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Measuring Theoretical and Actual Observation Influence
in the Met Office UKV: Application to Doppler
Radial Winds
A. M. Fowler1,2 , D. Simonin3 , and J. A. Waller3

1Department of Meteorology, University of Reading, Reading, UK , 2National Centre for Earth Observation, University
of Reading, Reading, UK, 3MetOffice@Reading, Reading, UK

Abstract In numerical weather prediction it is important to objectively measure the value of the
observations assimilated. However, methods such as the forecast sensitivity to observation impact and
observing system experiments are difficult to apply to convective scale data assimilation (DA) systems such
as the Met Office's UK Variable-resolution model (UKV). We develop a new method to estimate the
influence of the observations on the analysis, acknowledging that the influence depends not only on
the uncertainty in the observations and prior, but how well these are prescribed in the assimilation.
Monitoring both the actual and theoretical observation influence can flag observations that are being
assimilated incorrectly and quantify the harm caused to the analysis. By applying these new estimates of
the observation influence to the assimilation of Doppler Radial Winds in the UKV system, we demonstrate
their ability, along with expert knowledge, to inform the optimization of both the observation network and
DA system.

Plain Language Summary When forecasting the weather, it is essential to regularly combine
(assimilate) numerical models of the atmosphere with observations to ensure that the forecasts stay in line
with reality. At the Met Office ∼45,000 observations coming from a myriad of instruments are used every
hour to constrain high-resolution forecasts over the United Kingdom. Within this work we develop a new
method to quantify how valuable different types of observations are for constraining the forecast along with
a metric to assess if they are being assimilated correctly. It is demonstrated how the combination of these
two metrics can be used to guide changes to the observing network and assimilation system.

1. Introduction
The Met Office's UK Variable-resolution model (UKV) system (Tang et al., 2013) aims to provide detailed
short-range forecasts over the UK region. The interior resolution of the UKV is 1.5 km, permitting the UKV to
explicitly model convection giving more realistic forecasts of rainfall. To keep the model in line with reality,
∼45,000 observations are assimilated every hour using incremental 4DVar (Milan et al., 2019). Observation
types include those that provide high-resolution information not needed in the global system, for example,
radar-based precipitation rate analysis (Jones & Macpherson, 1997; Macpherson, 2001), Doppler radial wind
data (Simonin et al., 2014), and screen-level temperature and humidity data from roadside sensors.

An objective measure of the value of the observations assimilated is essential to ensure that they are being
utilized optimally. For example, such a measure can be used to guide changes to the observation network,
flag issues with the data assimilation system and assess changes to the way observations are assimilated.
Two methods typically used to monitor the impact of observations in the Met Office's global system are
Observation System Experiments (OSEs, e.g., Hilton et al., 2009) and Forecast Sensitivity to Observation
impact (FSOI, Lorenc & Marriott, 2014). Unfortunately, neither are particularly suited to convective-scale
forecasting. For the OSE's this is due to the difficulty in the verification of forecast performance due to the
small-scale variability of rainfall (Gilleland et al., 2009), as well as the usual problems with the expense of
such an approach. For the FSOI the problems are twofold. The first is the nonlinearity of the model, meaning
the adjoint at the necessary scales is only valid for too limited a time. Second, the analysis normally used
for validation is not independent for a short-term forecast; this necessitates the use of a subset of observa-
tions to validate the forecast, skewing the impact of the observations measured to those used for validation
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(Buttery & Macpherson, 2018). If an ensemble is available, then the problem of a lack of suitable adjoint
can be addressed by the ensemble FSOI (EFSOI) proposed by Kalnay et al. (2012). This has been applied to
the Deutscher Wetterdienst's (DWD) convective-scale limited area forecasting model COSMO (Consortium
for Small-scale Modelling) in combination with the localized ensemble transform Kalman filter KENDA
(Kilometre-scale Ensemble Data Assimilation) by Sommer and Weissmann (2016) and subsequently Necker
et al. (2018), although the problem of needing to validate against observations remains.

