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Abstract
The danger of human operators devolving responsibility to machines and failing to 
detect cases where they fail has been recognised for many years by industrial psy-
chologists and engineers studying the human operators of complex machines. We 
call it “the control problem”, understood as the tendency of the human within a 
human–machine control loop to become complacent, over-reliant or unduly diffident 
when faced with the outputs of a reliable autonomous system. While the control 
problem has been investigated for some time, up to this point its manifestation in 
machine learning contexts has not received serious attention. This paper aims to fill 
that gap. We argue that, except in certain special circumstances, algorithmic deci-
sion tools should not be used in high-stakes or safety-critical decisions unless the 
systems concerned are significantly “better than human” in the relevant domain or 
subdomain of decision-making. More concretely, we recommend three strategies to 
address the control problem, the most promising of which involves a complementary 
(and potentially dynamic) coupling between highly proficient algorithmic tools and 
human agents working alongside one another. We also identify six key principles 
which all such human–machine systems should reflect in their design. These can 
serve as a framework both for assessing the viability of any such human–machine 
system as well as guiding the design and implementation of such systems generally.
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1 Introduction

The recent trend toward automation by machine learning and artificial intelli-
gence systems raises in a new guise old questions about the role of humans in 
human–machine systems (Johannsen 1982; Margulies and Zemanek 1982). The 
difficulties involved in sharing control with computer systems are of course 
familiar to industrial psychologists and systems analysts investigating the human 
operators of complex machines. In these contexts, the danger of human operators 
devolving responsibility to machines and failing to detect cases where they fail 
has been recognised for many years. The problem is that, as automation becomes 
smarter and cheaper, its operators have to assume an increasingly supervisory 
role (Meister 1999; Strauch 2018). In aviation, for example, the role of the pilot 
appears to have become easier, but a closer look reveals that the pilot’s role has 
been transformed rather than simplified, with the pilot now performing a crucial 
monitoring function (Baxter et al. 2012; cf. Stanton 2015). Likewise in financial 
trading, “[t]he human trader’s role is now largely one of setting strategies and 
monitoring their execution” (Baxter et al. 2012, p. 68). How does this shift from 
operator to supervisor affect the person who has undergone the shift, and the 
nature of the interaction between operator and machine?

What we shall term “the control problem” arises from the tendency of the 
human agent within a human–machine control loop to become complacent, over-
reliant or unduly diffident when faced with the outputs of a reliable autonomous 
system. Although it might be thought innocuous, decades of research confirm 
that the problem is actually pernicious, and perhaps even intractable (Banks et al. 
2018b; Cunningham and Regan 2018; Greenlee et  al. 2018). Somewhat alarm-
ingly, it seems to afflict experts as much as novices, and is largely resistant to 
training (see Parasuraman and Manzey 2010 for reviews). Its effects may also 
be observed beyond the limits of strictly sociotechnical systems. For instance, it 
is well known that police officers, judges and jurors frequently overestimate the 
importance of forensic evidence—the so-called “CSI effect” (Marks et al. 2017; 
see also Damaška 1997).

Our interest is in how the control problem bears upon the proliferation of the 
newer types of machine learning systems. Machine learning is a form of data pro-
cessing that extracts statistical patterns from large amounts of information. One of 
its more prominent applications is in the arena of decision support. State-of-the-
art decision support systems are increasingly run on vast datasets (so-called “big 
data”) and exploit an especially powerful form of machine learning known as 
“deep learning”. Deep learning has two features worth noting here: first, as a 
form of machine learning, it is not in the mould of more traditional expert sys-
tems, which were programmed “by hand” to compute solutions to well-defined 
problems in a more or less deterministic manner; second, deep learning relies 
on a computational architecture modelled on the neurons and synapses of actual, 
biological brains—although obviously in a highly simplified form. These features 
are worth drawing attention to because they underscore how sophisticated the 
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autonomous systems under human care can be; and system complexity has been 
an abiding theme of research into the control problem from its beginning.

