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Abstract Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and
periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been
fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced
by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become
hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on
the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression
that was independent of histone demethylase activity and linked to histone phosphorylation. IL-13
is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers
of clinical HSV reactivation. We found that IL-1f induced histone phosphorylation and increased the
excitation in sympathetic neurons. Importantly, IL-1B triggered HSV-1 reactivation, which was
dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway
resulting from IL-1 stimulation of neurons to induce reactivation.

Introduction

Herpes simplex virus-1 (HSV-1) is a ubiquitous human pathogen that is present in approximately 40—
90% of the population worldwide (Arvin, 2007). HSV-1 persists for life in the form of a latent infec-
tion in neurons, with intermittent episodes of reactivation. Reactivation from a latent infection and
subsequent replication of the virus can cause substantial disease including oral and genital ulcers,
herpes keratitis, and encephalitis. In addition, multiple studies have linked persistent HSV-1 infection
to the progression of Alzheimer's disease (Itzhaki, 2018). Stimuli in humans that are linked to clinical
HSV-1 reactivation include exposure to UV light, psychological stress, fever, and changes in hormone
levels (Suzich and Cliffe, 2018). How these triggers result in reactivation of latent HSV-1 infection is
not fully understood.

During a latent infection of neurons, there is evidence that the viral genome is assembled into a
nucleosomal structure by associating with cellular histone proteins (Deshmane and Fraser, 1989).
The viral lytic promoters have modifications that are characteristic of silent heterochromatin (histone
H3 di- and tri-methyl lysine 9; H3K9me2/3, and H3K27me3) (Wang et al., 2005; Knipe and Cliffe,
2008; Cliffe et al., 2009; Kwiatkowski et al., 2009), which is thought to maintain long-term silenc-
ing of the viral lytic genes. Hence, for reactivation to occur, viral lytic gene expression is induced
from promoters that are assembled into heterochromatin and in the absence of viral proteins, such
as VP16, which are important for lytic gene expression upon de novo infection and full reactivation
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(Thompson et al., 2009; Kim et al., 2012). The initiation of viral lytic gene expression, including
VP16, during reactivation is therefore dependent on host proteins and the activation of cellular sig-
naling pathways (Suzich and Cliffe, 2018). However, the full nature of the stimuli that can act on
neurons to trigger reactivation and the mechanisms by which expression of the lytic genes occurs
have not been elucidated.

One of the best characterized stimuli of HSV reactivation in primary neuronal models is
nerve growth factor (NGF) deprivation and subsequent loss of PISK/AKT activity (Wilcox and John-
son, 1988; Wilcox et al., 1990, Camarena et al., 2010). Previously, we found that activation of the
c-Jun N-terminal kinase (JNK) cell stress response via activation of dual leucine zipper kinase (DLK)
was required for reactivation in response to loss of NGF signaling (Cliffe et al., 2015). In addition,
recent work has identified a role for JNK in HSV reactivation following perturbation of the DNA dam-
age/repair pathways, which also triggers reactivation via inhibition of AKT activity (Hu et al., 2019).
DLK is a master regulator of the neuronal stress response, and its activation can result in cell death,
axon pruning, axon regeneration or axon degeneration depending on the nature of activating trig-
ger (Tedeschi and Bradke, 2013; Geden and Deshmukh, 2016). Therefore, it appears that HSV has
co-opted this neuronal stress pathway of JNK activation by DLK to induce reactivation. One mecha-
nism by which JNK functions to promote lytic gene expression is via a histone phosphorylation on
S10 of histone H3 (Cliffe et al., 2015). JNK-dependent histone phosphorylation occurs on histone
H3 that maintains K9 methylation and is therefore known as a histone methyl/phospho switch, which
likely permits viral lytic gene transcription without the requirement for recruitment of histone deme-
thylases (Fischle et al., 2005; Gehani et al., 2010). This initial wave of viral lytic gene expression is
known as Phase |, and also occurs independently of the lytic transactivator VP16. In addition, late
gene expression in Phase | occurs independent of viral genome replication (Kim et al., 2012,
Cliffe and Wilson, 2017). A sub-population of neurons then progress to full reactivation (also known
as Phase ll), which occurs 48-72 hr post-stimulus and requires both VP16 and histone demethylase
activity (Cliffe et al., 2015; Liang et al., 2009, Liang et al., 2013; Messer et al., 2015; Hill et al.,
2014), and includes viral DNA replication. However, this bi-phasic progression has not been
observed in some models of reactivation such as axotomy, which results in more rapid viral gene
expression and a dependence on histone demethylase activity for viral gene expression at the earli-
est time points investigated (Liang et al., 2009).

The aim of this study was to determine if we could identify novel triggers of HSV reactivation and
determine if they involved a bi-phasic mode of reactivation. We turned our attention to forskolin
treatment and neuronal hyperexcitability because hyperstimulation of cortical neurons following for-
skolin treatment or potassium chloride mediated depolarization has previously been found to result
in a global histone methyl/phospho switch (Noh et al., 2015). Whether this same methyl/phospho
switch occurs in different types of neurons, including sympathetic neurons, is not known. Although
forskolin has previously been found to induce HSV reactivation, (Smith et al., 1992; Colgin et al.,
2001; De Regge et al., 2010; Danaher et al., 2003), the mechanism by which forskolin induces
reactivation is not known. In particular, it is unknown if forskolin acts via causing increased neuronal
activity and/or as a consequence of activation of alternative cAMP-responsive proteins including
PKA and CREB. Hyperexcitability of neurons is correlated with changes in cellular gene expression,
increased DNA damage (Alt and Schwer, 2018; Madabhushi et al., 2015), and epigenetic changes
including H3 phosphorylation (Noh et al., 2015). However, DLK-mediated activation of JNK has not
been linked to changes in cellular gene expression nor epigenetic changes in response to hyperex-
citability. Using a variety of small-molecule inhibitors, we found that forskolin-induced reactivation
was dependent on ion-channel activity. In support of a role for neuronal hyperexcitability causing
HSV reactivation, stimuli that are well established as causing heightened neuronal activity also
induced HSV to undergo reactivation. In addition, DLK and JNK activity were required for an initial
wave of viral lytic gene expression, which occurred prior to viral DNA replication and independently
of histone demethylase activity, indicating that hyperstimulation-induced reactivation also involves a
biphasic viral gene expression program.

We were also keen to determine whether we could identify a physiological stimulus for HSV reac-
tivation that acts via causing neurons to enter a hyperexcitable state. IL-1B is released under condi-
tions of psychological stress and fever (Ericsson et al., 1994; Goshen and Yirmiya, 2009; Koo and
Duman, 2009; Saper and Breder, 1994), both known triggers of clinical HSV reactivation
(Glaser and Kiecolt-Glaser, 1997; Cohen et al., 1999; Chida and Mao, 2009). IL-1B has previously
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been found to induce heightened neuronal activity (Vezzani and Viviani, 2015; Schneider et al.,
1998, Binshtok et al., 2008). However, an intriguing feature of IL-1B signaling is its ability to have
differential effects on different cell types. For example, IL-1f is involved in the extrinsic immune
response to infection via activation of neutrophils and lymphocytes (Sims and Smith, 2010). In addi-
tion, it can act on non-immune cells including fibroblasts to initiate an antiviral response
(Orzalli et al., 2018; Aarreberg et al., 2019), as has previously been described for lytic infection
with HSV-1 (Orzalli et al., 2018). Given these differential downstream responses to IL-1f signaling,
we were particularly interested in the effects of IL-1f treatment of latently-infected neurons. Interest-
ingly, we found that IL-1B was capable of inducing reactivation of HSV from mature sympathetic neu-
rons. Inhibition of voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated
(HCN) channels impeded reactivation mediated by both forskolin and IL-1f. Activity of the cell stress
protein DLK was also essential for IL-1B-mediated reactivation. We therefore identify IL-1B as a novel
trigger from HSV reactivation that acts via neuronal hyperexcitability and highlight the central role of
JNK activation by DLK in HSV reactivation.

Results

Increased intracellular levels of cAMP induces reactivation of HSV from
latent infection in murine sympathetic neurons

