithe lipid pool of cereals (Mellado-
Ortega and Hornero-Méndez, 2012). Moreover, anotaetor to be considered for
influencing in the monoester levels, with one ootaer fatty acid, is the involvement of
lipid peroxidation reactions during the storage iquer(Hildebrand, 1989). Thus,
polyunsaturated fatty acids such as linoleic adgiel more prone to oxidation than
saturated fatty acids, e.g. palmitic acid. Theosabetween the regioisomeigable 2),
lutein 3-O-linoleate/lutein 3'O-linoleate and lutein ®-palmitate/lutein 3'O-palmitate,
showed constant values for each monoester duriegptistharvest storage period,

indicating that the regioisomeric selectivity oEtiKAT enzymes is not altered by the
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temperature with respect to the preferential pmsitof esterification in the lutein
molecule (position 3 at tHgend ring).

As described for monoesters, lutein dipalmitatenddr out to be the most
abundant of diesters in all tritordeum lines, foleml by the heterodiester lutein
linoleatepalmitate, and finally by trace amountdudéin dilinoleate. This is consistent
with the specificity for palmitic acid as previoysindicated and with a plausible
negative effect of oxidation over linoleic acid.€elimcreases observed at the end of the
storage period (90 days) at 37 °C were very prooedr{ able 2). These results are
consistent with the earlier studies of Kaneko et(#995) and Kaneko and Oyanagi
(1995), who evaluated the effect of relative hutyidon the promotion of the
esterification reaction of lutein during the stagagf wheat seeds at 30 °C. These works
also showed a greater increase in the fractionesters versus monoesters. The authors
reported that the esterification of lutein was lhyghfluenced by the cereal genome.

As deducted from the lower loss values for theltotrotenoid content in
tritordeum versus durum wheat, the progressiveeas® in the esterification of lutein
provides greater stability. The greater stabilityesterified carotenoids compared to the
free forms has been demonstrated in various studibachik and Beecher, 1988;
Schweiggert et al., 2007; Subagio et al., 1999 @&sterification increases the apolar
nature of these molecules, facilitating their acalation and storage in lipophilic
membrane structures or bodies that enable great#egtion against degradative
enzyme systems. Therefore, the ability of tritordegrains to produce lutein esters and
the possibility to modulate their content by meafhgpostharvest storage conditions
(specially the temperature) must be exploited ideorto optimize their use as a

functional cereal.
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Figure captions

Figure 1. HPLC chromatograms obtained during postharvesageo(90 days) at three
different temperatures (4, 20 and 37 °C) of duruheat (Don Pedro) and tritordeum
(HT621) grains. Peak identities are: 1,Blkeaxanthin; 2, alE-lutein; 3, 9-Z and 13-Z
isomers of lutein; 4, lutein 33-linoleate; 5, lutein 3-linoleate; 6, lutein 3O-
palmitate; 7, lutein 33-palmitate; 8, alkE-a-carotene; 9, alkE-p-carotene; 10, lutein
dilinoleate; 11, lutein 3®-linoleate-30-palmitate and lutein 30-palmitate-30-

linoleate; 12, lutein dipalmitate.

Figure 2. Total carotenoid contenjug/g fresh weight) evolution in wheat varieties
(Don Pedro, Simeto and Claudio) and advanced detom lines (HT630, HT621 and
HT609) during the postharvest storage of seeds 20 4nd 37 °C. The values shown
are the mean and standard error of six analyseég (hree blocks x 2). Different letters
within the same line (temperature effect) indicatgnificant differences (p<0.05)

determined by the Duncan test.

Figure 3. Effect of temperature (4, 20 and 37 °C) on the eegf esterification of
lutein during the storage of tritordeum seeds giREF630, HT621 and HT609). Data
represented the relative contribution of each iact(free, monoesterified and
diesterified) in relation to temperature and stertigne. The values shown are the mean

and standard error (n=6, three blocks x 2).
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Table 1. Carotenoid composition evolutiomd/g fresh weight) during postharvest storage of durum wheat graien(Pedro, Simeto and
Claudio varieties).

