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Abstract

Listeria monocytogenes is a bacterial pathogen whose genome encodes many cell wall proteins that bind covalently to
peptidoglycan. Some members of this protein family have a key role in virulence, and recent studies show that some of
these, such as Lmo0514, are upregulated in bacteria that colonize eukaryotic cells. The regulatory mechanisms that lead to
these changes in cell wall proteins remain poorly characterized. Here we studied the regulation responsible for increased
Lmo0514 protein levels in intracellular bacteria. The amount of this protein increased markedly in intracellular bacteria (.
200-fold), which greatly exceeded the increase in lmo0514 transcript levels (,6-fold). Rapid amplification of 59-cDNA ends
(RACE) assays identified two lmo0514 transcripts with 59-untranslated regions (59-UTR) of 28 and 234 nucleotides. The
transcript containing the long 59-UTR is upregulated by intracellular bacteria. The 234-nucleotide 59-UTR is also the target of
a small RNA (sRNA) denoted Rli27, which we identified by bioinformatics analysis as having extensive base pairing potential
with the long 59-UTR. The interaction is predicted to increase accessibility of the Shine-Dalgarno sequence occluded in the
long 59-UTR and thus to promote Lmo0514 protein production inside the eukaryotic cell. Real-time quantitative PCR
showed that Rli27 is upregulated in intracellular bacteria. In vivo experiments indicated a decrease in Lmo0514 protein levels
in intracellular bacteria that lacked Rli27. Wild-type Lmo0514 levels were restored by expressing the wild-type Rli27
molecule but not a mutated version unable to interact with the lmo0514 long 59-UTR. These findings emphasize how 59-UTR
length affects regulation by defined sRNA. In addition, they demonstrate how alterations in the relative abundance of two
transcripts with distinct 59-UTR confine the action of an sRNA for a specific target to bacteria that occupy the intracellular
eukaryotic niche.
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Introduction

Listeria monocytogenes is a facultative intracellular food-borne

bacterium responsible for serious clinical manifestations including

febrile gastroenteritis, meningitis, encephalitis and maternofetal

infections in humans and livestock, with an estimated fatality rate

of 20–30% of infected individuals [1–3]. Following ingestion, L.
monocytogenes is able to cross the intestinal, blood-brain and

placental barriers. The bacterium expresses a number of virulence

factors that promote entry into phagocytic and non-phagocytic

eukaryotic cells, intracellular survival and proliferation, and

spreading to adjacent cells [4].

Genome studies show that all Listeria species sequenced to

date have more than 40 genes that encode predicted surface

proteins bearing an LPXTG sorting motif [5]. This motif is

recognized by sortase enzymes, which anchor these proteins

covalently to the cell wall. In pathogenic Listeria, some of these

LPXTG proteins direct essential steps throughout the infection

process, including bacterial adhesion and uptake by the host cell

[6–9]. Proteomic analyses indicated that levels of many of these

LPXTG surface proteins change on adaptation to different

environments. The Listeria cell wall subproteome thus changes

substantially in actively growing and resting bacteria. Mutants

that lack sortase SrtA and SrtB activity show impaired LPXTG

protein anchoring to the peptidoglycan [10] as well as

differences in the relative levels of certain LPXTG proteins

[11]. Recent studies also showed major changes in the cell wall

proteome when L. monocytogenes proliferate inside epithelial

cells [12]. Upregulation of defined LPXTG proteins has been

observed in intracellular bacteria, including Internalin-A and

PLOS Genetics | www.plosgenetics.org 1 October 2014 | Volume 10 | Issue 10 | e1004765

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/36218672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004765&domain=pdf


Lmo0514 [12]. The mechanisms that regulate the coordinated

production of such a large number of LPXTG proteins

nonetheless remain largely unknown.

Bacterial small RNAs (sRNA) are a class of bacterial gene

expression regulators important in many physiological process-

es, including virulence and cell envelope homeostasis [13,14].

sRNA coordinate target gene expression in response to

environmental changes and have regulatory functions that

affect protein activity and mRNA stability/translation in many

microorganisms, including bacterial pathogens [15,16]. More

than 100 sRNA have been identified for L. monocytogenes by the

use of tiling arrays, global RNA sequencing (RNA-Seq) and

bioinformatics methods [14,17,18]; more than 30 of these have

been validated by northern blot, but their biological function

and mechanisms of action are so far unknown [19]. There is

little information on the regulation of sRNA expression in L.
monocytogenes. Some reports implicate the alternative sigma

factor SigB in regulating expression of the sRNA SbrA (Rli11)

and SbrE (Rli47) [17,20,21]. In addition, 22 sRNA genes are

preceded by putative sigma A boxes in the L. monocytogenes
genome [14]. Recent studies also show that the sRNAs Rli31,

Rli33-1, Rli38 and Rli50 modulate virulence in L. monocyto-
genes [14,17]. Despite these studies, there is no model that

describes how sRNA expression in L. monocytogenes responds to

infection of eukaryotic cells. With the exception of LhrA, which

controls expression of the chitinase ChiA post-transcriptionally

[22], and of the multicopy sRNA LhrC, which modulates LapB

adhesin expression [23], the identity of the functions targeted by

L. monocytogenes sRNA inside or outside eukaryotic cells,

remains unknown.

Here we studied the regulatory mechanism responsible for

the increase in the LPXTG protein Lmo0514 in the cell wall of

intracellular bacteria [12]. Our data demonstrate an sRNA that

is a key regulatory element in modulating levels of this cell wall

surface protein during intracellular infection. This response to

the eukaryotic niche is directed by the activity of two promoters

in the target gene that generate transcripts with 59-untranslated

regions (59-UTR) of distinct length. The relative abundance of

these two transcripts differs in extra- and intracellular bacteria.

Only the ‘long’ version, enriched in intracellular bacteria,

bears the sRNA binding site. This mechanism confines the

regulation of lmo0514 by this sRNA to the intracellular

eukaryotic niche.

Results

The L. monocytogenes gene that encodes the LPXTG
surface protein Lmo0514 is expressed as two variants
with distinct 59-UTR

Lmo0514, a L. monocytogenes LPXTG surface protein of

unknown function, is encoded by a gene upregulated by bacteria

located within macrophages [24]. Lmo0514 is also more abundant

in the cell wall of bacteria that proliferate inside epithelial cells

than in bacteria growing in laboratory media [12]. To study the

basis of this regulation, we compared lmo0514 expression in extra-

and intracellular bacteria. Real-time quantitative PCR (qPCR)

assays showed enhanced lmo0514 mRNA expression (,6-fold) in

intracellular bacteria after infection of JEG-3 human epithelial

cells (Fig. 1A). Consistent with our previous work [12], the

Lmo0514 protein was detected mainly in the cell wall of

intracellular bacteria, with very low levels in extracellular bacteria

(Fig. 1B). Changes in relative levels of Lmo0514 protein were

estimated to be.200-fold (Fig. 1B), much higher than those for

lmo0514 mRNA (,6-fold). This lack of correlation between

induction of lmo0514 transcript and protein levels in intracellular

bacteria led us to hypothesize that post-transcriptional regulatory

mechanisms act on this gene.

