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ABSTRACT 

The direct comparison between milk fat depression (MFD) caused by the addition of 

trans-10 cis-12 18:2 (a conjugated linoleic acid –CLA– isomer) or marine lipids to the diet of 

dairy ewes may help to elucidate the origin of this syndrome. Therefore, 12 lactating sheep 

were divided in 3 lots and offered a diet without supplementation (control) or supplemented 

with 2% DM of fish oil (FO) or 1.1% DM of a rumen-protected product rich in trans-10 cis-

12 18:2 (CLA) for 27 days to compare the responses in terms of animal performance and 

milk fatty acid (FA) profile. Both supplemented diets (FO and CLA) decreased the milk fat 

content in a similar manner (–18% compared with the control). On the other hand, responses 

in milk FA profiles differed significantly and support that marine lipid-induced MFD is not 
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mediated by the effects of trans-10 cis-12 18:2. However, a comparison of changes in the 

molar production of milk FA show that de novo FA synthesis was affected similarly in FO 

and CLA treatments and more strongly than FA uptake, which implies that both types of 

MFD might share common mechanisms. The results point to the involvement of less well-

known potentially antilipogenic metabolites (such as intermediates of 18:3n-3 

biohydrogenation or ruminal hydration and oxidation) in the low-milk fat syndrome in ewes 

fed FO and seem to downplay the relevance of changes in the milk fat melting point as a 

major mechanism responsible for FO-induced MFD. 
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Abbreviations: ADF, acid detergent fibre; aNDF, neutral detergent fibre; BH, 
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fat depression; TMR, total mixed ration.  
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1. Introduction 

The low-fat milk syndrome, commonly referred to as milk fat depression (MFD), has 

perplexed ruminant nutritionists for over a century and remains an active research area 

(Bauman et al., 2011). Bauman and Griinari (2001) proposed that diet-induced MFD was due 

to changes in ruminal lipid metabolism, leading to increased formation of specific 

biohydrogenation (BH) intermediates that exert antilipogenic effects. This role was initially 

attributed to trans-10 cis-12 18:2 because it is the only intermediate that has been 

unequivocally shown to inhibit milk fat synthesis. However, increases in this conjugated 

linoleic acid (CLA) isomer cannot explain the fat reductions occurring in marine lipid-

induced MFD, which suggests that other intermediates or mechanisms should be involved 

(Shingfield and Griinari, 2007; Bichi et al., 2013). In line with this, several recent works 

highlight the need to further investigate the potential antilipogenic action of other fatty acid 

(FA) intermediates, such as trans-10 18:1, trans-9 cis-11 18:2, trans-10 cis-15 18:2, or trans 

20- and 22-carbon FA (e.g., Alves and Bessa, 2014; Kairenius et al., 2015), as well as the 

contribution of more general mechanisms, such as the maintenance of milk fat fluidity 

(Shingfield and Griinari, 2007; Toral et al., 2013), to explain this diet-induced MFD. 

Furthermore, a different distribution of the molar yield of milk short-, medium- or long-

chain FA has been observed in cows with MFD caused by marine lipids or trans-10 cis-12 

18:2 (e.g., Baumgard et al., 2000; Shingfield et al., 2003; Rego et al., 2005), which suggests 

that the major mechanisms involved in milk fat synthesis (i.e., de novo FA synthesis and 

uptake of preformed FA from plasma) would not be equally inhibited. In dairy sheep, 

information regarding marine lipid-induced MFD is still very scant. Nonetheless, the 

responses in terms of the contribution of de novo synthesis or uptake appear to be similar to 

those observed when ewes receive trans-10 cis-12 18:2 (Lock et al., 2006; Sinclair et al., 
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2007; Toral et al., 2010a), which contrasts with the expectation based on the results recorded 

in cows. 

In any case, we are not aware of any direct comparison of the effect of trans-10 cis-12 

18:2 and marine lipid addition to the diet. Therefore, this study was conducted in dairy sheep 

fed diets supplemented with either fish oil or trans-10 cis-12 18:2 to directly compare the 

responses in terms of animal performance and, especially, milk FA profile. 

 

2. Material and methods 

2.1. Animals, experimental design and management  

All experimental procedures were approved and completed in accordance with the 

Spanish Royal Decree 53/2013 for the protection of animals used for experimental purposes. 

