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Abstract  

An enzyme-based textile coloration process using peroxidase (EC1.11.1.7) was investigated for its 

potential as an alternative to conventional textile dyeing processes, with the benefits of being low in 

energy use and non-damaging to fibres. The current study presents a process for the coloration of wool 

fabric using peroxidase oxidation of a range of different aromatic compounds in the presence of 

hydrogen peroxide. The results revealed that wool can be successfully dyed by peroxidase-catalysed 

coloration at temperatures as low as 30°C. By controlling the pH values and buffer systems during 

processing, a diverse colour palette was produced, depending on the small molecular aromatic 

compound used as the precursor. Colour fastness testing found that fastness to washing, rubbing and 

light properties achieved good to excellent ratings, with further improvement to wash fastness provided 

by a post-soaping wash. No fibre damage occurred due to peroxidase-catalysed coloration. This enzyme 

coloration process is a promising alternative to conventional wool dyeing processes with the advantage 

of effective dyeing at low temperatures, therefore having the potential of reducing energy consumption 

and preventing fibre damage. 

 

Introduction 

Textile products usually undergo a coloration stage during processing to enhance their appearance and 

consumer desirability. Conventional coloration methods used in the textiles industry require the use of 

synthetic dyes, chemical auxiliaries and large quantities of water heated to elevated temperatures which 

may have a negative impact on the environment due to the creation of polluting effluent and high energy 

use. There is an increasing demand for more sustainable coloration and wet processing methods for 

textiles to reduce the impact on the environment.  

Enzyme-based wet processing methods are regarded as sustainable alternative methods for textile 

processing. Textile processing using enzymes can reduce the consumption of chemicals, energy and 

water, as well as generating less effluent, as enzymes are highly specific biocatalysts that can operate 

under mild temperature and neutral pH conditions. The residue of enzymes from enzymatic processing 

is reusable or biodegradable. Various enzyme-based textile wet processing methods have become well 
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established within the industry, such as desizing, bio-polishing, bio-stonewashing and bleach clean-up.1 

In terms of textile coloration, no enzyme-based method has yet been commercialised, although initial 

research studies have been carried out. Previous studies have found that enzymes belonging to the 

oxidoreductases, a class of enzymes which catalyse oxidation/reduction reactions, can catalyse the 

polymerization of certain simple aromatic compounds to form colour due to the formation of a 

conjugated structure. Two types of oxidoreductases have been used in previous studies to form colour, 

namely laccases and peroxidases.2 A study by Shin et al3 found that in-situ coloration of wool could be 

achieved if wool fabric was pretreated with phenolic compounds such as hydroquinone or ferulic acid 

then subsequently treated with either laccase or peroxidase. Since the study conducted by Shin et al, the 

majority of studies investigating enzyme coloration of textiles have focussed on the use of laccase rather 

than peroxidase.2,4-7 Recently published studies have explored the application of laccase on the in-situ 

coloration of wool and cotton fabrics.5,7-10 Peroxidase-oxidation has also been suggested for the dyeing 

of human hair.11-13 The reaction of peroxidase is generally to catalyse the oxidation or reduction of a 

variety of substrates or precursors in the presence of hydrogen peroxide as an electron provider to 

generate intermediate radicals for further coupling or polymerisation.2, 14-17 

The aim of this research was to investigate and develop an enzyme-catalysed in-situ dyeing process of 

wool using peroxidase. The potential for the formation of polymeric colourants, with a diverse colour 

palette, by the peroxidase-catalysed oxidation of a range of aromatic compound precursors in the 

presence of hydrogen peroxide, was explored.  In addition, processing parameters such as processing 

time, temperature, buffer and pH conditions, precursor concentration, and their effects on colour, were 

investigated. Each sample was tested according to commercial standards in terms of tensile strength 

and colour fastness properties. 

 

Experimental  

Materials  

Undyed plain-woven 100% wool fabric with a dry weight at 189 g/m2, 50 ends per inch, 45 picks per 

inch, and a mean fibre diameter of 23 μm was supplied by Drummond Parkland (Huddersfield, UK).  

Peroxidase (Coprinus cinereus peroxidase, CiP) in liquid form was supplied from Novozymes 

(Bagsvaerd, Denmark); 35 wt. % hydrogen peroxide (H2O2) solution, which was used as an oxidising 

agent, was purchased from Sigma-Aldrich (Dorset, UK). The dye precursors used for enzyme catalysis 

to form the colourants were also purchased from Sigma-Aldrich; their chemical structures are listed in 

Table 1.  
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Different buffer systems were prepared for a range of different pH values. Citric acid monohydrate and 

trisodium citrate were used to prepare 0.1 mol/L citrate buffers at pH 3 - 8 (Acros Organics). Monobasic 

sodium phosphate (Fisher Scientific) and dibasic sodium phosphate (Acros Organics) were used for 

preparing a 0.1 mol/L phosphate buffer at pH 9. Sodium bicarbonate and sodium carbonate anhydrous 

(Fisher Scientific) were used for preparing 0.1 mol/L bicarbonate/carbonate buffers at pH 10 and 11. 

Ultravon PL (UPL), a synergetic preparation based on nonionic surfactants, was purchased from Town 

End and used as a wetting agent and for post-treatment soaping. All other chemicals used were of 

specified laboratory reagent grade.  

[Table 1 about here] 

Enzymatic dyeing of wool fabrics 

Two grams untreated woven wool fabric samples were dyed at a liquor to goods ratio of 20:1 in 0.1 

mol/L of buffer solution containing 0.05% w/v of a specific precursors, 0.50% w/v of hydrogen 

peroxide and 0.50% v/v of peroxidase at various pH values. pH was controlled by citrate buffer for pH 

3 - 8, phosphate buffer for pH 9 and bicarbonate/carbonate buffer for pH 10 - 11. Enzymatic dyeing 

was carried out in a Datacolor Ahiba Nuance Top Speed II–IR dye machine, which was set with an 

agitation speed of 40 rpm. The temperature was raised at 2.5°C/minute and maintained at 30, 40, 50, 

60, or 70°C for 1, 2, or 4 hours, respectively. When the coloration process was completed, the samples 

were immediately rinsed repeatedly with cold tap water to remove excess dye then left to air-dry at 

room temperature. 