While the control problem has been investigated for some time, up to this point its 
manifestation in machine learning contexts has not received serious attention. This 
is significant, not because the problem necessarily has any distinctive characteris-
tics in a machine learning context, but because there is a risk that lessons learned 
elsewhere will go unheeded in this new arena—an arena we have every reason to 
believe brings with it all the psychological pitfalls of earlier systems of industrial-
scale automation. This paper aims to fill that gap by offering a critical analysis of 
the problem in light of the advent of sophisticated machine learning techniques. As 
a recent French report into artificial intelligence notes, “it is far easier for a judge to 
follow the recommendations of an algorithm which presents a prisoner as a danger 
to society than to look at the details of the prisoner’s record himself and ultimately 
decide to free him. It is easier for a police officer to follow a patrol route dictated by 
an algorithm than to object to it” (Villani 2018, p. 124). And as the AI Now Institute 
remarks in a recent report of its own: “[w]hen [a] risk assessment [system] produces 
a high-risk score, that score changes the sentencing outcome and can remove proba-
tion from the menu of sentencing options the judge is willing to consider” (AI Now 
2018, p. 13). The Institute’s report also offers a sobering glimpse into just how long 
such systems can go without being properly vetted. A system in Washington D.C. 
first deployed in 2004 was in use for 14 years before it was successfully challenged 
in court proceedings, the authors of the report attributing this to the “long-held 
assumption that the system had been rigorously validated” (AI Now 2018, p. 14). In 
her book, Automating Inequality, Virginia Eubanks (2017) notes the complacency 
that high tech decision tools can induce in the social services sector. Pennsylvania’s 
Allegheny County introduced child welfare protection software as part of its child 
abuse prevention strategy. The technology is supposed to assist caseworkers decid-
ing whether to follow up calls placed with the County’s child welfare hotline. In 
fact, however, Eubanks relates how caseworkers would be tempted to adjust their 
estimates of risk to align with the model’s. The proliferation of advanced machine 
learning tools in both government and private sector agencies clearly behoves us to 
examine the control problem in the unique context in which it now arises.

In addressing the problem, we have drawn on the literatures of both industrial 
psychology/engineering on the one hand—primarily “human factors” research 
(see below)—and artificial intelligence on the other. We argue that, except in cer-
tain special circumstances (in which great care must be taken), algorithmic deci-
sion tools should not be used in high-stakes or safety-critical decisions unless the 
systems concerned are significantly “better than human” in the relevant domain or 
subdomain of decision-making—a position towards which an increasing number of 
human factors experts have somewhat reluctantly been driven: see e.g. Banks et al. 
(2018b), Cunningham and Regan (2018), Walker et al. (2015), Cebon (2015). More 
concretely, we recommend three strategies to address the control problem, the most 
promising of which involves a complementary (and potentially dynamic) coupling 
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between highly proficient algorithmic tools and human agents working alongside 
one another. For any complex task, the choice between using a sophisticated sys-
tem that makes only occasional errors but which reduces the human role to that of 
a monitor, and a simpler system that is reliable effectively 100% of the time but 
requires ongoing human participation to get the job done, can only be resolved on 
a case-by-case basis. In high-stakes settings, however, it is generally not advisable 
to choose the more sophisticated system unless it makes considerably fewer errors 
than a proficient human expert. Even though no technology is really 100% reliable, 
the dangers posed by human complacency diminish practically to zero the moment 
a system approaches a certain (admittedly very high) threshold of reliability. How 
many sophisticated systems actually reach this threshold is another question. For 
example, as at the time of writing, autonomous vehicles do not approach this level of 
capability (Banks et al. 2018a, b), but many subcomponents within standard (nonau-
tonomous) vehicles clearly do, such as automatic transmission, automatic light con-
trol and first generation cruise control (Walker et al. 2015).1 In more typical decision 
support settings, arguably diagnostic and case prediction software are approaching 
this better-than-human standard. There are at present AI systems which can spot 
early-onset Alzheimer’s disease from control patients with over 80% accuracy up 
to a decade before the first appearance of symptoms, a feat vastly outperforming 
the ablest human pathologist attempting anything similar (Amoroso et  al. 2017).2 
In the legal sphere, advances in natural language processing and machine learning 
have facilitated the development of case prediction software that can predict, with an 
average 79% accuracy, the outcomes of cases before the European Court of Human 
Rights when fed the facts of the cases alone (Aletras et al. 2016). Most impressively, 
a similar system had better luck in predicting the rulings of the US Supreme Court 
than a group of 83 legal experts, of whom almost half had previously served as the 
justices’ law clerks (60% vs. 75% accuracy) (Brynjolfsson and McAfee 2017). If 
the disparity between the performance of such systems and that of well-trained and 
experienced human professionals widens any further, presumably it will not much 
matter if humans perfunctorily adhere to whatever these systems decide or advise in 
a particular situation.