Twelve lactating Assaf ewes (body weight, BW = 72.5±3.21 kg; 43±2.7 days in milk) were 

randomly divided into 3 groups (n = 4) balanced for milk production and composition, BW, 

days in milk and parity. These groups were assigned to 1 of 3 dietary treatments: a total 

mixed ration (TMR, forage:concentrate ratio 40:60) without lipid supplementation (Control) 

or supplemented with 2% DM of fish oil (FO treatment) or 1.1% DM of a rumen-protected 

CLA product (CLA treatment). The ingredients of the experimental diets, which were 

prepared weekly and included molasses to reduce selection of dietary components, are 

presented in Table 1.  

The ewes were milked daily at approximately 08:30 and 18:00 h in a 1×10 stall-milking 

parlour (DeLaval, Madrid, Spain) and fed ad libitum after each milking. All animals received 

the control diet for a 2-week adaptation period, and then, the experiment lasted for 4 more 

weeks. Clean drinking water was always available. 

 

2.2. Measurements and sampling procedures  
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Representative samples of the experimental diets and lipid supplements were collected 

in triplicate and stored at –30ºC until analysis. Feed intake was measured weekly by weighing 

the amount of DM offered and refused by each lot.  

On the last 3 days of the adaptation period, and after 25 and 27 days on treatments, milk 

yield was recorded and individual milk samples were collected and composited according to 

morning and evening milk yield. One aliquot was preserved with bronopol (D&F Control 

Systems, San Ramon, USA) and stored at 4ºC until analysed for fat, protein, lactose and total 

solids contents. Milk FA composition was determined in untreated samples that were stored 

at –30ºC until analysis. 

  

2.3. Chemical analysis 

Samples of TMR were analysed for DM (ISO 6496:1999), ash (ISO 5984:2002) and 

crude protein (ISO 5983-2:2009). Neutral and acid detergent fibres (aNDF and ADF) were 

determined using an Ankom2000 fibre analyser (Methods 13 and 12, respectively; Ankom 

Technology Corp., Macedon, NY, USA); the former was assayed with sodium sulphite and α-

amylase, and both were expressed with residual ash. The content of ether extract in the diets 

was determined by the Ankom Filter Bag Technology (Method 2; Ankom Technology Corp.) 

and that of starch using a commercial kit (K-TSTA; Megazyme, Wicklow, Ireland). Fatty 

acid methyl esters (FAME) of lipid in feeds were prepared in a 1-step extraction-

transesterification procedure (Shingfield et al., 2003), using cis-12 tridecenoate (Larodan Fine 

Chemicals AB, Malmö, Sweden) as an internal standard. Methyl esters were separated and 

quantified by gas chromatography (GC) using a temperature gradient program (Shingfield et 

al., 2003), and peaks were identified based on retention time comparisons with commercially 

available standard FAME mixtures (from Nu-Chek Prep., Elysian, MN, USA; and Sigma-

Aldrich, Madrid, Spain).  
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Milk fat, protein, lactose and total solids contents were determined by infrared 

spectrophotometry (ISO 9622:1999). Lipid in 1 mL of milk was extracted and converted to 

FAME by base catalysed transesterification (Shingfield et al., 2003). Total FAME profile was 

determined by GC using the same temperature gradient program applied for the analysis of 

feeds, but isomers of 18:1 were further resolved in a separate analysis under isothermal 

conditions (Shingfield et al., 2003). Peaks were identified based on retention time 

comparisons with the same FAME mixtures used for the analysis of feeds, other 

commercially available standards (from Nu-Chek Prep.; Sigma-Aldrich; and Larodan Fine 

Chemicals AB), and comparison with reference samples for which the FA composition was 

determined based on GC analysis of FAME and GC-mass spectrometry analysis of 

corresponding 4,4-dimethyloxazoline derivatives (Bichi et al., 2013). 

 

2.4. Calculations and statistical analysis  

The mean milk fat melting point was estimated as the sum of the melting points of FA 

weighted by their respective molar proportions, as outlined in Toral et al. (2013).  

All data were analysed by one-way analysis of variance using the MIXED procedure of 

the SAS software package (version 9.4, SAS Institute Inc., Cary, USA). The statistical model 

included the fixed effect of treatment (mean values over days 25 and 27 of experiment) and 

the initial record measured at the end of the adaptation period (mean values over days −3 and 

−1 for animal performance and day −1 for FA composition) as a covariate. Animals were 

nested within the treatment and used as the error term to contrast the effect of lipid 

supplementation. Significant differences were declared at P<0.05 and tendencies accepted if 

P<0.10. Means were separated through the “pdiff” option of the “lsmeans” statement of the 

MIXED procedure, and least squares means (adjusted for the covariance) are reported 

throughout. 
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3. Results 

3.1. Diet composition and intake  

The chemical composition of the experimental diets is reported in Table 1. By design, 

ingredients in the control diet were partially replaced by lipid supplements in FO and CLA 

treatments, increasing their ether extract content by approximately 89 and 48%, respectively. 