To evaluate this possibility, we sought lmo0514 gene expression

control mechanisms that operate specifically in intracellular

bacteria. Previous in silico predictions by Loh et al. [25] indicated

that lmo0514 could be expressed from three promoters at

Figure 1. Regulation of the L. monocytogenes gene that encodes
the LPXTG surface protein Lmo0514 in intracellular bacteria
located inside eukaryotic cells. Total RNA and cell wall protein
extracts were prepared from L. monocytogenes wild-type strain EGD-e
grown in BHI medium to stationary phase (extracellular) and from
bacteria collected in JEG-3 epithelial cells at 6 h post-infection
(intracellular). (A) lmo0514 transcript levels monitored by real-time
qPCR using primers Lmo0514-F and Lmo0514-R, which map within the
lmo0514 coding region (Table S2). (B) Lmo0514 protein levels detected
by Western blot. Levels of another LPXTG surface protein, Internalin-A
(Inl-A), are shown for comparison. Densitometry analysis of bands is
shown as numbers relative to the band detected in wild-type bacteria.
Cell wall extracts of extracellular bacteria are concentrated 6-fold
relative to those of intracellular bacteria. In intracellular bacteria, note
the marked increase in relative levels of Lmo0514 protein
(37.566 = 225), which contrasts with the ,6-fold increase in lmo0514
mRNA.
doi:10.1371/journal.pgen.1004765.g001

Author Summary

Listeria monocytogenes has evolved to adapt to numerous
environments, including the intracellular niche of eukary-
otic cells. Small RNAs (sRNA) play important regulatory
roles in changing environments, and are thus predicted to
modulate L. monocytogenes adaption to the intracellular
lifestyle. This study shows how the regulatory activity of an
sRNA on a defined target is restricted to bacteria in the
intracellular infection phase. This regulation relies on a
long (234-nucleotide) 59-UTR that bears the sRNA-binding
site present in a transcript variant that is upregulated by
intracellular L. monocytogenes. The concomitant increase in
both the target transcript containing the long 59-UTR and
the sRNA, which is postulated to facilitate opening of the
Shine-Dalgarno site, culminates in markedly higher protein
levels in intracellular bacteria. The limited amounts of both
the target and the regulator in extracellular bacteria ensure
that production of this bacterial protein is confined mainly
to the host rather than the non-host environment.

Selective sRNA Targeting to a Long 59-UTR
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positions 226, 2104 and 2163. Two of these, 226 and 2163,

were assigned as tentatively regulated by sigma A (sA) and the

third, at position 2104, as controlled by sigma B (sB) [25]

(Fig. 2A). The activity of these putative promoters and the

presence of the different transcripts were analyzed by RT-PCR

on RNA isolated from L. monocytogenes grown extracellularly and

from intracellular bacteria that colonized JEG-3 epithelial cells.

lmo0514 transcripts with a long 59-UTR were detected specifically

in intracellular bacteria (Fig. 2A). To confirm these findings, rapid

amplification of 59-cDNA ends (59-RACE) assays were used to

map transcriptional start sites (TSS) of lmo0514 in bacteria grown

extracellularly and in bacteria isolated from eukaryotic cells. These

59-RACE assays revealed two distinct TSS at positions 228 and 2

234 (Fig. 2B, C), and also confirmed expression of the long

lmo0514 transcript by intracellular bacteria (Fig. 2C). Putative

promoters for these TSS, which we termed P1 and P2, both bear

bona fide 210 TATA boxes (Fig. 2B, C). The existence of two

lmo0514 transcripts of different length was verified by northern

blot (Fig. 3A), with sizes compatible with cotranscription of

lmo0514 with the downstream gene lmo0515, which encodes a

universal stress protein [26]. lmo0514-lm0515 cotranscription was

verified by RT-PCR (Fig. S1). qRT-PCR assays confirmed that

expression of the lmo0514 transcript variant with the long 234-

nucleotide (nt) 59-UTR was upregulated by ,12-fold in intracel-

lular bacteria (Fig. 3B). These findings suggested that the specific

induction of this mRNA variant with a longer 59-UTR in

intracellular bacteria accounts for or contributes to the 6-fold

increase in total lmo0514 mRNA (Fig. 1A). These data supported

a model in which intracellular bacteria specifically upregulate

expression from the P2 promoter, resulting in an lmo0514
transcript with a long 59-UTR. This assumption takes into

account the different ratios between the two lmo0514 transcripts

when L. monocytogenes colonizes the eukaryotic cell.

The lmo0514 long 59-UTR variant has a binding site for
Rli27, an sRNA induced in intracellular bacteria

The increased length of the lmo0514 transcript variant that is

upregulated in intracellular bacteria prompted us to test whether

the distinctive 234-nt 59-UTR is a target region for sRNA-

mediated post-transcriptional regulation. We used in silico analysis

to search for putative non-coding RNAs in the L. monocytogenes
reference strain EGDe [27] that could bind to this lmo0514 long

59-UTR. The targetRNA program (http://cs.wellesley.edu/

,btjaden/TargetRNA2/) [28] gave a high score to a pairing

between defined stretches of the lmo0514 234-nt 59-UTR and a

sequence in the lmo0411-lmo0412 intergenic region. A gene in

this region encodes an sRNA termed Rli27 that is upregulated by

L. monocytogenes in the intestine of infected mice and in human

blood, as shown by transcriptomics [17]; RNA-seq corroborated

the expression of this sRNA [18]. Although Rli27 was identified as

an sRNA induced in infection conditions [17], no further

characterization of its function or targets was reported.