Due to the difficulty in quantifying the observation impact on the forecast in the UKV and the lack of a
suitable ensemble framework we instead propose to study the influence of the observations on the analysis,
which in turn provides insight into the impact of the observations on the forecast. The influence that the
observations have on the analysis depends primarily on the uncertainty of the observations and the prior;
that is, accurate observations that provide information in regions of high prior uncertainty should have a
greater influence than inaccurate observations. However, the influence of the observations will also depend
on how well the data are assimilated, for example, the accuracy of the assumed error statistics and the con-
sistency of the observation operator. Within this paper we propose a method to estimate the theoretical
influence of the observations assuming that the system is optimal, in addition to the actual influence, which
will be sensitive to the accuracy of these assumptions. Monitoring of both the theoretical and actual obser-
vation influence can be used to identify observations which are being assimilated suboptimally and allow
for the harm caused to the analysis to be inferred.

2. Observation Influence Measured by E[Jb(xa)]
In variational data assimilation the analysis is computed as the maximum a posterior probability state
assuming the prior (background), xb ∈ R

n, and observations, y ∈ R
p, are randomly drawn from the fol-

lowing Gaussian distributions, respectively: xb ∼N(xt, B) and y∼N(h(xt), R). xt is the truth in state space,
h ∶ R

n → R
p is the (possibly nonlinear) mapping from the state variables to the observed variables and B

and R are the prior and observation error covariance matrices, respectively. The data assimilation problem
can therefore be formulated as finding the minimum of the following cost function:

J(x) = −constant × ln (P(x|y))
= (x − xb)TB−1(x − xb) + (y − h(x))TR−1(y − h(x))
= Jb(x) + Jo(x).

(1)

An analytical expression for the analysis that minimizes (1) can then be given by

xa = xb + Kdo
b, (2)

where do
b = y − h(xb) is referred to as the innovation and

K = BHT(HBHT + R)−1 (3)

is the Kalman gain matrix, which governs how much weight should be given to the innovation when updat-
ing the prior (Kalnay, 2003). H is the Jacobian of the observation operator linearized about the best estimate
of the state. When the observation operator is nonlinear, the analysis given in (2) can be found iteratively by
relinearizing H about successive estimates of the state.

A measure of the observation influence, OI, can then be defined as E[Jb(xa)],

OI = E[(xa − xb)TB−1(xa − xb)]. (4)

OI measures the expected influence of the observations in pulling the analysis, xa, away from the prior
estimate of the state, xb.

In an optimal system (i.e., the statistics of the data uncertainty are correctly specified, and the observation
operator is close to linear) the total degrees of freedom is given by E[J(xa)]= p (the number of observations)
(Bennett et al., 1993; Talagrand, 1999), and the OI is equivalent to the degrees of freedom for signal. In this
case, OI is bounded by 0 and p, and E[Jo(xa)] = p − E[Jb(xa)] (known as the degrees of freedom for noise).
Therefore, OI/p tells you the percentage of information constraining each degree of freedom that is coming
from the observations versus the background on average. In an optimal system, OI saturating as the number
of observations is increased could be a useful indicator of the amount of redundancy in the observations;
however, in a suboptimal system this may be a misleading interpretation.
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2.1. Theoretical Observation Influence

An analytical value for OI can be derived if all assumptions made when assimilating the data are correct
(Rodgers, 2000; Talagrand, 1999). This is evaluated in Appendix A to be

OITh = trace(HK). (5)

This has a lower bound of 0 (when the observations have had no influence on the analysis) and an upper
bound of p (when the analysis perfectly fits the observations). Typically, we would wish to derive the con-
tribution to the total observation influence by just a subset of observations. Following Chapnik et al. (2006),
suppose 𝜫 ∈ R

pi×p projects the full set of p observations onto just one observational type with pi values.
Then assuming the errors of the subset of observations are uncorrelated with the rest of the observations,

OITh
Π = trace(𝜫HK𝜫

T) (6)

provides the contribution to the total observation influence from the subset of the observations given by 𝚷y.