Feed intake on the last week of the experiment averaged 3.11, 2.96 and 3.09 kg 

DM/day and ewe for the control, FO and CLA treatments, respectively. Supplementation 

with fish oil (Table 1) resulted in numerically higher daily intakes of 14:0, 16:0, cis-9 16:1, 

18:0 and cis-9 and cis-11 18:1 than the control, and provided approx. 17 g/day of very long-

chain n-3 FA (sum of 20:5n-3, 22:5n-3 and 22:6n-3). The rumen-protected CLA product 

included 16:0, 18:0, cis-9 18:1, and cis-9 trans-11 and trans-10 cis-12 18:2, supplying a daily 

dose of 40 mg trans-10 cis-12 18:2/kg BW.  

 

3.2. Milk yield and composition  

Feeding FO and CLA had no effect on individual milk yield (Table 2). However, 

compared with the control, both supplemented diets decreased (P<0.05; Figure 1) in a similar 

manner the contents of milk fat (‒18%), protein (‒13%) and lactose (‒9%), and also tended to 

reduce milk fat production (‒26%; P=0.09; Table 2). 

No differences were detected between FO and CLA with regard to the contribution of 

major FA groups to MFD. Thus, on a molar basis, de novo-synthesized FA (<C16) accounted 

for 62% of the reduction in milk fat yield with both supplements, and C16 FA for another 

27%. In contrast, variations in the yield of FA derived from plasma uptake (>C16), which 

averaged 10%, did not attain statistical significance (P>0.10; Figure 1).  
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3.3. Milk FA composition 

As reported in Table 3, the CLA treatment had very limited influence on milk FA 

composition, other than increases (P<0.001) in trans-10 cis-12 18:2 and 18:0, reductions 

(P<0.05) in cis-9 10:1, cis-9 12:1 and 14:0 iso, and trends (P<0.10) towards greater 4:0 and 

lower 12:0 concentrations. In contrast, the FO diet significantly modified the proportion of 

most individual FA, particularly long-chain FA, with decreases in 18:0 and cis-FA (such as 

cis-9, cis-12 and cis-16 18:1 and cis-9 cis-12 18:2) and marked increases in 10-O-18:0, trans-

FA (such as trans-11 and trans-12 18:1, trans-9 cis-12, trans-11 cis-15, trans-11 trans-15, 

cis-9 trans-11 and trans-9 cis-11 18:2), and 20- and 22-carbon unsaturated FA (such as 

20:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3). Furthermore, 20:4n-3 and 22:2n-6 were only 

detected in the milk of ewes fed the marine lipid supplement. The content of trans-10 18:1 

tended to increase in response to FO (P=0.06), but that of trans-10 cis-12 18:2 was not 

significantly different from the control (P>0.10). The effects of this marine oil on short- and 

medium-chain FA concentrations included increases in 6:0, 8:0 and cis-9 and trans-11 16:1 

(P<0.05) as well as reductions in 12:0 and cis-9 12:1 (P<0.10; Table 3). In addition, the FO 

diet decreased the proportion of some milk odd- and branched-chain FA (namely, 14:0 iso, 

15:0, 15:0 anteiso, 17:0, and 17:0 anteiso; P<0.05). Overall, these changes in milk FA profile 

due to FO (for additional information, please see Supplemental Table 1) decreased the 

estimated milk fat melting point compared with both the control and CLA treatments 

(P<0.01). 

 

4. Discussion  

Diet supplementation with rumen-protected CLA or fish oil decreased the content of 

milk fat to a similar extent (‒18%). However, the observed reduction was lower than 

expected on the basis of previous reports in ewes fed similar doses of lipid-encapsulated CLA 
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(37-41 mg of trans-10 cis-12 18:2/kg BW; Lock et al., 2006; Sinclair et al., 2007) or a lower 

level of fish oil (1% diet DM; Toral et al., 2010a). This discrepancy might be linked to 

individual differences in responsiveness to MFD (Weimer et al., 2010). 

