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Abstract: There is a scarcity of studies that have investigated the role of multiple single nucleotide
polymorphisms (SNPs) on a range of muscle phenotypes in an elderly population. The present
study investigated the possible association of 24 SNPs with skeletal muscle phenotypes in 307
elderly Caucasian women (aged 60–91 years, 66.3 ± 11.3 kg). Skeletal muscle phenotypes included
biceps brachii thickness, vastus lateralis cross-sectional areas, maximal hand grip strength, isometric
knee extension and elbow flexion torque. Genotyping for 24 SNPs, chosen on their skeletal muscle
structural or functional links, was conducted on DNA extracted from blood or saliva. Of the 24 SNPs,
10 were associated with at least one skeletal muscle phenotype. HIF1A rs11549465 was associated
with three skeletal muscle phenotypes and PTK2 rs7460 and ACVR1B rs10783485 were each associated
with two phenotypes. PTK2 rs7843014, COL1A1 rs1800012, CNTF rs1800169, NOS3 rs1799983, MSTN
rs1805086, TRHR rs7832552 and FTO rs9939609 were each associated with one. Elderly women
possessing favourable genotypes were 3.6–13.2% stronger and had 4.6–14.7% larger muscle than
those with less favourable genotypes. These associations, together with future work involving a
broader range of SNPs, may help identify individuals at particular risk of an age-associated loss
of independence.

Keywords: single nucleotide polymorphisms; neuromuscular; elderly; genotyping

1. Introduction

Ageing is a complex physiological process and is associated with a decline in skeletal muscle
function [1]. Neuromuscular function determines an individual’s mobility and independence during old
age [2,3]. The heritability values of muscle mass and muscle strength are reported to be between 45–82%,

Genes 2020, 11, 1459; doi:10.3390/genes11121459 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0003-2060-8446
https://orcid.org/0000-0002-2395-6035
https://orcid.org/0000-0001-8964-0087
https://orcid.org/0000-0003-0706-2864
https://orcid.org/0000-0002-1466-3265
https://orcid.org/0000-0001-7399-4841
https://orcid.org/0000-0002-5261-2637
https://orcid.org/0000-0001-9093-2191
https://orcid.org/0000-0002-8052-8184
http://www.mdpi.com/2073-4425/11/12/1459?type=check_update&version=1
http://dx.doi.org/10.3390/genes11121459
http://www.mdpi.com/journal/genes


Genes 2020, 11, 1459 2 of 18

depending on the skeletal muscle phenotypes and the population considered [4–6], which suggests that
associations between single nucleotide polymorphisms (SNPs) and skeletal muscle phenotypes could,
in aggregate, account for a substantial portion of the typical inter-individual variability in skeletal
muscle mass and strength. Genotype affects skeletal muscle in several ways, influencing myoblast
proliferation, enhancing the transcription of muscle-specific genes, mitochondrial function and the
activation of signalling pathways [7–9], all of which play a role in the maintenance of muscle mass and
muscle function [10,11].

There is considerable inter-individual variability in muscle size and muscle strength, with up to
18% [12] and 20% [13] population variability reported for appendicular lean muscle size and vastus
lateralis (VL) muscle volume respectively, and up to 16% coefficient of variation for specific force [13,14]
in younger adults. Assuming all else is equal, this variance implies that within the elderly population,
those at the weaker or lower end of this distribution are more likely to experience a loss of independence
at an earlier age. To date, there are numerous studies associating single SNPs with skeletal muscle
phenotypes in a variety of populations, ranging from young adult athletes to elderly members of the
general population [15,16]. The outcome of such studies is, however, equivocal, as there are instances
where these same SNPs show contrasting results depending on the population investigated. In older
adult populations, for instance, ACE insertion/deletion (ACE I/D) is associated with skeletal muscle
mass phenotypes [10] in one study, whereas in another study they are not associated [17].

When selecting meaningful phenotypes to investigate for possible associations with SNPs, it is
important to consider skeletal muscle phenotypes that are relevant to health-related quality of life
(HQoL) and activities of daily living (ADL). For instance, vastus lateralis (VL) muscle atrophy is
representative of muscle loss associated with ageing [18] and lower muscle mass has been linked
with functional impairment and physical disability in older people [19]. Similarly, loss of knee
extensor strength correlates with functional impairments in the elderly [20]. In addition to lower limb
musculature, upper limb muscle size and muscle strength are also prone to decline with ageing [21,22]
and low hand grip strength (HGS) has been previously linked with impaired mobility, functional
decline and higher levels of mortality [23–25]. The identification of new gene variants or replicating
previous findings in an elderly population could be useful in identifying elderly people at a particularly
enhanced risk of mobility limitations.

Despite equivocal single-SNP associations being reported [10,17,26,27], there have been no
investigations of multiple in vivo skeletal muscle size and strength measures in elderly women for
associations with multiple gene variants. Therefore, the present study investigated the association
of a selection of 24 SNPs with skeletal muscle phenotypes, specifically muscle size (biceps brachii
thickness and vastus lateralis anatomical cross sectional area (VLACSA)) and muscle strength (handgrip
strength (HGS), isometric elbow flexion torque (MVCEF) and isometric knee extension torque (MVCKE))
measures, in elderly Caucasian women.

2. Materials and Methods

2.1. Participants

Three hundred and seven Caucasian women aged 60–91 years old (70.7 ± 5.7 years, 66.3 ± 11.3 kg,
1.60 ± 0.06 m) (mean ± SD) who were ambulatory and had no history of severe muscle, bone,
nervous system or cardiovascular related disorders, such as osteoporosis, rheumatoid arthritis, cancer,
Alzheimer’s, convulsions and epilepsy, volunteered for this study. All procedures were in accordance
with the ethical standards of the institution research committee (Manchester Metropolitan University
Ethics Committee; Approval number: 09.02.16 (i)) and with the Declaration of Helsinki. Informed
consent was obtained from all participants.

Testing was conducted in one session in the following order: anthropometry, handgrip strength,
isometric knee extension maximum voluntary contraction (MVCKE) and isometric elbow flexion
maximum voluntary contraction (MVCEF), ultrasound of biceps brachii and vastus lateralis muscle and
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sample collection (blood or saliva). DNA extraction and genotyping were performed later. The detail
of these procedures can be seen in our published paper [28]; however, a brief description of procedures
is given below.

2.2. Handgrip Strength

A digital load cell handgrip dynamometer (JAMAR Plus, JLW Instruments, Chicago, IL, USA)
was used to measure the handgrip strength of the participants [29]. In short, participants performed
this test in a standing position, holding the dynamometer with the arm flexed at 90◦ to the shoulder.
During the test, the participants squeezed with maximum effort. The left and right arms were alternated;
three trials were performed with each arm. Peak grip strength of all the trials was recorded for the study.
The test–retest reliability of measuring HGS with this method is reported to be high (ICC = 0.99) [30].