Directly computing OITh is challenging due to the need to compute the full K even when only interested
in a subset of observations. The Degrees of Freedom for Signal as given by (5) and (6) has previously been
estimated by the Lanczos conjugate gradient method at the ECMWF (Cardinali et al., 2004; Fisher, 2003)
and by a randomization method at Meteo-France, whereby the trace of HK is evaluated with a large sample
of perturbed analyses (Brousseau et al., 2014; Chapnik et al., 2006; Desroziers et al., 2009)).

2.2. Actual Observation Influence

In deriving the OITh it is assumed that the innovation covariance, E[do
b(d

o
b)

T], is given by D = HBHT +R. In
practice it is not possible to specify B and R exactly at all times and locations, so each will often exhibit large
misspecifications. Assuming E[do

b(d
o
b)

T] = D can also be a poor assumption when the data are non-Gaussian,
have biases that have not been adequately corrected, or there are unaccounted for correlations between the
observations and prior.

Let D̃ be the true covariances of the innovation such that D̃ = E[do
b(d

o
b)

T], then the actual observation
influence is

OIAc = trace(HKD̃D−1), (7)

see Appendix A. The derivation of OIAc makes no assumption about the nature of the distribution of the
innovations, allowing for both unaccounted for biases and non-Gaussianity. OIAc has a lower bound of 0
but unlike OITh it has no upper bound.

The contribution to the total actual observation influence from a subset of observations defined as 𝚷y is
given by

OIAc
Π = trace(𝜫HKD̃D−1

𝜫
T). (8)

3. Caveats in Interpreting the Difference Between Actual and Theoretical
Observation Influence
Comparing the actual and theoretical OI allows not only for the influence of the observations to be assessed
but also if they are having the correct influence. This information can then be used to guide improvements
to the DA system. However, there are some caveats that should be noted when interpreting the difference
between actual and theoretical observation influence.

3.1. Interpreting the Source of the Discrepancy

If the actual and theoretical OI do not match, this implies that D̃ ≠ D. The reasons for this could lie in
the misspecification of either the background or observation error statistics making it difficult to inter-
pret the source of the discrepancy. We illustrate this using a simple numerical experiment, similar to those
described in Waller, et al. (2016) and Fowler et al. (2018), in which a circular domain is discretized into
n = 32 grid points. The p = 16 (evenly distributed) observations are made directly of the state variables.
The true statistics of the prior and observations are unbiased and Gaussian, consistent with the DA the-
ory; however, in assimilating the data the covariances are not correctly specified. The true and assumed
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Figure 1. Theoretical OI, actual OI, and optimal OI, as a function of different parameters of the true error
characteristics; background error variance (top left), observation error variance (top right), background correlation
lengthscale (bottom left), observation error correlation lengthscale (bottom right). In each panel the vertical dashed
line corresponds to the assumed value used in the assimilation. The true and assumed values only differ for the
parameter being varied.

R and B are both generated using circulant matrices with second-order-autoregressive correlation functions,
c(k) = (1+ rk∕L)e−rk∕L, where L is the correlation lengthscale and rk is the distance between two points. The
assumed parameters for R and B are kept constant and given by 1 and 2 for the background and observation
error variances, respectively, and 5 and 0.1 for the background and observation error correlation lengthscales
(Lo and Lb), respectively.

In Figure 1 the theoretical, actual, and optimal (defined shortly) OI values are plotted as a function of the
four true parameters. In each panel only one true parameter is varied with the others equal to the assumed
values. Comparing (5) and (7) we see that the difference between OITh and OIAc depends upon D̃D−1, and
hence makes no distinction between whether the misspecification is in B or R. We, therefore, see that the
relationship between the theoretical and actual OI is similar in each of the following situations: if we under-
estimate (overestimate) the observation error variances, if we underestimate (overestimate) the background
error variances or if we underestimate (overestimate) the correlation length-scales. That is, underestimat-
ing any of these parameters individually will result in the actual observation influence being greater than
the theoretical value. Therefore, from the actual and theoretical observation influence alone it is impossible
to say what the source of the discrepancy is. It is also therefore possible to make OIAc and OITh agree for the
wrong reason as long as D̃ = D.