1 Notice, incidentally, that it is therefore not just when a decision tool is architecturally opaque that a 
human operator should potentially be retained in the decision control loop, as is already widely appreci-
ated (e.g. IEEE 2017; House of Lords 2018). Even a fully technically transparent decision system may 
enjoin human agency to a greater or lesser extent.
2 The AI system in this case computed measures of structural brain connectivity from fMRI brain scans, 
and used these as inputs to a classifier. Accuracy was computed on unseen brain scans; the classifier’s 
performance was significant at the p < 0.001 level. More generally, assessing the accuracy of machine 
learning systems can be a complex task, but suffice it to say that more meaningful accuracy rates would 
need to consider base rates, which are not always cited in the relevant studies. It is well known that when 
a base rate is lower than the false positive rate of a test, false positives will exceed true positives even 
for an extremely accurate test (the so-called “false positive paradox”). Stepping back a little, however, 
because our point here is just that in some highly formulaic and process-driven domains it appears that 
machines perform better than humans, the underlying base rates will not be strictly relevant. So long as 
machines perform better than humans in these domains (as our examples illustrate), these results should 
hold regardless of base rates.



559

1 3

Algorithmic Decision-Making and the Control Problem  

2  Background to the Control Problem

A human–machine system (HMS) may be defined as the synthesis of a biologi-
cal–psychological system and a technological-mechanical system characterized by 
functional interdependence (Johannsen 1982). The object of any HMS is to provide 
a “function, product or service as an output with reasonable costs, even under condi-
tions of disturbances influencing man, machine or both” (Johannsen 1982, p. xiii). 
Importantly, it is has long been recognized as ideal for the human element in this 
system to be satisfactorily absorbed in the role being played—to reach an adequate 
level of job satisfaction (Moray 1979)—even if this conflicts with the overall aims of 
the HMS (e.g. in providing a service at reasonable cost).

HMSs were first investigated in relation to predominantly manual control tasks, 
initially in aircraft piloting, but then later in ship steering, car driving and indus-
trial process control (see Kelley 1968; Edwards and Lees 1974; Sheridan and Ferrell 
1974 for early reviews). This research continues today under the branch of psychol-
ogy known as “human factors”. Human factors research draws on various strands 
of inquiry, including sociology, physiology, control theory, systems engineering 
and cognitive science, the latter a branch of (cognitive) psychology that investigates 
mental processes through the use of models inspired by computer science (Newell 
and Simon 1972; Rouse 1982). Apart from providing models of cognitive processes, 
computers have been a common denominator in practically all HMSs from the time 
they were first studied, with human–computer interaction (HCI) a key focus from 
the start (Pazouki et al. 2018). Here the standard topics have concerned optimal task 
allocation, interface design and software ergonomics generally (Rouse 1981; Hat-
vany and Guedj 1982; Williges and Williges 1982). Computer-aided decision-mak-
ing, which is our concern here, can therefore be considered a special branch of HCI 
and human factors research.