2.3. Isometric Knee Extension and Elbow Flexion Maximal Voluntary Contraction

Isometric knee extension maximal voluntary contraction (MVCKE) was recorded using a load
cell (Zemic, Eten-Leur, The Netherlands) with all participants in a seated position in a custom-built
dynamometer with knee angle maintained at 120◦ (straight was considered as 180◦). The load cell
was calibrated prior to every strength testing session. The participants were asked for their dominant
side and the dominant leg was securely fastened above the lateral malleolus (identified by palpation)
where the participant felt comfortable while fastening the strap (low compliance nylon attached to a
force transducer). Participants were instructed to perform MVCKE with real-time visual feedback and
verbal encouragement. Three trials were performed, with breaks of 1 min between trials to reduce any
influence of fatigue [31]. The force produced was digitized using an analogue-to-digital converter,
displayed and recorded on a PC (My LabVIEW, National Instruments, Berkshire, UK). MVCKE was
calculated as knee torque considering the length of the tibia, height of the strap and angle of knee
extension above the ankle joint in N·m.

MVCKE = Force × (Tibia length − strap distance from ankle) × cos 30◦

with the same equipment, MVCEF was performed at 60◦ elbow flexion (0◦ is a straight position) and
MVCEF was calculated as MVCEF torque (N·m) as

MVCEF = Force × Radius length × cos 30◦

2.4. Biceps Brachii Thickness

B-mode ultrasonography (My LabTwice, Esaote Biomedical, Genoa, Italy) with a 38-mm probe
(7.5 MHz, linear array) was used to measure biceps brachii thickness, following a previously established
method [32]. Participants were asked to identify their dominant side and were seated with the dominant
arm hanging relaxed at their side; the proximal (acromion process) and distal (olecranon) ends of the
humerus were identified using ultrasound scanning and palpation. Thereafter, a sagittal plane scan
was performed at 60% length from the proximal end of the humerus, identifying the upper and lower
aponeurosis of the biceps brachii muscle [33]. Minimal pressure (denoted by no indentation of the tissue
within the field of vision) was applied to the ultrasound probe while scanning to avoid compression of
the muscle. The ultrasound was recorded in real time, from which an image was captured and biceps
brachii thickness was measured as the distance between the superficial and deep aponeurosis, taken
at the proximal, middle and distal end of the captured image using digitizing software (ImageJ 1.45,
National Institutes of Health, Bethesda, USA). The mean of the three measurements was recorded as
the biceps brachii thickness.
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2.5. Vastus Lateralis Muscle Area

B-mode ultrasonography (My LabTwice, Esaote Biomedical, Genoa, Italy) was used to determine
vastus lateralis (VL) muscle area. With participants standing, the origin and insertion of the VL
muscle was identified as the proximal and distal myotendinous junction of the VL, respectively, using
ultrasound (7.5 MHz, linear array probe, 38 mm). The origin and insertion of the VL were assessed in a
standing position, as the accumulation of subcutaneous fat in some participants made identification of
the VL origin impossible in the supine position. The VL length was measured with a measuring tape
as the distance from origin (head of femur) to insertion (VL myotendinous junction). The lateral and
medial borders of the VL were identified using ultrasound to identify the mid-sagittal line of the VL.
Participants were then seated for subsequent ultrasound procedures.

For vastus lateralis anatomical cross-sectional area (VLACSA), a transverse plane ultrasound scan
was performed at 50% of VL length, as this corresponds to the VL length at which maximum ACSA is
found [34]. Using echo absorptive markers every 3 cm from the medial to the lateral border of the VL
muscle, the ultrasound probe was steadily moved over the echo-absorptive markers from the medial to
the lateral edge of the VL. The ultrasound was recorded as a digital video file, from which individual
images were acquired using capture software. Captured images were acquired at contiguous intervals
between each shadow cast by the echo-absorptive markers. The entire VLACSA was reconstructed in
a single canvas from each captured image. For the measurement, digitizing software (ImageJ 1.45,
National Institutes of Health, Bethesda, USA) was used as the visible aponeurosis around the VL.
The reliability and validity of this method were previously reported to be high (>0.99) when compared
with MRI [35].

2.6. SNP Selection

For the present study, 24 SNPs were selected. Those SNPs were selected based on several
criteria, such as their previous associations with skeletal muscle phenotypes in different populations,
their known physiological (functional) mechanism for possible association and some novel gene
variants that could influence skeletal muscle phenotypes, as previously reported, to influence other
similar phenotypes. While selecting the candidate gene variants from the list of SNPs, priority was
given to the frequency of extant literature for SNPs and muscle phenotypes, the presence of conflicting
results for SNPs and the already-known transcriptional differences for some of the SNPs. The list of
selected gene variants and their previous associations with similar phenotypes is presented in Table S1.

2.7. Sample Collection, DNA Extraction and Genotyping

Biological samples were collected as either a venous blood or saliva sample. Briefly, 5 mL of blood
was collected from a superficial forearm vein by a trained phlebotomist into 5 mL EDTA tubes (BD
Vacutainer Systems, Plymouth, UK). Samples were stored at −20 ◦C before further processing. Saliva
samples were collected using Oragene DNA OG-500 collection tubes (DNA Genotek Inc., ON, Canada)
following the manufacturer’s instructions and stored at room temperature until DNA extraction.
Genomic DNA was extracted from the collected samples using a QIAcube, QIAamp DNA Blood Mini
kit and standard spin column protocol (Qiagen, Crawley, UK). For genotyping, two techniques were
used; EP1 Fluidigm (Fluidigm, Cambridge, UK) and StepOnePlus (Applied Biosystems®, Paisley,
Scotland, UK). A brief description of genotyping procedures using both techniques is presented in
our previous papers [36,37] and the genotypes for the selected SNPs were called based on end-point
fluorescence (https://www.thermofisher.com/np/en/home.html) (attached in Table S2). All samples
were analysed in duplicate [38].

2.8. Statistical Analysis

The frequency of all the selected polymorphisms was checked for compliance with the
Hardy–Weinberg equilibrium using chi-square tests. Analysis of covariance (ANCOVA) was used to

https://www.thermofisher.com/np/en/home.html
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test any genotype effects on skeletal muscle phenotypes (muscle size, muscle strength) with age used
as a covariate. When too few participants were in one homozygous group, this group was combined
with the heterozygous group and a two-group analysis was performed. Similarly, when there was
an association (p < 0.05) or a tendency for an association (0.05 < p < 0.15) [39], the homozygous
and heterozygous groups with closer means were combined and then ANCOVA was re-run for the
analysis. All significant associations identified in the main ANCOVA analyses were subject to the
Benjamini–Hochberg correction [40,41] with a 20% false discovery rate considering two families (muscle
size and muscle strength) of 24 tests each. All statistical analyses were performed using SPSS version
23.0 and statistical significance was accepted when p ≤ 0.05. Data are presented as mean ± SD. A small
number of participants did not complete all tests due to faults during data capture or inaccessibility for
the specific tests.

3. Results

3.1. General Characteristics of Participants

The general characteristics of the participants are presented in Table 1.

Table 1. General characteristics of the participants.

Variables Mean ± SD (n = 307)

Age (years) 71 ± 6
Mass (kg) 66.3 ± 11.3

Height (m) 1.60 ± 0.06
BMI (kg/m2) 25.9 ± 4.2

HGS (kg) 29.9 ± 5.0
MVCEF (N·m) 24.8 ± 6.2
MVCKE (N·m) 55.1± 18.4

Biceps brachii thickness (cm) 1.76 ± 0.32
VLACSA (cm2) 16.3 ± 3.4

Abbreviations: BMI, body mass index, HGS, handgrip strength, MVCEF, isometric elbow flexion maximal voluntary
contraction, MVCKE, isometric knee extension maximal voluntary contraction, VLACSA, vastus lateralis anatomical
cross-sectional area.