Soaping wash for enzymatically dyed wool fabrics 

A soaping wash of enzymatically dyed wool samples was followed to eliminate any excess, unfixed 

surface colour. Dyed wool samples were washed at a liquor to goods ratio of 50:1 in soaping wash 

solution containing 2 g/L UPL. The soaping wash process was performed in a Datacolor Ahiba Nuance 

Top Speed II–IR dye machine under agitation at the speed of 40 rpm. The temperature was raised at 

2.5°C/minute then maintained at 60°C for 30 minutes. Once the process was finished, the wool samples 

were rinsed thoroughly with cold tap water and left to air-dry at room temperature.  

Colour measurement  

The CIE L*a*b* colorimetric values and colour strength (K/S) of dyed fabric samples were measured 

using a Datacolor SF6000 Plus CT reflectance spectrophotometer. All values were measured and 

calculated under controlled conditions using Color-Tools QC software, with the illuminant and observer 

conditions of D65 and 10°, respectively. The instrument was set using a small aperture plate (9 mm), 

with the specular included, and the ultraviolet (UV) filter off for the assessment. Each dyed fabric 
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sample was folded into four and measured four times. The colour measurement value of each sample 

was obtained from the average of four measurements of each dyed fabric sample.  

The K/S value, used to analyse the relationship between absorption and scattering coefficients (K and 

S) between the wavelengths of 400-700 nm, is directly proportional to the concentration of colourant in 

the textile fabric. The K/S values of the coloured fabric samples were determined. 

Scanning electron microscopy analysis  

The surface morphology of dyed fabric samples was examined using scanning electron microscopy 

(SEM). Fabric samples were prepared by attaching a double-sided adhesive carbon conductive tab to 

an aluminium pin stub and then placing a small piece of the fabric sample on the sticky surface of the 

stub. The samples were then placed into a Quorum Q150RS rotary-powered sputter coater for 4 minutes 

of sputter cycle under argon to coat with insulating gold to a thickness of 15 nm in order to have more 

conductive electrons. After this stage, the gold-coated samples were examined using Carl Zeiss EVO 

HD15 scanning electron microscope operating with a working distance of 9.5 or 10 mm with an 

accelerating voltage of 10 kV. The magnifications used were at 250x to gain an overview structure on 

the surface of the dyed fabric sample and at 2,500x to examine the microstructure of the wool fibre 

scales of a particular sample. 

Tensile strength  

A tensile strength test was performed to determine the change in mechanical properties of enzymatically 

dyed wool fabrics using an Instron 3345 with Bluehill 3 software following test method ISO 13934-2: 

2014, determination of maximum force and elongation at maximum force using the grab method. Test 

samples were prepared at the width of 85 mm and length of 100 mm. The jaws used for grabbing the 

samples were 25 mm-wide for the front jaw and 50 mm-wide for the back jaw. The gauge length was 

adjusted to assess the samples at 50 mm with a width of 75 mm. The rate of traverse was set at 100 

mm/minute. Each sample was assessed 10 times.  

The tensile strength of the fabrics at maximum load was determined. The extension percentage or 

elongation was calculated from the increase in length of sample from its starting length according to 

Equation 1.   

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 (%) =  
𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
× 100        Equation 1 

 

Colour fastness of enzymatically dyed fabrics 
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The colour fastness to wash of dyed wool fabric samples was tested to determine the resistance of the 

colour on the dyed fabrics according to British Standard test method as BS EN ISO 105-C10:2007 (A1) 

(Part C10: colour fastness to washing with soap or soap and soda). Wool fabrics were dyed by 

peroxidase catalysis of selected precursors in different buffer systems and pH values. After peroxidase-

catalysed coloration, wool fabric samples were either just rinsed or soap-washed prior to the testing of 

colour fastness to washing. The dyed fabric sample was attached to an SDC multifibre strip fabric 

containing six different types of fibres (wool, acrylic, polyester, nylon 6.6, bleached cotton and cellulose 

acetate). The dyed fabric samples were washed in a washing solution containing 5 g/L of soap flakes at 

a liquor to goods ratio 50:1. The samples were incubated and agitated in a Roaches RO2008 Washtec 

wash wheel set at a temperature of 40°C for 30 minutes. After washing, the samples were rinsed with 

cold water and left to air-dry at room temperature. 

Colour fastness to rubbing of enzymatically dyed fabric samples was determined in the accordance with 

British Standard test method BS EN ISO 105-X12:2002 (Part X12: colour fastness to rubbing) using a 

digitally recorded hand-operated crockmeter, James Heal Crockmaster Model 670HD. Colour change 

of the dyed samples and staining on cotton lawn rubbing cloths under dry and wet conditions were 

graded.   

Colour changes due to washing and rubbing were assessed and graded under a VeriVide lightbox with 

standard artificial daylight following test method BS EN 20105-A02:1995, ISO 105:A02:1993, 

determining changes in colours using grey scale. Colour loss and staining results were used for assessing 

the colour differences corresponding to grey scale grading numbers from 5, 4/5, 4, 3/4, 3, 2/3, 2, 1/2, 

and 1, representing no colour loss/stain to complete colour loss/stain respectively.  

The light fastness properties of wool fabric samples from enzymatic coloration was tested according to 

the British Standard test method BS EN ISO 105-B02:2014 (Part B02: colour fastness of textiles to 

light: artificial light: Xenon arc fading lamp test). Fabric samples were attached on a card and placed in 

specimen holder, which was placed in the test chamber of a James Heal Apollo light and weather 

fastness tester. The samples were exposed to light for 6 hours and 12 hours. A set of five blue wool 

references grades (1 - 5) were used during the test as known controls to obtain a numerical rating for 

the light fastness of each tested sample. 

 

Results and discussion  

The application of the enzyme peroxidase on the coloration of wool fabrics was explored. During the 

enzymatic process, various parameters, including the presence of hydrogen peroxide, precursor, 

processing temperature, processing time and pH condition, can inhibit or accelerate the enzymatic 
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coloration. The optimum level can enhance the performance of peroxidase-catalysed coloration of wool 

fabrics.  