When we talk about “control” of HMSs, we are using the term in a broad sense—
broader than the sense typically understood in control theory and human factors—
encompassing tasks which have traditionally been regarded, strictly speaking, as 
distinct from control, such as problem-solving (see e.g. Johannsen 1982). Thus by 
“control” we understand both fault diagnosis and management (solving problems 
as they occur in real time, with a view to restoring normal operation) as well as 
planning (anticipating future problems and devising appropriate strategies to com-
bat them). The control problem was arguably first identified in papers by Wickens 
and Kessel (1979) and Wiener and Curry (1980), but it did not receive its definitive 
and celebrated formulation until Lisanne Bainbridge (1983) paper came along with 
the succinctly telling title: “Ironies of Automation”. The chief irony with which her 
paper grappled is “that the more advanced a control system is, so the more crucial 
may be the contribution of the human operator” (1983, p. 775). Although writing at 
a time before deep learning had anything to do with algorithmically automated deci-
sion tasks, what she had to say about the role of the human monitor in a HCI is as 
salient today as when the paper first appeared:

if the decisions can be fully specified then a computer can make them more 
quickly, taking into account more dimensions and using more accurately speci-
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fied criteria than a human operator can. There is therefore no way in which the 
human operator can check in real-time that the computer is following its rules 
correctly. One can therefore only expect the operator to monitor the comput-
er’s decisions at some meta-level, to decide whether the computer’s decisions 
are “acceptable”. (1983, p. 776, emphasis added)

As we see things, this residual monitoring function of the human operator gen-
erates at least four kinds of difficulties that should be treated separately. The first 
relates to the cognitive limits of human processing power (the “capacity problem”). 
Its statement in Bainbridge followed directly on from the italicized portion of the 
preceding quote:

if the computer is being used to make the decisions because human judge-
ment and intuitive reasoning are not adequate in this context, then which of the 
decisions is to be accepted? The human monitor has been given an impossible 
task. (1983, p. 776)

Humans are often at a severe epistemic disadvantage vis-à-vis the systems they are 
tasked with supervising. This can be seen very clearly in the case of high frequency 
financial trading. It is impossible for a monitor to keep abreast of what is happen-
ing in real time because the trades occur at speeds that simply exceed the abilities 
of human monitors to keep track. As Baxter et al. (2012, p. 68) point out, “[i]n the 
time it takes to diagnose and repair [a] failure…many more trades may have been 
executed, and possibly have exploited that failure”. Analogous problems arise in avi-
ation with respect to the use of autopilot systems (Baxter et al. 2012). Cebon (2015, 
p. 10) notes that autopilot systems are becoming “…so sophisticated that they only 
fail in complex ‘edge cases’ that are impossible for the designers to foresee. Conse-
quently pilots cannot be trained to handle them”. Along with the attentional problem 
(see next paragraph), cognitive constraints account for the main difficulties operators 
experience in reasserting control of a HMS when the system malfunctions. While 
one may question whether the opacity of a system impedes its intelligibility quite as 
much as the capacity problem seems to imply (see e.g. Zerilli et al. 2018), the capac-
ity problem presents a formidable HCI challenge regardless. Today, even a fully pro-
ficient software technician would be loath to understand the multi-vector logic gov-
erning the generation of a neural network’s outputs.

The second difficulty relates to the attentional limits of human performance (the 
“attentional problem”):

We know from many “vigilance” studies…that it is impossible for even a 
highly motivated human being to maintain effective visual attention towards a 
source of information on which very little happens, for more than about half an 
hour. This means that it is humanly impossible to carry out the basic function 
of monitoring for unlikely abnormalities…. (Bainbridge 1983, p. 776)

Automation has a significant impact on situation awareness (Stanton 2016). This 
is perhaps most clearly illustrated in respect of autonomous vehicles. Inattentive 
drivers operating a vehicle while it is in autonomous mode are less able to antici-
pate takeover requests and may be ill-prepared to resume control in an emergency 
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(Stanton 2015; Cunningham and Regan 2018; Banks et  al. 2018a, b). Instantane-
ously transitioning from low to high workload poses great difficulties for most peo-
ple (Walker et al. 2015).