Depending on the feeding system, reductions in energy requirements for milk fat 

synthesis due to MFD may allow for a repartitioning of nutrients towards increased milk 

yield and protein synthesis (Bauman et al., 2011). Nevertheless, consistent with our results, a 

lack of changes in milk yield is frequently observed during MFD (Sinclair et al., 2007; Toral 

et al., 2010b; Bichi et al., 2013). On the contrary, direct decreases in milk protein content 

(i.e., not linked to changes in milk yield) due to CLA supplementation are less common 

(Baumgard et al., 2000; Sinclair et al., 2007; Weerasinghe et al., 2012), which contrasts with 

the frequent reductions recorded in ewes on rations supplemented with fat sources (Mele et 

al., 2006; Toral et al., 2010a, 2010b). Although the effect of lipid supplements on mammary 

protein metabolism has been related to nutritional and endocrine factors, including decreased 

amino acid availability and insulin resistance (DePeters and Cant, 1992; Mackle et al., 2000), 

the available data are too limited to be conclusive and further research into this subject is still 

needed. Similarly, consistent with studies in dairy cows and ewes (Bell and Kennelly, 2006; 

Sinclair et al., 2007), CLA supplementation decreased milk lactose concentration, the reasons 

for this response being still uncertain. 

The syndrome of MFD has been consistently associated with alterations in microbial 

lipid metabolism in the rumen that favour the formation of specific BH intermediates with 

potential antilipogenic effects (Shingfield and Griinari, 2007). Thus, although theories relying 

on other bases (such as the glucogenic-insulin theory or those related to an insufficient supply 

of precursors for mammary milk fat synthesis) have been proposed, they have been 

subsequently found inadequate (Bauman and Griinari, 2001). The changes in milk FA 

composition observed in this study would allow to infer that FO affected the lipid metabolism 
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in the rumen and induced MFD without promoting an increment in trans-10 cis-12 18:2, in 

agreement with earlier reports in ewes and cows (Shingfield et al., 2003; Toral et al., 2010a; 

Kairenius et al., 2015). Conversely, FO supplementation enhanced milk concentrations of 

other FA that have also been tentatively related to MFD, namely, trans-10 18:1 and trans-9 

cis-11 18:2 (Shingfield and Griinari, 2007), but previous studies in ewes fed oil-

supplemented diets were not able to associate MFD with similar or even higher percentages 

of these FA in milk (Gómez-Cortés et al., 2008; Toral et al., 2010a). 

Therefore, it appears reasonable to suspect that other less well-known BH intermediates 

may be involved in the low-fat milk syndrome (Shingfield and Griinari, 2007). Although the 

negative effect of FO on trans-18:1 hydrogenation and the shift towards the formation of 

trans-10 18:1 at the expense of trans-11 18:1 have received a great deal of attention, 

additional BH steps and pathways could also be altered by marine lipids and promote the 

formation of other candidate antilipogenic FA. In this respect, Alves and Bessa (2014) 

reported large increases in the ruminal concentration of trans-10 cis-15 18:2 (a candidate 

milk fat inhibitor) during the “trans-10 shift”, which would suggest alterations in the early 

stages of 18:3n-3 BH. Since, according to Kairenus et al. (2015), trans-10 cis-15 18:2 would 

coelute with trans-11 cis-15 18:2 under our chromatographic conditions, it is speculated that 

marked increases in the latter in response to FO supplementation would have most likely 

been accompanied by increments in trans-10 cis-15 18:2. Regardless, further research is 

necessary to prove the antilipogenic action of this isomer, either with its abomasal or 

intravenous administration or through in vitro cultures of mammary epithelial cells. 

Studies in dairy cows have also shown that fish oil may decrease milk fat concentration 

when infused post-ruminally (Loor et al., 2005; Dallaire et al., 2014), suggesting a putative 

antilipogenic effect of some constituent of this lipid supplement. In this respect, 20:5n-3 was 

shown to downregulate the expression of mammary lipogenic genes in vitro (Kadegowda et 
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al., 2009) and cis-9 16:1 can negatively affect adipogenesis (Burns et al., 2012; Duckett et al., 

2014). However, even though the actual role of both FA in MFD merits further investigation, 

the large difference in the reduction of milk fat concentration caused by fish oil infusion 

either ruminally or post-ruminally (Loor et al., 2005) provides evidence that its constituents 

would not be major responsible for the low-fat milk syndrome. This observation would point 

again to the involvement of microbial BH intermediates (which may derive not only from the 

fish oil FA metabolism but also from that of other diet ingredients). 

Thus, it is also worth noting the increase in milk 10-oxo-18:0, which results from the 

sequential hydration and oxidation of unsaturated FA in the rumen (Jenkins et al., 2006). 