Genomic comparisons of pathogenic and non-pathogenic

species are usually carried out to identify virulence genes,

Figure 2. lmo0514 is expressed differentially from two distinct transcriptional start sites in extra- and intracellular L. monocytogenes.
(A) Position of the three transcriptional start sites (TSS) predicted in silico for lmo0514 by Loh et al. [25]. Primers used to amplify the lmo0514 coding
sequence are indicated (ORF, primers Lmo0514-F, Lmo0514-R, see Table S2), as well as two fragments of the 59-UTR of different lengths, amplicon ‘‘a’’
(254 nt), obtained with primers UTR-B and UTR-1R (Table S2) and amplicon ‘‘b’’ (134 nt), obtained with primers UTR-A and UTR-1R (Table S2). Reverse
transcriptase-PCR assays showing upregulation in intracellular bacteria of an lmo0514 transcript isoform with a long 59-UTR. 16S rRNA was monitored
as loading control. RNA was obtained from extracellular bacteria grown in BHI medium to exponential logarithmic phase (log), stationary phase (stat),
and from intracellular bacteria. (B) 59-RACE assay showing a TSS at position 228 relative to the ATG site in extracellular bacteria. Colored bar indicates
the position of the primer lmo0514-PE-1rv (Table S2) used for this reaction. (C) 59-RACE assay showing the production by intracellular bacteria of an
lmo0514 transcript with a long 59-UTR derived from a TSS at position 2234 relative to the ATG site. Colored bar indicates the position of the primer
lmo0514-PE-6rv (Table S2) used for this reaction. TAP, tobacco acid pyrophosphatase.
doi:10.1371/journal.pgen.1004765.g002

Selective sRNA Targeting to a Long 59-UTR
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including sRNAs [18,29]. We analyzed the genomic region of L.
monocytogenes containing rli27 and those of the non-pathogenic

species L. innocua and L. welshimeri. In L. monocytogenes, rli27 is

flanked by lmo0411 and lmo0412, two genes that map in the

opposite DNA strand (Fig. S2), whereas in the L. welshimeri
genome, the same intergenic region has a small ORF (lwe0373)

that codes for a predicted protein of unknown function (Fig. S2).

We nonetheless found that Rli27 is highly conserved in L. innocua
(82% identity, Fig. 4A), in contrast with a previous report [17].

The extremely variable rli27 genomic region might thus have

been shaped by gain and/or loss of genes during Listeria
speciation. Apart from Listeria species, BLAST searches did not

identify rli27 orthologs in other bacterial species. Rli27, identified

as a 131-nt sRNA [14,18], is not predicted to encode any protein

using the Small Open Reading Frame (ORF) tool in the ORF

finder program (http://www.bioinformatics.org/sms2/orf_find.

html).

Although the existence of Rli27 sRNA was inferred based on its

detection by genomic and transcriptomic approaches, it has not

yet been formally demonstrated. The presence of rli27 and its

flanking genes in different strands ruled out the possibility that its

detection by tiling arrays and RNA-seq analyses was due to

untranslated regions of neighbor genes. rli27 has its own predicted

transcription start site and Rho-independent terminator sequence

(Fig. 4A), and the respective promoter regions in L. monocytogenes
and L. innocua showed no significant divergence (Fig. 4A).

Northern blot assays using total RNA isolated from L. monocy-
togenes wild-type EGD-e and an isogenic Drli27 mutant strain

demonstrated a small transcript consistent with the ascertained

size of Rli27 (,130 nt) (Fig. 4B). Real-time qPCR showed that

Rli27 expression is induced (,20-fold) in intracellular bacteria

when compared with extracellular bacteria grown in rich medium

to logarithmic or stationary phases (Fig. 4C). These findings

indicate that Rli27 is a bona fide sRNA that is upregulated by L.
monocytogenes inside eukaryotic cells.

Rli27 interacts physically with the 59-UTR specific to the
lmo0514 long transcript

Rli27 interaction with the lmo0514 59-UTR extends to several

regions, although it shows a major predicted pairing region

involving Rli27 nucleotides 1 to 21 (Fig. 5A, Fig. S3). We used

electrophoretic mobility shift assays (EMSA) to assess the validity

of this prediction. We generated in vitro wild-type versions of

Rli27 and 59-UTR-lmo0514, together with variants of both RNA

Figure 3. Northern blot and real-time quantitative PCR (qPCR)
assays confirm the predominance of lmo0514 transcripts of
different lengths in extra- and intracellular L. monocytogenes.
(A) Northern blot assays showing the short and long lmo0514 transcript
isoforms in RNA isolated from extra- and intracellular bacteria,
respectively. Transcript size is compatible with cotranscription of
lmo0514 with downstream gene lmo0515 (Fig. S1). Relative 16S rRNA
levels are shown for comparison. (B) Relative lmo0514 transcript levels
detected by qPCR in extra- and intracellular bacteria, with
Utr0514_qPCR_F and Utr0514_qPCR_R primers (Table S2) specific for
the 59-UTR. Data derived from a minimum of three independent
experiments. *, P#0.05, Student’s t-test.
doi:10.1371/journal.pgen.1004765.g003

Figure 4. Rli27 is a bona fide L. monocytogenes sRNA induced by
intracellular bacteria. (A) Sequence alignment of the rli27 genomic
region from L. monocytogenes, L. welshimeri and L. innocua. The 235
and 210 predicted sites for the rli27 promoter and the rli27 itself (grey
background) are highlighted. Nucleotide sequence in orange corre-
sponds to the predicted terminator shared by rli27 and lmo0412. Note
that rli27 is absent in L. welshimeri. (B) Northern blot assay performed
with total RNAs isolated from bacteria grown in BHI medium to
stationary phase. L. monocytogenes strains used included EGDe (WT)
and the Drli27 mutant. 5S rRNA was used as loading control. (C) Real-
time qPCR showing upregulation of Rli27 expression in intracellular
bacteria. Bacteria were grown in BHI medium to exponential (log) or
stationary phase, or collected from epithelial cells. Data derive from a
minimum of three independent experiments. ***, P#0.001, Student’s t-
test.
doi:10.1371/journal.pgen.1004765.g004
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molecules bearing mutations in 3 nt (mut-1) or 14 nt (mut-3)

important for pairing (Fig. 5B). Incubation of Rli27 and 59-UTR-

lmo0514 wild-type molecules resulted in a duplex with low

electrophoretic mobility (Fig. 5C). Conversely, combination of

wild-type 59-UTR-lmo0514 with mutated Rli27 (either mut-1 or

mut-3 variants), reduced duplex formation (Fig. 5C). Duplex

formation was partially restored by combining mutations in Rli27

with compensatory mutations in 59-UTR-lmo0514 (Fig. 5C).

Specificity of the Rli27-59-UTR-lmo0514 interaction was con-

firmed by lack of duplex formation after incubation of the 59-

UTR-lmo0514 wild-type molecule with SbrA, an unrelated sRNA

(Fig. 5D).