Both forskolin and cAMP mimetics are known to induce neuronal hyperexcitation and have previ-
ously also been found to trigger HSV reactivation (Smith et al., 1992; Colgin et al., 20017,
De Regge et al., 2010; Danaher et al., 2003). Using a model of HSV latency in mouse sympathetic
neurons isolated from the superior-cervical ganglia (SCG) (Cliffe et al., 2015) we investigated
whether forskolin treatment induced reactivation in this system and the potential mechanism result-
ing in the initial induction of viral lytic gene expression. Sympathetic SCG neurons were infected
with a Us11-GFP tagged HSV-1 (Benboudjema et al., 2003) at a multiplicity of infection (MOI) of 7.5
PFU/cell in the presence of acyclovir (ACV). After 6 days the ACV was washed out and the neuronal
cultures monitored to ensure that no GFP-positive neurons were present. Two days later, reactiva-
tion was triggered by addition of forskolin (Figure 1A). WAY150138 was added to the media post-
reactivation to prevent cell-to-cell spread (Newcomb and Brown, 2002). As represented in
Figure 1B, forskolin can act either extracellularly on ion channels or intracellularly to activate adeny-
late cyclase (Hoshi et al., 1988; Kandel, 2012, de Rooij et al., 2000). Activation of adenylate
cyclase results in the propagation of second-messenger pathways resulting from activation of PKA,
EPAC1 (Exchange Factor directly Activated by cAMP, also known as Rap Guanine Nucleoside
Exchange Factor 1) or EPAC 2. In addition, cAMP can act directly on cyclic nucleotide-gated ion
channels, and PKA can also modulate ion-channel activity via phosphorylation. Dideoxy-forskolin
(dd-forskolin) is a cell-impermeable forskolin analog that can act directly on voltage-gated ion chan-
nels but does not activate adenylate cyclase (Hoshi et al., 1988; Gandia et al., 1997). We found
addition of forskolin but not dd-forskolin triggered robust HSV reactivation (Figure 1C). A slight
increase in GFP-positive neurons did occur with dd-forskolin treatment compared to mock (approxi-
mately 6.5-fold increase compared to a 130-fold increase for forskolin). Based on a Tukey’s multiple
comparison test, this change from mock treated neurons was not significant (p=0.07), however, a
direct comparison between mock and dd-forskolin using a T-test suggested a significant induction
(p=0.03). Therefore, direct stimulation of ion-channels by dd-forskolin may trigger some reactivation.
However, maximal reactivation requires forskolin to enter neurons. Treatment of latently-infected
primary neurons with a cAMP mimetic (8-bromo-cAMP) was sufficient to trigger reactivation
(Figure 1D), suggesting that increased intracellular levels of cAMP are capable of inducing HSV reac-
tivation. Furthermore, inhibition of adenylate cyclase activity using SQ22, 536 (Haslam et al., 1978)
significantly diminished HSV reactivation (Figure 1E). Therefore, activation of adenylate cyclase,
which results in increased intracellular levels of cAMP, is required for robust forskolin-mediated
reactivation.
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Figure 1. HSV-1 Reactivation from sympathetic neurons is induced by adenylate cyclase activation. (A) Schematic of the primary sympathetic superior
cervical ganglia (SCG)-derived model of HSV latency. Reactivation was quantified based on Us11-GFP-positive neurons in presence of WAY-150168,
which prevents cell-to-cell spread. (B) Schematic of the cellular pathways activated by forskolin treatment. Forskolin can act both intracellularly to
activate adenylate cyclase (AC) and increasing the levels of cAMP or extracellularly on ion channels. (C) Numbers of Us11-GFP-positive neurons
following addition of either forskolin (60 uM) or cell-impermeable dideoxy-forskolin (60 uM) treatment of latently-infected sympathetic neurons. (D)
Numbers of Us11-GFP-positive neurons following treatment with a cAMP mimetic 8-Bromo-cAMP (125 uM). (E) Reactivation, quantified by Us11-GFP-
positive neurons, was induced by forskolin in the presence or absence of the adenylate cyclase inhibitor SQ22,536 (50 uM). In C-E each point represents
a single biological replicate, and the mean and standard errors of the mean (SEM) are also shown. In D statistical comparisons were made using an
unpaired t-test. In C and E statistical comparisons were made using a one-way ANOVA with a Tukey's multiple comparisons test. *p<0.05, **p<0.01.
The online version of this article includes the following source data for figure 1:

Source data 1. Quantification of GFP-positive neurons for Figure 1.

DLK and JNK activity are required for the early phase of viral gene
expression in response to forskolin treatment

We previously found that DLK-mediated JNK activation was essential for Phase | reactivation follow-
ing interruption of nerve growth factor signaling (Cliffe et al., 2015). To determine whether DLK
and JNK activation were crucial for reactivation in response to forskolin, neurons were reactivated in
the presence of the JNK inhibitor SP600125 (Figure 2A) or the DLK inhibitor GNE-3511 (Patel et al.,
2015; Figure 2B). Because DLK has been proposed as a target to prevent neuronal cell death or
axon degeneration in neurological disease, GNE-3511 was recently developed as a small-molecule
inhibitor of DLK that shows selective inhibition of DLK activity and protection against axon pruning
with an IC50 of 0.1 uM (Patel et al., 2015). Both the JNK and DLK inhibitors prevented forskolin-
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Figure 2. Reactivation triggered by forskolin involves a DLK/JNK-dependent phase | of viral gene expression. (A) Reactivation was induced by forskolin
in the presence of JNK inhibitor SP600125 (20 uM). (B) Reactivation was induced by forskolin in the presence of the DLK inhibitor GNE-3511 (4 uM). In A
and B each experimental replicate is shown. (C) Reactivation was induced by forskolin or superinfection with a wild-type (F strain) HSV-1 (MOI of 10
PFU/cell) and qualified based on Us11-GFP-positive neurons (n = 3). (D-F) RT-gPCR for viral mRNA transcripts following forskolin treatment of latently
Figure 2 continued on next page
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Figure 2 continued

infected SCGs. (G-I) RT-gPCR for viral lytic transcripts at 20 hr post-forskolin treatment and in presence of the JNK inhibitor SP600125 (20 uM) and the
DLK inhibitor GNE-3511 (4 uM). (J) Neurons were transduced with a non-targeting shRNA control lentivirus or two independent lentiviruses expressing
shRNAs that target DLK (shDLK-1, shDLK-2). Western-blotting for DLK or B-III tubulin was carried out 3 days post transduction. The percentage knock-
down of DLK normalized to B-Ill tubulin is shown. (K and L) RT-gPCR for viral mRNA transcripts following forskolin treatment of latently infected SCGs

that were either transduced with the shRNA control or shRNA DLK lentiviruses. In D-I, K, and L, each experimental replicate is represented. Statistical

comparisons were made using a one-way ANOVA with a Tukey’s multiple comparison. *p<0.05, **p<0.01, ***p<0.001. The mean and SEM are shown.
The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Quantification of GFP-positive neurons, RT-gPCR and western blot band densities for Figure 2.

Figure supplement 1. Reactivation triggered by forskolin triggers a wave of lytic gene expression that precedes DNA Replication and infectious virus
production.

Figure supplement 1—source data 1. Quantification of HSV titer, GFP-positive neurons and RT-qPCR for Figure 2—figure supplement 1.

Figure supplement 2. Effect of PKA, CREB, Rapgef2 and EPAC Inhibition on HSV-1 Reactivation.

Figure supplement 2—source data 1. Quantification of GFP-positive neurons and RT-gPCR for Figure 2—figure supplement 2.

mediated reactivation based on the number of GFP-positive neurons at 3 days post-stimulus. These
data therefore indicate forskolin-mediated reactivation is dependent on the neuronal stress pathway
mediated by DLK activation of JNK.

Because we and others previously found that JNK activation results in a unique wave of viral gene
expression in response to inhibition of nerve growth factor signaling (Kim et al., 2012, Cliffe et al.,
2015; Cliffe and Wilson, 2017), we were especially intrigued to determine whether forskolin trig-
gers a similar wave of JNK-dependent viral gene expression. The previously described bi-phasic pro-
gression to viral reactivation is characterized by viral DNA replication and production of infectious
virus, occurring around 48-72 hr post-stimulus (Kim et al., 2012), but with an earlier wave of lytic
gene expression occurring around 20 hr post-stimulus. To determine whether forskolin-mediated
reactivation results in a similar kinetics of reactivation, we investigated the timing of Us11-GFP syn-
thesis, viral DNA replication, production of infectious virus, and lytic gene induction following forsko-
lin treatment. In response to forskolin treatment, Us11-GFP synthesis in neurons started to appear
around 48 hr post-reactivation, with more robust reactivation observed at 72 hr (Figure 2C). In con-
trast to forskolin-mediated reactivation, the number of GFP-positive neurons following superinfec-
tion with a replication competent wild-type virus resulted in a rapid induction of GFP-positive
neurons by 24 hr post-superinfection (Figure 2C). Therefore, forskolin-triggered reactivation results
in slower synthesis of Us11-GFP than superinfection. In addition, these data highlight the ability of
forskolin to trigger reactivation from only a subpopulation of latently-infected neurons (approxi-
mately 1 in every 3.4 neurons compared to superinfection).

The production of infectious virus also mirrored the data for the detection of Us11-GFP-positive
neurons, with a robust increase in viral titers between 24 hr and 60 hr post-stimulus (Figure 2—fig-
ure supplement 1A), which reflects both release of infectious virus from reactivating neurons and
potentially cell-to-cell spread as WAY150138 could not be included. An increase in viral genome
copy number was also not detected until 48 hr post-stimulus, which continued between 48 hr and 72
hr (Figure 2—figure supplement 1B). The quantification of viral genome copy number was also car-
ried out in presence of WAY-150138, therefore indicating that DNA replication occurs in reactivating
neurons and not as a consequence of cell-to-cell spread.

Given the observed 48 hr delay in viral DNA replication and production of infectious virus, we
were interested to determine if there was a Phase | wave of lytic gene expression that occurred prior
to viral DNA replication. We therefore carried out RT-qPCR to detect representative immediate-early
(ICP27 and ICP4), early (ICP8 and UL30), and late (UL48 and gC) transcripts between 5 hr and 20 hr-
post addition of forskolin (Figure 2D-F and S1C-E). For all six transcripts, a significant up-regulation
of mRNA occurred at 20 hr post-treatment, including the true late gene gC, whose expression would
usually only be stimulated following viral genome replication in the context of de novo lytic replica-
tion. Therefore, this indicates that lytic gene expression is induced prior to viral DNA replication and
that forskolin does trigger a Phase | wave of lytic gene expression. Notably, we did detect small but
reproducible induction of I[CP27 mRNA at 5 hr post-stimulus, followed by a second induction at 20
hr (Figure 2D), indicating that there is likely differential regulation of some viral lytic transcripts
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during Phase | reactivation induced by forskolin that is distinct from both NGF-deprivation and de
novo lytic infection.

To determine whether JNK and DLK were required Phase | gene expression in response to for-
skolin, we investigated viral mRNA levels following forskolin-mediated reactivation in the presence
of the JNK inhibitor SP600125. We found a significant reduction in ICP27 (2.2-fold), UL30 (3.3-fold)
and gC (5.5-fold) mRNA levels at 20 hr post-stimulus in the presence of SP600125 (Figure 2G-I). For
all genes tested, there was no significant increase in mRNAs in the JNK inhibitor treated neurons
compared to mock. We observed comparable results following treatment with the DLK inhibitor
GNE-3511, with a 2.3-, 3-, 8.8-fold decrease in ICP27, UL30, and gC mRNAs, respectively, compared
to forskolin treatment alone, and no significant increase in mRNA levels compared to the unreacti-
vated samples (Figure 2G-I). To further confirm that DLK is required for Phase | gene expression fol-
lowing forskolin treatment, we depleted DLK protein using two independent shRNAs via lentivirus
mediated transduction of latently infected sympathetic neurons. Transduction with the DLK targeting
shRNA vectors resulted in >90-fold reduction in DLK protein levels compared to the shRNA control
transduced neurons (Figure 2J). We observed a significant reduction in HSV reactivation and ICP27,
UL30, and gC mRNA levels at 20 hr post-forskolin treatment following transduction with either DLK
shRNA lentivirus compared to the shRNA control transduced neurons (Figure 2K-L and Figure 2—
figure supplement 1F-G).