Effect of peroxidase and hydrogen peroxide on the enzymatic coloration of wool fabrics  

The enzyme peroxidase requires the presence of peroxides, such as hydrogen peroxide, to act as a co-

enzyme to catalyse the oxidation of substrates.2,18-21 The potential for the generation of colourants 

through peroxidase-catalysed oxidation of the substrate in the presence of hydrogen peroxide was 

explored. The precursor 1,4-dihydroxybenzene (1,4DHB) was used as the substrate in the enzyme 

catalysis at pH 5 and 30°C for an hour for coloration of wool. The results are shown in Table 2. 

[Table 2 about here] 

It was found that formation of the colourant cannot be achieved in the absence of hydrogen peroxide, 

peroxidase or precursor. When these three components were combined together in the process, 

enzymatic coupling or polymerisation was achieved to produce colourant on wool fabrics. Peroxidase 

catalysation in the presence of hydrogen peroxide occurs through a process whereby hydrogen peroxide 

binds to an active site of peroxidase, which converts hydrogen peroxide to water through two electron 

reduction and peroxidase to its oxidised state.22,23 The relocation of electrons in a redox reaction oxidises 

the precursor while the peroxidase returns to its original form.24 Therefore, the precursor can be oxidised 

to form active intermediate radicals, resulting in their further coupling or polymerisation to produce a 

conjugated colourant,3,22,25 as illustrated in Figure 1. The results confirmed that peroxidase-catalysed 

oxidation requires hydrogen peroxide and a precursor to achieve wool coloration.  

[Figure 1 about here] 

Effect of processing time and temperature on the enzymatic coloration of wool fabrics 

The processing time and temperature are vital control parameters in the enzymatic coloration process. 

Therefore, the effect of processing time and temperature in peroxidase-catalysed coloration was 

investigated. The processing time was set for 1, 2 and 4 hours at different processing temperatures 

between 30 and 70°C. 

[Table 3 about here] 

Table 3 shows the influence of processing time and temperature on peroxidase-catalysed coloration of 

wool fabrics. The highest depth in colour shade was achieved from a 1- or 2-hour treatment. Therefore, 

the optimum duration was 1- 2 hours for peroxidase-catalysed coloration of wool fabrics because a 

longer dyeing time of 4 hours was unable to achieve a higher depth of colour and may also risk fibre 

damage. 

https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
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It has been suggested from previous studies that peroxidase reacts at a wide range of temperatures from 

10 to 100°C26,27 with different reactions. The results in the current study found that peroxidase-catalysed 

coloration occurred at temperatures of 30 or 40°C and achieved a higher depth of colour on the wool 

fabrics compared with when fabrics were dyed at 50, 60 or 70°C, at which point colours gradually fade 

due to the decrease in peroxidase catalysis. These observations on the effect of temperature on 

peroxidase catalysis in the current study appear to be consistent with previous studies using this 

enzyme.28-30 This is because increasing the temperature causes denaturation of the enzyme protein, 

resulting in the loss of enzyme activity, and may result in damage to the wool fibres and shrinkage of 

the wool fabric. 

The K/S value was used to assess the colour strength of wool fabrics enzymatically coloured at different 

processing times of 15 - 240 minutes. Figure 2 shows that the K/S value of wool fabrics were increased 

with increasing treatment time. After 15 minutes, the K/S value reached 12.6. Then, K/S gradually 

increased to 26.9 at 60 minutes and reached a plateau of coloration of 32.1 at 120 minutes, without any 

further increase at 240 minutes. The results indicate that peroxidase was powerful enough to react and 

polymerise a colour on wool fabrics and generate colour within 15 - 60 minutes, thereby achieving 

time-savings in comparison with conventional coloration methods. However, when considering colour 

achieved on fabrics, dyeing for 60 minutes would be more appropriate, so that the peroxidase can allow 

the colourants to penetrate deep into the wool fibre to produce the strongest shade and hue. These results 

confirm that peroxidase-catalysed coloration conditions of 30°C for 60 minutes can produce optimal 

colour strength without causing damage on wool fibres.  

[Figure 2 about here] 

Because the enzymatic coloration process was undertaken through the peroxidase-catalysed oxidation 

in the presence of a low concentration of hydrogen peroxide, the effect of enzymatic dyeing processes 

on the mechanical properties of wool fabrics were investigated. Wool fabrics dyed enzymatically at 30 

- 70°C for 1 and 2 hours were tested for their tensile strength at maximum load, and their results are 

presented in Table 4. There was no fibre damage to the wool fabrics during the peroxidase-catalysed 

coloration process. After comparing the average tensile strength and strain at the maximum load for 

treated and untreated wool sample, it was concluded that there was no significant difference. Thus, the 

overall tensile strength of wool fabrics was not affected during enzyme-catalysed processing lasting 

either 1 or 2 hours at 30 or 40°C. These parameters may preferably be used for the peroxidase-catalysed 

coloration of wool fabrics. 

[Table 4 about here] 

https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
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SEM analysis was carried out to assess whether the surface of the dyed wool fibre underwent any 

damage attributable to peroxidase-catalysed coloration. Dyed samples that had been treated for 1 or 2 

hours at 30, 50 or 70°C were selected to observe any changes in the surface morphology of wool using 

SEM analysis (Figure 3). For fabrics dyed for 1 hour at 30°C (see Figure 3b) or 40°C (not shown), no 

damage on the fibre surface was observed, and there was no substantial difference when compared with 

the untreated sample (Figure 3a). After dyeing the wool fabric for 1 hour at either 50 or 70°C, it was 

observed that there was a slight but insignificant change to the wool scales. However, dyeing the wool 

for 2 hours at either 50 or 70°C caused the wool scales to break down. With increasing temperature, the 

wool scales were gradually opened, cracked and peeled. It was concluded that peroxidase-catalysed 

coloration for 1 hour at 30 and 40°C would not cause any damage to wool fibres and therefore would 

not make any significant difference in colour shade and depth in comparison with other dyeing 

conditions. Thus, further experiments for enzymatic coloration were undertaken at 30°C.  

 

[Figure 3 about here] 

 

Effect of pH values on the enzymatic coloration of wool fabrics 

pH is an essential parameter for controlling enzyme activity. Enzymes are usually active under mild or 

neutral conditions30 or within a restricted range of pH values.27 In the case of peroxidase catalysation, it 

was found that the coloration under alkaline or acidic conditions could produce different results in terms 

of colour hue and depth of shade. Different pH values were employed for analysing the peroxidase-

catalysed coloration of wool fabrics by using citrate buffer for pH 3 - 8, phosphate buffer for pH 9, or 

bicarbonate buffer for pH 10 - 11.  