Despite this, attempts to use the discrepancy in the OI to objectively correct the error statistics used within
the assimilation have been proposed with some success. Desroziers and Ivanov (2001), later modified
by Chapnik et al. (2006), defined a scalar multiplication factor to tune the background error covariance
matrix given by the ratio of the theoretical to actual E[Jb(xa)] for different subsets of the state variables.
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The subsets were defined using the projection matrix 𝚷b such that the theoretical (E[Jb(xa)])
𝜫

b becomes
Tr

(
𝜫

bKH(𝜫b)T) using the permutation property of the trace of a product of matrices. Tr
(
𝜫

bKH(𝜫b)T)
was evaluated using the randomization technique and the actual value of E[Jb(xa)] was evaluated using
direct evaluation of E[Jb(xa)] for the same subsets of state variables over a representative sample. A similar
multiplication for tuning R was also derived by the ratio of the actual to theoretical degrees of freedom for
noise E[Jo(xa)] for different subsets of observations. Iterating these updates to B and R will help to align the
theoretical and actual E[Jb(xa)] but will not guarantee an optimal Kalman gain matrix, K, as seen in these
simple experiments.

3.2. Inferring if Underfitting/Overfitting the Observations

Overfitting (underfitting) the observations can be defined as the optimal OI being less (more) than the actual
OI, where the optimal OI is defined as

OIopt = trace(HKopt). (9)

Kopt is the optimal Kalman gain matrix derived using the correct error covariance matrices. Equations 9 and
5 naturally have the same form, the difference being that K in (5) is derived from the covariances used within
the assimilation. In practice OIopt is never available and so we do not have the ability to directly compute if
the observations are over or underfitted in this way. It would, therefore, be informative if the relationship
between the theoretical and actual OI could be used to determine overfitting/underfitting to the observa-
tions. This would allow for the potential damage caused by not assimilating the observations correctly to be
assessed; in that overfitting is potentially more damaging than underfitting. However, as well as not easily
being able to use the discrepancy between OITh and OIAc to update the error covariance matrices, it is also
difficult to use the discrepancy to make conclusions about whether you are overfitting or underfitting the
observations. This is illustrated in Figure 1, where the optimal OI is given by the yellow lines. We see that the
interpretation of the relationship between the theoretical and actual OI in terms of overfitting/underfitting
depends on source of misspecification. For example, if it is just the background error variance that is misspec-
ified then OIAc >OITh implies that the observations are underfitted (although marginally in this example).
However, if it is just the observation error variance that is misspecified, then OIAc >OITh implies that the
observations are overfitted.

Acknowledging these caveats, it is not recommended that the OITh and OIAc metrics are used to blindly
make changes to the DA system. However, by providing valuable information about the quality/optimality
of the DA system, they can be combined with expert knowledge of the instrument and assimilation system
to guide changes.

4. Estimating Theoretical and Actual Observation Influence Using
Observation-Model Misfits
Within this work we describe a new approach to estimate both the actual and theoretical observation influ-
ence using observation-model misfits. This approach has the benefit of being simpler to implement than
previously proposed methods and not reliant on a particular architecture of the DA system. It also allows
both the actual and theoretical observation influence to be partitioned into different subsets of observations
and directly compared, which cannot be achieved when quantifying E[Jb(xa)] directly from the background
part of the cost function in model space.

Let the analysis increments (in observation space) be defined as da
b = h(xa) − h(xb). This can be written in

terms of the innovation by approximating h(xa)− h(xb) as H|xb (xa − xb), where H|xb is the nonlinear obser-
vation operator linearized about the background state. Substituting in the expression for the analysis (2)
we find

da
b = HKdo

b. (10)

Similarly, let the analysis residual be defined as do
a = y − h(xa). This can be approximated as do

b − da
b, by

replacing h(xa) (= h(xb + Kdo
b)) with h(xb) + H|xb Kdo

b. Therefore,

do
a = (I-HK)do

b. (11)
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Note that I-HK = RD−1 using (3).

The covariance of the analysis increment and residual can then be derived as

E[da
b(d

o
a)

T] = HKD̃D−1R. (12)

In Desroziers et al. (2005) this is shown to provide an estimate of HPaHT, where Pa is the analysis error
covariance matrix, when the assimilation system is optimal, that is, D̃ = D.