It was possible that in addition to JNK, other signal transduction proteins were important in for-
skolin-mediated reactivation. A previous study found that DLK can be activated by PKA, which is
known to be activated by cAMP (Hao et al., 2016). However, using well a characterized inhibitor of
PKA (KT 5720), we were unable to find a role for PKA in Phase | reactivation (Figure 2—figure sup-
plement 2B), although full reactivation was inhibited (Figure 2—figure supplement 2A). PKA has a
number of downstream targets, including the transcription factor CREB, which is also involved in cel-
lular gene expression changes in response to neuronal stimulation. Although addition of a CREB
inhibitor (666-15), inhibited full reactivation (Figure 2—figure supplement 2C) it did not inhibit
Phase | gene expression (Figure 2—figure supplement 2D). Because we did not detect a role for
PKA we also investigated two additional proteins that can respond to increased levels of cAMP and
mediate downstream signaling responses (see Figure 1B); EPAC1/Rapgef1 (inhibited by ESI09) and
EPAC2/Rapgef2 (inhibited by $SQ22,536). Downstream targets of EPACT 1 and 2 include ERK and
PKC respectively (Huang and Gu, 2017). However, inhibition of EPAC1 with ESI09 did not inhibit
forskolin-mediated reactivation (Figure 2—figure supplement 2E). SQ22,536 is known to inhibit
both adenylate cyclase and EPAC2 (Emery et al., 2013). Given that we had already found that
SQ22,536 inhibited forskolin-mediated reactivation (Figure 1E), to directly test the inhibition of
EPAC2 by SQ22,536 in a way that bypasses adenylate cyclase we investigated the effect reactivation
induced by 8-Bromo-cAMP. Addition of SQ22,536 did not prevent reactivation triggered by the
cAMP mimetic (Figure 2—figure supplement 2F). Taken together, these data suggest that forskolin
induces a Phase | wave of gene expression that does not depend on activation of PKA, EPAC1 or
EPAC2 but does require DLK and JNK activity. Because additional targets of cAMP in neurons
include cyclic nucleotide-gated ion channels, we turned our attention to the role of hyperexcitability
in HSV reactivation.

Forskolin triggers a Phase | wave of viral gene expression that is
independent of histone demethylase activity
Hyperexcitability results in the propensity of neurons to fire repeated action potentials, and is associ-
ated with specific changes in histone posttranslational modifications and accumulation of nuclear
cFOS. This includes increased levels of YH2AX, a histone posttranslational modification linked to
physiological DNA damage (Alt and Schwer, 2018; Madabhushi et al., 2015), which can be mea-
sured by the intensity of staining in neuronal nuclei. Forskolin treatment was associated with an
increase in the levels of YH2AX at 5 hr post-treatment, which resolved by 15 hr post-treatment (Fig-
ure 3—figure supplement 1A and C), and is therefore indicative of physiological DNA damage and
repair, which occurs upon neuronal hyperexcitability. To also indirectly probe for neuronal hyperex-
citability following forskolin treatment, we also quantified nuclear cFOS accumulation and found that
the intensity increased at 5 hr post-forskolin treatment (Figure 3—figure supplement 1D).

A second reason for probing the DNA damage/repair pathway in response to forskolin treatment
is that an elegant study from the Huang lab found that reactivation of HSV from latency was
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Figure 3. The Initial wave of viral lytic gene expression during forskolin-mediated reactivation is independent on histone demethylase activity. (A)
Quantification of the percentage of genome foci stained using click-chemistry that co-localize with H3K9me3/S10p. At least 15 fields of view with 1-8
genomes per field of view were blindly scored from two independent experiments. Data are plotted around the median, with the boxes representing
the 2575™ percentiles and the whiskers the 13:-99"" percentiles. (B) Representative images of click-chemistry based staining of HSV-EJC genomes and

Figure 3 continued on next page
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H3K9me3/S10p staining at 5 hr post-forskolin treatment. (C and D). Effect of the LSD1 inhibitors OG-L002 and S 2101 on forskolin-mediated Phase | of
reactivation determined by RT-qPCR for ICP27 (C) and gC (D) viral lytic transcripts at 20 hr post-forskolin treatment and in the presence of 15 uM OG-
L002 and 20 uM S 2102. (E) Effect of the JMJD3 and UTX inhibitor GSK-J4 (2 uM) on forskolin-mediated Phase | measured by RT-gPCR for viral lytic
transcripts ICP27 (E) and gC (F) at 20 hr post-forskolin treatment and in the presence of GSK-J4. For C-F each experimental replicate along with the

mean and SEM is represented. (C-F). Statistical comparisons were made using a one-way ANOVA with a Tukey’s multiple comparison. *p<0.05,

*5<0.01, ***p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Quantification of genome co-localization and RT-gPCR for Figure 3.
Figure supplement 1. Forskolin induces hyperexcitability-associated chromatin changes, and hsv reactivation that requires histone demethylase.

Figure supplement 1—source data 1. Quantification of nuclear staining intensity and GFP-positive neurons Figure 3—figure supplement 1.

associated with perturbation of the DNA damage/repair response (Hu et al., 2019). In this study,
both inhibition of repair and exogenous DNA damage resulted in loss of AKT phosphorylation by
PHLPP1, which was required for HSV reactivation. Although we did observe increased levels of
YH2AX following forskolin treatment, we did not detect a concurrent loss of pAKT measured at 15 hr
post-treatment (Figure 3—figure supplement 1E), whereas Pl3-kinase inhibition by LY294002 did
result in loss of pAKT. Both PI3-kinase inhibition and forskolin treatment did result in activation of
the JNK cell stress pathway, indicated by increased c-Jun phosphorylation. This indicates that HSV
reactivation and JNK activation in response to forskolin treatment does not involve dephosphoryla-
tion of AKT. Therefore, hyperexcitability triggers reactivation via an alternative mechanism that does
not feed into AKT phosphorylation.

Previously, we found that Phase | reactivation is accompanied with a JNK-dependent histone
methyl/phospho (marked by H3K9me3/pS10) switch on lytic promoters (Cliffe et al., 2015). In corti-
cal neurons, one study has found that hyperexcitability results in increased H3K9me3/pS10
(Noh et al., 2015). Therefore, we were particularly interested to determine whether forskolin treat-
ment of sympathetic neurons triggered a histone S10 phosphorylation on H3K9me3. Forskolin trig-
gered a transient increase in H3K9me3/S10p at 5 hr post-treatment that had returned to baseline by
10 hr (Figure 3—figure supplement 1A and B). This indicates that, in keeping with cortical neurons,
forskolin induces a histone H3K9me3/pS10 methyl/phospho switch on regions on cellular chromatin.

We next sought to determine whether the phospho/methyl switch that arises as a result of hyper-
excitability plays a role in Phase | of HSV reactivation. We therefore investigated whether viral
genomes were co-localized with H3K9me3/S10p following forskolin treatment. To visualize HSV
genomes, viral stocks were grown in the presence of EAC as described previously (Alandijany et al.,
2018; McFarlane et al., 2019). Click-chemistry was performed on latently infected neurons follow-
ing forskolin treatment. As shown in Figure 3A and B, viral genomes co-localized with H3K9me3/
pS10 following robust H3K9me3/S10p staining at 5 hr. The percentage of viral genomes that co-
localized with H3K9me3/S10p was significantly increased compared to the mock reactivated samples
at 5 hr and 20 hr post-forskolin treatment (Figure 3A).

Serine phosphorylation adjacent to a repressive lysine modification is thought to permit transcrip-
tion without removal of the methyl group (Gehani et al., 2010; Noh et al., 2015). Therefore, we
investigated whether histone demethylase activity was required for the initial induction in lytic gene
expression following forskolin treatment. Previously, the H3K9me2 histone demethylase LSD1 has
been found to be required for full HSV reactivation (Liang et al., 2009; Hill et al., 2014), and in our
in vitro model this was determined by the synthesis of late viral protein at 48-72 hr post-reactivation
(Cliffe et al., 2015). The addition of two independent LSD1 inhibitors (OG-L002 and S 2102) inhib-
ited Us11-GFP synthesis at 72 hr post-reactivation (Figure 3—figure supplement 1F). Hence, LSD1
activity, and presumably removal of H3K9-methylation, is required for forskolin-mediated reactiva-
tion. However, LSD1 inhibition did not prevent the initial induction of ICP27 and gC mRNA expres-
sion at 20 hr post-forskolin treatment (Figure 3C and D). Therefore, this initial wave of viral lytic
gene expression following forskolin-mediated reactivation is independent of histone H3K9 demethy-
lase activity.

We previously found that H3K27me demethylase activity is required for full reactivation but not
the initial wave of gene expression (Cliffe et al., 2015). However, because of the lack of an antibody
that specifically recognizes H3K27me3/S28p and not also H3K9me3/S10p (Cliffe et al., 2015), we
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Figure 4. HSV Reactivation Mediated by Forskolin Requires Neuronal Excitability. (A) Latently infected cultures
were reactivated with forskolin in the presence of the voltage-gated sodium channel blocker tetrodotoxin (TTX; 1
uM) and the number of Us11-GFP-positive neurons quantified at 3 days post-reactivation. (B) Latently infected
cultures were reactivated with forskolin in the presence of the voltage-gated potassium channel blocker
tetraethylammonium (TEA; 10 mM) and the number of Us11-GFP-positive neurons quantified at 3 days post-
Figure 4 continued on next page
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Figure 4 continued

reactivation. (C) Forskolin-mediated reactivation in the presence of the HCN channel blockers ZD 7288 (10uM)
quantified as the numbers of Us11-GFP-positive neurons at 3 days post-reactivation. (D) The effect of ZD 7288 on
the HSV lytic gene transcript ICP27 during Phase | reactivation measured at 20 hr post-forskolin treatment by RT-
gPCR. In A-D individual experimental replicates are represented along with the mean and SEM. (E and F)
Quantification of the relative nuclear staining for H3K9me3/S10p and YH2AX in SCG neurons at 5 hr post-forskolin
treatment and in the presence of ZD 7288 from >800 cells/condition from two independent experiments. Data are
plotted around the mean, with the boxes representing the 25™-75" percentiles and the whiskers the 5-95
percentiles. Statistical comparisons were made using a one-way ANOVA with a Tukey's multiple comparison (A-D)
or two-tailed unpaired t-test (E-F). *p<0.05, **p<0.01, ***p<0.001. In A-D individual experimental replicates are
represented.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Quantification of GFP-positive neurons, RT-gPCR and nuclear staining intensity for Figure 4.
Figure supplement 1. HSV Reactivation Mediated by Forskolin Requires Neuronal Excitability.