3.2. Genotyping and SNP Associations with Skeletal Muscle Phenotypes

All SNPs were in Hardy–Weinberg equilibrium (p > 0.15) (Table S3) and the genotyping success
rate was > 99%. Of the 24 SNPs analysed, 10 showed associations with skeletal muscle phenotypes.
None of ACTN3 rs1815739, ACE rs4341, CNTFR rs2070802, IL6 rs1800795, IGF1 rs35767, ACVR1B
rs2854464, ESR1 rs1999805, ESR1 rs4870044, ID3 rs11574, MTHFR rs1801131, MTHFR rs1537516,
MTHFR rs17421511, VDR rs2228570 or TTN rs10497520 were associated with any of the skeletal muscle
size and strength measures.

In the following section, only the SNPs associated with skeletal muscle phenotypes are presented.
Genotype–muscle phenotype associations were observed in this sample of elderly women for the
following: HGS (PTK2 rs7843014, PTK2 rs7460, HIF1A rs11549465 and COL1A1 rs1800012; Figure 1),
MVCEF (HIF1A rs11549465 and PTK2 rs7460; Figure 2), MVCKE (CNTF rs1800169 and NOS3 rs1799983;
Figure 3), biceps brachii thickness (MSTN rs1805086 and ACVR1B rs10783485; Figure 4) and VLACSA

(TRHR rs7832552, ACVR1B rs10783485, HIF1A rs11549465 and FTO rs9939609; Figure 5). Participants
possessing the genotype associated with phenotypes for greater muscle size (biceps brachii thickness
and VLACSA) or strength (HGS, MVCEF and MVCKE) were considered as having the favourable
genotype. Elderly women in the favourable genotype groups were 3.6–13.2% stronger and had
4.6–14.7% larger muscle than their counterparts with less favourable genotypes (all p < 0.05, specific
phenotypes shown in Table 2).
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Figure 1. Handgrip strength in genotype groups for (a) PTK2 rs7843014 (AA + AC = 247 vs. CC = 57, 
Δ = 5.3%); (b) PTK2 rs7460 (TT = 72 vs. AT + AA = 233, Δ = 3.6%); (c) HIF1A rs11549465 (CT + TT = 64 
vs. CC = 241, Δ = 4.6%); (d) COL1A1 rs1800012 (AA + AC = 99 vs. CC = 205, Δ = 4.1%). * denotes 
significant difference. Data are mean ± SD. 

 

 

Figure 2. Isometric elbow flexion maximum voluntary contraction in genotype groups for (a) PTK2 
rs7460 (TT = 71 vs. AT + AA = 233, Δ = 7.7%); (b) HIF1A rs11549465 (CT + TT = 63 vs. CC = 241, Δ = 
8.7%). * denotes significant difference. Data are mean ± SD. 
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∆ = 5.3%); (b) PTK2 rs7460 (TT = 72 vs. AT + AA = 233, ∆ = 3.6%); (c) HIF1A rs11549465 (CT + TT = 64
vs. CC = 241, ∆ = 4.6%); (d) COL1A1 rs1800012 (AA + AC = 99 vs. CC = 205, ∆ = 4.1%). * denotes
significant difference. Data are mean ± SD.
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rs1799983 (GG = 117 vs. GT + TT = 185, ∆ = 7.5%); (b) CNTF rs18000169 (GG = 222 vs. AG + AA = 80,
∆ = 13.2%). * denotes significant difference. Data are mean ± SD.
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Figure 5. Vastus lateralis muscle cross sectional area in genotype groups for (a) ACVR1B rs10784385 (GT
+ TT = 168 vs. GG = 121, ∆ = 7.3%); (b) HIF1A rs11549465 (CC = 228 vs. CT + TT = 62, ∆ = 5.0%); (c) FTO
rs9939609 (AA + AT = 188 vs. TT = 102, ∆ = 6.2%); (d) TRHR rs7832552 (TT = 37 vs. CT + CC = 252,
∆ = 7.0%). * denotes significant difference. Data are mean ± SD.
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Table 2. Associations between SNPs and skeletal muscle phenotypes in elderly Caucasian women.

Polymorphisms Genotypes Phenotypes % Difference p-Value
TRHR rs7832552 TT vs. CC+CT VLACSA 7.0% 0.036

HIF1A rs11549465 CT + TT vs. CC
VLACSA

HGS
MVCEF

5.0%
4.6%
8.7%

0.033
0.012
0.007

PTK2 rs7460 AT + AA vs. TT
MVCEF

HGS
7.7%
3.6%

0.015
0.042

PTK2 rs7843014 AC + AA vs. CC HGS 5.3% 0.018

ACVR1B rs10783485 GT + TT vs. GG
VLACSA

Biceps brachii thickness
7.3%
4.6%

0.009
0.045

FTO rs9939609 TT vs. AA + AT VLACSA 6.2% 0.014

NOS3 rs1799983 TT + GT vs. GG MVCKE 7.5% 0.042

CNTF rs1800169 AA + AG vs. GG MVCKE 13.2% 0.004

MSTN rs1805086 CT vs. TT Biceps brachii thickness 14.7% 0.035

COL1A1 rs1800012 AA + AC vs. CC HGS 4.1% 0.013

Grey shadings denote the favourable groups for skeletal muscle phenotypes. Abbreviations: HGS—handgrip
strength, VLACSA—vastus lateralis anatomical cross-sectional area, MVCKE—isometric knee extension torque
maximal voluntary contraction, MVCEF—isometric elbow flexion torque maximal voluntary contraction.

4. Discussion

The current study identified associations between several SNPs and skeletal muscle phenotypes
related to muscle size (biceps brachii thickness and VLACSA) and muscle strength (HGS, MVCEF and
MVCKE) in elderly women. The genetic variants associated with skeletal muscle phenotypes can be
described by the biological roles of the genes. For the purpose of this discussion, the genes are grouped
according to their potential role in terms of how they can affect muscle tissue: (1) structural proteins,
(2) transcriptional regulators, (3) antagonists of muscle growth, (4) body composition regulators and
(5) myotrophic factors.

4.1. Structural Proteins

PTK2 rs7460 was associated with HGS and MVCEF, and PTK2 rs7843014 and COL1A1 rs1800012
were associated with HGS. These genes encode for a component of muscle structural proteins and
the extracellular matrix (ECM) and thus might provide strength and integrity for the muscle fibre.
For example, the PTK2 rs7460 A-allele, identified here as a favourable allele, has been previously
associated with higher baseline specific force in Caucasian men [42,43]. It has been speculated that
PTK2 rs7460 AA might favour more integrin-ECM bonds and result in a higher costamere density [43],
which may favour lateral force transmission [42]. Higher gene expression has been observed with AA
homozygotes compared to TT for PTK2 rs7460 [44], which may result in an increase in the number of
integrin ECM bonds compared to TT genotypes and thus higher lateral force transmission with higher
resultant muscle strength in the present elderly population.