Although the content of keto-FA is rarely reported in milk, these components might have 

bioactive effects, including a potential action on mammary lipogenesis related to the oxo 

group located on carbon 10 (Kairenius et al., 2015). In addition, increases with FO, which 

agree with observations in sheep and cows (Bichi et al., 2013; Kairenius et al., 2015), would 

indicate alternative pathways to BH that may point to more global changes in the microbial 

lipid metabolism in the rumen, thereby providing further explanations of MFD (Shingfield 

and Griinari, 2007). Variations in milk concentrations of odd- and branched-chain FA in 

response to FO would also suggest alterations in the rumen bacterial community (Fievez et 

al., 2012), probably due to the toxic effects of unsaturated FA on microbiota (Maia et al., 

2007; Castro-Carrera et al., 2014), which might have an impact on the composition of FA 

available for mammary uptake and be at the core of the associated MFD. 

In line with this, marine lipids are known to induce a shift in milk from cis-9 18:1 to 

trans 18:1, which might increase the mean melting point of the fat and exceed the upper limit 

for the maintenance of milk fat fluidity at body temperature. This fact has been proposed to 

result in MFD (Shingfield and Griinari, 2007), even though the actual relevance of this 

extension of the BH theory has not yet been well established. In fact, the decrease in the 
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estimated milk fat melting point in the FO treatment, together with the lack of variation in 

this value in some previous studies (Toral et al., 2010b, 2013; Kairenius et al., 2015), would 

support that the mammary gland is capable of adapting to substantial changes in the pool of 

FA available for milk fat synthesis, without apparent increases in the mean melting point that 

could impair the rate of milk lipid secretion. However, these observations do not exclude the 

possibility of an accumulation of milk FA with high melting points in mammary epithelial 

cells, given that samples for lipid analysis are only collected from milk that has been 

successfully secreted (Gama et al., 2008). Further work is then necessary to test the actual 

role of milk fat fluidity regulation in marine lipid-induced MFD. 

Comparison of the changes in the molar production of milk FA showed that de novo 

FA synthesis was affected similarly in FO and CLA treatments and more strongly than FA 

uptake, which implies that both types of MFD might share common mechanisms. This 

finding is consistent with results based on indirect comparison between trans-10 cis-12 18:2- 

(Lock et al., 2006; Sinclair et al., 2007) and marine lipid- (Toral et al., 2010a, 2010b; Bichi et 

al., 2013) induced MFD in dairy ewes, although it must be mentioned that most observations 

about the latter derive from studies in which the dietary supplements included not only 

marine but also plant lipids. On the other hand, contrasting results have been obtained in 

dairy cows (Shingfield et al., 2003; Rego et al., 2005; Pirondini et al., 2015), with some 

reports showing that MFD caused by marine lipid was characterized by a greater reduction in 

the molar yield of milk long-chain FA than in that of short- and medium-chain FA. 

 

5. Conclusions 

The direct comparison of milk FA profiles in ewes supplemented with either FO or 

rumen-protected CLA support that marine lipid-induced MFD is not mediated by the effects 

of trans-10 cis-12 18:2. However, changes in the molar yield of milk FA deriving from de 
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novo synthesis or uptake from plasma suggest that both types of MFD could share common 

mechanisms. The results point to the involvement of less well-known potentially 

antilipogenic metabolites (such as intermediates of 18:3n-3 BH or ruminal hydration and 

oxidation) in the low-milk fat syndrome in ewes fed FO and seem to downplay the relevance 

of changes in the milk fat melting point as a major mechanism responsible for this. 
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FIGURE CAPTION 

Figure 1  

Milk fat content and fatty acid (FA) yield in ewes fed a diet without supplementation 

(control;  ) or supplemented with 2% DM of fish oil (FO;  ) or 1.1% DM of a product rich 

in trans-10 cis-12 18:2 (CLA;  ). Vertical bars represent the standard error of the difference 

for treatment effects. 
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Table 1 

Formulation and chemical composition of the experimental diets and daily fatty acid intake in 

ewes fed the total mixed ration without supplementation (control) or supplemented with 2% 

DM of fish oil (FO) or 1.1% DM of a product rich in trans-10 cis-12 18:2 (CLA). 