Don Pedro Simeto Claudio
Time (days)
Temp
Carotenoid C) 0 30 60 90 0 30 60 90 0 30 60 90
all-E-Lutein 4  062+008 0.72+0.08 0.75+0.08 0.74+0.09 054+0.04 0.78+0.08 0.78:0.08 0.73:0.08 043+0.08 0.68+0.04 072+0.08 0.71:0.08
20 0.65+0.04 0.59+0.03 0.58+0.08 057+0.06 0.56+0.04  0.55+0.08 0.55+0.08 0.54+0.08 0.52+0.02
37 0.42+0.02 040+0.02 0.39+0.0% 0.40+0.02 034+0.0! 0.34:0.02 0.37 £0.02 0.34+0.0¥ 0.33%0.01
07- and 1Z-Lutein 4 01240080 014+00% 015+00% 0.15+0.02 011+0.0% 015+0.0% 0.15+00% 0.14+0.0% 0.09+0.00  0.13+0.0% 0.15+0.01 0.15+0.0%
20 0.13+0.01 0.13+0.01 0.12+0.0% 0.11+0.0% 011+0.0f 0.10+0.0% 0.11+0.0t 0.11+0.0%! 0.11+0.0%
37 0.11+0.00 0.10+0.08 0.10+0.08 0.10+0.00 0.09+0.08  0.08+0.00 0.09 + 0.06° 0.10+0.006  0.08+0.00
all-E-Zeaxanthin 4 010+0080 0.11+00% 011+00% 0.11+00% 008+0.06 010+0.0f 0.10+0.08  0.09+0.00 0.06 +0.00  0.09 +0.00 0.10+0.00  0.09+0.08
20 0.10+0.01 0.09+0.01 0.09+0.0% 0.08+0.0% 008+0.01 0.08:+0.00 0.07 +£0.01 0.07+0.00  0.07 £0.00°
37 0.08+0.00 0.07+0.08 0.08+0.00 0.06+0.00 0.06+0.08  0.06+0.00 0.06+0.00°  0.05+0.08  0.05:0.00
all-E-a-Carotene 4 001+0080 0.01+000 001+000 0.01+0.00 0.01+0.006 0.01+0.00 0.01+0.06° 0.01+0.06° 0.01+0.00 0.01+0.00 0.01+0.00  0.02+0.08
20 0.01+0.00 0.01+0.00 0.01:+0.00 0.01+0.00 0.00+0.00  0.00+0.00 2 0.01:0.08 0.01+0.00  0.01:+0.00
37 0.01+0.00 0.01+0.08 0.01+0.08 0.00+0.006 0.00+0.08  0.00+0.08 @ 0.01+0.00 0.01+0.06® 0.01+0.08
all-E-p-Carotene 4  0.02+000 0.02+000 0.02+0.00 0.02+0.00 0.01+0.06 0.02+0.00 0.02+008 0.02+0.00 0.01+0.00 0.02+0.00 0.02+0.00  0.02+0.08
20 0.02+0.00 0.02+0.00 0.01:+0.00 001+0.00 001+0.00 0.01:+0.00 2 0.01:0.08 0.01+0.06> 0.01+0.00°
37 0.01+0.00 0.01+0.08 0.01+0.08 0.01+0.006 0.01+0.06f 0.01:+0.00 @ 0.01+0.00 0.01+0.00  0.01+0.08

Data are the mean + standard error (n=6, thredabsic 2). Different letters within the same liner @ach pigment and variety of cereal) indicataifizant differences (p<0.05) determined by the Eamtest.



Table 2 Carotenoid composition evolutiopd/g fresh weight) during postharvest storage of tritordeum grain$§80, HT621 and HT609