Figure supplement 1—source data 1. Quantification of GFP-positive neurons and RT-gPCR for Figure 4—figure
supplement 1.

are unable at this point to investigate genome co-localization with this combination of modifications.
However, we could investigate the role of the H3K27me demethylases in forskolin-mediated reacti-
vation. Treatment of neurons with the UTX/JMJD3 inhibitor GSK-J4 (Kruidenier et al., 2012) pre-
vented the synthesis of Us11-GFP at 72-hr post-reactivation, indicating that removal of K27
methylation is required full reactivation (Figure 3—figure supplement 1G). However, the initial
burst of gene expression (assessed by ICP27 and gC mRNA levels) was robustly induced at 20 hr
post-forskolin treatment in the presence of GSK-J4 (Figure 3E and F). Taken together, our data indi-
cate that the initial phase of gene expression following forskolin treatment is independent of histone
demethylase activity and therefore consistent with a role for a histone methyl/phospho switch in per-
mitting lytic gene expression.

Forskolin-mediated reactivation requires neuronal excitability

Given that the HSV genome co-localized with regions of hyperexcitability-induced changes in histone
phosphorylation, we investigated whether reactivation was linked to neuronal excitability. To inhibit
action potential firing, we treated neurons with tetrodotoxin (TTX), which inhibits the majority of the
voltage-gated sodium channels and consequently depolarization. The addition of TTX significantly
inhibited HSV reactivation triggered by forskolin, as measured by Us11-GFP-positive neurons at 72-
hr post-stimulus (Figure 4A). To further confirm a role for repeated action potential firing in forsko-
lin-mediated reactivation, we investigated the role of voltage-gated potassium channels, which are
required for membrane repolarization. The addition of tetraethylammonium (TEA), which inhibits
voltage-gated potassium channel activity, also blocked HSV reactivation measured by Us11-GFP-
positive neurons at 3 days post-forskolin treatment (Figure 4B). Taken together, these data indicate
that action potential firing is required for forskolin-mediated reactivation.

Increased levels of cAMP can act on nucleotide-gated ion channels, including the hyperpolariza-
tion-activated cyclic nucleotide-gated (HCN) channels. HCN channels are K and Na* channels that
are activated by membrane hyperpolarization (Sartiani et al., 2017; Kullmann et al., 2016). In the
presence of high levels of cAMP, the gating potential of HCN channels is shifted in the positive
direction, such that HCN channels can open at resting membrane potential, resulting in an increased
propensity of neurons to undergo repeated firing (Kullmann et al., 2016; DiFrancesco and Tortora,
1991; Kase and Imoto, 2012). HCN channel activity inhibitors include ZD 7288, Ivabradine, or
cesium chloride. ZD 7288 has been characterized as an open-state blocker of HCN channels, how-
ever there is also evidence that it can inhibit voltage-gated sodium channel activity (Wu et al.,
2012). This combined effect of ZD 7288 is a plus as it operates via multiple mechanism to inhibit
neuronal excitability. Ivabradine is an FDA approved HCN inhibitor that has been demonstrated to
specifically inhibit all four HCN channels (Novella Romanelli et al., 2016). Cesium chloride is a non-
selective cation channel blocker. Addition of ZD 7288 (Figure 4C), lvabradine (Figure 4—figure sup-
plement 1A) or CsCl (Figure 4—figure supplement 1B) all significantly reduced HSV reactivation
triggered by forskolin, as measured by Us-11 GFP-positive neurons at 3 days post-stimulus. To
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Figure 5. HSV Reactivation triggered by prolonged neuronal hyperexcitability is DLK/JNK-dependent. (A) Latently
infected SCG cultures were treated with forskolin or KCI (55 mM) for the indicated times followed by wash-out.
Reactivation was quantified by number of Us11-GFP-positive neurons at 3 days after the initial stimulus was added.
(B) Latently infected neurons were placed in tetrodotoxin (TTX; 1 uM) for 2 days and the TTX was then washed out.
At the time of wash-out the JNK inhibitor SP600125 (20 uM) or DLK inhibitor GNE-3511 (4 uM) was added. (C)
Latently infected neurons were transduced with either control non-targeting shRNA or shRNA targeting DLK for 3
days, then placed in tetrodotoxin (TTX; 1 uM) for 2 days and the TTX was then washed out. Reactivation was
quantified at 3 days post-wash-out. Individual experimental replicates, the mean and SEMs are represented.
Statistical comparisons were made using a one-way ANOVA with a Tukey's multiple comparison. **p<0.01,
***p<0.001.

The online version of this article includes the following source data for figure 5:

Source data 1. Quantification of GFP-positive neurons for Figure 5.

determine the contribution of HCN channel activity and neuronal excitability to the initial induction
of HSV lytic mRNA expression, we assessed viral mMRNA expression during Phase | in the presence
and absence of ZD 7288. Expression of representative lytic mRNAs ICP27 (Figure 4D), UL30 and gC
(Figure 4—figure supplement 1C and D) were significantly decreased in the presence of ZD 7288
compared to the forskolin treated neurons alone, and were not significantly increased compared to
the mock treated samples.

We also confirmed that neuronal excitation was required for the global changes in histone phos-
phorylation observed with exposure of sympathetic neurons to forskolin. Addition of ZD 7288
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resulted in significantly decreased staining intensities of both H3K9me3/S10p and YH2AX at 5 hr
post-forskolin treatment (Figure 4E and F), which was the peak time-point for which we observed
these changes upon forskolin treatment alone (Figure 3—figure supplement 1B and S3C). There-
fore, activity of the HCN channels and/or voltage-gated sodium channels in response to increased
levels of cAMP, results in hyperexcitability-associated changes in histone modifications and the initial
induction of lytic gene expression during Phase | and reactivation of HSV from latent infection.

HSV reactivation can be induced by stimuli that directly increase
neuronal excitability

The role of ion channel activity in forskolin-mediated reactivation prompted us to investigate
whether additional stimuli that induce hyperexcitability in neurons also trigger HSV reactivation. We
were also interested in whether reactivation required chronic versus short-term hyperexcitability.
Increasing the extracellular concentration of KCI is well-known to induce action potential firing.
Therefore, we investigated the timing of both KCI and forskolin-mediated hyperexcitability in HSV
reactivation. Both of these treatments triggered HSV reactivation more robustly if applied for 8 hr or
more (Figure 5A). This indicates that chronic neuronal hyperexcitability is important in inducing reac-
tivation of HSV.

To further clarify that hyperexcitability can directly trigger HSV reactivation, we investigated the
effects of removal from a TTX block on latently infected neurons. The addition of TTX to neurons
results in synaptic scaling whereby a neuron’s excitatory synaptic strength increases in response to
inhibition of firing, so that when the TTX is removed the neurons enter a hyperexcitable state
(Ibata et al., 2008; Turrigiano et al., 1998; Lee and Kirkwood, 2019; Sokolova and Mody, 2008).
TTX was added to the neurons for 2 days and then washed out. This resulted in a robust HSV reacti-
vation as determined by Us11-GFP synthesis (Figure 5B). We also investigated whether the JNK cell
stress pathway was important in HSV reactivation in response to TTX-release. Addition of the JNK
inhibitor SP600125 or the DLK inhibitor GNE-3511 blocked HSV reactivation following TTX-
release (Figure 5B) as did shRNA mediated depletion of DLK (Figure 5C). Therefore, directly induc-
ing neuronal hyperexcitability triggers HSV reactivation in a DLK/JNK-dependent manner.

IL-1p triggers HSV reactivation in mature neurons in a DLK and voltage-
gated sodium channel-dependent manner

Our data thus far point to reactivation of HSV following increasing episodes of neuronal hyperexcit-
ability in a way that requires activation of the JNK cell stress pathway. However, we wished to link
this response to a physiological trigger that may stimulate HSV reactivation in vivo. Increased
HCN channel activity has been associated with inflammatory pain resulting from the activity of pyro-
genic cytokines on neurons (Emery et al., 2011). In addition, IL-1B is known to act on certain neu-
rons to induce neuronal excitation (Vezzani and Viviani, 2015; Schneider et al., 1998;
Binshtok et al., 2008). IL-1B is released in the body during times of chronic, psychological stress. In
addition, IL-1B contributes to the fever response (Ericsson et al., 1994, Goshen and Yirmiya, 2009;
Koo and Duman, 2009; Saper and Breder, 1994). In sympathetic neurons, we found that exposure
of mature neurons to IL-1B induced an accumulation of the hyperexcitability-associated histone post-
translational modifications YH2AX and H3K9me3/S10p (Figure 6A, Figure 6—figure supplement
1A-B). We did not observe the same changes for post-natal neurons. The precise reasons for this
maturation-dependent phenotype are unknown at this point but we hypothesize it could be due to
changes in the expression of cellular factors required to respond to IL-1B. Therefore, these experi-
ments were carried out on neurons that were postnatal day 36. The kinetics of induction of these his-
tone modifications were different from what we had previously observed for forskolin treatment, as
both YH2AX and H3K9me3/S10p steadily accumulated to 20 hr post-treatment. This likely reflects
the activation of upstream signaling pathways in response to IL-1B prior to inducing neuronal excita-
tion as IL-1B is known to increase the expression of voltage-gated sodium channels (Binshtok et al.,
2008). To confirm that the increase in YH2AX and H3K9me3/S10p was linked to neuronal excitation
we measured the staining intensity when IL-1B was added in the presence of TTX. We also added an
IL1R neutralizing antibody to verify that the response was specific to signaling via IL-1 mediated
binding to its receptor. Addition of either TTX or anti-IL1R antibody resulted in a significant
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Figure 6. IL-1B Treatment of sympathetic neurons results in changes consistent with heightened neuronal excitability. (A) Adult P36 SCG neurons were
treated with IL-1B (30 ng/mL) for 15 hr and stained for H3K9me3/S10p, YH2AX and beta ll-tubulin to mark neurons. (B and C) Quantification of the
intensity of H3K9me3/S10p (B) and YH2AX (C) staining following 15 of IL-1B treatment and in the presence of tetrodotoxin (TTX; 1 uM) or anti-IL1
receptor (IL-1R) blocking antibody (2 ug/mL). Data are plotted around the median and whiskers represent the 5™-95™" percentiles. (D) Representative