Rli27 interaction with the lmo0514 long 59-UTR is
necessary to increase Lmo0514 protein levels in
intracellular bacteria

To determine the biological relevance of the 59-UTR-lmo0514-

Rli27 interaction in vivo, we analyzed the specific contribution of

Rli27 binding to Lmo0514 protein upregulation in bacteria that

infect eukaryotic cells. We generated a Drli27 strain and a second

isogenic mutant, Drli27C2T, which bears an artificial strong

terminator between the remaining rli27 sequences. This mutant

was intended to avoid polar effects on the flanking genes lmo0411
and lmo0412 (Fig. S4); we also included mutants in these flanking

genes, Dlmo0411 and Dlmo0412 [30]. In addition, we designed a

qPCR assay specific for the lmo0514 long 59-UTR for comparison

to the lmo0514 coding region. There were no notable differences

among strains in the relative levels of the long 59-UTR region or

the lmo0514 ORF (Fig. 6A). In contrast, Lmo0514 protein levels

were ,2.5- to 3-fold lower in the cell wall of the two Rli27-lacking

mutant strains isolated from the eukaryotic cell (Fig. 6B). This

phenotype was complemented by overproduction of wild-type or

mut1 versions of Rli27 from a plasmid (Fig. 6C, D). In contrast,

when we tested mut3, the Rli27 mutant bearing 14 nt changes in

the major region predicted to interact with the lmo0514 59-UTR

(Fig. 5A), it did not restore Lmo0514 protein levels in intracellular

Figure 5. Rli27 interacts in vitro with the lmo0514 long 59-UTR. (A) Scheme of the major interaction region between Rli27 and the lmo0514 59-
UTR predicted with the targetRNA program (http://cs.wellesley.edu/,btjaden/TargetRNA2/). The complete set of putative interaction sites is shown
in Fig. S3. (B) Effect of Rli27-mut1 and Rli27-mut3 mutations on the predicted Rli27-59-UTR-lmo0514 interaction. Changes are highlighted in yellow.
Compensatory mutations designed in 59-UTR molecules synthesized in vitro are also shown in Fig. S3. (C) EMSA assays showing formation of a 59-UTR-
lmo0514/Rli27 duplex with slow migration in the gel. This duplex is not formed after co-incubation of the 59-UTR molecule with the Rli27-mut1 or
Rli27-mut3 variants, and is partially restored by compensatory mutations in the lmo0514 59-UTR. (D) Control EMSA showing no duplex formation after
incubation of the lmo0514 59-UTR with an unrelated sRNA, SbrA.
doi:10.1371/journal.pgen.1004765.g005
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bacteria (Fig. 6D). Wild-type, mut1 and mut3 Rli27 versions were

all produced by the plasmid at similar levels (Fig. 6C). These data

showed that Rli27 interaction with the lmo0514 long 59-UTR was

essential for induction of the protein in intracellular bacteria, and

that elimination of the Rli27-lmo0514 59-UTR interaction

interfered with the Lmo0514 protein increase while levels for the

long transcript isoform remained unchanged. Our findings thus

supported the need for Rli27 binding for efficient Lmo0514

translation. Control qPCR experiments in extracellular bacteria

showed similar lmo0514 transcript levels in this mutant series

(Fig. 6E), whereas there were no marked changes in Lmo0514

protein levels (Fig. 6F).

These in vivo experiments based on complementation assays

with Rli27 variants supported a mechanism that involves Rli27

binding to the 59-UTR of the long lmo0514 transcript variant that

is upregulated by L. monocytogenes inside eukaryotic cells. Such an

interaction could promote translation, which would lead to

increased Lmo0514 protein levels (Fig. 7).

Discussion

Given the unique architecture of the cell envelope in Gram-

positive bacterial pathogens, cell wall-associated proteins have

essential functions in the interplay of these microorganisms with

the host [31]. Despite the recognized importance of these proteins

in infection, relatively few studies address the spatio-temporal

regulation of the production of these proteins following host

colonization. Obtaining this information is particularly challenging

for Gram-positive pathogens such as L. monocytogenes or

Staphylococcus aureus, which produce a large arsenal of surface

proteins with distinct modes of association to the cell wall [31–33].

In this study of the Gram-positive bacterium L. monocytogenes,
we identify sRNA-mediated regulation that acts on a cell wall-

associated protein, Lmo0514, during the infection process. During

the review process of this work, another report showed regulation

of L. monocytogenes adhesin LapB by the multicopy sRNA LhrC,

although this regulation was not studied in the context of infection

[23]. Our data for lmo0514 also distinguish two transcript

isoforms with 59-UTR of distinct length that are expressed

differentially when the pathogen transits between non-host and

host environments. These findings are consistent with a regulatory

role for the sRNA Rli27, based on its exclusive binding to the

lmo0514 long 59-UTR variant. This long 59-UTR is generated

from a promoter, here termed P2, which must respond to

environmental cues of the eukaryotic intracellular niche. The

Figure 6. Rli27 is necessary for upregulation of Lmo0514 protein levels in intracellular bacteria by a mechanism that involves
interaction with the lmo0514 long 59-UTR isoform. (A) Real-time qPCR assays showing no changes in relative levels of the lmo0514 ORF
(fragment amplified with Lmo0514-F and Lmo0514-R primers) or the isoform bearing the long 59-UTR (fragment amplified with UTR-B and UTR-1R
primers) in intracellular bacteria that lack Rli27 or are defective for the rli27-flanking lmo0411 gene. (B) Decrease in levels of Lmo0514 protein
produced by intracellular bacteria, caused by absence of Rli27. No such effect was seen in lmo0411- or lmo0412-defective strains. Levels of InlA,
another cell wall-bound LPXTG protein, were monitored as loading control. (C) RT-PCR assays showing expression of Rli27 and mutated versions
Rli27-mut1 and Rli27-mut3 produced in trans from the pP1 plasmid. (D) Western blot assays showing the effect of the mut3 mutation in Rli27, which
impedes upregulation of the Lmo0514 protein in intracellular bacteria. InlA levels were monitored as loading control. (E) Real-time qPCR showing that
lack of Rli27 does not affect lmo0514 transcript stability in extracellular bacteria grown in BHI medium to stationary phase. Primers correspond to
those that map in the coding region (Lmo0514-F and Lmo0514-R). Data are derived from a minimum of three independent experiments. (F) Western
blot showing that Rli27 is not necessary for Lmo0514 protein production by extracellular bacteria. Due to the small amount of Lmo0514 protein
produced by extracellular bacteria (see Fig. 1B), the anti-Lmo0514 antibody-treated membrane was overexposed. Levels of InlH, another cell wall-
bound LPXTG protein, were monitored as loading control. Densitometry values are indicated in Western blots beneath panels B, D, and F.
doi:10.1371/journal.pgen.1004765.g006
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regulator itself, Rli27, is also upregulated by L. monocytogenes
following entry into host cells. Transcriptional regulators of L.
monocytogenes that operate in intracellular bacteria include the

alternative sigma factor SigB and the Listeria-specific virulence

regulator PrfA. Transcriptomic analyses in sigB and prfA mutants

grown in laboratory media did not indicate lmo0514 as a gene

regulated by these factors [34]; our results in intracellular bacteria

were also negative (Fig. S5A). A yet undetermined regulator might

thus be involved in enhancing transcription from the lmo0514 P2

promoter. Neither SigB nor PrfA appear to upregulate Rli27 in

intracellular bacteria, as determined by real-time qPCR in sigB
and prfA mutants isolated from infected epithelial cells (Fig. S5B).