Table 5 shows that the peroxidase catalysis of the precursor 1,4DHB generated a strong brown colour 

on wool fabrics at pH 5, which then became a lighter yellow when the pH of enzyme treatment increased 

from 5 to 11. These results indicate that colour formation by peroxidase catalysis of 1,4DHB can 

achieve various shades of a particular colour corresponding to pH conditions. It appears that pH could 

be the influence on the colour hue and shade from peroxidase-catalysed coloration. The change in colour 

hue and shade caused by pH could be due to different structures of polymeric colourants formed during 

the enzymatic synthesis or ionisation of hydroquinone to hinder the enzymatic catalysis.30 In order to 

confirm this effect, more precursors were tested for enzyme catalysis at different pH values and are 

described in the following section. 

[Table 5 about here] 

Effect of different precursors on the peroxidase-catalysed coloration of wool fabrics 

https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
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Enzymatic coloration of wool fabrics was further developed by peroxidase catalysis of different 

precursors at different pH values to extend the range of colour hues and shades. The simple aromatic 

compounds, including 1,2-dihydroxybenzene (1,2DHB), 2,7-dihydroxynaphthalene (2,7DHN), 

catechin hydrate (CAT), 2,5-diaminobenzenesulfonic acid (2,5DABS), 3-amino-4-

hydroxybenzenesulfonic acid (AHSB), p-phenylenediamine (PPD), 2-aminophenol (2-AP), and 4-

aminophenol (4-AP), were used as precursors for peroxidase catalysation.  

Table 6 shows that a range of colour on wool fabrics was achieved by peroxidase-catalysed coloration 

with the selected precursors at pH values ranging from 3 to 11. The results show that colour varies 

corresponding to the use of different pH values in the peroxidase-catalysed coloration. It was confirmed 

that peroxidase can actively catalyse the reaction across a range of acidic to alkaline pH values, but this 

was dependent on the individual substrate. By controlling pH, various colour hues and shades on wool 

fabric can be achieved, even through peroxidase catalysis of the same precursor. 

[Table 6 about here] 

It was observed when using the precursor 2,7DHN under peroxidase catalysis that the strongest shades 

of grey and blue occurred under neutral or milder alkaline conditions using either citrate buffer or 

phosphate buffer. Under acidic processing conditions ranging from pH 3 to 6, colour shades and hues 

varied from yellow to light orange, but a green and brown colour was produced on wool under stronger 

alkaline dyeing conditions with peroxidase at pH 10 - 11.  

With the precursor PPD under peroxidase catalysis, the darkest colour shade can be produced across a 

wide range of pH from 4 to 11. At pH 7 - 9, wool fabric can be dyed almost black with an L* value of 

28.9 to 24.9 through peroxidase catalysis of precursor PPD. By increasing pH to 10 and 11, a strong 

brown colour can be achieved on wool. The mechanism of colourant synthesis under enzymatic 

oxidation of precursors may be different to that under chemical oxidation, especially at different pH 

values. Further research is needed to understand the conjugated structures of the different colours 

formed under peroxidase catalysis at different pH values. 

The use of the precursors AHSB and 2-AP under peroxidase catalysis achieved strong red and orange 

colour on wool when buffered at pH 4 - 6 during the enzymatic process. By increasing the pH in the 

dyeing process, the colour on wool shifted to yellow. 

Interestingly, there were significant changes in the colour obtained on wool fabrics when the dyeing 

condition were changed from weak alkaline to stronger alkaline conditions of pH 10 and 11 using a 

bicarbonate/carbonate buffer. Colours shifted from greenish blue to brown in the presence of the 

precursor 2,7DHN, pink to yellow in the presence of the precursor 2,5DABS, black to brown in the 

presence of the precursor PPD, and orange to yellow in the presence of the precursors 2-AP and 4-AP. 
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This is because strong alkaline conditions either dramatically affect the peroxidase-catalysed reaction, 

resulting in the formation of different coupling or polymeric structures of the conjugated system, or 

affect the activity of peroxidase to achieve strong colour. Enzyme-catalysed oxidation is very specific 

to the oxidation of precursors, so that wool fibres might suffer physical damage caused by the strong 

alkaline conditions, rather than oxidation by the trace amount of peroxide. To limit the fibre damage in 

the process, the enzymatic wool coloration could be carried out under mild alkaline conditions through 

rapid enzyme catalysis at low temperatures. 

The effect of different precursors on the peroxidase-catalysed coloration of wool fabrics indicates that 

the difference in colour could be attributable to the different conjugated structures of colourants, due to 

the organism of the precursor and its chemical structure containing phenolic, amino or carboxylic 

groups. Therefore, a wide colour spectrum can be achieved on wool via selection of precursors and 

controlling pH for peroxidase catalysation.  

Effect of precursor concentration on the enzymatic coloration of wool fabrics 

When the concentration of precursor in peroxidase-catalysed coloration was increased, the colour on 

wool achieved was assessed to discover whether the depth of colour shade intensifies or if the colour 

hue shifts. Treatment using the pH conditions that gave the strongest colour for six of the precursors 

were selected. The six precursors selected for their strong colour were 2,7DHN (pH 9), 2,5DABS (pH 

4), AHSB (pH 4), CAT (pH 5), PPD (pH 9), and 4-AP (pH 4) at their respective concentrations (w/v) 

of 0.05%, 0.12%, 0.25%, and 0.50%. 

[Table 7 about here] 

When increasing the precursor concentration in the peroxidase-catalysed coloration process, significant 

differences in colour and shade occurred with the precursor 2,7DHN at pH 9, 2,5DABS at pH 4 and 

AHSB at pH 4. Table 7 shows that the colour shades slightly intensified after increasing the precursor 

concentration 10-fold from 0.05% w/v to 0.50% w/v. By contrast, it was interesting to note that, when 

dyeing with 2,7DHN, a colour hue shift occurred with an increase in its concentration. Blue and greenish 

blue colours can be produced by coloration with precursor 2.7DHN at the concentration of 0.05% w/v 

and 0.12% w/v, shifting to a dark greyish green colour at 0.25% w/v and 0.50% w/v.  