Figure 6 continued on next page
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images of cytosolic Ca®* elevations measured using Fura-2-AM in neurons stimulated with 100 uM acetylcholine either pre-treated with IL-1B for 20 hr

or mock treated. As a control the neurons were also treated with lonomycin at the end of the protocol. Bar = 100 um. (E) Representative experiment for

cytosolic Ca?* elevations in neurons stimulated with 100 uM acetylcholine. Cells were pretreated with IL-1B or vehicle for 20 hr prior to imaging. The

plotted values were calculated as a change in fluorescence/initial fluorescence (AF/F0). Error bars represent SEM (IL-1B treatment, n = 58 cells and
vehicle control, n = 25 cells). (F) Peak cytosolic Ca®* elevations normalized to untreated controls in neurons stimulated with 100 uM acetylcholine. Cells
were pretreated with IL-1B (n = 70, wells) or vehicle (n = 58, wells) for 20 hr prior to imaging. IL-1R blocking antibody (n = 54, wells) was also added.

Data points represent individual wells, horizontal line represents mean. Statistical comparisons were made using a one-way ANOVA with a Tukey's
multiple comparison (B-D). ***p<0.001 ****p<0.0001.
The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Quantification of nuclear staining intensity and ratiometric calcium imaging for Figure 6.
Figure supplement 1. IL-1B Treatment of mature scg neurons induces excitability-associated histone post-translational modifications (supplement to

Figure 6).

Figure supplement 1—source data 1. Quantification of nuclear staining intensity for Figure 6—figure supplement 1.

reduction in YH2AX and H3K9me3/S10p levels in response to IL-1B treatment (Figure 6B-C), indicat-
ing that the response is directly due to IL1 and requires activity of voltage-gated sodium channels.

To test whether IL-1f induces a hyperexcitable state in sympathetic neurons, we measured cyto-
solic Ca®* elevations within neurons following addition of their cognate neurotransmitter, acetylcho-
line. Compared to mock treated controls, neurons that were pre-treated with IL-18 for 20 hr
displayed higher elevations in cytosolic Ca®* as measured by Fura-2-AM, a ratiometric indicator of
cytosolic Ca* (Figure 6D-E). To control for any intrinsic artifacts in dye loading or retention, neu-
rons were also treated with Ca?* ionophore, ionomycin, to raise the intracellular levels of Ca%*
directly at the end of the recording protocol. We observed nearly identical elevations in ionomycin-
mobilized Ca®* in both untreated and IL-1B treated neurons. Importantly, compared to untreated
controls, neurons pre-treated with IL-1B exhibit significantly higher levels of cytosolic Ca®* in
response to acetylcholine. When IL-1B pre-treated sympathetic neurons were measured on a popula-
tion basis for their response to acetylcholine (Figure 6E), we did observe a range of responses,
which likely reflects that these are a heterogenous population of mature neurons that vary in
response to IL-1B as well as acetylcholine. Importantly, we did detect a significant increase in intra-
cellular Ca?* in response to acetylcholine in neurons that we treated with IL-1B. The increase in ace-
tylcholine responses observed in IL-1B treated neurons was prevented with the addition of the IL1R
blocking antibody, indicating that it is specific for signaling through the IL1 receptor (Figure 6F).

Because IL-1B was found to cause sympathetic neurons to enter a hyperexcitable state, we went
on to investigate whether IL-18 was able to induce HSV reactivation. Addition of IL-1B triggered HSV
reactivation in mature neurons quantified by the number of Us11-GFP neurons at 3 days
(Figure 7A). We did observe a large range in the numbers of reactivating neurons, which likely
reflects the heterogeneity in responses to response to IL-1f. In addition, it is likely there is heteroge-
neity between different populations of latent viral genomes in terms of their chromatin structure and
subnuclear localization, which also impacts their reactivation ability upon addition of a given stimu-
lus. Addition of the IL-1R blocking antibody preventing IL-13 induced reactivation (Figure 7B). In a
number of experiments, we did observe lower levels of reactivation than what we had previously
observed upon forskolin treatment of younger neurons. Therefore, we also treated mature neurons
with forskolin and saw similar levels of reactivation than those observed with IL-1B (Figure 7B), indi-
cating that latently infected mature neurons may be more restricted for reactivation.

Inhibition of voltage-gated sodium channels by TTX resulted in a significant decrease in the ability
of IL-1B to induce reactivation (Figure 7E), therefore indicating that IL-1B triggered reactivation is
via increasing neuronal activity. Reactivation was reduced in the presence of the HCN-channel inhibi-
tor ZD 7288, although this decrease was not significant (p=0.2255), perhaps suggesting that IL-1B
induction of neuronal activity is not directly due to the action of cAMP on HCN channels and instead
HCN channel activity may be required for maximal hyperexcitability and reactivation. Importantly,
the addition of the DLK inhibitor GNE-3511 blocked reactivation in response to IL-18 (Figure 7C)
and the role for DLK was confirmed by shRNA mediated depletion (Figure 7D). Therefore, IL-1B can
induce sympathetic neurons to become hyperexcitable and trigger HSV-1 reactivation via activation
of DLK.
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Figure 7. IL-1B-Induced HSV Reactivation is linked to heightened neuronal excitability and dlk activation. (A)
Quantification of Us11-GFP expressing neurons following addition of IL-1B to latently infected cultures of mature
SCG neurons. (B) Numbers of Us11-GFP-positive neurons following addition of forskolin or IL-1B to mature SCG
neurons, and in the presence of an IL-1R-blocking antibody (2 pg/mL). (C) Quantification of IL-18 induced
reactivation in the presence of the voltage-gated sodium channel blocker TTX (1 uM), the HCN-channel blocker
ZD 7288 (10 uM) and the DLK inhibitor GNE-3511 (4 uM). (D) Latently infected SCG neurons were transduced with
an shRNA control lentivirus or lentiviruses expressing shRNA against DLK. Three days later IL-18 was added to the
cultures and the numbers of GFP-positive neurons quantified at 3 days later. Individual experimental replicates,
means and SEMs are represented. Statistical comparisons were made using two-tailed unpaired t-test (A) or a
one-way ANOVA with a Tukey’s multiple comparison (B-D). *p<0.05, **p<0.01.

The online version of this article includes the following source data for figure 7:

Source data 1. Quantification of GFP-positive neurons for Figure 7.

Discussion

As herpesviruses hide in the form of a latent infection of specific cell types, they sense changes to
the infected cell, resulting in the expression of viral lytic genes and ultimately reactivation. HSV
establishes latency in neurons and has previously been found to respond to activation of a neuronal
stress signaling pathway (Cliffe et al., 2015). As an excitable cell type, the function of neurons is to
rapidly transmit stimuli via the firing of action potentials, and under conditions of hyperexcitability,
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neurons increase their propensity to fire repeated action potentials. Here we show that this state of
hyperexcitability induces HSV to undergo reactivation in a DLK/JNK-dependent manner, indicating
that the virus responds to both activation of cell stress signaling and prolonged hyperexcitability via
a common pathway to result in reactivation. This common pathway also permits viral lytic gene
expression from silenced promoters without the requirement of histone demethylase activity via a
histone methyl/phospho switch. Conditions that result in hyperexcitability include prolonged periods
of stress, sun burn and inflammation, which are both linked to the release of IL-1B (Ericsson et al.,
1994; Goshen and Yirmiya, 2009; Koo and Duman, 2009; Saper and Breder, 1994;
Kupper et al., 1987). Consistent with this, here we show that IL-1p induces DNA damage and his-
tone H3 phosphorylation in sympathetic neurons, which are both markers of neuronal excitability,
and causes increased responses to neurotransmitter stimulation. Importantly, IL-13 triggered HSV
reactivation that was dependent on neuronal activity and activation of DLK. Therefore, this study
identifies a physiological stimulus that induces HSV reactivation via increasing neuronal excitability
and places DLK/JNK signaling and a histone phospho/methyl switch as central to HSV reactivation.

In this study, we employed an in vitro system using primary murine sympathetic neurons. In vitro
systems using primary neurons from rats and mice or differentiated embryonic human neurons are
now being used in many laboratories to elucidate molecular mechanisms of HSV latency and reacti-
vation (Thellman and Triezenberg, 2017; Edwards and Bloom, 2019; D'Aiuto et al., 2019). Model
systems for lytic replication commonly use fetal or new born fibroblasts. These model systems come
with the caveat that viral replication, entry into latency and reactivation take place in the absence of
the host immune response. In particular for latency, where there is a complex interplay between the
host immune response and infected neurons during the establishment and reactivation from latency,
and latency in humans occurs over a period of decades. There is also evidence of persistent immune
infiltration into the ganglia that correlates with herpesvirus latency (Theil et al., 2003). However, in
vitro systems are powerful for identifying neuronal pathways important for different phases of reacti-
vation reactivation, adding back components of the host immune response at specific times and
investigating the role of viral gene products solely in reactivation.