Comparative transcriptomic studies of L. monocytogenes and L.
innocua show that ,87% of the genes are transcribed with 59-

UTR shorter than 100 nt, whereas there is a subgroup of

approximately 100 genes with long 59-UTR (.100 nt) [18]; this

subgroup includes virulence-related genes and genes with

riboswitches [17]. Similar distribution of 59-UTR length was also

described in the related model organism Bacillus subtilis [35].

About 80 genes shared by L. monocytogenes and L. innocua are

produced with different-length 59-UTR [18], which might indicate

differences in post-transcriptional regulation of these transcripts.

Our data imply a third group of genes based on distinct transcript

isoforms that differ in 59-UTR length. lmo0514 is a representative

example, as it is expressed as two isoforms with 28- and 234-nt 59-

UTR in extra- and intracellular bacteria, respectively. A close

parallel is found in a recent work that analyzed sRNA RydC

regulation of the Salmonella enterica cfa gene, which encodes a

cyclopropane fatty acid synthase [36]. RydC selectively stabilizes

the longer of two cfa transcript isoforms, which is associated to the

activity of a distal promoter controlled by sA and a proximal

promoter modulated by sB [36]. Unlike lmo0514, both cfa
isoforms are expressed by S. enterica growing extracellularly in

laboratory media. These observations indicate that transcript

isoforms with distinct 59-UTR target platforms for sRNA-

mediated post-transcriptional regulation could profoundly influ-

ence protein production. It is noteworthy that long 59-UTRs are

frequently associated with genes involved in pathogenesis [18,37].

An interesting feature predicted by the Mfold program is that

Rli27 binding to the lmo0514 long 59-UTR could expose the

Shine-Dalgarno site, in contrast to the occluded configuration

predicted when this 59-UTR folds as single molecule (Fig. S6, S7).

This led us to propose that Rli27 positively regulates Lmo0514

protein levels by altering the long 59-UTR conformation. This

mechanism resembles that of the translational regulation of the

rpoS transcript in Escherichia coli [38]. The Shine-Dalgarno site is

blocked by a stem-loop in the rpoS 59-UTR, which is released by

base pairing of three distinct Hfq-binding sRNA to the same

Figure 7. Model of the mechanism by which the L. monocytogenes sRNA Rli27 could positively regulate production of the cell wall
protein Lmo0514 inside eukaryotic cells. Rli27 production is markedly stimulated in intracellular L. monocytogenes. A similar effect is observed
for the lmo0514 long transcript isoform expressed from promoter P2 (blue). Rli27 interaction with the 59-UTR region located between promoters P1
and P2 could render the Shine-Dalgarno (SD) site (yellow oval) accessible and facilitate Lmo0514 protein translation. The Rli27-binding site is present
only in the transcript with the long 59-UTR (dark blue oval). The model also considers a hypothetical transient state between the occluded and open
states of the long 59-UTR (dashed rectangle). This transient state could be generated by the intervention of other intracellular factors that might help
to open or to stabilize the long 59-UTR for productive ribosome binding and/or Rli27interaction. These putative factors could also promote Lmo0514
translation in the absence of Rli27, as this protein was detected, although at lower levels, in mutant intracellular bacteria that lack this sRNA.
doi:10.1371/journal.pgen.1004765.g007
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region. Other paradigmatic cases in L. monocytogenes include the

virulence regulator prfA, actA, and the hemolysin (hly) genes

[25,39–41]. Our hypothesis for lmo0514 implies that its 234-nt 59-

UTR has considerable secondary structural complexity in the

absence of Rli27. This assumption is consistent with the study by

Wurtzel et al. [18], in which RNA-seq did not define the lmo0514
transcriptional start site, although 2018 such sites were mapped in

the L. monocytogenes genome, which account for 88% of all

annotated transcriptional units. Our tentative model (Fig. 7) also

considers the lmo0514 transcript as ‘low-efficiency’ in terms of

translation; there are marked differences in Lmo0514 protein

levels in bacteria isolated from epithelial cells (.200-fold increase)

that are not reflected at the transcript level. The secondary

structure prediction for the short (28-nt) 59-UTR of the

extracellular lmo0514 isoform also suggests probable occlusion

of the Shine-Dalgarno site (Fig. S8). Further work is needed to

clarify the extent to which such potential structural changes in the

59-UTR might explain Rli27-mediated regulation.

Our EMSA data infer direct Rli27-59-UTR-lmo0514 interac-

tion, which was also relevant in vivo, based on data obtained with

the Rli27-mut3 variant. This variant did not restore the Lmo0514

protein levels produced by intracellular bacteria (Fig. 6D). We did

not obtain perfect complementation with compensatory mutations

in the predicted interacting regions, which allows other interpre-

tations. For example, the targetRNA program might have

predicted an incorrect pairing site, pairing between the two

molecules might require additional factors with a precise

stoichiometry, or the lmo0514 transcript could undergo alternative

post-transcriptional regulation; future work will address these

possibilities.

We designed in vivo experiments to assess the lmo0514 long 59-

UTR requirement in Lmo0514 protein production in the cell wall

of bacteria located inside eukaryotic cells. We tested strains that

bear chromosomal mutations in the lmo0514 long 59-UTR

predicted interaction site or that lack most of the 59-UTR

upstream of the P1 promoter 210 and 235 sites (Fig. S9A, S9B).

Lmo0514 protein levels dropped markedly inside the eukaryotic

cells for some these mutants, especially in that lacking the lmo0514
59-UTR (Fig. S9C, S9D). Nonetheless, lmo0514 transcript levels

were affected in these mutants in both extra- and intracellular

conditions (Fig. S9C, S9D). Due to the clear side effect of the

mutations on transcription, these findings remained inconclusive.

