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Fig. S 1: Number of samples and number of taxa present in each subtype of the
environmental classification of Ref.[1]
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Fig. S2: Distribution of the aggregation and segregation scores for the observed matrix
and a random realization. Large scores are found only in the observed matrix, not in
the random matrix.
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Fig. S3: Number of predicted aggregations and segregations as a function of the false
positive rate.
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Fig. S 4: Environmental cosmopolitanism, defined as the number of different envi-
ronmental subtypes in which the taxon is present, versus the normalized number of
aggregations for the observed matrix and for a random matrix.
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Fig. S5: Distribution of nestedness between pairs of taxa for the observed matrix and
for a random matrix.



Supplementary text S1: Clustering of environments.

We define the similarity between two environmental subtypes measuring how similar
are the associations between the taxa observed in these subtypes in the following way.
We count the pairs of taxa that associate significantly, either through aggregation or
through segregation, and have been observed in both subtypes, and we divide it by
the geometric average of the number of pairs observed in each subtype

Overlap(A,B) =

∑

i,j δA
ijδ

B
ijLij

√

∑

ij δA
ijLij

∑

i<j δB
ijLij

, (1)

where δA
ij = 1 if taxa i and j have been found in environment A and zero otherwise,

and Lij = 1 if there is a significant association between i and j, zero otherwise. We
then transform the overlap into a distance as D = − log(Overlap), fixing a maximum
value D = 9.99 if the overlap is zero.

We use this distance matrix to cluster environments by average linkage. The result is
shown in Fig.S. For the threshold d = 3, we find one singleton and three large clusters,
which are related to the types in the environmental classification of Ref.[1]. The sec-
ond largest cluster contains all the subtypes classified in the supertype host, plus the
subtypes aerial (samples coming from exhalations) and compost. The third cluster is
related to marine environments and salinity, since it is constituted by subtypes belong-
ing to the types saline waters, saline sediments, hydrothermal and marine host. The
subtype food-treatment appears as a singleton that does not belong to any cluster. All
other subtypes are contained in the largest automatic cluster (left part of the figure),
which contains several interesting subclusters: one gathers all the subtypes related to
plants (agricultural, grassland, rhizosphere, forest, plant other), together with arctic
and soil other, another subcluster is related to freshwater (subtypes aquifer, ground-
water, freshwater sediment, lake, river, soil-freshwater interfase), and it also contains
the subtypes geothermal, mines and rocks, the third subcluster is related to industrial
activity (industrial, wastewaters, artificial-other and oil), another one is again related
to water (saline water lake, freshwater-saline water interfase and, surprisingly, drinking
water), finally we find a small subcluster that joins the subtypes arid and cave. These
clusters are consistent with the result found in previous work that two of the envi-
ronmental characteristics that most constribute in shaping bacterial communities are
the relation with host and salinity [1]. However, the influence of temperature appears
much less relevant, since the subtypes geothermal and hydrothermal are found in very
different clusters.

Supplementary text S2: Representative networks

obtained through the clustering procedure

Since the full network of 1187 taxa is too large to be visualized, we represent the
bacterial networks present in three groups of similar environmental subtypes with
distance threshold d ≈ 1.5 (see Fig.S).



Fig. S6: Hierarchical clustering of the environmental subtypes of Ref.[1] based on the
similarity of the bacterial networks that they host (see text).

Group Subtypes m Taxa Aggr. Segr.
Plants 7 4 167 716 97
Gut 5 3 141 468 146

Marine 4 3 189 405 120

Table S1: Properties of nets represented in Fig.S8. For each subcluster, we select only
taxa presented in at least m (column 3) subtypes, obtaining a similar number of taxa
(column 4).

These groups consist of five subtypes related with the environments Gut (Human,
Mouse, Cattle, Insect, Other), seven subtypes related with Plants (Agricultural, Grass-
land, Rhizosphere, Soil other, Arctic, Forest, Plant other) and four related with marine
environments (Hydrothermal, Saline sediment, Marine host, Soil-saline water inter-
fase). For each group of subtypes, we selected those taxa that are observed in at least
m subtypes, choosing m in such a way that the number of selected taxa is approxi-
mately the same in each group, see Table S1.

Taxa present in Gut related environments are represented in the main text. In Fig.S7
we represent five modules obtained from modular decomposition of the Gut related
network with the algorithm of Ref.[2] and implemented in the program Gephi [3]. The
first plot represents the first module, prevalently constituted by taxa related with the
environment Host. The module in the second plot is prevalently constituted by gen-



eralist taxa. The third plot represents three intermediate modules mainly constituted
by host-related taxa.

In Fig.S8 we represent taxa related with Plants and with Marine environments.
Significant aggregations are drawn as solid lines, and segregations as dashed lines.
These associations are computed from the entire set of samples. One can see that these
networks have peculiar properties. The plant related network (top) is connected by a
dense net of aggregations, and segregations mostly affect taxa with few aggregations.
Most selected taxa have preference for the terrestrial environment. The marine related
network (bottom) is less densely connected. Also in this case, we identify two groups
characterized by within group aggregations and between group segregation.
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Fig. S7: Networks obtained from modular decomposition of the Gut related network
with the algorithm of Ref.[2] and implemented in the program Gephi [3]. The first plot
amplifies the first module, prevalently constituted by taxa related with the environment
Host. Taxa in the second module are prevalently generalist taxa. The third plot
represents three intermediate modules mainly constituted by host-related taxa. For
clarity, only aggregations are represented. The graphs have been plotted with the
program Gephi [3].
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Fig. S 8: Networks obtained for taxa selected in a specific subclusters of environ-
mental subtypes related to Plants (top) and Marine (bottom). Solid lines represent
aggregations, dashed lines represent segregations. Circles represent taxa, coloured ac-
cording to the associated supertype (red=host, green=terrestrial, blue=aquatic, ma-
genta=thermal, yellow=other, white=undefined, black=uncertain). Red lines connect
taxa belonging to the same family. The graphs have been plotted with the program
Pajek [4]
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Fig. S9: Propensity to share environmental preferences conditioned to the phylogenetic
relatedness.