For COL1A1 rs1800012, there is evidence that the A-allele of the Sp1-COL1A1 binding site
polymorphism is linked with enhanced DNA-protein binding, encouraging transcription and elevated
expression of COL1A1 in osteoblast culture [45], with a higher proportion of collagen α1 compared to
collagen α2. Despite contrasting data regarding bone health [46–54], in athletes the COL1A1 A-allele
seems to be protective for tendon and ligament injuries [55]. Collagen is predominant in tendons and
tendon function is affected by the quality and architecture of collagen fibres [56,57]. It is therefore
possible that there is some advantageous effect of the COL1A1 rs1800012 A-allele that could protect
from soft tissue injury, improve tendon function and contribute to the higher strength observed in
elderly women.
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4.2. Transcriptional Regulators

The present study has identified associations of transcription factor and transcription regulator
gene variants HIF1A rs11549465 and NOS3 rs1799983 with skeletal muscle phenotypes. These gene
variants might change the transcription of genes affecting skeletal muscle formation and thus contribute
to the variability in muscle size and strength in the elderly women. For instance, transcription factor
HIF1A is the sub-unit of heterodimeric transcriptional factor HIF1, which induces the transcription
of genes involved in cellular proliferation and survival [8,58], with the HIF1A rs11549465 T-allele
associated with enhanced trans-activation capacity [59]. Enhanced transactivation capacity with the
T-allele could be associated with increased cell proliferation and a higher proportion of fast-twitch fibres,
which may explain the larger VLACSA and higher muscle strength (HGS and MVCEF) in the T-allele
carriers in the present elderly population. In line with this, the cross-sectional area of type IIb muscle
fibres was on average 16% larger in HIF-1α transfected compared to non-transfected extensor digitorum
longus muscles in rats [60]. In humans, immuno-histochemical analysis of vastus lateralis muscle
has shown a higher proportion of fast-twitch muscle fibres in a HIF1A rs11549465 T-allele (Ser) group
compared to a C-allele (Pro) group; 13.8% in the Pro/Ser group compared to 8.2% in the Pro/Pro (CC)
group [61]. This suggests that the T-allele could be favourable to powerful movements. Furthermore,
previous studies have observed the T-allele to be more common in power-oriented athletes [62–64],
and to be associated with maximal oxygen consumption post-training in older Caucasians [65] and
young women [66].

NOS3 encodes endothelial nitric oxide synthase (eNOS) which catalyses nitric oxide (NO) synthesis.
NO plays a role in skeletal muscle fibre conversion [67], mitochondrial energy production [68] and
muscle hypertrophy [69]. The physiological activities of skeletal muscle, such as excitation–contraction
coupling, force generation, calcium homeostasis, metabolism and bioenergetics [70,71], are highly
regulated by NO. Muscle atrophy in NOS3 knockout mice [72–74] further implies the crucial role of
NO in skeletal muscle growth. Despite the fact that higher NO activity has been associated with the
NOS3 rs1799983 G-allele [75,76], our present observation is in line with other studies reporting T-allele
as beneficial for skeletal muscle function/performance. For instance, T-allele has been identified as
favourable in some athletes [77,78], associated with adaptation to resistance training [79] and beneficial
for maintaining normal muscle mass above the sarcopenic threshold [36].

4.3. Antagonists of Muscle Growth

In the elderly women analysed in our study, ACVR1B rs10783485 GG homozygotes had a thicker
biceps brachii and larger VLACSA than T-allele carriers. The ACVR1B gene encodes the activin A
receptor type 1b, which affects muscle growth negatively by stimulating the myostatin and activin
signalling pathways [80,81]. Previous studies have reported the C-allele (G-allele in this case) as being
favourable for higher knee strength [82] and an increment in rectus femoris diameter post-training in
coronary artery disease patients [83]. The association of knee strength with ACVR1B rs10783485 was
described by the considerable linkage disequilibrium (r2 = 0.15–0.44) between ACVR1B rs10783485
and ACVR1B rs2854464 [82]. The previous authors suggested that the observed association of ACVR1B
rs2854464 with greater strength in the study could be due to higher affinity between the 3′ untranslated
region of ACVR1B mRNA and microRNA-24, leading to more effective translational inhibition and
decay of ACVR1B mRNA [82]. The pharmacological blockade of activin A signalling has been observed
to increase muscle mass [84], so the present association with muscle size might be due to the decay of
ACVR1B mRNA, enhancing muscle growth in GG homozygotes via the reduced activation of activin
myostatin pathways.

The present study also identified MSTN rs1805086 TT (K-variant) homozygotes as the favourable
genotype for thicker biceps brachii. K153 has been previously associated with higher muscle
strength [85], muscle mass and functional capacity in women [86], as well as with better performance in
high jumps [87] than the 153R variant; however, conflicting results do exist for skeletal muscle
phenotypes [88,89]. K153R mutant (R-variant) increases the susceptibility of promyostatin for
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furin-cleavage [90], and thus could facilitate the formation of more latent myostatin [90]. Since myostatin
is the negative regulator of muscle growth [80], the thicker biceps brachii in the present elderly women
with TT (KK) homozygotes could be due to lower myostatin activity in the TT (KK) homozygotes
compared to its mutant R-variant.

4.4. Body Composition Regulators

Body composition indices such as BMI, fat mass and other obesity-related phenotypes are strongly
regulated by the FTO gene [91–93]. Impaired skeletal muscle development has been observed in
FTO-deficient mice [94]. Furthermore, there is an increment in FTO expression during myogenic
differentiation and FTO silencing leads to myogenic suppression [94]. Recent studies have found
an association between FTO and appendicular lean mass, with a decrement in appendicular muscle
mass when fat mass was controlled [95,96]. Our finding of an association of the FTO A-allele with
larger VL muscle cross-sectional area in the present study is partly consistent with previous studies
showing associations with parameters such as higher fat mass, lean body mass [91,92] and BMI [97–99].
However, we previously reported the A-allele to be associated with a greater risk of sarcopenia [36].
These apparent differences in genotypic associations could reflect fat infiltration [100–102] and the
relative inability of older muscle to respond to loading [103].

4.5. Myotrophic Factors

CNTF rs18000169 and TRHR rs7832552 were associated with skeletal muscle phenotypes in the
present study. CNTF is a signalling molecule with neurotrophic and myotrophic roles [104,105] and
CNTF treatment results in enhanced myogenesis and diminished atrophy mediators [106]. Furthermore,
CNTF level decreases with ageing and exogenous administration of CNTF in older rats has been shown
to improve muscle strength [107]. A functional gene variant, CNTF rs1800169, with AA genotype
produces a non-functional protein [108], and the present finding is consistent with most previous studies
which report the GG genotype as the favourable genotype for skeletal muscle phenotypes [109–111].
CNTF α contributes to STAT3 activation [112], which has been linked with myoblast proliferation [113].
It is therefore possible that the elderly women with GG genotypes have functional proteins that could
contribute to effective myogenesis, which is important for muscle maintenance, and hence are stronger
than A-allele carriers.

TRHR stimulates the hypothalamic pituitary–thyroid axis, leading to the release of thyroxin.
Thyroxin plays an important role in skeletal muscle development and the attenuation of age-related
changes in tissue function [114], where reductions in thyroid hormone levels result in muscle
weakness [115]. A genome-wide association study (GWAS) found that the TRHR rs7832552 TT
genotype is associated with a higher lean body mass in US Caucasians [116] and the TT genotype also
seems to be positively associated with sprint/power performance [117]. There was higher TRHR gene
expression with T-allele in C2C12 skeletal muscle cell lines of mice [118]. It is possible, therefore, that TT
genotype is associated with the optimal expression of thyroid hormone receptor and thus associated
with favourable skeletal muscle phenotypes, such as VLACSA in the present elderly population.