The third difficulty relates to the attitudes of human operators in the face of 
sophisticated technology (the “attitudinal problem”). Except for a few brief remarks 
(Bainbridge 1983 p. 776), this problem was not really addressed in Bainbridge’s 
paper (cf. Wiener and Curry 1980). It has, however, been the subject of active 
research in the years since (see e.g. Skitka et  al. 2000; Parasuraman and Manzey 
2010; Pazouki et al. 2018). Here the conundrum is that as the quality of automation 
improves, and the human operator’s role becomes progressively less demanding, the 
operator “starts to assume that the system is infallible, and so will no longer actively 
monitor what is happening, meaning they have become complacent…[T]he opera-
tor assumes that the system is reliable and therefore failure detection deteriorates” 
(Pazouki et  al. 2018, p. 299). There is some evidence that complacency is worse 
under conditions of multiple task load, “when manual tasks compete with the auto-
mated task for the operator’s attention” (Parasuraman and Manzey 2010, p. 387). 
In other words, “[t]he operator’s attention allocation strategy appears to favor his 
or her manual tasks as opposed to the automated task” (Parasuraman and Manzey 
2010, pp. 387–388). While this makes it sound as if complacency is an attentional 
issue, in truth it is an attitudinal one because (so it seems) the monitor only risks 
being “distracted” by other tasks when they believe the system is reliable enough 
to be left alone. When the system is not regarded as reliable in the first place, the 
effect does not occur. (As we discuss later, the control problem arises only from 
the use of highly reliable but imperfect systems: it does not arise from the use of 
less reliable systems). This very likely explains why the effect is reversed when the 
operator monitors a less reliable system, which predictably elicits higher vigilance 
(Parasuraman and Manzey 2010; Banks et al. 2018a, b). Related to automation com-
placency is automation bias, occurring when human operators “trust the automated 
system so much that they ignore other sources of information, including their own 
senses” (Pazouki et al. 2018, p. 299). Both complacency and bias “describe a con-
scious or unconscious response of the human operator induced by overtrust in the 
proper function of an automated system” (Parasuraman and Manzey 2010, p. 406).

The fourth and final difficulty relates to the currency of human skills (the “cur-
rency problem”):

Unfortunately, physical skills deteriorate when they are not used….This means 
that a formerly experienced operator who has been monitoring an automated 
process may now be an inexperienced one….[With regard to cognitive skills] 
efficient retrieval of [process] knowledge from long-term memory depends on 
frequency of use….[T]his type of knowledge develops only through use and 
feedback about its effectiveness. People given this knowledge in theoretical 
classroom instruction without appropriate practical exercises will probably not 
understand much of it, as it will not be within a framework which makes it 
meaningful, and they will not remember much of it as it will not be associated 
with retrieval strategies which are integrated with the rest of the task. (Bain-
bridge 1983, pp. 775–776)
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These four problems may be seen as four distinct but interrelated aspects of the 
one control problem. For example, the capacity problem can be expected to intensify 
the human tendency towards overestimating the value of a machine’s outputs, thus 
compounding the attitudinal problem. In this paper we shall follow the trend of most 
human factors research since 1983 by confining our attention primarily to the attitu-
dinal problem. Although the problems are distinct, their very interrelatedness means 
that prescriptions regarding one may go some way towards alleviating (some of?) 
the others (e.g. see our discussion of the value of dynamism in HMSs, in Sect. 5).

3  Locating the Control Problem Within the Landscape 
of Control‑Related Issues

The control problem is nestled among a set of (at least) six interrelated questions 
about HMSs. Identifying the main questions together enables us to situate the con-
trol problem within a broader framework of inquiry into human control in HMSs. In 
this section we say something brief about the first four questions. In the following 
two sections, we pursue answers to the final two questions at comparatively greater 
depth. The questions we have identified are as follows:

 (i) What is meaningful human control of a HMS?
 (ii) Is human control, so understood, always necessary within a HMS?
 (iii) Can the role of the human operator be safely reduced to that of monitor alone?
 (iv) If not, why not?—What is “the control problem”?
 (v) When, or under what conditions, does the control problem arise?
 (vi) Can the control problem be solved?

Regarding (i), a system for us is under “meaningful human control” when, at a 
minimum, it behaves the way it should, i.e. in accordance with the wishes of its oper-
ators (cf. Santoni de Sio and van den Hoven 2018). For a system to be under mean-
ingful human control, however, also implies that it is under effective control, such 
that its operators have the wherewithal to correct the system or abort its operations 
in sufficient time to avert the worst effects of its deviance. This is why we stated ear-
lier that our notion of control extends to fault diagnosis and management (resolving 
problems with a view to restoring normal operation) as well as planning (devising 
strategies to deal with contingencies). Regarding (ii), we assume that it is always 
desirable for a HMS to be under effective human control.