Experiments using primary neuronal in vitro model systems and inducing reactivation by PI3-
kinase inhibition have shown that reactivation in these models involves two phases. Importantly,
these in vitro models permit the dissection of rapid molecular events that may be difficult to observe
in in vivo models. Phase | involves the synchronous up-regulation of lytic gene expression that occurs
independently of the viral transactivator VP16 and the activity of cellular histone demethylases
(Kim et al., 2012; Cliffe et al., 2015). Synchronous induction of lytic gene expression has also been
observed in an ex vivo model of HSV reactivation induced by axotomy combined with inhibition of
NGF-signaling (Du et al., 2011). A population of neurons progresses to full reactivation (Phase II),
which is dependent on both VP16 and HDM activity (Kim et al., 2012; Cliffe et al., 2015). We previ-
ously found that lytic gene expression in Phase | is DLK/JNK-dependent and is correlated with a
JNK-dependent histone methyl/phospho switch on lytic gene promoters (Cliffe et al., 2015). Here
we demonstrate that a Phase | wave of viral gene expression that is dependent on activation of JNK
but not histone demethylases also occurs in response to forskolin. The co-localization of viral
genomes with H3K9me3/pS10 indicates that a histone methyl/phospho switch also permits lytic
gene expression to occur following forskolin treatment in a manner that is independent of HDM
activity. This indicates that reactivation proceeds via a Phase I-wave of gene expression in response
to multiple different stimuli. However, we note that there may be differences in the mechanism and
kinetics of reactivation with different stimuli and/or strains of HSV-1 as reactivation triggered by
axotomy or heat shock following infection with a more pathogenic strain of HSV may bypass Phase |
or occur more rapidly, making Phase | difficult to detect (Cliffe and Wilson, 2017, Liang et al.,
2009; Doll et al., 2020). It will be especially interesting to determine in the future whether there are
differences in the progression to reactivation with different strains of HSV, further elucidate the
underlying progression to reactivation and requirements for Phase I. Ultimately, reactivation kinetics
may relate to differences in the epigenetic structures of viral genomes that vary based on virus
strains or differential manipulation of host-cell signaling pathways.

The host immune response should also be taken into account when considering the progression
to full reactivation. The interplay between the host immune response and progression to reactivation
is complex and differential responses likely inhibit, or as this study suggests, even promote different
phases of the reactivation pathway. The presence of IFN can prevent Phase | reactivation
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(Linderman et al., 2017). CD8 T cells have been linked to controlling HSV reactivation (Divito et al.,
2006), and regulatory T cells have been found to facilitate HSV reactivation in an in vivo model by
suppressing CD8 T cells (Yu et al., 2018). However, a recent in vivo study found that Iba+ phago-
cytic cells play a key role clearing reactivating neurons (Doll et al., 2020), which required viral DNA
replication. HSV latency is not fully silent, with detectible lytic gene expression in infected neurons
(Ma et al., 2014, Singh and Tscharke, 2020). Stimuli, including IL-1, enhanced neuronal excitation
and neuronal stress likely contribute to bursts of lytic gene expression in vivo, but full reactivation
could be controlled by the host immune response. Because of the potential link between HSV infec-
tion and the progression of neurodegenerative disease, understanding the mechanism of ‘leaky’
latency, how this is controlled by the host immune response and any potential effects on neuronal
function will be especially important.

The Wilcox lab demonstrated in 1992 that reactivation can be induced by forskolin, and it has
since been used as a trigger in multiple studies (Smith et al., 1992; Colgin et al., 2001; De Regge
et al., 2010; Danaher et al., 2003). However, the mechanism by which increasing levels of cAMP
induces lytic gene expression was not known. Here, we link cAMP-induced reactivation to the excita-
tion state of the neuron and show that the initial induction of viral gene expression is dependent on
DLK and JNK activity but independent of CREB and PKA. The activity of PKA may be required for
full reactivation, which is also consistent with a role for PKA in overcoming repression of the related
Pseudorabies Virus during de novo axonal infection (Koyuncu et al., 2017). Our data also suggest
that CREB may be involved in the progression to full reactivation. However, the mechanism of action
of the inhibitor used here, 66615, is not entirely clear. It has been reported as preventing CREB-
mediated gene expression, but may act to prevent recruitment of histone acetyltransferases
(Xie et al., 2015). Therefore, inhibition of Phase Il reactivation by 666-15 would be consistent with
more large-scale chromatin remodeling on the viral genome at this stage. In addition, previous work
has identified a role for inducible cAMP early repressor (ICER) in HSV reactivation (Colgin et al.,
2001). ICER is a repressor of gene expression that acts via heterodimerization with members of the
CREB/ATF family of transcription factors. CREB expression is also down-regulated by loss of NGF-
signaling (Riccio et al., 1999), a known trigger of HSV reactivation. Therefore, it is conceivable that
inhibition, rather than activation, of CREB is important for reactivation of HSV from latency.

Neuronal hyperexcitability results in DNA damage followed by repair, which together are thought
to mediate the expression of cellular immediate-early genes (Alt and Schwer, 2018,
Madabhushi et al., 2015). Here we show that forskolin treatment and IL-1pB also induce DNA dam-
age in sympathetic neurons. Previously, HSV reactivation has been found to occur following inhibi-
tion of DNA damage, inhibition of repair, and exogenous DNA damage (Hu et al., 2019). In the
context of repair inhibition or exogenous DNA damage, reactivation was dependent on dephos-
phorylation of AKT by the PHLPP1 phosphatase and activation of JNK, and therefore feeds into the
same pathway as PI3K-inhibition. However, we did not observe decreased AKT phosphorylation in
response to forskolin treatment, indicating that the mechanism of reactivation is distinct following
physiological levels of DNA damage resulting from neuronal hyperexcitability versus perturbation of
the damage/repair pathways.

Conditions that result in hyperexcitability include prolonged periods of stress and inflammation,
which are both linked to the release of IL-1B (Ericsson et al., 1994; Goshen and Yirmiya, 2009,
Koo and Duman, 2009, Saper and Breder, 1994). Consistent with these findings, we show that IL-
1B treatment induces two markers of neuronal excitability, DNA damage and histone H3 phosphory-
lation, in primary sympathetic neurons in addition to promoting a heightened excitation response to
acetylcholine. The IL-1 family of cytokines act via the IL-1 receptor to activate downstream signaling
pathways (Weber et al., 2010). IL-1a, which also signals via the IL-1R, is released locally as an alar-
min. Interestingly, IL-1o. and IL-1B are found at high levels in keratinocytes and are released upon
HSV-1 infection (Orzalli et al., 2018), where they can mediate antiviral responses in underlying stro-
mal fibroblasts and endothelial cells. Notably, upon UVB radiation exposure, keratinocytes and cor-
neal epithelial cells upregulate and release IL-10. and IL-1B (Kupper et al., 1987, Keadle et al.,
2000), potentially linking cytokine and alarmin release from keratinocytes to reactivation of HSV fol-
lowing UV damage. It should also be noted that additional cytokines and growth factors are released
from keratinocytes upon damage, including NGF (Tron et al., 1990). Although deprivation of NGF
results in activation of a neuronal cell stress pathway that can induce HSV reactivation (Cliffe et al.,
2015), exposure of neurons to increased levels of NGF can cause them to become hyperexcitable
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(McMahon, 1996). Therefore, it is possible that the correct balance of neurotrophin levels may bal-
ance HSV latency, akin to how the correct balance of DNA damage and repair is also required to
maintain latency (Hu et al., 2019; Cliffe, 2019). It will be incredibly interesting to determine how
neurotrophin balance, cytokine release and hyperexcitability converge to regulate HSV latency in
vivo. Although there is no direct evidence as yet for neuronal excitability inducing reactivation in an
in vivo model, a commonly used trigger for HSV reactivation, axotomy, can directly induce hyperex-
citability and also result in IL-1pB release from satellite glial cells (Hanani and Spray, 2020). Thermal
stress is used as an in vivo trigger of HSV reactivation (Sawtell and Thompson, 1992), which can
also cause increased neuronal firing of nociceptor sensory neurons (Paricio-Montesinos et al.,
2020). IL-6, which is also a known-inducer of neuronal hyperexcitability (Vezzani and Viviani, 2015),
has been linked to heat stress-induced HSV reactivation (Noisakran et al., 1998). However, a direct
role for hyperexcitability and/or IL-1 remains to be explored in this or other in vivo models of HSV
reactivation.

Previously, we found that JNK activation by DLK is required for reactivation following interruption
of the NGF-signaling pathway. Here, we find that forskolin and IL-13-mediated reactivation also
required DLK activity, further reinforcing the central role of DLK and JNK in reactivation of HSV from
latency. DLK is known as a master regulator of a neuronal response to stress stimuli and mediates
whole cell death, axon pruning, regeneration or degeneration depending on the nature of the stim-
uli. However, it has not before been linked to neuronal hyperexcitability or the response to IL-1j sig-
naling. The known mechanisms of DLK activation include loss of AKT activation and phosphorylation
by PKA (Hao et al., 2016, Wu et al., 2015), neither of which could be linked to HSV reactivation
mediated by forskolin in this study. Following activation by DLK, one mechanism by which JNK is
thought to permit lytic gene expression is via recruitment to viral promoters and histone phosphory-
lation. However, it is likely that there are additional, JNK-dependent effects including activation of
pioneer or transcription factors that also mediate viral gene expression. Further insight into how
HSV has hijacked this cellular pathway to induce lytic gene expression may lead to novel therapeutics
that prevent reactivation, in addition to providing information on how viral gene expression initiates
from promoters assembled into heterochromatin.