A positive correlation between the concentration of precursor and depth of colour was found when 

dyeing with the precursor 2,5DABS at pH 4 and AHSB at pH 4. The depth of colours on the wool fabric 

increased slightly without any shifting of colour shade from peroxidase-catalysed coloration while 

increasing the precursor concentration from 0.05% to 0.50% w/v .  

Colour fastness assessments 
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The colour fastness to washing of wool fabrics dyed by peroxidase-catalysed coloration was tested to 

observe colour loss, colour changes, colour fading of dyed test samples and colour staining onto 

multifibre strip fabric during wash fastness testing. The selected colours of wool fabrics from 

peroxidase catalysation of six precursors at different pH values were prepared for testing. After 

peroxidase-catalysed coloration, wool fabric samples were either soap-washed or simply rinsed in 

running tap water without soap-washing prior to testing their colour fastness to washing.   

[Tables 8 and 9 about here] 

Table 8 shows the colour fastness to washing properties of wool samples dyed by peroxidase 

catalysation without post-soaping wash. Colour loss occurred on all selected coloured samples. A fair 

colour fastness to washing for wool samples dyed by peroxidase catalysis of 2,7DHN, CAT, 2,5DABS, 

AHSB, PPD, and 4-AP was achieved with grades of 2, 3, 3/4, 3/4, 2, and 4 respectively without colour 

shifting. After evaluating colour staining on a multifibre strip fabric, it was found that all the selected 

colours achieved excellent to very good grades on adjacent fabrics. The dyed sample with PPD and 4-

AP had an exceptionally poor grade on nylon. On cellulose acetate, 4-AP achieved a rating at 3/4 while 

PPD achieved an unacceptable grade. Therefore, without a soaping wash after peroxidase-catalysed 

coloration, there were unfixed colourants absorbed on the surface of the fabric through Van der Waals 

forces and hydrogen bonds.  

Table 9 shows colour fastness to washing properties of wool samples dyed by peroxidase catalysation 

with a post-soaping wash. The colour fastness of dyed samples after a post-soaping wash was better 

than that of the dyed samples without a post-soaping wash. There was no visible change in dyed colour 

with CAT. A minor change occurred on dyed sample with 4-AP achieving a rating of 4/5 while 2,7DHN 

and PPD each achieved a colour fastness rating of 4. However, 2,5DABS and AHSB both achieved a 

rating of 3/4. Therefore, a soaping wash after peroxidase-catalysed coloration is required to remove any 

unfixed surface colour to help achieve better colour fastness to wash.  

[Table 10 about here] 

Colour fastness to rubbing under dry and wet conditions was assessed to examine any colour changes 

of wool samples dyed by peroxidase-catalysed coloration. The results in Table 10 indicate that wool 

fabrics dyed by peroxidase-catalysed coloration had excellent rubbing fastness. There were no colour 

losses or changes on any dyed samples although there were slight colour staining on cotton lawn rubbing 

cloths under dry conditions especially for the samples dyed by peroxidase catalysis of PPD. However, 

these were still at an acceptable rating of 3/4. This could be attributed to the high depth of the black 

colour shade of the wool fabric produced by the peroxidase-catalysed coloration with PPD. Under wet 
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conditions, the results showed a similar trend. The rubbing fastness of the dyed wool fabrics under dry 

conditions was slightly better than that under wet conditions.  

According to light fastness results, after the exposure of the dyed wool samples to UV light for 6 and 

12 hours, dyed colour on wool fabrics by peroxidase-catalysis of CAT, 2,5DABS, PPD and 4-AP 

achieved a blue wool grade of 3-4. However, 2,7DHN and AHSB had a high degree of colour change 

after 6 and 12 hours of exposure. The enzyme-synthesised colour from 2,7DHN actually changed from 

a blue to a brownish shade with a reduction of colour brightness, which is why the rate of colour fastness 

to light was rated low, due to the colour shift responding to UV light. The difference in colour fastness 

to light could be attributed to the different structure of enzymatically synthesised colourants. 

Peroxidase-catalysed coloration using binary precursors  

The potential of peroxidase-catalysed coloration was further investigated in the use of binary precursors 

in the enzymatic process for wool coloration. The combination of two precursors with different 

chemical structures was used in peroxidase-catalysed coloration of wool fabrics. Precursor 2,7DHN 

was combined selectively with 2,5DABS at pH 7 and pH 9, AHSB at pH 8, CAT at pH 9, 2-AP at pH 

7, pH 9 and pH 10, respectively. Two precursor concentrations at 0.05% w/v and 0.025% w/v were 

used. The resulting colour shade and hue from the enzymatic coloration between two precursors were 

assessed, as shown in Table 11.  

[Table 11 about here] 

It was found that the combination of two different precursors for peroxidase catalysis in the enzymatic 

dyeing process of wool fabrics did not achieve an exact overlay of the individual colour from the 

peroxidase catalysis of corresponding precursors. This could be due to the competition between 

precursors for peroxidase, or the coupling or polymerisation between different precursors rather than 

individual precursors. Although more colour shades on wool fabrics can be achieved by the peroxidase 

catalysis of the combined precursors, it might be difficult to predict the resulting colour based on the 

colour from the individual catalysed coloration. 

By combining 2,7DHN and 2-AP in peroxidase-catalysed coloration at pH 7, a strong orange colour 

was produced on the wool fabric. This colour could be a mixture of the light greenish colour from the 

2,7DHN polymerised colourant and the red colour from the 2-AP polymerised colourant. The K/S 

values of dyed fabrics over the whole visible spectrum of wavelengths from 400 to 700 nm (Figure 4) 

confirm that the colour from the combination was overlapping from the individual coloration. However, 

when 2,7DHN was combined with 2-AP in enzymatic synthesis at pH 9 or 10, it appears that the colour 

was mainly contributed by 2-AP. This could be attributed to self-coupling of 2-AP being more 
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preferential than the reaction between 2-AP and 2,7-DHN, therefore occupying most of the enzyme 

activity during enzyme catalysis. 