Our discussion of the control problem already signals a negative reply to question 
(iii) whenever high-stakes or safety-critical decisions are involved: humans perform 
very poorly at prolonged monitoring tasks (Molloy and Parasuraman 1996; Banks 
et  al. 2018a). Human attentional resources typically “shrink to fit” task demands 
(Walker et al. 2015). The attitudinal and attentional effects of the control problem 
combined are sufficiently detrimental to explain why a HMS that reduces the human 
controller to a monitor of displays or passive recipient of outputs is necessarily haz-
ardous. However, because the effects of complacency can be reversed by replacing 
a reliable system with a less reliable system, some purely monitor-based setups do 
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seem to avoid the problem (note: they avoid, rather than solve, the problem). And 
of course systems that approach better-than-human reliability do not pose a control 
problem as such (e.g. automatic transmission, case prediction software, etc.).

Because we have already defined the control problem (iv), all that remains is for 
us to elaborate on the answers we have intimated to the final two, most important, 
questions, i.e. (v) and (vi). We address these in the following two sections.

4  When, or Under What Conditions, does the Control Problem Arise?

The conundrum of control is that the more reliable a system becomes, the more dif-
ficult it is for a human supervisor to maintain an adequate level of engagement with 
the technology to ensure safe resumption of manual control should the system mal-
function. In relation to current “Level 2” autonomous vehicles (see below)—which 
allow the driver to be hands- and feet-free but not mind-free, because the driver still 
has to watch the road—Stanton (2015, p. 9) puts the point vividly: “even the most 
observant human driver’s attention will begin to wane; it will be akin to watching 
paint dry”. This is a manifestation in manual systems of a more general problem 
of control over automated decision support systems, viz., the tendency to defer to 
systems that approach (but do not reach) very high reliability and predictability. 
Conversely, decreases in automation reliability generally seem to increase the detec-
tion rate of system failures (Bagheri and Jamieson 2004). Starkly put, automation is 
“most dangerous when it behaves in a consistent and reliable manner for most of the 
time” (Banks et al. 2018b, p. 283). Decades’ worth of research in aviation, shipping, 
driving and industrial process control supports this assessment. The only options to 
deal with the predicament therefore appear to be (at least in high-stakes or safety-
critical contexts):

(a) The use of less reliable systems for tasks whose execution may be more expedi-
ent when automated to any standard of proficiency than when not at all, since 
less reliable systems do not pose the control problem;

(b) To implement only partial automation through task decomposition (see Sect. 5); 
and

(c) To wait for a system to reach near perfect (better-than-human) reliability before 
deployment.

Options (a) and (c) are self-explanatory. We shall discuss (b) in greater detail in 
the following section (as well as a few other strategies, such as “catch trials”, in 
Sect. 7). For now we note that (b) and (c) are not mutually exclusive: any decision 
task that has automatizable subcomponents may employ near-risk-free technology 
working alongside an active, purposefully-engaged human operator, with human 
and machine fully autonomous within their particular spheres of operation. Further-
more, options (a) and (b) are not mutually exclusive either: any decision task that has 
automatizable subcomponents may likewise employ patently suboptimal technology 
working alongside an active, purposefully-engaged human operator (although here 
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the machine will obviously not be fully autonomous within its sphere of operation). 
Because it may seem counterintuitive, we shall justify the inclusion of option (a) 
(and (a + b)) as part of our menu of options in the following section.

Since decision tasks can be cut more or less finely [as option (b), above, assumes], 
one might wonder whether the control problem presents quite the same challenge 
when the situation involves the automation of a few subcomponents of a decision, 
in contrast to the automation of an entire decision. We could assume, for instance, 
that border control is one big decision—i.e. whether to admit, or not admit, persons 
moving between state boundaries—involving customs clearance, passport verifica-
tion, drug detection, and so on. When the entire process is automated by one large, 
distributed border control software package, and this system works reliably well 
most of the time—but still requires human monitors to invigilate display panels and 
the like—is the control problem any worse than it would be when some automatiz-
able subcomponents of the overall decision are carved out for discrete automation 
(and automated, once again, by mostly, but not completely, reliable systems)?