4.6. Implications and Limitations

The present study has found genotype associations with a range of skeletal muscle phenotypes
in elderly women. These genotype associations offer meaningful advantages for the measured
skeletal muscle phenotypes; for instance, the presence of favourable SNPs is associated with higher
muscle strength by 3.6–13.2%, which may well translate into an advantage for functional capacity.
The measured ranges of benefits to muscle strength in the present study are similar to the positive
adaptations that have previously been reported in elderly people after an exercise intervention [119,120].
The associations we report therefore seem to have real-world relevance.

No single gene variant was associated with all the measured muscle phenotypes, probably due
to the modest influence of those specific gene variants on the specific muscle measures. Even more
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striking is the fact that 14 SNPs, contrary to our hypotheses and the suspected roles of these genes in
muscle mass regulation, were not associated with any muscle phenotypes. The absence of associations
may partly be attributable to the fact that we recruited independently living and recreationally active
participants, with which the discriminating power of genotypes was not enough to distinguish the
difference in muscle phenotypes. One should also not dismiss the role of redundancy, where tissues
are able to cope with disadvantageous genotypes through other adaptations. We also suggest that the
observed SNP–phenotype associations should be replicated in an independent elderly population to
confirm our findings. The effect of SNPs on skeletal muscle phenotypes could perhaps be understood
more holistically if a polygenic approach is adopted involving all SNPs, considering that muscle size
and strength are polygenic in nature. In the elderly, however, only a limited number of SNPs have
been associated with muscle phenotypes [10,86,121,122]; it is therefore necessary to first identify many
SNPs before investigating their collective ability to capture the observed phenotypic variance, utilizing
a polygenic model. Despite these potential shortcomings, the gene variants associated with skeletal
muscle phenotypes in the present study could be beneficial in identifying those individuals most prone
to muscle wasting conditions such as cachexia and sarcopenia.

5. Conclusions

The present study identified the association of ten gene variants (HIF1A rs11549465, PTK2
rs7460, ACVR1B rs10783485, PTK2 rs7843014, COL1A1 rs1800012, CNTF rs1800169, NOS3 rs1799983,
MSTN rs1805086, TRHR rs7832552 and FTO rs9939609) and skeletal muscle phenotypes in an elderly
population. The identification of gene variants associated with muscle size and strength measures
might help in screening the population prone to sarcopenia in old age.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1459/s1,
Table S1: Previous associations of single nucleotide polymorphisms/gene product and muscle-related
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Hardy–Weinberg Equilibrium.
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Kotarska, K.; Sygit, K. The HIF1A gene Pro582Ser polymorphism in polish power-orientated athletes.
Biol. Sport 2011, 28, 111–114. [CrossRef]

http://dx.doi.org/10.1359/jbmr.2002.17.3.384
http://www.ncbi.nlm.nih.gov/pubmed/11874231
http://dx.doi.org/10.1186/1878-5085-4-15
http://www.ncbi.nlm.nih.gov/pubmed/23763832
http://dx.doi.org/10.1530/eje.0.1430261
http://www.ncbi.nlm.nih.gov/pubmed/10913946
http://dx.doi.org/10.1007/s002230010083
http://dx.doi.org/10.1007/s001980170123
http://dx.doi.org/10.1038/ng1096-203
http://dx.doi.org/10.1177/147323000903700608
http://www.ncbi.nlm.nih.gov/pubmed/20146870
http://dx.doi.org/10.1097/01.meg.0000108364.41221.d0
http://www.ncbi.nlm.nih.gov/pubmed/15256976
http://dx.doi.org/10.1007/s11357-011-9363-9
http://www.ncbi.nlm.nih.gov/pubmed/22174012
http://dx.doi.org/10.18632/oncotarget.15271
http://www.ncbi.nlm.nih.gov/pubmed/28206959
http://dx.doi.org/10.1100/tsw.2007.92
http://www.ncbi.nlm.nih.gov/pubmed/17450305
http://dx.doi.org/10.1016/j.meatsci.2015.02.011
http://dx.doi.org/10.3389/fped.2015.00033
http://www.ncbi.nlm.nih.gov/pubmed/25964891
http://dx.doi.org/10.1093/carcin/bgg132
http://dx.doi.org/10.1113/jphysiol.2010.202762
http://dx.doi.org/10.1007/s10517-008-0291-3
http://dx.doi.org/10.1519/JSC.0b013e31827f06ae
http://www.ncbi.nlm.nih.gov/pubmed/23222085
http://dx.doi.org/10.5604/945117


Genes 2020, 11, 1459 15 of 18

64. Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V.N. The association of gene polymorphisms with
athlete status in Ukrainians. Biol. Sport 2013, 30, 163. [CrossRef] [PubMed]

65. Prior, S.J.; Hagberg, J.M.; Phares, D.A.; Brown, M.D.; Fairfull, L.; Ferrell, R.E.; Roth, S.M. Sequence variation
in hypoxia-inducible factor 1α (HIF1A): Association with maximal oxygen consumption. Physiol. Genom.
2003, 15, 20–26. [CrossRef]

66. McPhee, J.S.; Perez-Schindler, J.; Degens, H.; Tomlinson, D.; Hennis, P.; Baar, K.; Williams, A.G.E. HIF1A
P582S gene association with endurance training responses in young women. Eur. J. Appl. Physiol. 2011,
111, 2339–2347. [CrossRef]

67. Martins, K.J.B.; St-Louis, M.; Murdoch, G.K.; MacLean, I.M.; McDonald, P.; Dixon, W.T.; Putman, C.T.;
Michel, R.N. Nitric oxide synthase inhibition prevents activity-induced calcineurin–NFATc1 signalling and
fast-to-slow skeletal muscle fibre type conversions. J. Physiol. 2012, 590, 1427–1442. [CrossRef]

68. Brown, G.C. Mechanisms of Inflammatory Neurodegeneration: iNOS and NADPH Oxidase; Portland Press Limited:
London, UK, 2007.

69. Smith, L.W.; Smith, J.D.; Criswell, D.S. Involvement of nitric oxide synthase in skeletal muscle adaptation to
chronic overload. J. Appl. Physiol. 2002, 92, 2005–2011. [CrossRef]

70. Eu, J.P.; Hare, J.M.; Hess, D.T.; Skaf, M.; Sun, J.; Cardenas-Navina, I.; Sun, Q.-A.; Dewhirst, M.; Meissner, G.;
Stamler, J.S. Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous nitric
oxide. Proc. Natl. Acad. Sci. USA 2003, 100, 15229–15234. [CrossRef]

71. McConell, G.K.; Rattigan, S.; Lee-Young, R.S.; Wadley, G.D.; Merry, T.L. Skeletal muscle nitric oxide signaling
and exercise: A focus on glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E301–E307.
[CrossRef]

72. De Palma, C.; Morisi, F.; Pambianco, S.; Assi, E.; Touvier, T.; Russo, S.; Perrotta, C.; Romanello, V.; Carnio, S.;
Cappello, V. Deficient nitric oxide signalling impairs skeletal muscle growth and performance: Involvement
of mitochondrial dysregulation. Skelet. Muscle 2014, 4, 22. [CrossRef]