When 2,7DHN was combined with other precursors in the enzymatic synthesis at pH 9, the strong blue 

colour from the peroxidase catalysis of 2,7DHN does not appear to develop. This blue colour was not 

fully shown in the resulting colour from the combination. The K/S spectrum between 400 and 700 nm 

(Figures 5 and 6) confirmed that colour development via enzyme catalysis of 2,7DHN by itself might 

not occur in binary combinations. This could be because the coupling or polymerising reaction between 

2,7DHN and precursors CAT or 2,5DABS is more rapid that of 2,7DHN by itself, which occupied the 

enzyme activity during enzyme catalysis. This could be the reason for the lack of any contribution from 

2,7DHN by itself to coloration.  It is proposed that two precursors were oxidised by peroxidase and that 

both of them were coupled or polymerised together and incorporated in the same conjugated chain. 

Therefore, a different colour could be formed rather than the combination colour from the two 

conjugated structures of different colours.     

[Figures 4, 5 and 6 about here] 

Conclusions  

Over recent years, there has been growing concern about the environmental impact of the textile 

industry, particularly in relation to coloration and finishing processes. To address this problem, 

sustainable textile bio-processing has gained attention due to its reusability and/or biodegradability. The 

current research study contributes to an understanding of the use of enzyme peroxidase for textile 

coloration of wool fabrics as an alternative coloration method to conventional textile coloration. The 

pocessing parameters in this enzymatic coloration process, namely, pH, temperature and processing 

duration, along with various precursors and their concentrations, were investigated. The results revealed 

that wool fabrics can be successfully dyed by peroxidase-catalysed coloration producing a broad range 

of colours at 30°C for 60 minutes rather than using the time and energy required in conventional high-

temperature coloration of wool. It was found that peroxidase can be active over a broad range of pH 

values to catalyse the synthesis of colourants, resulting in successful coloration of wool fabrics. Under 

different pH conditions, the colourants of wool fabrics were produced with different shade of particular 

colours via the enzyme catalysis of nine different precursors. From tensile and colour fastness tests, it 

was found that there was no significant damage to wool fibre during peroxidase-catalysed coloration. 

The bioprocessing method developed using peroxidase catalysis for coloration of wool fabrics has 

potential not only as an alternative coloration process, but also saving energy and preventing wool fibre 

damage. 

 

https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
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Table 1 Chemical structure of precursors 

Precursors Acronym Chemical structure 

1,2-dihydroxybenzene  1,2DHB 

 

1,4-dihydroxybenzene  1,4DHB 

 

2,7-dihydroxynaphthalene 2,7DHN 

 

catechin hydrate CAT 

 

2,5-diaminobenzenesulfonic acid 2,5DABS 

 

3-amino-4-hydroxybenzenesulfonic acid AHSB 

 

p-phenylenediamine PPD 

 

2-aminophenol 2-AP 

 

4-aminophenol 4-AP 
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Table 2 Effect of hydrogen peroxide, peroxidase and precursors on their own or combination on the 

coloration of wool fabrics  

Chemical combination 
Colour 

obtained 

CIE L*a*b*values 

Hydrogen 

peroxide 

Enzyme 

peroxidase 

Precursor 

(1,4DHB) 
L* a* b* 

- - - 

 

86.0 -0.5 10.0 

 - - 

 

87.3 -0.6 10.0 

  - 

 

80.5 -0.6 9.9 

 -  

 

85.9 -0.1 10.0 

-  - 

 

85.3 -0.6 11.0 

-   

 

85.9 -0.5 11.2 

- -  

 

87.3 -0.7 10.8 

   

 

33.4 13.1 15.2 
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Table 3 Colour achieved from peroxidase catalysation at different processing time and temperature 

with precursor 1,4DHB at pH 5  

Temperature 

(°C) 

Colour obtained and CIE L*a*b*values 

1 hour 2 hours 4 hours 

30 
 

L*          54.6 

a*            6.1 

b*          15.6 

 
L*          51.2 

a*            5.2 

b*          15.9 

 
L*         51.5 

a*           4.7 

b*         16.2 

40 
 

L*          51.3 

a*            5.9 

b*          16.5 

 
L*         48.9 

a*            5.8 

b*          17.2 

 
L*         52.9 

a*           7.0 

b*         19.5 

50 
 

L*          52.3 

a*            7.7 

b*          20.1 

 
L*          51.3 

a*           7.6 

b*         19.9 

 
L*          55.2 

a*            8.0 

b*          20.8 

60 
 

L*          52.3 

a*            8.3 

b*          20.6 

 
L*          56.4 

a*            8.2 

b*          20.5 

 
L*          57.1 

a*            9.0 

b*          22.1 

70 
 

L*          54.7 

a*            8.7 

b*          20.8 

 
L*          56.8 

a*            9.1 

b*          21.9 

 
L*          59.5 

a*            9.1 

b*          22.3 

 

 

 

 

 

https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
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Table 4 Tensile properties (warp direction) of wool fabrics dyed by peroxidase catalysis of precursor 

1,4DHB at pH 5 and different processing temperature for 1 or 2 hours  

Temperature 

(°C) 

Processing time 

(hr) 

Maximum load 

(N) 

Tensile strain 

at maximum load (%) 

Untreated - 393 43.4 

30 

1 

414 46.9 

40 415 46.6 

50 412 46.8 

60 411 47.1 

70 401 47.0 

30 

2 

420 49.4 

40 418 48.7 

50 404 47.9 

60 413 48.6 

70 400 49.9 

 

 

Table 5 Colour achieved from peroxidase catalysation at different pH values from pH 3 to pH 11 with 

precursor 1,4-DHB 

pH value 

3 4 5 6 7 8 9 10 11 

 
L*      69.5 

a*        6.7 

b*      17.8 

 
L*      59.3 

a*        6.3 

b*      15.2 

 
L*      54.6 

a*        6.1 

b*      15.6 

 
L*      65.5 

a*        6.6 

b*      17.8 

 
L*      74.1 

a*        4.7 

b*      14.9 

 
L*      78.5 

a*        4.5 

b*      11.8 

 
L*      84.4 

a*        1.3 

b*      11.6 

 
L*      86.0 

a*        0.6 

b*      13.8 

 
L*      86.3 

a*        0.0 

b*      13.4 

 

 

 

 

 

 

 