In summary, our results demonstrate that Rli27 is a regulatory

sRNA in L. monocytogenes, with an essential role as a positive

regulator of the Lmo0514 surface protein during the intracellular

infection cycle. We also provide evidence that the Rli27 regulatory

role is directed to a transcript isoform that bears the binding site

for this sRNA; in addition, we show that this isoform is specifically

upregulated by intracellular bacteria. Further research will be

necessary to determine how Rli27 might modify the secondary

structure of the 59-UTR after binding, and whether such a role

requires additional factors also probably upregulated in intracel-

lular bacteria. Another challenge will be to identify the host-

derived signal that triggers transcription from the P2 promoter in

intracellular L. monocytogenes and the bacterial transcriptional

factor responsible.

Materials and Methods

Comparative genomics
To compare the genome region bearing rli27 in L. monocyto-

genes EGD-e, L. innocua Clip11262 and L. welshimeri serovar 6b

str. SLCC5334, we used the WEBACT program (http://www.

webact.org/WebACT/home). Genome sequences were obtained

from the Genbank repository (http://www.ncbi.nlm.nih.gov/

genbank/) with entry numbers NC_003210.1, NC_003212.1

and NC_008555.1 for L. monocytogenes EGD-e, L. innocua
Clip11262 and L. welshimeri serovar 6b str. SLCC5334,

respectively.

Bacterial strains and growth conditions
The L. monocytogenes strains of serotype 1/2a used here are

isogenic to wild-type strain EGD-e [27] (listed in Table S1). For

sRNA overexpression analyses, the rli27 wild-type allele was

cloned in the pP1 plasmid [42] using Lmorli27-pP1-F and

Lmorli27-pP1-R primers (Table S2). Relative expression of cloned

sRNA was monitored by semi-quantitative RT-PCR using

Lmorli27-F and Lmorli27-R primers (Table S2). L. monocytogenes
strains were grown at 37uC in brain heart infusion (BHI) broth.

For cloning, E. coli strains were grown in Luria Bertani (LB) broth

at 37uC. When appropriate, media were supplemented with

erythromycin (1.5 mg/ml) or ampicillin (100 mg/ml).

Generation of Rli27 variants for overexpression in in vivo
assays

Two Rli27 variants, Rli27-mut1 and Rli27-mut3, were

constructed by amplification of the rli27 gene with degenerate

primers Lmorli27-pP1-F-mut1 and Lmorli27-pP1-F-mut3 (Table

S2) and subsequent cloning in pP1 plasmid [42]. The mut1

mutation introduces 3 nt changes and mut3, 14 nt changes in the

major predicted interaction site (see Fig. 5B).

Construction of Rli27-defective L. monocytogenes
mutants

To generate the Drli27 mutant strain, fragments of ,500-bp

DNA flanking rli27 were amplified by PCR using chromosomal

DNA of L. monocytogenes strain EGD-e and cloned into the

thermo-sensitive suicide integrative vector pMAD [43] with

primers Lmorli27-A, Lmorli27B, Lmorli27-C and Lmorli27-D

(Table S2). Genes were deleted by double recombination as

described [43], and deletion was verified by PCR. To generate

the Drli27 mutant, we left 9 nt in the 59 end and 50 nt in the 39

end of the rli27 gene, to avoid interference with the lmo0412
terminator (shared with rli27) and the lmo0411 predicted

promoter sequence (Fig. S4). This Drli27 mutation affected

lmo0411 transcript levels slightly. A new deletion mutant was

generated (Drli27C2T), which retains a 59 extended region of the

predicted lmo0411 promoter, thus maintaining 21 nt in the 59

end and 50 nt in the 39 end of rli27 (Fig. S4). In addition, a

strong artificial terminator sequence between the remaining rli27
sequences was introduced in the Drli27C2T mutant (Fig. S4). All

deletions were confirmed by PCR and sequencing, using primers

listed in Table S2.

Construction of L. monocytogenes mutants with
chromosomal mutations in the lmo0514 59-UTR

Three types of mutants were constructed with the following

chromosomal mutations: i) changes in 3 nt of the long 59-UTR-

lmo0514 to compensate the mutation in Rli27-mut1 (see Fig. S3,

S9), ii) changes in 14 nt of the long 59-UTR-lmo0514 to

compensate the mutation in Rli27-mut3 (see Fig. S3, S9), and

iii) a 174-nt deletion upstream of the 210 and 235 sites of the P1

lmo0514 promoter (Fig. S9). These changes were generated by

double recombination as described [43] and when required, using

overlapping SOEing PCR. The oligonucleotide primers for these

procedures included D0514_P2_A, D0514_P2_B, D0514_P2_C,

D0514_P2_D, Mut0514pXG_1-overlap, Mut0514pXG_2-over-
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lap, Mut0514pXG_5-overlap and Mut0514pXG_6-overlap (Ta-

ble S2).

Isolation of intracellular bacteria for RNA expression and
proteomic analyses

Intracellular bacteria were collected from the human epithelial

cell line JEG-3 at 6 h post-infection, as described [12]. For total

RNA isolation, epithelial cells cultured in BioDish-XL plates

(351040, BD Biosciences) at ,80% confluence (,5.66107 cells)

were infected (30 min) with L. monocytogenes grown in BHI

medium (37uC, overnight) in static non-shaking conditions. RNA

was purified using the TRIzol reagent method [17]. For cell wall

protein analysis, intracellular bacteria were obtained from JEG-3

cells cultured on four BioDish-XL plates and infected for 6 h [12].

Subcellular fractions containing protoplasts and peptidoglycan-

associated proteins were obtained by mutanolysin treatment of

intact bacteria as described [10,12], except that bacterial pellets

were incubated for 5 h in lysis buffer (10 mM Tris HCl pH 6.9,

10 mM MgCl2, 0.5 M sucrose, 60 mg/ml mutanolysin, 250 mg/ml

RNAse-A, 16 protease inhibitor).

Bacterial fractionation and western blot analysis
Subcellular fractions containing protoplasts and cell wall-

associated proteins of L. monocytogenes grown at 37uC in BHI

media were obtained as described [10]. A volume of protoplasts

and the cell wall fraction was analyzed by SDS-PAGE followed by

Western blot using B. subtilis RecA-specific rabbit polyclonal

antibody (a gift of Dr. JC Alonso, Centro Nacional de

Biotecnologı́a-CSIC) and rabbit poyclonal sera to the L. monocy-
togenes LPXTG surface proteins Lmo0263 (InlH), Lmo0433

(InlA) and Lmo0514 [12]. RecA (for the protoplast fraction) and

LPXTG proteins InlA and InlH (for the cell wall fraction) were

used as loading controls. Goat anti-rabbit antibodies conjugated to

horseradish peroxidase (Bio-Rad) were used as secondary

antibodies. Proteins were visualized by chemoluminescence using

luciferin-luminol reagents.