  Treatment  
 ControlA FO CLA 
Ingredients, g/kg of fresh matter    

Dehydrated alfalfa hay 400 393 396 
Whole corn grain 180 177 178 
Whole barley grain 130 128 129 
Soybean meal solvent 440 g CP/kg 150 147 149 
Sugar beet pulp, pellets 70 69 69 
Molasses, liquid 50 49 50 
Fish oilB 0 18 0 
Rumen-protected CLA productC 0 0 10 
Mineral supplementD 18 18 18 
Vitamin supplementE 2 2 2 

Chemical composition, g/kg DM    
Organic matter 914 902 904 
Crude protein 186 186 185 
Neutral detergent fibre 231 238 245 
Acid detergent fibre 147 147 150 
Starch 222 219 225 
Ether extract 22.7 42.8 33.7 

Fatty acid intake, g/d    
14:0 0.761 2.682 0.756 
16:0 13.4 24.1 15.9 
cis-9 16:1 0.198 2.68 0.197 
18:0 2.92 6.14 16.7 
cis-9 18:1 9.57 18.7 13.8 
cis-11 18:1 0.635 2.44 0.630 
cis-9 trans-11 18:2 0 0 2.86 
trans-10 cis-12 18:2 0 0 2.94 
18:2n-6 27.2 27.1 27.2 
18:3n-3 6.69 6.85 6.65 
20:5n-3 0 3.55 0 
22:5n-3 0 0.891 0 
22:6n-3 0 12.7 0 

A Contained (g/kg total FA) 14:0 (11.6), 16:0 (204), 18:0 (44.7), cis-9 18:1 (146), cis-11 18:1 

(9.70), 18:2n-6 (417) and 18:3n-3 (102). 

B Semirefined tuna and sardine oil (Afampes 121 DHA; Afamsa, Mos, Spain); contained 

(g/kg total FA) 14:0 (33.1), 16:0 (194), cis-9 16:1 (42.0), 17:0 (8.93), 18:0 (56.8), cis-9 18:1 
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(163), cis-11 18:1 (31.1), 18:2n-6 (21.2), 18:3n-3 (8.35), cis-11 20:1 (16.4), 20:5n-3 (60.0), 

22:5n-3 (15.1) and 22:6n-3 (214). 

C Lutrell Pure (BASF, Ludwigshafen, Germany); contained (g/kg total FA) 16:0 (97.5), 18:0 

(501), cis-9 18:1 (155), cis-9 trans-11 18:2 (104) and trans-10 cis-12 18:2 (107) and 807 g 

total FA/kg DM. 

D Declared as containing (g/kg): CaCO3 (556), Ca2HPO4 (222) and NaCl (222). 

E VITAFAC Ovino 0.2% AC (DSM Nutritional Products S.A., Madrid, Spain). Declared as 

containing: vitamin A (4,000,000 IU/kg), vitamin D3 (1,000,000 IU/kg), vitamin E (5 g/kg), 

iron (17.5 g/kg), manganese (20 g/kg), cobalt (50 mg/kg), iodine (250 mg/kg), zinc (15 g/kg), 

selenium (100 mg/kg), sepiolite (100 g/kg), calcium (26.2 g/kg) and magnesium (6.15 g/kg).
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Table 2 

Milk yield and composition in ewes fed the total mixed ration without supplementation 

(control) or supplemented with 2% DM of fish oil (FO) or 1.1% DM of a product rich in 

trans-10 cis-12 18:2 (CLA). 

  Treatment    
 Control FO CLA SEDA PB 
Yield, g/d      

Milk 2,724 2,434 2,535 322 0.659 
Fat 139 103 104 16.4 0.090 
Protein 149 113 114 17.2 0.094 
Lactose 136 118 115 17.2 0.447 
Total solids 447 350 355 51.5 0.152 

Composition, g/kg      
Fat 51.0a 42.2b 41.6b 2.48 0.008 
Protein 53.4a 47.5b 44.9b 1.99 0.003 
Lactose 50.0a 47.9ab 45.5b 1.26 0.019 
Total solids 163a 145b 140b 4.37 0.001 

a-b Within a row, different superscripts indicate significant differences (P<0.05). 

A SED = standard error of the difference for treatment effects. 

B Probability of significant effects due to experimental treatment.  
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Table 3 

Milk fatty acid (FA) composition in ewes fed the total mixed ration without supplementation 

(control) or supplemented with 2% DM of fish oil (FO) or 1.1% DM of a product rich in 

trans-10 cis-12 18:2 (CLA) (effects on additional FA are reported in Supplemental Table S1). 