Materials and methods

Source or

reference Identifiers Additional information

Strain, strain
background (Mus
musculus, M/F)

Charles River Crl:CD1(ICR)

Strain, strain
background
(Human
herpesvirus 1)

HSV Us11-GFP

| gift from lan
Mohr, NYU.
PMID: 12915535

Strain, strain

HSV-1 17syn+

A gift from Roger

background Everett, MRC

(Human Virology Unit

herpesvirus 1) Glasgow

Cell line (Homo Cell Biolabs Cat # LTV-100
sapiens) RRID:CVCL_JZ09
Cell line ATCC Cat # CCCL-81
(Cercopithecus RRID:CVCL_0059
aethiops)

Recombinant DNA
reagent

PCMV-VSV-G

A gift from Bob Cat # 8454
Weinberg/ RRID:Addgene_8454
Addgene

PMID: 12649500

Recombinant DNA
reagent

Continued on next page

Cat # 12260
RRID:Addgene_12260

A gift from Didier
Trono/Addgene
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Antibody Anti-phospho-Akt Cell Signalling Cat # 4060 WB (1:500)
(S473) (Rabbit Technologies RRID:AB_2315049
monoclonal)

Antibody Anti-Akt (pan) Cell Signalling Cat # C67E7 WB (1:1000)
(Rabbit Technologies RRID:AB_915783
monoclonal)

Antibody Anti-phopsho-c- Cell Signalling Cat # 3270 WB (1:500)
Jun (Rabbit Technologies RRID:AB_2129575
monoclonal)

Antibody Anti-DLK/ Thermo Fisher PA5-32173 WB (1:500)
MAP3K12 (Rabbit RRID:AB_2549646
polyclonal)

Antibody Anti-a-tubulin Millipore sigma Cat # T9026 WB (1:2500)
(Mouse RRID:AB_477593
monoclonal)

Antibody Anti-Rabbit 1IgG Vector Labs Cat # PI-1000 WB (1:10000)
Antibody (H+L), RRID:AB_2336198
Peroxidase (Goat
polyclonal)

Antibody Anti-mouse 1gG Vector Labs Cat # PI-2000 WB (1:10000)
Antibody (H+L), RRID:AB_ 2336177
Peroxidase (Horse
polyclonal)

Antibody Anti- Abcam Cat # Ab5819 IF (1:250)
H3K9me3S10P RRID:AB_305135
(Rabbit polyclonal)

Antibody Anti-Beta-lll Millipore Sigma Cat # AB9354 IF (1:1000)
Tubulin (Chicken RRID:AB_570918
polyclonal)

Antibody Anti-yH2A X Cell Signalling Cat # 80312 IF (1:100)
(Mouse Technologies RRID:AB_2799949
monoclonal)

Antibody Anti-c-Fos (Rabbit Novus Cat # NB110-75039 IF (1:125)
polyclonal) RRID:AB_1048550

Antibody F(ab’)2 Anti-Mouse Thermo Fisher Cat # A21237 IF (1:1000)
19G (H+L) Alexa RRID:AB_2535806
Fluor 647, (Goat
polyclonal)

Antibody F(ab’)2 Anti-Rabbit Thermo Fisher Cat # A21425 IF (1:1000)
19G (H+L) Alexa RRID:AB_2535846
Fluor 555 (Goat
polyclonal)

Antibody Anti-Chicken IgY Abcam Cat # Ab150175 IF (1:1000)
(H+L) Alexa Fluor RRID:AB_2732800
647 (Goat pAb)

Antibody Anti-Chicken IgY Abcam Cat # Ab150173 IF (1:1000)
(H+L) Alexa Fluor RRID:AB_2827653
488 (Goat
polyclonal)

Antibody F(ab’)2 Anti-Rabbit Thermo Fisher Cat # A-11070 IF (1:1000)
1gG (H+L) Alexa RRID:AB_2534114
Fluor 488 (Goat
polyclonal)

Antibody Anti-Mouse IL-1R Leinco Cat #1-736 Blocking (2 ug/mL)
(Goat polyclonal) Technologies RRID:AB_2830857

Sequence-based mGAP F PMID: 19515781 PCR primers CATGGCCTTCCGTGTGTTCCTA

reagent

Continued on next page
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Sequence-based mGAP R PMID:19515781 PCR primers GCGGCACGTCAGATCCA
reagent
Sequence-based ICP27 F PMID:21285374 PCR primers GCATCCTTCGTGTTTGTCATTCTG
reagent
Sequence-based ICP27 R PMID:21285374 PCR primers GCATCTTCTCTCCGACCCCG
reagent
Sequence-based ICP8 F PMID:23322639 PCR primers GGAGGTGCACCGCATACC
reagent
Sequence-based ICP8 R PMID:23322639 PCR primers GGCTTAAATCCGGCATGAC
reagent
Sequence-based ICP4 F This paper PCR primers TGCTGCTGCTGTCCACGC
reagent
Sequence-based ICP4 R This paper PCR primers CGGTGTTGACCACGATGAGCC
reagent
Sequence-based UL30 F PMID:22383875 PCR primers CGCGCTTGGCGGGTATTAACAT
reagent
Sequence-based UL30 R PMID:22383875 PCR primers TGGGTGTCCGGCAGAATAAAGC
reagent
Sequence-based uL48 F This paper PCR primers TGCTCGCGAATGTGGTTTAG
reagent
Sequence-based UL48 R This paper PCR primers CTGTTCCAGCCCTTGATGTT
reagent
Sequence-based gCF This paper PCR primers CAGTTTGTCTGGTTCGAGGAC
reagent
Sequence-based gCR This paper PCR primers ACGGTAGAGACTGTGGTGAA
reagent
Sequence-based shRNA: DLK-1 Broad Institute: TRCNO0000022573
reagent Genetic

Perturbation

Platform/Millipore

Sigma
Sequence-based shRNA: DLK-2 Broad Institute: TRCNO0000022572
reagent Genetic

Perturbation

Platform/Millipore

Sigma
Sequence-based shRNA: non- PMID:16873256
reagent targeting control
Commercial assay Quick-RNA Zymo Research R1054
or kit Miniprep
Commercial assay SuperScript IV ThermoFisher 18091050
or kit First-Strand

Synthesis System

Commercial assay SYBR Green PCR ThermoFisher 4309155
or kit Master Mix
Chemical Acycloguanosine Millipore Sigma Ad669 10 uM, 50 uM
compound, drug
Chemical FUDR Millipore Sigma F-0503 20 uM
compound, drug
Chemical Uridine Millipore Sigma U-3003 20 uM
compound, drug
Chemical SP600125 Millipore Sigma S5567 20 uM
compound, drug
Continued on next page
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Chemical GNE-3511 Millipore Sigma 533168 4 uM
compound, drug
Chemical GSK-J4 Millipore Sigma SMLO0701 2 uM
compound, drug
Chemical L-Glutamic Acid Millipore Sigma G5638 3.7 ug/mL
compound, drug
Chemical Forskolin Tocris 1099 60 uM
compound, drug
Chemical LY 294002 Tocris 1130 20 uM
compound, drug
Chemical 666-15 Tocris 5661 2 uM
compound, drug
Chemical SQ 22,536 Tocris 1435 50 uM
compound, drug
Chemical KT 5720 Tocris 1288 3uM
compound, drug
Chemical TEA Tocris 3068 10 mM
compound, drug
Chemical CsCl Tocris 4739 3mM
compound, drug
Chemical OG-L002 Tocris 6244 30 uM
compound, drug
Chemical S2101 Tocris 5714 20 uM
compound, drug
Chemical Tetrodotoxin Tocris 1069 1uM
compound, drug
Chemical ESI-09 Tocris 4773 10 uM
compound, drug
Chemical ZD 7288 Cayman 15228 20 uM
compound, drug
Chemical 8-bromo-cyclic Cayman 14431 125 uM
compound, drug AMP
Chemical NGF 2.5S Alomone Labs N-100 50 ng/mL
compound, drug
Chemical Primocin Invivogen ant-pm-1 100 pg/mL
compound, drug
Chemical Aphidicolin AG Scientific A-1026 3.3 ug/mL
compound, drug
Chemical IL-1B Shenendoah Bio. 100-167 30 ng/mL
compound, drug
Chemical WAY-150138 Pfizer, gift from NA 10 pg/mL
compound, drug Lynn Enquist and

Jay Brown.
Chemical Fura-2 AM Thermo Fisher F1221 5uM
compound, drug
Other Hoescht Stain Thermo 62249 2uM

Reagents

Compounds used in the study are as follows: Acycloguanosine, FUDR, Uridine, SP600125, GNE-
3511, GSK-J4, L-glutamic acid, and Ivabradine (Millipore Sigma); Forskolin, LY 294002, 666-15, SQ
22536, KT 5720, tetraethylammonium chloride, cesium chloride, OG-L002, S2101, tetrotdotoxin, and
ESI-09 (Tocris); 1,9-dideoxy-Forskolin, ZD 7288 and 8-bromo-cyclic AMP (Cayman Chemicals);
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nerve growth factor 2.5S (Alomone Labs); Primocin (Invivogen); aphidicolin (AG Scientific); IL-1B
(Shenandoah Biotechnology); WAY-150138 was kindly provided by Pfizer, Dr. Jay Brown at the Uni-
versity of Virginia, and Dr. Lynn Enquist at Princeton University. Compound concentrations were
used based on previously published IC50s and assessed for neuronal toxicity using the cell body and
axon health and degeneration index (Supplementary file 1 Table 1 and 2). All compounds used had
an average score <1. Untreated controls are quantified as ‘"Mock’ treatments for all experiments.

Preparation of HSV-1 virus stocks

HSV-1 stocks of eGFP-Us11 Patton were grown and titrated on Vero cells obtained from the Ameri-
can Type Culture Collection (Manassas, VA). Cells were maintained in Dulbecco’s Modified Eagle’s
Medium (Gibco) supplemented with 10% FetalPlex (Gemini Bio-Products) and 2 mM L-Glutamine.
Cells were confirmed to be mycoplasma negative using the Mycoplasma PCR Detection Kit (amb).
eGFP-Us11 Patton (HSV-1 Patton strain with eGFP reporter protein fused to true late protein Us11
[Benboudjema et al., 2003]) was kindly provided by Dr. lan Mohr at New York University.

Primary neuronal cultures

Sympathetic neurons from the superior cervical ganglia (SCG) of post-natal day 0-2 (P0-P2) or adult
(P21-P24) CD1 Mice (Charles River Laboratories) were dissected as previously described
(Cliffe et al., 2015). Rodent handling and husbandry were carried out under animal protocols
approved by the Animal Care and Use Committee of the University of Virginia (UVA). Ganglia were
briefly kept in Leibovitz's L-15 media with 2.05 mM L-Glutamine before dissociation in Collagenase
Type IV (1 mg/mL) followed by Trypsin (2.5 mg/mL) for 20 min each at 37°C. Dissociated ganglia
were triturated, and approximately 10,000 neurons per well were plated onto rat tail collagen in a
24-well plate. Sympathetic neurons were maintained in CM1 (Neurobasal Medium supplemented
with PRIME-XV 1S21 Neuronal Supplement (Irvine Scientific), 50 ng/mL Mouse NGF 2.5S, 2 mM
L-Glutamine, and Primocin). Aphidicolin (3.3 ug/mL), Fluorodeoxyuridine (20 uM) and Uridine (20
uM) were added to the CM1 for the first five days post-dissection to select against proliferating
cells.