The covariance of the innovation and the analysis residual can similarly be derived as

E[do
b(d

o
a)

T] = D̃D−1R. (13)

In Desroziers et al. (2005) this is shown to provide an estimate of R when the assimilation system is opti-
mal. Equation 13 has been used in many studies to infer the R matrix when the sources of uncertainty are
multifarious (e.g., Stewart et al., 2013; Waller, Simonin, et al., 2016; Weston et al., 2014).

In the case when R contains off-diagonal elements or in the instance that R is parameterized differently from
how we wish to stratify the influence metrics, it is beneficial to first normalize the residuals, innovations, and
increments by R−1/2. For example, if the observation uncertainty is given as a function of the observed value,
but we only wish to separate out the observation influence by position of the observation. Let d̂ = R−1∕2d,
then,

E
[
d̂

a
b(d̂

o
a)

T
]
= R−1∕2HKD̃D−1R1∕2, (14)

E
[
d̂

o
b(d̂

o
a)

T
]
= R−1∕2D̃D−1R1∕2. (15)

Using (14) and (15) we can now derive estimates of the theoretical and actual observation influence:

OITh = trace
(

E
[
d̂

a
b(d̂

o
a)

T
] (

E
[
d̂

o
b(d̂

o
a)

T
])−1

)
(16)

OIAc = trace
(

E
[
d̂

a
b(d̂

o
a)

T
])

(17)

Note that the equalities in (16) and (17) only hold in the case of a linear observation operator. A discussion
of highly nonlinear observation operators is given in the supporting information.

It is not necessary to remove biases from the vectors d̂ as we wish to include the effect of the unaccounted for
biases in the true covariance of the innovations, D̃. This inconsistency with the assumptions made during the
assimilation will therefore implicitly be present in the estimate of OIAc but is canceled out in the theoretical
estimate when computed using (16).

Equations 16 and 17 can be derived from sample estimates of the covariances, assuming that the statistics
do not vary over the sample.

OITh ≈ trace
⎛⎜⎜⎝

N∑
i=1

(
d̂

a
b

)
i

(
d̂

o
a

)T

i

( N∑
i=1

(
d̂

o
b

)
i

(
d̂

o
a

)T

i

)−1⎞⎟⎟⎠ (18)

OIAc ≈ trace

(
1

N − 1

N∑
i=1

(
d̂

a
b

)
i

(
d̂

o
a

)T

i

)
(19)

where N is the sample size.

As the observation operator is linearized about the background, the Kalman gain matrix, in which the
linearized observation operator appears, could potentially vary significantly over the sample. Therefore,
selecting the sample and how to stratify the metrics needs careful consideration.

We see that normalizing the misfits by R−1/2 first acts to nondimensionalize the values. This has the benefit
that, instead of dividing through by the sample estimate of D̃D−1R in (18), we divide through by the sample
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estimate of R−1∕2D̃D−1R1∕2, which should be better conditioned (Tabeart et al., 2018). However, dividing
through by the sample estimate of R−1∕2D̃D−1R1∕2 could still be problematic and make the estimate of the
theoretical OI sensitive to the sample size and the assumptions made when constructing the off diagonal
elements (e.g., ergodicity, isotropy, homogeneity). In addition to this we are only interested in a subset of
the observations forcing us to assume R−1∕2D̃D−1R1∕2 is block diagonal so that

OITh
𝜫

≈ trace
(

E
[
𝜫 d̂

a
b(𝜫 d̂

o
a)

T
] (

E
[
𝜫 d̂

o
b(𝜫 d̂

o
a)

T
])−1

)
. (20)

These concerns will be addressed in the next section in which the estimates of theoretical and actual OI are
applied to the assimilation of Doppler radial winds.

To summarize, the proposed method provides a new way to measure the actual and theoretical influence
of a subset of observations. Such metrics allow one to assess the validity of the assumptions made during
the assimilation and to highlight observations that are potentially damaging to the analysis and hence the
forecast. Computing these metrics from a sample of innovation and residual statistics means that they are
easy to obtain for any DA system, as long as the observation operator is sufficiently linear. However, caution
should be taken to ensure that the sample size is large enough to provide meaningful statistics with careful
thought given to how the data are stratified.