 Treatment   
FA, g/100 g total FA Control FO CLA SEDA PB

Saturated FA      
4:0 2.68 2.74 3.17 0.206 0.074 
6:0 2.62b 3.07a 2.62b 0.143 0.026 
8:0 2.88b 3.64a 2.84b 0.248 0.033 
10:0 11.5 11.7 10.0 0.881 0.200 
12:0 7.57 6.83 6.41 0.516 0.087 
14:0 13.2 12.2 13.1 0.597 0.260 
14:0 iso 0.120a 0.059c 0.095b 0.0074 <0.001 
15:0 1.11a 0.824b 1.02ab 0.0883 0.031 
15:0 iso 0.154 0.130 0.188 0.0241 0.112 
15:0 anteiso 0.462a 0.304b 0.425a 0.0316 0.004 
16:0 25.3 24.6 23.2 1.21 0.290 
17:0 0.575a 0.452b 0.594a 0.0355 0.010 
17:0 iso 0.501 0.621 0.558 0.0494 0.108 
17:0 anteiso 0.486a 0.367b 0.491a 0.0401 0.018 
18:0 6.51b 1.14c 8.56a 0.423 <0.001 
10-oxo-18:0 0.001b 0.461a 0.011b 0.0807 <0.001 

Monounsaturated FA      
cis-9 10:1 0.280a 0.280a 0.181b 0.0165 <0.001 
cis-9 12:1 0.133a 0.094b 0.076b 0.0099 0.001 
cis-9 14:1 0.204 0.165 0.183 0.0230 0.286 
cis-9 16:1 0.744b 1.13a 0.698b 0.0735 0.001 
trans-9 16:1 0.091b 0.456a 0.130b 0.0385 <0.001 
cis-9 18:1C 10.1a 6.63b 10.7a 0.660 <0.001 
cis-11 18:1 0.849 1.17 0.956 0.158 0.190 
cis-12 18:1 0.342a 0.141b 0.355a 0.0435 0.003 
cis-13 18:1 0.093 0.130 0.088 0.0231 0.179 
cis-16 18:1 0.052a 0.022b 0.065a 0.0069 0.001 
trans-9 18:1 0.270 0.329 0.272 0.0534 0.469 
trans-10 18:1 0.377 1.41 0.795 0.374 0.060 
trans-11 18:1 1.20b 4.32a 1.71b 1.02 0.002 
trans-12 18:1 0.365b 0.868a 0.384b 0.0607 <0.001 
trans-15 18:1D 0.713a 0.514b 0.768a 0.0507 0.004 
Σ 20:1 + 22:1 0.139b 0.671a 0.119b 0.0500 0.002 

Polyunsaturated FA      
cis-9 cis-12 18:2 2.46a 1.74b 2.53a 0.242 0.029 
trans-9 cis-12 18:2 0.023b 0.102a 0.034b 0.0207 0.014 
trans-11 cis-15 18:2 0.053b 0.458a 0.092b 0.0465 <0.001 
trans-11 trans-15 18:2 0.010b 0.049a 0.021b 0.0080 0.005 
cis-9 trans-11 18:2E 0.497b 2.44a 0.718b 0.206 <0.001 
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trans-9 cis-11 18:2 0.024b 0.129a 0.037b 0.0144 <0.001 
trans-10 cis-12 18:2 0.014b 0.032b 0.090a 0.0113 <0.001 
Σ other trans,trans conjugated 18:2F 0.062 0.074 0.080 0.0123 0.346 
cis-9 cis-12 cis-15 18:3 0.494 0.437 0.528 0.0601 0.357 
cis-11 cis-14 cis-17 20:3 0.005b 0.044a 0.003b 0.0149 0.048 
cis-8 cis-11 cis-14 cis-17 20:4 ndG 0.019 nd - - 
cis-5 cis-8 cis-11 cis-14 cis-17 20:5 0.038b 0.490a 0.065b 0.0516 <0.001 
cis-13 cis-16 22:2 nd 0.034 nd - - 
cis-7 cis-10 cis-13 cis-16 cis-19 22:5 0.067b 0.559a 0.089b 0.0274 <0.001 
cis-4 cis-7 cis-10 cis-13 cis-16 cis-19 22:6 0.035b 1.34a 0.032b 0.0929 <0.001 

Estimated milk fat melting point (ºC) 36.9a 33.8b 36.8a 0.668 0.001 
a-c Within a row, different superscripts indicate significant differences (P<0.05). 

A SED = standard error of the difference for treatment effects. 

B Probability of significant effects due to experimental treatment. 

C Coelutes with trans-13+14 18:1. 

D Contains cis-10 18:1 as minor component. 

E Contains trans-8 cis-10 and trans-7 cis-9 18:2 as minor components. 

F Sum of trans-8 trans-10, trans-9 trans-11, trans-10 trans-12 and trans-11 trans-13 18:2. 

G Not detected. 
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Supplemental Table 1 

Other fatty acids (FA) in milk from ewes fed the total mixed ration without supplementation 

(control) or supplemented with 2% DM of fish oil (FO) or 1.1% DM of a product rich in 

trans-10 cis-12 18:2 (CLA). 