73. Sandri, M.; Coletto, L.; Grumati, P.; Bonaldo, P. Misregulation of autophagy and protein degradation systems
in myopathies and muscular dystrophies. J. Cell Sci. 2013, 126, 5325–5333. [CrossRef] [PubMed]

74. Sandri, M. Autophagy in skeletal muscle. FEBS Lett. 2010, 584, 1411–1416. [CrossRef] [PubMed]
75. Persu, A.; Stoenoiu, M.S.; Messiaen, T.; Davila, S.; Robino, C.; El-Khattabi, O.; Mourad, M.; Horie, S.; Feron, O.;

Balligand, J.L. Modifier effect of ENOS in autosomal dominant polycystic kidney disease. Hum. Mol. Genet.
2002, 11, 229–241. [CrossRef] [PubMed]

76. Tesauro, M.; Thompson, W.C.; Rogliani, P.; Qi, L.; Chaudhary, P.P.; Moss, J. Intracellular processing of
endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary
diseases: Cleavage of proteins with aspartate vs. glutamate at position 298. Proc. Natl. Acad. Sci. USA 2000,
97, 2832–2835. [CrossRef]

77. Zmijewski, P.; Cieszczyk, P.; Ahmetov, I.I. The NOS3 G894T (rs1799983) and-786T/C (rs2070744)
polymorphisms are associated with elite swimmer status. Biol. Sport 2018, 35, 313–319. [CrossRef]

78. Weyerstraß, J.; Stewart, K.; Wesselius, A.; Zeegers, M. Nine genetic polymorphisms associated with power
athlete status–a meta-analysis. J. Sci. Med. Sport 2018, 21, 213–220. [CrossRef]

79. Guidry, M.A.; Kostek, M.A.; Angelopoulos, T.J.; Clarkson, P.M.; Gordon, P.M.; Moyna, N.M.; Visich, P.S.;
Zoeller, R.F.; Thompson, P.D.; Devaney, J.M. Endothelial Nitric Oxide Synthase (NOS3) +894 G>T associates
with physical activity and muscle performance among young adults. ISRN Vasc. Med. 2012. [CrossRef]

80. McPherron, A.C.; Lawler, A.M.; Lee, S.-J. Regulation of skeletal muscle mass in mice by a new TGF-p
superfamily member. Nature 1997, 387, 83. [CrossRef]

81. Thomas, M.; Langley, B.; Berry, C.; Sharma, M.; Kirk, S.; Bass, J.; Kambadur, R. Myostatin, a negative regulator
of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 2000, 275, 40235–40243.
[CrossRef]

82. Windelinckx, A.; De Mars, G.; Huygens, W.; Peeters, M.W.; Vincent, B.; Wijmenga, C.; Lambrechts, D.;
Delecluse, C.; Roth, S.M.; Metter, E.J. Comprehensive fine mapping of chr12q12-14 and follow-up replication
identify activin receptor 1B (ACVR1B) as a muscle strength gene. Eur. J. Hum. Genet. 2011, 19, 208. [CrossRef]

83. Thomaes, T.; Thomis, M.; Onkelinx, S.; Goetschalckx, K.; Fagard, R.; Lambrechts, D.; Vanhees, L. Genetic
predisposition scores associate with muscular strength, size, and trainability. Med. Sci. Sports Exerc. 2013,
45, 1451–1459. [CrossRef] [PubMed]

http://dx.doi.org/10.5604/20831862.1059168
http://www.ncbi.nlm.nih.gov/pubmed/24744483
http://dx.doi.org/10.1152/physiolgenomics.00061.2003
http://dx.doi.org/10.1007/s00421-011-1869-4
http://dx.doi.org/10.1113/jphysiol.2011.223370
http://dx.doi.org/10.1152/japplphysiol.00950.2001
http://dx.doi.org/10.1073/pnas.2433468100
http://dx.doi.org/10.1152/ajpendo.00667.2011
http://dx.doi.org/10.1186/s13395-014-0022-6
http://dx.doi.org/10.1242/jcs.114041
http://www.ncbi.nlm.nih.gov/pubmed/24293330
http://dx.doi.org/10.1016/j.febslet.2010.01.056
http://www.ncbi.nlm.nih.gov/pubmed/20132819
http://dx.doi.org/10.1093/hmg/11.3.229
http://www.ncbi.nlm.nih.gov/pubmed/11823442
http://dx.doi.org/10.1073/pnas.97.6.2832
http://dx.doi.org/10.5114/biolsport.2018.76528
http://dx.doi.org/10.1016/j.jsams.2017.06.012
http://dx.doi.org/10.5402/2012/901801
http://dx.doi.org/10.1038/387083a0
http://dx.doi.org/10.1074/jbc.M004356200
http://dx.doi.org/10.1038/ejhg.2010.173
http://dx.doi.org/10.1249/MSS.0b013e31828983f7
http://www.ncbi.nlm.nih.gov/pubmed/23439425


Genes 2020, 11, 1459 16 of 18

84. Chen, J.L.; Walton, K.L.; Al-Musawi, S.L.; Kelly, E.K.; Qian, H.; La, M.; Lu, L.; Lovrecz, G.; Ziemann, M.;
Lazarus, R. Development of novel activin-targeted therapeutics. Mol. Ther. 2015, 23, 434–444. [CrossRef]
[PubMed]

85. Seibert, M.J.; Xue, Q.L.; Fried, L.P.; Walston, J.D. Polymorphic variation in the human myostatin (GDF-8)
gene and association with strength measures in the Women’s Health and Aging Study II cohort. J. Am.
Geriatr. Soc. 2001, 49, 1093–1096. [CrossRef] [PubMed]

86. González-Freire, M.; Rodríguez-Romo, G.; Santiago, C.; Bustamante-Ara, N.; Yvert, T.; Gómez-Gallego, F.;
Rexach, J.A.S.; Ruiz, J.R.; Lucia, A. The K153R variant in the myostatin gene and sarcopenia at the end of the
human lifespan. Age 2010, 32, 405–409. [CrossRef]

87. Santiago, C.; Ruiz, J.R.; Rodríguez-Romo, G.; Fiuza-Luces, C.; Yvert, T.; Gonzalez-Freire, M.;
Gómez-Gallego, F.; Morán, M.; Lucia, A. The K153R polymorphism in the myostatin gene and muscle power
phenotypes in young, non-athletic men. PLoS ONE 2011, 6, e16323. [CrossRef]

88. Ivey, F.M.; Roth, S.M.; Ferrell, R.E.; Tracy, B.L.; Lemmer, J.T.; Hurlbut, D.E.; Martel, G.F.; Siegel, E.L.;
Fozard, J.L.; Metter, E.J. Effects of age, gender, and myostatin genotype on the hypertrophic response to
heavy resistance strength training. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M641–M648. [CrossRef]

89. Li, X.; Wang, S.-J.; Tan, S.C.; Chew, P.L.; Liu, L.; Wang, L.; Wen, L.; Ma, L. The A55T and K153R polymorphisms
of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese
men. J. Sports Sci. 2014, 32, 883–891. [CrossRef]