lines).
HT630 HT621 HT609
Time (days)
Temp
Carotenoid °C) 0 30 60 90 0 30 60 90 0 30 60 90
all-E-Lutein 4 512+0.10 4.88+0.08 4.77+0.12 475+0.28 472+017 4.08+0.07 4.13+0.44 4.09+0.20 406+019 395+0.18 3.97+0.20 3.46 +0.30
20 439+0.07 3.75+0.08 3.91+0.3% 420+0.1% 3.56+0.2% 3.58+0.32 3.71+0.18 325+0.16 3.42+0.24
37 2.92+0.08 2.17+0.09 1.95+0.06 3.08 +£0.06 2.46 +0.08 2.18 +0.04 2.70 £ 0.07 2.02+0.08 1.77+0.02
97- and 1Z-Lutein 4 0.69+0.01 0.68+0.01 0.64+0.02 0.69+0.03 0.64+0.02 0.59+0.02 0.55 + 0.08 0.57 +0.08 054+0.02 0.54+0.08 0.54 +0.08 0.45 +0.04
20 0.64+0.05 0.56+0.02 0.59+0.0& 0.61+0.01 0.52 +0.08 0.54 +0.02 0.52 +0.0¢ 0.46 £+0.01  0.47 £0.0¥
37 0.59+0.02 0.50+0.02 0.47+0.0% 0.63 +0.02 0.55 +0.01 0.51 +0.01 0.53+0.01 0.45 +0.0% 0.41 +0.00
Lutein monolinoleate 4 049+0.0f 047+0.0%f 052+0.0% 0.53+0.08 0.20+0.01 0.18+0.00 0.21 +0.08 0.21 +0.02 0.26+0.01 0.26+0.01 0.27 £0.01 0.26 +0.01
20 2 0.49+0.02 0.52+0.03 0.62=+0.01 0.21+0.01 0.24 +0.0% 0.28 +0.08 0.26 +0.01 0.31+0.02 0.36 +0.01
37 2 0.66+0.08 0.78+0.08 0.86+0.04 0.32+0.00 0.45 + 0.02 0.52 +0.02 0.41+0.01 0.53 +0.01 0.57 +0.01
Lutein 3'-O-linoleate 4 0.09+0.00 0.08+0.00 0.09+0.00 0.09+0.01 0.04+0.00 0.04+0.00 0.04 +0.01 0.04 +0.00 0.05+0.00  0.05+0.00 0.05 +0.00 0.05 +0.00
20 0.09+0.00 0.09+0.00 0.11+0.00 0.04 +0.00 0.05 + 0.06f 0.06 +0.01 0.05 + 0.00 0.06 + 0.00 0.07 +£0.00
37 0.12+0.001 0.15+0.0f 0.17+0.01 0.07 £0.00 0.10 £ 0.00 0.11 +0.00 0.08 +£0.00 0.10+0.00  0.12+0.00
Lutein 3-O-linoleate 4  040+0.0% 0.39+0.01 043+0.02 0.44+0.02 0.16+0.01 0.14+0.00 0.17 +£0.08 0.17 +£0.02 0.21+0.01 0.21+0.0% 0.22 +0.01 0.21 +0.01
20 @ 0.40+0.02 0.43+0.02 0.51=+0.01 0.17 £0.01 0.19 +0.0%" 0.22 +0.02 0.20 +0.01 0.25+0.0% 0.29 +0.01
37 2 054+0.02 0.63+0.02 0.69+0.08 0.26 +0.00 0.36 +0.01 0.40 +0.02 0.33+0.01 0.42 +0.01 0.46 +0.01
Lutein monopalmitate 4 0.81+0%01 0.76 +0.08 0.84+0.04 0.86+0.08 0.49+0.02 0.42+0.01 0.50 +0.08 0.50 +0.08 0.62+0.02 0.61+0.04 0.63 +0.08 0.61 +0.08
20 0.77+0.08 0.79+0.04 0.93+0.0% 0.50 +0.02 0.55 + 0.0% 0.63+0.08 & 059 +0.02 0.68 +0.04 0.78 +£0.02
37 0.97 +0.03 1.05+0.04 1.12+0.0% 0.73 +0.01 0.93 +0.08 0.99 + 0.04 2 0.88+0.08 1.04 +0.01 1.09 + 0.02
Lutein 3'-O-palmitate 4  0.24+0.066 0.23+0.0f 0.26+0.0% 0.26=+0.01 0.15+0.01 0.13+0.00 0.16 +0.08 0.16 +0.02 0.18+0.0f 0.18+0.0% 0.19 + 0.0 0.18 +0.01
20 2 0.24+0.0f 0.24+0.01 0.29=+0.01 0.16 +0.01 0.18 +0.0% 0.21+0.02 0.18 +0.01 0.21+0.0% 0.24 +0.01
37 @ 0.30+0.02 0.33+0.0f 0.35+0.0% 0.24 +0.00 0.32£0.01 0.34 +0.01 0.27 £0.01 0.33+£0.00 0.35+0.01
Lutein 3-O-palmitate 4 0.57+0.61 0.53+0.02 0.58+0.03 0.60+0.03 0.34+0.01 0.29+0.01 0.34 +0.08 0.34 +0.04 0.44+0.01  0.43+0.02 0.44 +0.02 0.42 +0.02
20 0.53+0.02 0.54+0.03 0.64+0.0% 0.34+0.01 0.37 £0.0% 0.42 +0.08 0.41+0.01 0.47 +0.08 0.54 +0.01
37 0.67+0.02 0.72+0.08 0.77+0.04 0.49 +0.01 0.61 +0.02 0.65 + 0.02 0.61 +0.02 0.71+0.01 0.74 +0.02
Lutein dilinoleate 4 0.02+0.60 0.02+0.00 0.02+0.00 0.03+0.00 0.00+0.006  0.00 +0.00 0.00 +0.00 0.00 +0.00 0.01+0.006 0.01+0.00 0.01 +0.00 0.01 +0.00
20 0.02+0.08 0.03+0.01 0.05+0.00 0.00 + 0.00 0.00 +0.00 0.01+0.00 0.01+0.00 0.01+0.006 0.01 +0.00
37 0.05+0.00 0.10+0.00 0.14+0.01 0.01 +0.00 0.02 +0.00 0.02 +0.00 0.01 +0.00 0.03 +0.00 0.04 +0.00
Lutein dipalmitate 4 0.05+0.00 0.06 +0.00 0.07+0.00 0.08+0.00 0.02+0.00 0.02+0.00 0.02 + 0.06" 0.03+0.00 0.03 +0.00 0.04 +0.00 0.04 +0.06 0.05 + 0.00