  Treatment    
FA, g/100 g total FA Control FO CLA SEDA PB

Saturated FA      
5:0 0.023 0.019 0.022 0.0035 0.544 
7:0 0.047 0.040 0.038 0.0061 0.301 
9:0 0.099 0.078 0.076 0.0113 0.112 
11:0 0.180 0.116 0.132 0.2614 0.088 
13:0 0.164 0.093 0.127 0.0246 0.064 
13:0 iso 0.017 0.020 0.016 0.0029 0.392 
13:0 anteiso 0.013 0.011 0.008 0.0025 0.144 
16:0 iso 0.251 0.191 0.208 0.0372 0.307 
4,8,12-trimethyl-13:0 0.111 0.129 0.108 0.0137 0.290 
18:0 iso 0.061 0.055 0.053 0.0068 0.507 
20:0 0.227a 0.138b 0.247a 0.0321 0.024 
21:0 0.055 0.056 0.055 0.0068 0.975 
22:0 0.072 0.086 0.080 0.0106 0.423 
23:0 0.049 0.115 0.043 0.0280 0.065 
24:0 0.026b 0.047a 0.026b 0.0070 0.020 

Monounsaturated FA      
trans-9 12:1 0.058a 0.043b 0.039b 0.0057 0.017 
cis-7 14:1 0.029 0.021 0.029 0.0069 0.466 
cis-12 14:1 0.124a 0.089b 0.074b 0.0122 0.008 
trans-5+6 14:1 0.031 0.034 0.036 0.0068 0.734 
trans-9 14:1 0.012 0.008 0.011 0.0027 0.306 
trans-5+6+7 15:1 0.121 0.159 0.132 0.212 0.250 
cis-11 16:1 0.038b 0.063a 0.044b 0.0053 0.002 
cis-14 16:1C 0.215a 0.172ab 0.141b 0.0215 0.022 
cis-9 17:1 0.225 0.215 0.197 0.0216 0.416 
trans-4 18:1 0.021 0.020 0.026 0.0037 0.231 
trans-5 18:1 0.007b 0.017a 0.013a 0.0024 0.012 
trans-6+7+8 18:1 0.184 0.173 0.159 0.0572 0.865 
trans-16 + cis-14 18:1 0.464 0.318 0.447 0.0727 0.169 
cis-9 20:1 0.048 0.087 0.042 0.0247 0.216 
cis-11 20:1 0.037b 0.349a 0.056b 0.0340 <0.001
cis-13 22:1 0.016b 0.091a 0.007b 0.0157 0.002 
trans-13 22:1 0.020 0.049 0.015 0.0018 0.184 
cis-15 24:1 0.005b 0.023a 0.005b 0.0051 0.018 

Polyunsaturated FA      
cis-9 trans-12 18:2 0.059 0.087 0.057 0.0168 0.226 
cis-9 trans-13 18:2 0.177 0.195 0.169 0.0331 0.724 
cis-9 trans-14 18:2 0.071a 0.031b 0.066a 0.0076 0.003 
trans-9 trans-12 18:2 0.064 0.099 0.086 0.0192 0.206 
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Δ10,14 18:2 0.081 0.118 0.105 0.0147 0.095 
cis-11 cis-14 20:2 0.028b 0.098a 0.025b 0.0112 <0.001
cis-8 cis-11 cis-14 20:3 0.023b 0.063a 0.023b 0.0060 <0.001
cis-7 cis-10 cis-13 cis-16 22:4 0.153b 0.369a 0.167b 0.0370 0.001 
cis-8 cis-11 cis-14 20:3 0.015b 0.088a 0.015b 0.0056 <0.001
cis-5 cis-8 cis-11 cis-14 20:4 0.077b 0.195a 0.045b 0.0235 <0.001

a-b Within a row, different superscripts indicate significant differences (P<0.05). 

A SED = standard error of the difference for treatment effects. 

B Probability of significant effects due to experimental treatment. 

C Coelutes with 3,7,11,15-tetramethyl-16:0. 
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HIGHLIGHTS: 

1. Milk fat depression (MFD) induced by fish oil or t10c12-18:2 was compared in ewes 

2. Fish oil-induced MFD was not mediated by the antilipogenic effect of t10c12-18:2 

3. Less well-known antilipogenic fatty acids may be involved in fish oil-induced MFD in 

ewes 

4. Molar yield data suggest that both types of MFD might share common mechanisms 

5. Results seem to downplay the relevance of changes in milk fat melting point in MFD 

 