RNA preparation and reverse transcriptase PCR assays
Total RNA from extracellular bacteria grown to exponential

(OD600 ,0.2) and non-shaking stationary phase (OD600 ,1.0) was

prepared as described [11]. Oligonucleotides for RT-PCR assays

were designed using Primer Express v3.0 (Applied Biosystem-

s)(listed in Table S2). RNA was treated with DNase I (Turbo

DNA-free kit, Ambion/Applied Biosystems) at 37uC for 30 min.

RNA integrity was assessed by agarose-TAE electrophoresis. RT-

PCR was performed using the one-step RT-PCR kit (Qiagen).

Briefly, RT-PCR were carried out with 10 to 70 ng RNA

(depending on the gene analyzed) in the following conditions:

50uC for 35 min, 95uC for 15 min, followed by 30 cycles (16 cycles

for the 16S rRNA gene) of 94uC for 30 s, 55uC for 30 s, and 72uC
for 1 min, and then an additional elongation step at 72uC for

10 min. The gene that encodes 16S rRNA was used as a

housekeeping gene for all strains in all experimental conditions

[44].

cDNA libraries and real-time quantitative PCR (qPCR)
For cDNA library construction, we used 1 mg of total DNA-free

RNA and the High-Capacity cDNA Archive kit (Applied

Biosystems) including a random hexamer mix. Reverse transcrip-

tion was performed at a one-step run of 25uC for 10 min, 37uC for

2 h and 85uC for 5 min. Primers for qPCR were designed using

Primer3 [45](listed in Table S2). qPCR was performed in a 10 ml

final volume with 1 ng of the cDNA library as template, 500 nM

of gene-specific primers and the Power SYBR Green PCR Master

Mix (Applied Biosystems). Reactions and data analysis were

carried out as described [46].

59-rapid amplification of cDNA ends (59-RACE)
59-RACE was performed as described [47], with minor

modifications. To convert 59triphosphates to monophosphates,

15 mg DNA-free RNA, isolated from L. monocytogenes growing

extracellularly at 37uC to stationary phase or from intracellular

bacteria collected at 6 h post-infection of epithelial cells, was

treated with 25 U tobacco acid pyrophosphatase (TAP) (Epicentre

Technologies) at 37uC for 60 min in a total reaction volume of

50 ml containing 50 mM sodium acetate (pH 6.0), 1 mM EDTA,

0.1% b-mercaptoethanol, 0.01% (v/v) Triton X-100 and 80 U

RNAsin (Promega). TAP-negative (TAP2) control RNA was

processed in the same conditions in the absence of TAP. Following

TAP treatment, RNA was phenol/chloroform-extracted and

precipitated with sodium acetate and ethanol. Pellets were rinsed

with 70% ethanol in DEPC-dH2O, then resuspended in 65 ml

DEPC-dH2O; 29 ml of these TAP+ or TAP-treated RNA were

combined with 5.5 ml 106 buffer, 120 U RNasin, 10% (v/v)

dimethylsulfoxide, 70 U RNA ligase, 150 mM ATP and 150 ng

RNA oligonucleotide adapter, in a total reaction volume of 55 ml.

Samples were denatured (95uC, 5 min) and then chilled on ice.

RNA adapter ligation was performed (17uC, 12 h). Following

ligation, RNA was phenol/chloroform-extracted and converted to

cDNA with a lmo0514-specific primer (Lmo0514-Pe-3rv) and the

Thermoscript RT System (Invitrogen). Reverse transcription was

performed in three cycles (55uC, 60uC and 65uC; 20 min each),

followed by RNAseH treatment (37uC, 20 min). lmo0514 cDNA

(2 ml) was amplified by PCR with oligonucleotides RaceIN and

lmo0514-PE-1rv (30 cycles of 95uC for 15 s, 55uC for 30 s, and

72uC for 1 min), or with oligonucleotides RaceIN and lmo0514-

PE-6rv in the same cycling conditions. PCR products were

resolved on 2% agarose gels and bands of interest were excised

and subcloned into pCR 2.1 TOPO-vector (Invitrogen). Plasmids

containing inserts were purified using the QIAprep Spin Miniprep

Kit (QIAgen) and sequenced.

Northern blot assays
To detect the sRNA Rli27 and the 5S rRNA, 15 mg total RNA

were electrophoresed in a 6% polyacrylamide 8 M urea gel (1 h,

200 V in 16TBE). RNA was transferred to a Hybond membrane

(Amersham) for 2.5 h at 40 V in 0.56TBE at 4uC and RNA was

UV-crosslinked to the membrane. Membranes were pre-hybrid-

ized with UltraHyb buffer (Ambion; 65uC, 2 h) and hybridized

with 106 cpm 32P-labeled specific riboprobes (65uC, overnight).

Membranes were washed with 26SSC, 0.5% SDS and 16SSC,

0.1% SDS and exposed to X-ray film. 5S rRNA was used as

control [22]. A nonradioactive digoxigenin (DIG)-based RNA

detection protocol was used for Northern blot analysis of lmo0514
and the 16S rRNA. Total RNA (1 mg for lmo0514 or 200 ng for

16S rRNA) was separated on a 1.5% agarose denaturing gel (2%

formaldehyde, 16 MOPS), overnight capillary transferred to a

Hybond membrane in 206 SSC, and UV-crosslinked. The

membrane was prehybridized (68uC, 1 h) and then hybridized

with DIG-labeled lmo0514 and 16S rRNA probes (68uC,

overnight). Immunological detection of RNA was performed

(DIG Northern starter kit; Roche) and exposed to X-ray film.

Electrophoretic mobility shift assays (EMSA)
Gel mobility shift assays were performed with 1.48 pmol in

vitro-transcribed RNA corresponding to the lmo0514 59-UTR

(nucleotides 2234 to 214 from the lmo0514 ATG codon) and
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increasing concentrations of in vitro-transcribed RNAs for Rli27

wild-type, Rli27-mut1 and Rli27-mut3. These in vitro-transcribed

molecules included Rli27 nucleotides 1 to 131 plus an additional

60 nt at the 39 end, as designed for optimal amplification. We

produced lmo0514 59-UTR variants with compensatory muta-

tions in 3 nt (mut-1) or 14 nt (mut-3) for those generated in Rli27.