Currently, of course, border control decisions are only partially automated in this 
sense: SmartGate allows for fully automated electronic passport control checks, but 
customs officials and sniffer dogs still litter most immigration checkpoints, and their 
job is to handle such parts of the overall decision task as cannot be effectively auto-
mated. The same issue arises in automotive engineering. The Society of Automo-
tive Engineers (SAE) framework, running from Level 0 (no automation) to Level 5 
(full automation), classifies vehicles in accordance with the degree of system func-
tions that have been carved out for automation (SAE J3016 2016). Tesla Autopilot 
and Mercedes Distronic Plus (Level 2) require the driver to monitor what is going 
on throughout the whole journey, while Google’s self-driving car does everything 
except turn itself on and off. The thought is that if an actively engaged human is 
retained somewhere in the control loop, contributing purposefully to the decision 
task, the human may be less susceptible to automation complacency and bias than 
when their only role is monitoring.

But actually the research we cited earlier suggests that matters are not quite so 
simple. Complacency appears to be worse under conditions of multiple task load 
so long as the automated subcomponent, being reliable most of the time, engenders 
misplaced trust in its ability to be left alone. Crucially, this effect can be reversed 
if the system is replaced with one that does not engender the same degree of con-
fidence—i.e. a less reliable system (Parasuraman and Manzey 2010, pp. 387–388). 
These findings indicate that the control problem is not necessarily affected by the 
size or share of the automated subcomponent relative to the whole decision proce-
dure. As long as the autonomous system in question is more reliable than not, the 
control problem rears its head, with the only options available for remediating its 
effects being the three outlined above.

On the other hand, this is not to deny that differences between partial and full 
automation may extend to differences in how human operators typically perceive the 
respective capabilities of these systems. There is evidence that operator trust is posi-
tively related to the scale and complexity of an autonomous system. For instance, 
in low-level partially automated systems, such as SAE Level 1 autonomous vehi-
cles, there is “a clear partition in task allocation between the driver and vehicle 
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subsystems” (Banks et  al. 2018b, p. 283). As the level of automation increases, 
however, this allocation gets blurred to the point that drivers find it difficult form-
ing accurate assessments of the vehicle’s capabilities, and on the whole are inclined 
to overestimate them (Banks et  al. 2018b). Counteracting this effect may be the 
greater readiness to believe that a smaller, less sophisticated device—with fewer 
working parts and opportunities for system glitches—will be compensatingly less 
temperamental. In fact we suspect that this presumption is probably justified in the 
case of decision subsystems in SAE Level 0 vehicles such as automatic transmis-
sion, automatic light control and first generation cruise control (Walker et al. 2015). 
These subsystems may be so reliable, approaching near perfect (better-than-human) 
dependability, as to effectively neutralize the control problem’s sting in most cases. 
So in the end, it seems, larger and more sophisticated technologies that are mostly 
reliable probably do pose a greater control problem than smaller ones.

5  Can the Control Problem be Solved?

If the question is interpreted literally, the answer to “Can the control problem be 
solved?” appears to be straightforwardly negative: the control problem cannot liter-
ally be solved. There is nothing we can do which directly targets, still less directly 
alleviates, the human tendency to fall into automation complacency and bias once 
an autonomous system operates reliably most of the time, and when the only role 
left for the operator is to monitor its largely seamless transactions. However, by 
accepting this tendency as an obstinate feature of HMSs, we may be able to work 
around it without pretending we can alter constraints imposed by millions of years 
of evolution.