5. Application to DRWs in the UKV
Doppler radial winds (DRWs) measured from weather radar provide high spatial and temporal estimates of
wind in precipitating areas, making them vital for convective-scale forecasting (Simonin et al., 2014). The
UK has a network of 18 C-Band weather radars each producing a plan position indicator (PPI) scan every
5 min at typically five different elevations, with a 1◦ by 600 m volume resolution. Two scanning strategies
simultaneously produce rain fall and DRW estimates by mechanically moving the antenna to the desired
elevations before each 360◦ scan. The five elevation angles have been chosen empirically to be 1◦, 2◦, 4◦,
6◦, and 9◦. The mechanical nature of the scans means that the 5 min time constraint severely restricts the
time available to perform any additional scans needed for quality control (e.g., a vertical dual polarization
scan for reflectivity calibration or a linear depolarization ratio (LDR) scan used to detect the presence of
the bright band). Application of the two OI metrics may provide a more objective argument to determine if
these five elevation angles are all informative or if alternatively the number of elevations could be reduced,
allowing for significantly more time for quality control with the associated benefits.

The data used for the following estimates of OI come from the test case used in Waller, Simonin, et al. (2016),
in which the Desroziers et al. (2005) diagnostics, as in (13), were used to estimate correlated observation
errors for the DRW. Archived observations, background, and resulting analysis data produced by the oper-
ational Met Office system are provided for June, July, and August 2013. At this time a 3DVar FGAT system
with 3-hourly cycling was used to assimilate the data. Prior to assimilation, “superobservations” represent-
ing 3◦ × 3 km cells are calculated using the innovations following the method of Salonen et al. (2008). These
are then further thinned to 6 km. The observation operator used to transform from the model variables to
those observed interpolates the model horizontal and vertical wind components to the observation location.
The horizontal wind is then projected in the direction of the radar beam and projected onto the slant of the
radar beam. The observation operator therefore suffers from the following known inadequacies: (i) beam
broadening and reflectivity weighting are unaccounted for, (ii) only the horizontal wind components are
updated in the minimization, and (iii) no information about hydrometeor fall speed is available to the assim-
ilation system. The observations are assumed to have uncorrelated errors with standard deviations given as
a function of range only. These vary from 1.8 m s−1 close to the radar, and 2.8 m s−1 for observations farthest
away from the radar. Further details of the operational assimilation of DRWs at this time at the Met Office
can be found in Simonin et al. (2014).

Figures 2a and 2b show the sample size for each elevation, after quality control, during this 3 month period
as a function of range and height, respectively. It can be seen that the majority of the data comes from the
lower elevations due to these elevations producing more samples below the cloud top and hence in areas of
precipitation. There is also a drop off in sample size at short range due to removal of ground clutter during
quality control.
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Figure 2. Number of samples for each elevation angle (see text; denoted El) as a function of (a) range and (b) height.
The dashed line indicates the minimum sample size used to compute the sample estimates of OI. Sample estimates of
(c, e) OITh and (d, f) OIAc are shown using (c, d) the old observation operator and (e, f) the new observation operator.
Three different estimates of OITh are shown, see section 4, dotted lines: correlations in the data along the beam only
are accounted for, dashed lines: correlations in the data on a horizontal plane only are accounted for, solid lines:
no correlations in the data are accounted for.

Figures 2c and 2d show the sample estimates of the theoretical and actual OI for each elevation as a function
of the range of the data. Values are only computed for sample sizes greater than 2,500.

For each elevation three estimates of OITh are provided depending on the assumptions made when recon-
structing the sample estimate of R−1∕2D̃D−1R1∕2. Following Waller, Simonin, et al. (2016), the dotted lines
are when it is assumed that the data are correlated along the beam only, the dashed line is when it is assumed
that the data are correlated on a horizontal plane only, and the solid line is when it is assumed that the data
are uncorrelated. Estimating the full R−1∕2D̃D−1R1∕2 (taking into account correlations across the full cone
measured by the radar) is possible but would be very costly. Assuming R−1∕2D̃D−1R1∕2 is diagonal, although
systematically overestimating OITh in this case, significantly reduces the computational cost of estimating
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OITh and reduces the sensitivity of the estimate to the sampling noise. In general it is not clear if assuming
R−1∕2D̃D−1R1∕2 is diagonal will underestimate or overestimate OITh, so a rough estimate of OITh attempting
to include the covariances is useful for comparison.