 

https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
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Table 6 Colour shades of wool fabrics achieved from peroxidase-catalysed coloration with the selected 

precursors at different pH values from pH 3 to pH 11  

pH 

value 

Precursor 

1,2DHB 2,7DHN CAT 2,5DABS AHSB PPD 2-AP 4-AP 

3 

 
-  

L*         85.3 

a*           1.2 

b*         11.0 

 
L*         85.2 

a*           1.3 

b*         12.9 

 
L*         49.7 

a*         10.4 

b*           5.2 

 
L*         81.3 

a*           2.6 

b*         24.4 

 
L*         66.6 

a*           2.6 

b*           4.1 

 
L*         64.0 

a*         17.9 

b*         46.2 

 
L*         42.3 

a*           8.1 

b*         14.4 

4  
L*         55.6 

a*           8.2 

b*         13.9 

 
L*         82.0 

a*           1.1 

b*         14.2 

 
L*         83.3 

a*           0.1 

b*         24.6 

 
L*         43.5 

a*         13.3 

b*         10.3 

 
L*         49.5 

a*         35.4 

b*         52.2 

 
L*         49.5 

a*           6.0 

b*           7.5 

 
L*         54.7 

a*         23.1 

b*         48.9 

 
L*         48.8 

a*           7.9 

b*         15.0 

5  
L*         62.6 

a*           6.8 

b*         14.0 

 
L*         77.8 

a*           2.2 

b*         12.5 

 
L*         79.8 

a*           2.7 

b*         32.2 

 
L*         54.2 

a*         13.0 

b*         18.0 

 
L*         54.0 

a*         33.2 

b*         53.4 

 
L*         46.0 

a*           4.2 

b*           3.3 

 
L*         54.4 

a*         25.6 

b*         51.2 

 
L*         51.9 

a*           8.6 

b*         17.0 

6  
L*         74.6 

a*           3.8 

b*         13.5 

 
L*         80.3 

a*           0.3 

b*         11.7 

 
L*         77.7 

a*           7.8 

b*         35.3 

 
L*         64.3 

a*         15.1 

b*         24.2 

 
L*         60.0 

a*         27.1 

b*         51.3 

 
L*         39.2 

a*           1.7 

b*           1.8 

 
L*         54.8 

a*         24.1 

b*         50.5 

 
L*         51.1 

a*           6.2 

b*         15.6 

7  
L*         78.1 

a*           2.8 

b*         12.6 

 
L*         69.4 

a*           2.8 

b*           7.3 

 
L*         74.7 

a*         10.6 

b*         29.6 

 
L*         72.3 

a*         11.6 

b*         27.4 

 
L*         65.2 

a*         16.2 

b*         43.2 

 
L*         28.9 

a*           3.9 

b*           2.1 

 
L*         54.7 

a*         23.4 

b*         50.6 

 
L*         59.5 

a*           5.7 

b*         17.6 

8 -  
L*         56.4 

a*          -5.8 

b*          -7.1 

L*         78.1 

a*           7.3 

b*         26.0 

 
L*         73.6 

a*           8.8 

b*         24.0 

 
L*         75.0 

a*           7.2 

b*         32.8 

 
L*         25.1 

a*           6.4 

b*           2.7 

 
L*         57.1 

a*         17.8 

b*         50.2 

 
L*         58.1 

a*           6.7 

b*         19.1 

9 -  
L*         52.4 

a*          -6.1 

b*          -6.4 

 
L*         81.6 

a*           3.4 

b*         21.2 

 
L*         72.8 

a*           7.4 

b*         15.3 

 
L*         82.4 

a*         -0.7 

b*         12.7 

 
L*         24.9 

a*           9.4 

b*           4.0 

 
L*         56.4 

a*         10.2 

b*         45.2 

 
L*         66.8 

a*           5.8 

b*         19.0 

10 -  
L*         55.1 

a*          -4.9 

b*          -4.8 

 
L*         84.0 

a*           5.6 

b*         16.9 

 
L*         81.9 

a*           2.7 

b*         14.4 

 
L*         84.4 

a*           0.8 

b*         12.0 

 
L*         34.2 

a*         11.5 

b*           9.5 

 
L*         67.7 

a*           1.7 

b*         29.3 

 
L*         71.4 

a*           4.7 

b*         18.9 

11 -  
L*         64.6 

a*           4.8 

b*         13.9 

 
L*         81.0 

a*           4.3 

b*         13.5 

 
L*         83.3 

a*           1.8 

b*         14.3 

 
L*         84.1 

a*           0.0 

b*         10.7 

 
L*         35.1 

a*         11.8 

b*           8.2 

 
L*         69.1 

a*         -1.1 

b*         17.3 

 
L*         78.4 

a*           2.9 

b*         18.4 
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Table 7 Colour achieved from peroxidase catalysation at different precursors, precursor concentration, 

and pH values 

Precursor pH value 
Precursor concentration (%w/v) 

0.05 0.12 0.25 0.50 

2,7DHN 9  
L*         52.4 

a*          -6.1 

b*          -6.4 

 
L*         52.1 

a*          -7.9 

b*          -7.4 

 
L*         51.3 

a*          -7.9 

b*           5.0 

 
L*         57.1 

a*          -9.7 

b*         10.4 

CAT 5  
L*          79.8 

a*            2.7 

b*          32.2 

 
L*          79.1 

a*            4.7 

b*          37.3 

 
L*         79.0 

a*            3.7 

b*          34.7 

 
L*          78.9 

a*            3.4 

b*          32.2 

2,5DABS 4  
L*          43.5 

a*          13.3 

b*          10.3 

 
L*          42.8 

a*          11.1 

b*          10.0 

 
L*          37.7 

a*            7.2 

b*            5.1 

 
L*          32.1 

a*            3.7 

b*          -0.5 

AHSB 4  
L*          49.5 

a*          35.4 

b*          52.2 

 
L*          42.8 

a*          36.0 

b*          45.5 

 
L*          36.7 

a*          35.6 

b*          36.8 

 
L*          31.4 

a*          34.4 

b*          30.4 

PPD 9  
L*          24.9 

a*            9.4 

b*            4.0 

 
L*          25.9 

a*            8.8 

b*            7.2 

 
L*          24.4 

a*            8.0 

b*            7.6 

 
L*          22.2 

a*            7.3 

b*            6.2 

4-AP 4 
 

L*          48.8 

a*            7.9 

b*          15.0 

 
L*          48.9 

a*            8.0 

b*          13.7 

 
L*          46.7 

a*            8.2 

b*          15.6 

 
L*          46.5 

a*            8.0 

b*          17.1 
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Table 8 Colour fastness to washing property of peroxidase-catalysed coloration on wool fabrics with 

selective precursors and pH values in the absence of post-soaping wash 

Precursor pH value Colour 

change 

Colour staining 

Cellulose 

acetate 
Cotton Nylon Polyester Acrylic Wool 

2,7DHN 9 2 5 4 4/5 5 5 5 

CAT 5 3 5 4/5 4/5 5 5 5 

2,5DABS 4 3/4 4/5 5 5 5 5 4/5 

AHSB 4 3/4 4/5 4 4/5 4/5 4/5 4/5 

PPD 9 2 1 4 1 4/5 4/5 4 

4-AP 4 4 3/4 4 1 4/5 4/5 4 

 