Lutein linoleate palmitate

all-E-B-Carotene

Regioisomers ratios

Lutein 3-O-linoleate /
Lutein 3'-O-linoleate

Lutein 3-O-palmitate /
Lutein 3'-O-palmitate

20
37

4

20
37

0.07 +£0.00
0.12 +0.00

0.05 + 0°000.06 + 0.06f
0.07 +0.08
0.15+0.00

0.08 +0.00 0.07 +0.00
0.06 +0.00
0.06 +0.01

4.5 4.7

4.6
4.6

2.3 2.3

2.3
2.2

0.08 +0.02
0.22 +0.00

0.07 +0.00
0.09 +0.02
0.28 +0.00

0.07 +0.00
0.06 +0.00
0.05 +0.00

4.7

4.7
4.3

2.3

2.2
2.2

0.13+0.00
0.28 +0.01

0.08 +0.00
0.15 + 0.00
0.38 +0.02

0.07 +0.01
0.06 +0.00
0.06 +0.0%

4.9

4.7
42

2.2

2.2
2.2

0.02 +0.00
0.06 +0.08

0.01 +0.00
0.02 +0.00
0.04 +0.00

0.01 +0.00

0.05 +0.00
0.05 +0.00
0.05 +0.00

0.06 +0.00

3.8 4.0

3.9
3.8

2.3 2.3

2.2
2.0

0.04 +0.00
0.11+0.0%

0.01 +0.06¢"
0.03+0.08
0.09 +0.00

0.05 +0.08
0.04 +0.00
0.05 +0.08

4.1

4.0
3.6

2.2

2.1
1.9

0.05+0.01
0.14 +0.01

0.02 + 0.0
0.04 +0.00
0.13+0.01

0.02+0.00

0.04 +0.0%
0.04 +0.00
0.05 +0.08

0.07 +0.00

4.1 4.0

4.0
3.7

2.1 2.4

2.0
1.9

0.04 +0.0¢
0.10+0.01

0.03 +0.00
0.03 +0.00
0.07 +£0.00

0.06 +0.01
0.05 + 0.0¢f
0.06 +0.00

4.1

4.0
4.2

2.4

2.3
2.3

0.06 +0.02
0.18 +0.00

0.03 +0.00
0.04+0.0%
0.16 +0.00

0.06 +0.00
0.05 + 0.006
0.06 + 0.00

4.1

4.1
4.0

2.3

2.3
2.2

0.09 +0.00
0.23 +0.06

0.03 +0.06
0.06 +0.00
0.21+0.00

0.06 +0.0%
0.06 +0.00
0.06 +0.00

4.2

4.2
3.9

2.3

2.2
2.1

'Data are the mean + standard error (n=6, thredbsitc 2). Different letters within the same liner @ach pigment and variety of cereal) indicateifiicant differences (p<0.05) determined by the Eamtest.
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