Oligonucleotide primers used are listed in Table S2. We also

generated an amplified molecule corresponding to RNA SbrA

(Rli11) encompassed nucleotides 1 to 69 of the total of 71

nucleotides. The reaction was carried out in 10 ml of 16 binding

buffer (20 mM Tris-acetate pH 7.6, 100 mM sodium acetate,

5 mM magnesium acetate, 20 mM EDTA) (37uC, 1 h). The

binding reactions were mixed with 2 ml loading dye (48% glycerol,

0.01% orange G) and loaded on native 4% polyacrylamide gels,

followed by electrophoresis in 0.56TBE buffer (200 V, 4uC). Gels

were stained with Gel Red nucleic acid stain (Biotium) and

photographed under UV transillumination with the GelDoc 2000

system (Bio-Rad).

Computational prediction of potential interactors with
the lmo0514 long 59-UTR region

The bioinformatic program TargetRNA (http://cs.wellesley.

edu/,btjaden/TargetRNA2/) [28] was used to predict non-

coding RNAs that could bind to the lmo0514 long 59-UTR

(234 nt from the ATG codon). Predictive folding of the lmo0514
long 59-UTR alone or with sRNA Rli27 was done using Mfold

(http://mfold.rna.albany.edu/?q=mfold).

Statistical and densitometry analyses
Statistical significance was analyzed with GraphPad Prism v5.0b

software (GraphPad Inc.) using Student’s t-test. A P value#0.05

was considered significant. For densitometry of bands obtained in

western blots, we used ImageJ software (National Institutes of

Health of USA [http://imagej.nih.gov/ij/]).

Supporting Information

Figure S1 lmo0514 is cotranscribed with the downstream gene

lmo0515, which codes for a universal stress protein in L.
monocytogenes [26]. PCR assays performed on reverse-transcribed

RNA (cDNA) and genomic DNA (gDNA). C(-) refers to a control

sample that lacks a template. Colors indicate relative position of

the Lmo0514-F and 0515-R primers (Table S2). RNA and DNA

were isolated from L. monocytogenes wild-type strain EGD-e (WT)

grown to stationary phase (OD600 ,1.0) at 37uC in BHI medium

in non-shaking conditions.

(TIF)

Figure S2 Comparison of the rli27 region of L. monocytogenes
EGD-e strain (Lmo) with the respective regions of non-pathogenic

species L. innocua (Lin) and L. welshimeri (Lwe). Genomes were

compared using the WebACT tool (http://www.webact.org/

WebACT/home). Red indicates similar genomic organization;

blue indicates inversions. Orthologous genes are shown in same

color. The rli27 gene of L. monocytogenes has no ortholog in L.
welshimeri and is flanked by lmo0411 and lmo0412, two genes in

the opposite DNA strand predicted to encode a protein similar to

phosphoenolpyruvate synthase and a protein of unknown function,

respectively.

(TIF)

Figure S3 Scheme of all predicted interaction sites between

Rli27 and the lmo0514 59-UTR. Interactions were predicted using

the targetRNA program (http://cs.wellesley.edu/,btjaden/

TargetRNA2/). Scheme shows the exact positions of the predicted

interaction regions between the lmo0514 59-UTR and Rli27 as

well as the mutant variants Rli27-mut1 and Rli27-mut3, with

changes highlighted in yellow. Note that the hybridization energy

is lower in the case of the Rli27 variants. Compensatory mutant

variants of the 59-UTR-lmo0514 molecule (lmo0514-mut1,

lmo0514-mut3) are also shown.

(TIF)

Figure S4 Genome region of the L. monocytogenes EGD-e strain

bearing rli27 and its flanking genes, and the exact location of the

deletions generated in the Drli27 and Drli27C2T mutants. Blue

boxes represent the predicted 210 and 235 sites of the lmo0411
promoter. Note that a strong artificial terminator was introduced

in Drli27C2T to avoid expression of the remaining Rli27-specific

sequences. Both rli27 and lmo0412 genes share a Rho-

independent terminator.

(TIF)

Figure S5 lmo0514 and rli27 expression are not regulated by

SigB or PrfA in extra- or intracellular bacteria. (A) qPCR data

relative to lmo0514 obtained from total RNA isolated from

extracellular bacteria grown in BHI medium to stationary phase

(extracellular) or collected from epithelial cells (intracellular).

Primers Utr0514_qPCR_F and Utr0514_qPCR_R were used. (B)

Data relative to Rli27 expression. No significant differences were

found for any of the samples. Data are derived from a minimum of

three independent experiments.

(TIF)

Figure S6 Energetically favorable conformation of the lmo0514
long 59-UTR (234 nt) as single molecule, as predicted by the M-

fold program (http://mfold.rna.albany.edu/?q=mfold). Note that

the Shine-Dalgarno site appears to be occluded.

(TIF)

Figure S7 Energetically favorable conformation of the lmo0514
long 59-UTR (234 nt) combined with Rli27, as predicted by M-

fold (http://mfold.rna.albany.edu/?q=mfold). Note the opening of

the Shine-Dalgarno (SD) site.

(TIF)

Figure S8 Energetically favorable conformation of the lmo0514
short 59-UTR (28 nt) as a single molecule, predicted by M-fold

(http://mfold.rna.albany.edu/?q=mfold). Note the occlusion of

the Shine-Dalgarno (SD) site.

(TIF)

Figure S9 In vivo experiments using L. monocytogenes mutants

with chromosomal mutations in the lmo0514 59-UTR. (A) Detail

of the mut1 and mut3 chromosomal mutations introduced in the

lmo0514 59-UTR. These mutations were designed to compensate

the mut1 and mut3 mutations generated in the Rli27 variants. (B)

Scheme of the mutations introduced in the chromosome: D59-

UTR-lmo0514 (174-nt deletion), 59-UTR-mut1 (3-nt change) and

59-UTR-mut3 (14-nt change). (C) Effect of these chromosomal

mutations on Lmo0514 protein and lmo0514 ORF levels in

extracellular bacteria grown in BHI medium to stationary phase.

(D) Effect of these chromosomal mutations on Lmo0514 protein

and lmo0514 transcript levels (differentiating production of the

long 59-UTR isoform) in intracellular bacteria collected from

epithelial cells. Note the marked decrease in Lmo0514 protein by

the D59-UTR-lmo0514 and the 59-UTR-mut3 mutants in the

intracellular niche of the eukaryotic cell. These mutants nonethe-

less have low lmo0514 transcript expression, probably due to side

effects linked to loss of the 59-UTR region between the P2 and P1

promoters.

(TIF)
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Table S1 Listeria monocytogenes strains used in this study.

(PDF)

Table S2 Oligonucleotide primers used in this study.

(PDF)
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