90. Szláma, G.; Trexler, M.; Buday, L.; Patthy, L. K153R polymorphism in myostatin gene increases the rate of
promyostatin activation by furin. FEBS Lett. 2015, 589, 295–301. [CrossRef]

91. Sonestedt, E.; Gullberg, B.; Ericson, U.; Wirfält, E.; Hedblad, B.; Orho-Melander, M. Association between fat
intake, physical activity and mortality depending on genetic variation in FTO. Int. J. Obes. 2011, 35, 1041.
[CrossRef]

92. Livshits, G.; Malkin, I.; Moayyeri, A.; Spector, T.D.; Hammond, C.J. Association of FTO gene variants with
body composition in UK twins. Ann. Hum. Genet. 2012, 76, 333–341. [CrossRef]

93. Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.;
Elliott, K.S.; Lango, H.; Rayner, N.W. A common variant in the FTO gene is associated with body mass index
and predisposes to childhood and adult obesity. Science 2007, 316, 889–894. [CrossRef] [PubMed]

94. Wang, X.; Huang, N.; Yang, M.; Wei, D.; Tai, H.; Han, X.; Gong, H.; Zhou, J.; Qin, J.; Wei, X. FTO
is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria
biogenesis. Cell Death Dis. 2017, 8, e2702. [CrossRef] [PubMed]

95. Cordero, A.I.H.; Gregory, J.S.; Douglas, A.; Lionikas, A. Genome-wide analysis in UK Biobank identifies over
100 QTLs associated with muscle mass variability in middle age individuals. bioRxiv 2018. [CrossRef]

96. Zillikens, M.C.; Demissie, S.; Hsu, Y.-H.; Yerges-Armstrong, L.M.; Chou, W.-C.; Stolk, L.; Livshits, G.; Broer, L.;
Johnson, T.; Koller, D.L. Large meta-analysis of genome-wide association studies identifies five loci for lean
body mass. Nat. Commun. 2017, 8, 80. [CrossRef]

97. Jacobsson, J.A.; Schiöth, H.B.; Fredriksson, R. The impact of intronic single nucleotide polymorphisms and
ethnic diversity for studies on the obesity gene FTO. Obes. Rev. 2012, 13, 1096–1109. [CrossRef]

98. Al-Serri, A.; Al-Bustan, S.A.; Kamkar, M.; Thomas, D.; Alsmadi, O.; Al-Temaimi, R.; Mojiminiyi, O.A.;
Abdella, N.A. Association of FTO rs9939609 with Obesity in the Kuwaiti Population: A Public Health
Concern? Med. Princ. Pract. 2018, 27, 145–151. [CrossRef]

99. Heffernan, S.M.; Stebbings, G.; Kilduff, L.P.; Erskine, R.; Day, S.H.; Morse, C.; McPhee, J.; Cook, C.;
Vance, B.; Ribbans, W.J. Fat mass and obesity associated (FTO) gene influences skeletal muscle phenotypes in
non-resistance trained males and elite rugby playing position. BMC Genet. 2017, 18, 4. [CrossRef]

100. Borkan, G.A.; Hults, D.E.; Gerzof, S.G.; Robbins, A.H.; Silbert, C.K. Age changes in body composition
revealed by computed tomography. J. Gerontol. 1983, 38, 673–677. [CrossRef]

101. Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Newman, A.B.; Nevitt, M.; Rubin, S.M.; Simonsick, E.M.;
Harris, T.B. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility
limitations in well-functioning older persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 324–333.
[CrossRef]

102. Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Boudreau, R.;
Manini, T.M.; Nevitt, M.; Newman, A.B.; et al. Longitudinal study of muscle strength, quality, and adipose
tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585.

http://dx.doi.org/10.1038/mt.2014.221
http://www.ncbi.nlm.nih.gov/pubmed/25399825
http://dx.doi.org/10.1046/j.1532-5415.2001.49214.x
http://www.ncbi.nlm.nih.gov/pubmed/11555072
http://dx.doi.org/10.1007/s11357-010-9139-7
http://dx.doi.org/10.1371/journal.pone.0016323
http://dx.doi.org/10.1093/gerona/55.11.M641
http://dx.doi.org/10.1080/02640414.2013.865252
http://dx.doi.org/10.1016/j.febslet.2014.12.011
http://dx.doi.org/10.1038/ijo.2010.263
http://dx.doi.org/10.1111/j.1469-1809.2012.00720.x
http://dx.doi.org/10.1126/science.1141634
http://www.ncbi.nlm.nih.gov/pubmed/17434869
http://dx.doi.org/10.1038/cddis.2017.122
http://www.ncbi.nlm.nih.gov/pubmed/28333151
http://dx.doi.org/10.1101/370312
http://dx.doi.org/10.1038/s41467-017-00031-7
http://dx.doi.org/10.1111/j.1467-789X.2012.01025.x
http://dx.doi.org/10.1159/000486767
http://dx.doi.org/10.1186/s12863-017-0470-1
http://dx.doi.org/10.1093/geronj/38.6.673
http://dx.doi.org/10.1093/gerona/60.3.324


Genes 2020, 11, 1459 17 of 18

103. Tomlinson, D.J.; Erskine, R.; Winwood, K.; Morse, C.; Onambélé, G. The impact of obesity on skeletal muscle
architecture in untrained young vs. old women. J. Anat. 2014, 225, 675–684. [CrossRef] [PubMed]

104. Forger, N.G.; Roberts, S.L.; Wong, V.; Breedlove, S.M. Ciliary neurotrophic factor maintains motoneurons
and their target muscles in developing rats. J. Neurosci. 1993, 13, 4720–4726. [CrossRef] [PubMed]

105. Ip, N.Y.; McClain, J.; Barrezueta, N.X.; Aldrich, T.H.; Pan, L.; Li, Y.; Wiegand, S.J.; Friedman, B.; Davis, S.;
Yancopoulos, G.D. The α component of the CNTF receptor is required for signaling and defines potential
CNTF targets in the adult and during development. Neuron 1993, 10, 89–102. [CrossRef]

106. Tsompanidis, A.; Vafiadaki, E.; Blüher, S.; Kalozoumi, G.; Sanoudou, D.; Mantzoros, C.S. Ciliary neurotrophic
factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and
downregulation of established atrophy mediators in skeletal muscle. Metabolism 2016, 65, 915–925. [CrossRef]
[PubMed]

107. Guillet, C.; Auguste, P.; Mayo, W.; Kreher, P.; Gascan, H. Ciliary neurotrophic factor is a regulator of muscular
strength in aging. J. Neurosci. 1999, 19, 1257–1262. [CrossRef]

108. Takahashi, R.; Yokoji, H.; Misawa, H.; Hayashi, M.; Hu, J.; Deguchi, T. A null mutation in the human CNTF
gene is not causally related to neurological diseases. Nat. Genet. 1994, 7, 79. [CrossRef]

109. Roth, S.M.; Schrager, M.A.; Ferrell, R.E.; Riechman, S.E.; Metter, E.J.; Lynch, N.A.; Lindle, R.S.; Hurley, B.F.
CNTF genotype is associated with muscular strength and quality in humans across the adult age span.
J. Appl. Physiol. 2001, 90, 1205–1210. [CrossRef]