Table 9 Colour fastness to washing properties of post-soaping washed peroxidase-catalysed coloration 

on wool fabrics with selective precursors and pH values in the presence of post-soaping wash 

Precursor pH value Colour 

change 

Colour staining 

Cellulose 

acetate 
Cotton Nylon Polyester Acrylic Wool 

2,7DHN 9 4 5 5 5 5 5 5 

CAT 5 5 5 5 5 5 5 5 

2,5DABS 4 3/4 4/5 5 5 5 5 4/5 

AHSB 4 3/4 4/5 4 4 4/5 4 4 

PPD 9 4 4 4/5 4 5 5 5 

4-AP 4 4/5 4/5 5 4/5 5 5 4/5 

 

Table 10 Colour fastness to rubbing and light properties of peroxidase-catalysed coloration on 

wool fabrics with selective precursors and pH values 

Precursor pH value 

Colour fastness to rubbing Colour fastness to light 

Colour 

change 

Rubbing conditions Exposure period (hrs) 

Dry Wet 6 12 

2,7DHN 9 5 4/5 4/5 1 1 

CAT 5 5 4/5 4 3 3 

2,5DABS 4 5 5 4/5 4 4 

AHSB 4 5 4/5 4 2 1 

PPD 9 5 3/4 3 3 3 

4-AP 4 5 4 4 3 3 
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Table 11 Colour achieved on wool fabrics from peroxidase-catalysed coloration with the binary 

precursor system 

pH value 

Precursor/Colour obtained and 

CIE L*a*b* values 

Colour obtained / 

CIE L*a*b* values 

Precursor A 

0.05% w/v 

Precursor B 

0.05% w/v 

Precursor A+B at 

0.05% w/v each 

Precursor A+B at 

0.025% w/v each 

7 

2,7DHN 2,5DABS   

 
L*            69.4 

a*              2.8 

b*              7.3 

 
L*            72.3 

a*            11.6 

b*            27.4 

 
L*            50.3 

a*              6.1 

b*              6.8 

 
L*            62.8 

a*              7.2 

b*            13.6 

2,7DHN 2-AP   

 
L*            69.4 

a*              2.8 

b*              7.3 

 
L*            54.7 

a*            23.4 

b*            50.6 

 
L*            59.6 

a*            21.1 

b*            50.5 

 
L*            61.8 

a*            19.4 

b*            50.0 

8 

2,7DHN AHSB   

 
L*            56.4 

a*             -5.8 

b*             -7.1 

 
L*            75.0 

a*              7.2 

b*            32.8 

 
L*            58.3 

a*              5.1 

b*            29.5 

 
L*            64.3 

a*              3.1 

b*            25.1 

9 

2,7DHN CAT   

 
L*            52.4 

a*             -6.1 

b*             -6.4 

 
L*            81.6 

a*              3.4 

b*            21.2 

 
L*            75.9 

a*              3.5 

b*            25.8 

 
L*            70.4 

a*             -4.8 

b*              7.0 

2,7DHN 2,5DABS   

 
L*            52.4 

a*             -6.1 

b*             -6.4 

 
L*            72.8 

a*              7.4 

b*            15.3 

 
L*            69.2 

a*              0.0 

b*            10.3 

 
L*            75.8 

a*              0.9 

b*            10.5 

2,7DHN 2-AP   

 
L*            52.4 

a*             -6.1 

b*             -6.4 

 
L*            56.4 

a*            10.2 

b*            45.2 

 
L*            57.5 

a*              8.5 

b*            44.1 

 
L*            61.8 

a*              6.0 

b*            44.2 

10 

2,7DHN 2-AP   

 
L*            55.1 

a*             -4.9 

b*             -4.8 

 
L*            67.7 

a*              1.7 

b*            29.3 

 
L*            61.5 

a*              0.7 

b*            25.0 

 
L*            66.2 

a*              0.2 

b*            14.9 
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Figure 1 Mechanism of peroxidase-catalysed oxidation of a precursor acting as the enzyme’s substrate 

 

 

 

Figure 2 Colour absorption (700 nm) in different treatment times (minutes) of peroxidase-catalysed 

coloration   
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Figure 3 SEM images of wool fibre from fabric samples dyed using different processing time and 

temperature conditions: (a) untreated wool fabric; (b) wool fabric dyed at 30°C for 1 hour; (c) wool 

fabric dyed at 50°C for 1 hour; (d) wool fabric dyed at 70°C for 1 hour; (e) wool fabric dyed at 30°C 

for 2 hours; (f) wool fabric dyed at 50°C for 2 hours; (g) wool fabric dyed at 70°C for 2 hour 

(a) 

(c) (d) 

(e) (f) 

(b) 

(g) 

https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
https://www.google.com/search?q=celsius+1+%C2%B0c+in&sa=X&ved=2ahUKEwir9aXT7uzdAhUExIUKHU_sDlYQ6BMoADAaegQIChAf
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Figure 4 Peroxidase-catalysed coloration between precursor 2,7DHN (A) and 2-AP (B), and their 

combination at pH 7 on wool fabrics 

 

 

 

Figure 5 Peroxidase-catalysed coloration between precursor 2,7DHN (A) and AHSB (B), and their 

combination at pH 8 on wool fabrics 
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Figure 6 Peroxidase-catalysed coloration between precursor 2,7DHN (A) and CAT (B), and their 

combination at pH 9 on wool fabrics 
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