Establishment and reactivation of latent HSV-1 infection in primary
neurons

Latent HSV-1 infection was established in P6-8 and P30-32 sympathetic neurons from SCGs. Neurons
were cultured for at least 24 hr without antimitotic agents prior to infection. The cultures were
infected with eGFP-Us11 (Patton recombinant strain of HSV-1 expressing an eGFP reporter fused to
true late protein Us11). Neurons were infected at a Multiplicity of Infection (MOI) of 7.5 PFU/cell
(assuming 1.0 x 10* neurons/well/24-well plate) in DPBS +CaCl, +MgCl, supplemented with 1%
Fetal Bovine Serum, 4.5 g/L glucose, and 10 uM Acyclovir (ACV) for 3 hr at 37 °C. Post-infection,
inoculum was replaced with CM1 containing 50 uM ACV for 5-6 days, followed by CM1 without
ACV. Reactivation was carried out in DMEM/F12 (Gibco) supplemented with 10% Fetal Bovine
Serum, Mouse NGF 2.5S (50 ng/mL) and Primocin. Inhibitors were added either 1 hr prior to or con-
currently with the reactivation stimulus. WAY-150138 (2-10 pug/mL) was added to reactivation cock-
tail to limit cell-to-cell spread. Reactivation was quantified by counting number of GFP-positive
neurons or performing Reverse Transcription Quantitative PCR (RT-gPCR) of HSV-1 lytic mRNAs iso-
lated from the cells in culture.

Analysis of mMRNA expression by reverse-transcription quantitative PCR
(RT-GPCR)

To assess relative expression of HSV-1 lytic mRNA, total RNA was extracted from approximately 1.0
x 10% neurons using the Quick-RNA Miniprep Kit (Zymo Research) with an on-column DNase | diges-
tion. mRNA was converted to cDNA using the SuperScript IV First-Strand Synthesis system (Invitro-
gen) using random hexamers for first-strand synthesis and equal amounts of RNA (20-30 ng/
reaction). To assess viral DNA load, total DNA was extracted from approximately 1.0 x 10* neurons
using the Quick-DNA Miniprep Plus Kit (Zymo Research). gPCR was carried out using Power SYBR
Green PCR Master Mix (Applied Biosystems). The relative mRNA or DNA copy number was deter-
mined using the Comparative Ct (AACt) method normalized to mRNA or DNA levels in latently
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infected samples. Viral RNAs were normalized to mouse reference gene GAPDH. All samples were
run in duplicate on an Applied Biosystems QuantStudio 6 Flex Real-Time PCR System and the mean
fold change compared to the reference gene calculated. Primers used are described in
Key Resources Table.

Western blot analysis

Neurons were lysed in RIPA Buffer with cOmplete, Mini, EDTA-Free Protease Inhibitor Cocktail
(Roche) and PhosSTOP Phosphatase Inhibitor Cocktail (Roche) on ice for 1 hr with regular vortexing
to aid lysis. Insoluble proteins were removed via centrifugation, and lysate protein concentration was
determined using the Pierce Bicinchoninic Acid Protein Assay Kit (Invitrogen) using a standard curve
created with BSA standards of known concentration. Equal quantities of protein (20-50 pg) were
resolved on 4-20% gradient SDS-Polyacrylamide gels (Bio-Rad) and then transferred onto Polyvinyli-
dene difluoride membranes (Millipore Sigma). Membranes were blocked in PVDF Blocking Reagent
for Can Get Signal (Toyobo) for 1 hr. Primary antibodies were diluted in Can Get Signal Immunoreac-
tion Enhancer Solution 1 (Toyobo) and membranes were incubated overnight at 4°C. HRP-labeled
secondary antibodies were diluted in Can Get Signal Immunoreaction Enhancer Solution 2 (Toyobo)
and membranes were incubated for 1 hr at room temperature. Blots were developed using Western
Lightning Plus-ECL Enhanced Chemiluminescence Substrate (PerkinElmer) and ProSignal ECL Blot-
ting Film (Prometheus Protein Biology Products) according to manufacturer’s instructions. Blots were
stripped for reblotting using NewBlot PVDF Stripping Buffer (Licor). Band density was quantified in
ImagelJ.

Preparation of lentiviral vectors

Lentiviruses expressing shRNA against DLK (DLK-1 TRCN0000022572, DLK-2 TRCN0000022573), or
a control lentivirus shRNA (Everett et al., 2006) were prepared by co-transfection with psPAX2 and
pCMV-VSV-G (Stewart et al., 2003) using the 293LTV packaging cell line (Cell Biolabs). Supernatant
was harvested at 40 hr and 64 hr post-transfection. Sympathetic neurons were transduced overnight
in neuronal media containing 8 ug/mL protamine and 50 uM ACV.

Immunofluorescence

Neurons were fixed for 15 min in 4% Formaldehyde and blocked in 5% Bovine Serum Albumin and
0.3% Triton X-100 and incubated overnight in primary antibody. Following primary antibody treat-
ment, neurons were incubated for 1 hr in Alexa Fluor 488-, 555-, and 647-conjugated secondary anti-
bodies for multi-color imaging (Invitrogen). Nuclei were stained with Hoechst 33258 (Life
Technologies). Images were acquired using an sCMOS charge-coupled device camera (pco.edge)
mounted on a Nikon Eclipse Ti Inverted Epifluorescent microscope using NIS-Elements software
(Nikon). Images were analyzed and intensity quantified using ImageJ.

Click-chemistry

For EdC-labeled HSV-1 virus infections, an MOI of 7.5 was used. EdC labeled virus was prepared
using a previously described method (McFarlane et al., 2019). Click-chemistry was carried out a
described previously (Alandijany et al., 2018) with some modifications. Neurons were washed with
CSK buffer (10 mM HEPES, 100 mM NaCl, 300 mM Sucrose, 3 mM MgCl,, 5 mM EGTA) and simulta-
neously fixed and permeabilized for 10 min in 1.8% methonal-free formaldehyde (0.5% Triton X-100,
1% phenylmethylsulfonyl fluoride (PMSF)) in CSK buffer, then washed twice with PBS before continu-
ing to the click-chemistry reaction and immunostaining. Samples were blocked with 3% BSA for 30
min, followed by click-chemistry using EdC-labeled HSV-1 DNA and the Click-iT EAU Alexa Flour
555 Imaging Kit (ThermoFisher Scientific, C10638) according to the manufacturer’s instructions. For
immunostaining, samples were incubated overnight with primary antibodies in 3% BSA. Following
primary antibody treatment, neurons were incubated for 1 hr in Alexa Fluor 488-, 555-, and 647-con-
jugated secondary antibodies for multi-color imaging (Invitrogen). Nuclei were stained with Hoechst
33258 (Life Technologies). Images were acquired at 60x using an sCMOS charge-coupled device
camera (pco.edge) mounted on a Nikon Eclipse Ti Inverted Epifluorescent microscope using NIS-Ele-
ments software (Nikon). Images were analyzed and intensity quantified using ImageJ.

Cuddy, Schinlever, et al. eLife 2020;9:€58037. DOI: https://doi.org/10.7554/eLife.58037 24 of 31


https://doi.org/10.7554/eLife.58037

eLife

Microbiology and Infectious Disease | Neuroscience

Cytosolic Ca®* imaging using ratiometric Fura-2 (microscopy)

For ratiometric Ca?* imaging, neurons were seeded on coverslips and incubated for 30 min at RT
with 5 uM Fura-2-AM, 0.02% pluronic acid in Ringer solution (in mM, 155 NaCl, 4.5 KCl, 2 CaClj, 1
MgCl,, 5 HEPES, 10 glucose, adjusted to pH 7.4). Excitations of Fura-2 at 340 nm and 380 nm emis-
sions were carried out using a DG4 llluminator (Sutter Instruments). Emissions were collected at 510
nm using an ORCA-Flash 4.0 V2 CMOS camera (Hamamatsu). Cells were imaged every 500 millisec-
onds for the duration of the experiment. Acetylcholine (100 uM) and lonomycin (2 uM) were applied
at indicated timepoints. Data were acquired and processed using SlideBook six software.

Cytosolic Ca?* imaging using ratiometric Fura-2 (FlexStation)

For ratiometric Ca®* imaging, neurons were seeded on a 96-well black walled plate and incubated
for 30 min at RT with 5 uM Fura-2-AM, 0.02% of pluronic acid in Ringer solution ([in mM] 155 NaCl,
4.5 KCl, 10 CaCl,, 1 MgCly, 5 HEPES, 10 glucose, pH 7.4). Fura-2 emissions were collected at 510
nm and with 340/380 nm excitation. Plates were imaged using the FlexStation 3 (Molecular Devices).
Cells were imaged every 5 s for the duration of the experiment.

Statistical analysis

Power analysis was used to determine the appropriate sample sizes for statistical analysis. All statisti-
cal analysis was performed using Prism V8.4. An unpaired t-test was used for all experiments where
the group size was 2. All other experiments were analyzed using a one-way ANOVA with a Tukey's
multiple comparison. Specific analyses are included in the figure legends. For all reactivation experi-
ments measuring GFP expression, viral DNA, gene expression or DNA load, individual biological
replicates were plotted (an individual well of primary neurons) and all experiments were repeated
from pools of neurons from at least three litters. EJC virus and H3K9me3S10/p co-localization was
quantified using ImageJ after sample blinding of at least 8 fields of view from two biological repli-
cates. Mean fluorescence intensity of YH2AX and H3K9me3pS10 was quantified using ImageJ from
at least 100 cells from at least three biological replicates.
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