110. Arking, D.E.; Fallin, D.M.; Fried, L.P.; Li, T.; Beamer, B.A.; Xue, Q.L.; Chakravarti, A.; Walston, J. Variation in
the ciliary neurotrophic factor gene and muscle strength in older Caucasian women. J. Am. Geriatr. Soc. 2006,
54, 823–826. [CrossRef]

111. Walsh, S.; Kelsey, B.K.; Angelopoulos, T.J.; Clarkson, P.M.; Gordon, P.M.; Moyna, N.M.; Visich, P.S.;
Zoeller, R.F.; Seip, R.L.; Bilbie, S. CNTF 1357 G→ A polymorphism and the muscle strength response to
resistance training. J. Appl. Physiol. 2009, 107, 1235–1240. [CrossRef]

112. Lee, N.; Spearry, R.P.; Rydyznski, C.E.; MacLennan, A.J. Muscle ciliary neurotrophic factor receptor α

contributes to motor neuron STAT 3 activation following peripheral nerve lesion. Eur. J. Neurosci. 2019,
49, 1084–1090. [CrossRef]

113. Zhang, C.; Li, Y.; Wu, Y.; Wang, L.; Wang, X.; Du, J. Interleukin-6/signal transducer and activator of
transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during
muscle regeneration. J. Biol. Chem. 2013, 288, 1489–1499. [CrossRef] [PubMed]

114. Larsson, L.; Li, X.; Teresi, A.; Salviati, G. Effects of thyroid hormone on fast-and slow-twitch skeletal muscles
in young and old rats. J. Physiol. 1994, 481, 149–161. [CrossRef] [PubMed]

115. Salvatore, D.; Simonides, W.S.; Dentice, M.; Zavacki, A.M.; Larsen, P.R. Thyroid hormones and skeletal
muscle—New insights and potential implications. Nat. Rev. Endocrinol. 2014, 10, 206. [CrossRef] [PubMed]

116. Liu, X.-G.; Tan, L.-J.; Lei, S.-F.; Liu, Y.-J.; Shen, H.; Wang, L.; Yan, H.; Guo, Y.-F.; Xiong, D.-H.; Chen, X.-D.
Genome-wide association and replication studies identified TRHR as an important gene for lean body mass.
Am. J. Hum. Genet. 2009, 84, 418–423. [CrossRef] [PubMed]

117. Miyamoto-Mikami, E.; Murakami, H.; Tsuchie, H.; Takahashi, H.; Ohiwa, N.; Miyachi, M.; Kawahara, T.;
Fuku, N. Lack of association between genotype score and sprint/power performance in the Japanese
population. J. Sci. Med. Sport 2017, 20, 98–103. [CrossRef] [PubMed]

118. Fuku, N.; He, Z.-H.; Sanchis-Gomar, F.; Pareja-Galeano, H.; Tian, Y.; Arai, Y.; Abe, Y.; Murakami, H.;
Miyachi, M.; Zempo, H. Exceptional longevity and muscle and fitness related genotypes: A functional
in vitro analysis and case-control association replication study with SNPs THRH rs7832552, IL6 rs1800795,
and ACSL1 rs6552828. Front. Aging Neurosci. 2015, 7, 59. [CrossRef] [PubMed]

119. Cadore, E.L.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Idoate, F.; Millor, N.; Gómez, M.; Rodriguez-Mañas, L.;
Izquierdo, M. Multicomponent exercises including muscle power training enhance muscle mass, power
output, and functional outcomes in institutionalized frail nonagenarians. Age 2014, 36, 773–785. [CrossRef]

120. Santos, L.; Ribeiro, A.S.; Schoenfeld, B.J.; Nascimento, M.A.; Tomeleri, C.M.; Souza, M.F.; Pina, F.L.; Cyrino, E.S.
The improvement in walking speed induced by resistance training is associated with increased muscular
strength but not skeletal muscle mass in older women. Eur. J. Sport Sci. 2017, 17, 488–494. [CrossRef]

121. Ma, T.; Lu, D.; Zhu, Y.-S.; Chu, X.-F.; Wang, Y.; Shi, G.-P.; Wang, Z.-D.; Yu, L.; Jiang, X.-Y.; Wang, X.-F. ACTN3
genotype and physical function and frailty in an elderly Chinese population: The Rugao Longevity and
Ageing Study. Age Ageing 2018, 47, 416–422. [CrossRef]

http://dx.doi.org/10.1111/joa.12248
http://www.ncbi.nlm.nih.gov/pubmed/25315680
http://dx.doi.org/10.1523/JNEUROSCI.13-11-04720.1993
http://www.ncbi.nlm.nih.gov/pubmed/8229194
http://dx.doi.org/10.1016/0896-6273(93)90245-M
http://dx.doi.org/10.1016/j.metabol.2016.03.005
http://www.ncbi.nlm.nih.gov/pubmed/27173470
http://dx.doi.org/10.1523/JNEUROSCI.19-04-01257.1999
http://dx.doi.org/10.1038/ng0594-79
http://dx.doi.org/10.1152/jappl.2001.90.4.1205
http://dx.doi.org/10.1111/j.1532-5415.2006.00693.x
http://dx.doi.org/10.1152/japplphysiol.90835.2008
http://dx.doi.org/10.1111/ejn.14304
http://dx.doi.org/10.1074/jbc.M112.419788
http://www.ncbi.nlm.nih.gov/pubmed/23184935
http://dx.doi.org/10.1113/jphysiol.1994.sp020426
http://www.ncbi.nlm.nih.gov/pubmed/7853237
http://dx.doi.org/10.1038/nrendo.2013.238
http://www.ncbi.nlm.nih.gov/pubmed/24322650
http://dx.doi.org/10.1016/j.ajhg.2009.02.004
http://www.ncbi.nlm.nih.gov/pubmed/19268274
http://dx.doi.org/10.1016/j.jsams.2016.06.005
http://www.ncbi.nlm.nih.gov/pubmed/27380726
http://dx.doi.org/10.3389/fnagi.2015.00059
http://www.ncbi.nlm.nih.gov/pubmed/25999849
http://dx.doi.org/10.1007/s11357-013-9586-z
http://dx.doi.org/10.1080/17461391.2016.1273394
http://dx.doi.org/10.1093/ageing/afy007


Genes 2020, 11, 1459 18 of 18

122. Kostek, M.C.; Devaney, J.M.; Gordish-Dressman, H.; Harris, T.B.; Thompson, P.D.; Clarkson, P.M.;
Angelopoulos, T.J.; Gordon, P.M.; Moyna, N.M.; Pescatello, L.S. A polymorphism near IGF1 is associated
with body composition and muscle function in women from the Health, Aging, and Body Composition
Study. Eur. J. Appl. Physiol. 2010, 110, 315–324. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00421-010-1500-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants 
	Handgrip Strength 
	Isometric Knee Extension and Elbow Flexion Maximal Voluntary Contraction 
	Biceps Brachii Thickness 
	Vastus Lateralis Muscle Area 
	SNP Selection 
	Sample Collection, DNA Extraction and Genotyping 
	Statistical Analysis 

	Results 
	General Characteristics of Participants 
	Genotyping and SNP Associations with Skeletal Muscle Phenotypes 

	Discussion 
	Structural Proteins 
	Transcriptional Regulators 
	Antagonists of Muscle Growth 
	Body Composition Regulators 
	Myotrophic Factors 
	Implications and Limitations 

	Conclusions 
	References