From Figure 2c we can conclude that theoretically we would expect all elevations scanned to have propor-
tionally similar influence on the analysis, which is reasonable given that similar assumptions are made when
assimilating the data. Therefore, the total influence is proportional to the number of observations. If this
were the only information available, then it may be concluded that the efficiency of the scanning strategy
may be improved by only observing elevations 1◦ and 2◦, as these have the most observations available (see
Figures 2a and 2b) as well as perhaps elevation 6◦ to provide observations of wind higher in the atmosphere.

In contrast to Figure 2c, Figure 2d shows that the actual influence of the DRWs is greater for higher eleva-
tions and longer ranges. Based on OIAc only, it might instead be concluded that the efficiency of the scanning
strategy may be improved by only observing elevations 4◦, 6◦, and 9◦ as elevations 1◦ and 2◦ have less weight
per observation (or these lower elevations could be further thinned to reduce data redundancy at these
levels). However, having both the estimates of OIAc and OITh allows for the conclusion that it is the observa-
tions that have the greatest actual influence (elevations 4◦ 6◦, and 9◦) that are assimilated using the poorest
assumptions. Hence, these observations could be doing more harm than good. Based on both OIAc and OITh,
a third conclusion might be that an improved analysis and forecast might be achieved if only elevations in
which OIAc and OITh are aligned are assimilated, that is, elevations 1◦ and 2◦.

This last hypothesis could be used to design data denial experiments; however, to some extent the difference
between OIAc and OITh can be understood in terms of the validity of the observation operator and hence the
validity of R, which should account for uncertainty in the observation operator. The assumption that DRWs
are a point estimate at the center of the beam becomes poorer as the range of the measurement is increased
due to beam broadening. The linear interpolation from the model grid to the assumed point observation and
the influence of vertical wind component also becomes worse as the elevation of the beam increases. We
therefore have some confidence that the large difference in the actual and OITh is due to inadequacies in R
rather than B. From section 3.2 we can therefore speculate that when OIAc is greater than OITh the analysis
is overfitting to the DRW observations.

An improved observation operator has been trialed, which accounts for some broadening of the beam (verti-
cal only) as well as reflectivity weighting (Waller, Simonin, et al., 2016). Improving the observation operator
has been shown to reduce the representation uncertainty (and error correlation), making the assumed obser-
vation error covariance matrix used within the assimilation more consistent with the data. This is seen by
the improved agreement between OIAc and OITh plotted in Figures 2e and 2f) when recalculated using the
new observation operator.

In initial trials, in which beam broadening was included within the observation operator, it has proven
difficult to show significant benefit in the forecast verification. This could perhaps be expected due to
the difficulty in obtaining validation statistics at the convective scales (Gilleland et al., 2009) and is why
the use of objective consistency diagnostics such as the ones proposed here are so informative. However,
the forecast trials did show some evidence of a degradation of the surface wind innovation when using the
new observation operator, which may possibly be attributed to the length scales in the B matrix being too
broad in the vertical and erroneously spreading the information in the DRWs to the surface. Hence, the new
observation operator has not yet been implemented. The degradation of the surface winds could perhaps
also have been monitored by applying the OI statistics to surface observations while making the changes to
the way DRW observations are assimilated. It is therefore suggested that, when using these diagnostics to
evaluate changes to the assimilation of one observation type, they are computed for a range of observations
for which the background equivalent may also be affected, intentionally or not.

As noted previously, there is a trade-off here between having a large enough sample to minimize sampling
noise and having a sample that satisfies the assumptions that the statistics are nonvariant over the time
spanned by the sample. Experiments looking at the sensitivity to the sample selected have been performed.
For example, the 3 month sample was separated out into different individual storms that passed over the
UK. We found that although there are some differences between the different time periods, the overall con-
clusions hold; the actual OI is always greater than the theoretical OI and the agreement is improved when
the new observation operator is used.
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Figures 2e and 2f shows that there is naturally room for further improvements beyond the updated observa-
tion operator. These include accounting for correlations in R, which are thought to be significant even with
6 km thinning (Waller, Simonin, et al., 2016). Correlated errors for DRWs have now been implemented in
the UKV for DRW (Simonin et al., 2019). As the new R has been derived from the Desroziers et al. (2005)
consistency diagnostics, the OIAc and OITh should be more consistent by design. The comparison of OIAc

and OITh could also be used to reevaluate the use of superobservations, and the use of flow-dependent errors
for both B and R.

6. Summary and Conclusions
When designing an efficient and effective assimilation system it is desirable for each observations type, on
average, to have a large impact on the analysis and forecast. However, a large impact is only beneficial if
the observations are assimilated correctly. An estimate of both the actual and theoretical observation influ-
ence can help flag observations that are being assimilated incorrectly and quantify the harm caused to the
analysis. The combination of these two metrics can allow for more informed decisions to be made regarding
changes to the assimilation system.

We have demonstrated a simple method for estimating these two quantities from a sample of observations,
background and analyses. The method is a natural by-product of the Desroziers et al. (2005) consistency
diagnostics, which have been used extensively for estimating error covariance matrices for a variety of instru-
ments. The method only relies on having a large enough sample of the inputs and outputs of the DA system
and hence could be easily applied to any DA system based on Gaussian assumptions. The only constraint is
that the mapping from the the model variables to those observed is near linear with respect to the magnitude
of the analysis increments (see supporting information).

The OI metrics have been applied to the assimilation of DRWs using the Met Office's UKV system. It was
shown that observations made at high elevations and long range have a much larger influence than they
should theoretically have. This discrepancy could be explained in terms of the poor assumptions made by
the observation operator and was confirmed by recomputing the diagnostics with an improved observation
operator. This illustrated the potential of these metrics to be used to guide changes and improvements to a
DA system cheaply.

The metric has also been applied to other observation types assimilated with the UKV, such as radiosonde
measurements of temperature and humidity, atmospheric motion vectors derived from observations from
the Spinning Enhanced Visible and Infrared Imager and radar reflectivities. Initial results show that
these metrics provide useful information for these other observation types too, with the exception of the
reflectivities where negative values were computed most likely due to the highly nonlinear observation
operator.

Appendix A: Derivation of Theoretical and Actual Observation Influence
Substituting in the expression for the analysis (2) into (4), we can derive an analytical expression for OI. To
simplify notation first let D̃ = E[do

b(d
o
b)

T] and D = HBHT + R (the assumed covariance of do
b).

OI = E
[
(Kdo

b)
TB−1Kdo

b
]

(A1)

= E
[
trace

(
(Kdo

b)
TB−1Kdo

b
)]

(A2)

= E
[
trace

(
do

b(d
o
b)

TKTB−1K
)]

(A3)

= trace
(

E
[
do

b(d
o
b)

T]KTB−1K
)

(A4)

= trace
(

D̃KTB−1K
)

(A5)
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Using the definition for K, (3), this becomes

OI = trace
(

D̃D−1HBB−1K
)

(A6)

= trace
(

D̃D−1HK
)
. (A7)

Using the cyclic property of the trace of a product of matrices, OI can equivalently be written as

OI = trace
(

HKD̃D−1
)
. (A8)

No assumptions have been made here in terms of the nature of the statistics of do
b. The innovations may be

non-Gaussian, biased, and correlations may exist between the background and observations. Equation A8
therefore gives us an expression for the actual OI, which we refer to as OIAc.

The data assimilation theory, however, is based on the assumption that D and D̃ are equal, and the system
is optimal. This allows us to derive an expression for the theoretical OI if all assumptions were correct

OITh = trace(HK). (A9)

Data Availability Statement
The data sets for this research are available from the Centre for Environmental Data Analysis (Waller
et al., 2020).
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