The insights of human factors research is instructive here. There is no reason to 
suspect that machine learning and other state-of-the-art decision support systems are 
less likely to induce complacency effects than other forms of automated effort (e.g. 
Cummings 2004; Edwards and Veale 2017, p. 51). With this in mind, one impor-
tant human factors recommendation is to foster mutual accommodation between 
human and computer competencies through a dynamic and complementary alloca-
tion of functions that optimally preserves attentional resources (Stanton and Mars-
den 1996). Ideally, only those parts of a decision should be automated that leave the 
human operator with something vital and absorbing to do (Bainbridge 1983). Opti-
mal workload, moreover, would prevent demand explosion in scenarios where the 
operator must intervene quickly to rectify a situation—effective intervention can be 
enormously difficult when the operator has to shift from low to high level cognitive 
effort within a very short window (Walker et al. 2015).

Let us call this the “dynamic/complementary allocation of function” (DCAF) 
approach. DCAF assumes that human performance can be enhanced when automa-
tion augments rather than replaces human skills. It need not, however, assume that 
augmentation is always preferable to replacement. In fact, for the DCAF approach 
to work, some systems clearly need to replace the human agent and be left to oper-
ate autonomously. Human–machine decision systems that contain automated sub-
components work best when the human operator is allowed to concentrate their 
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energies on the chunks of the task better suited to human rather than autonomous 
execution—a setup which only avoids the control problem if the automated subrou-
tines are handled by systems approaching near-perfect (better-than-human) depend-
ability. Otherwise the autonomous parts might work very well for the most part but 
still require a human monitor—and it is clear where this path leads. Indeed one of 
the advantages of complementarity is precisely that, by carving up a big decision 
into smaller and smaller chunks, the more likely it will be that better-than-human 
systems can be found to handle them.

Complementarity between human and computer is crucial. In a passage worth cit-
ing in full, Pohl (2008, p. 73) notes that

…intelligent software systems can be particularly helpful in complementing 
human capabilities by providing a tireless, fast and emotionless problem analy-
sis and solution evaluation capability. Large volumes of information and multi-
faceted decision contexts tend to easily overwhelm human decision-makers. 
When such an overload occurs we tend to switch from an analysis mode to 
an intuitive mode in which we have to rely almost entirely on our ability to 
develop situation awareness through abstraction and conceptualization. While 
this is perhaps our greatest strength it is also potentially our greatest weakness, 
because at this intuitive meta-level we become increasingly vulnerable to emo-
tional influences.

The capabilities of the computer are strongest in the areas of parallelism, speed 
and accuracy. Whereas the human being tends to limit the amount of detailed 
knowledge by continuously abstracting information to a higher level of under-
standing, the computer excels in its almost unlimited capacity for storing data. 
While the human being is prone to impatience, loss of concentration and panic 
under overwhelming or threatening circumstances, the computer is totally 
oblivious to such emotional influences. The most effective implementation of 
these complementing human and machine capabilities is in a tightly coupled 
partnership environment that encourages and supports seamless interaction. 
(emphasis added)

At the same time, DCAF emphasises that the allocation of functions in a HMS 
should be flexible enough to support dynamic interaction, with hand-over and hand-
back for shared competencies (as occurs when a driver disengages cruise control and 
thereby resumes control of acceleration). Of course dynamism will be dangerous if 
there is hand-over between agents that are ill-matched in their competencies. Dyna-
mism will only work in circumstances where the human and machine are nearly 
equivalently proficient (with the machine perhaps only marginally better than the 
human). Apart from anything else, dynamic interaction allows the human to main-
tain their manual control skills, and so may go some way towards alleviating the 
currency problem.

It should be clear that DCAF falls under option (b) in our three-item menu of 
options for managing the control problem. It should also be clear that, as we pres-
aged in Sect. 4 (and explained in the preceding paragraph), DCAF (b) will almost 
always employ near-risk-free technology (c)—so that (b) and (c) are not mutually 
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exclusive. For example, in relation to autonomous vehicles, Stanton (2015, p. 9) 
describes the DCAF challenge as follows: “We need to design vehicle automation 
to have graduated and gradual hand-over and hand-back tasks if it is to success-
fully support human drivers. Vehicle automation needs to work towards provid-
ing a chatty co-pilot, not a silent auto-pilot!” For this to be the case, however, the 
driver cannot worry about whether what the “chatty co-pilot” is saying is true. In the 
DCAF approach, the human is a co-pilot of sorts, with real work to do, so that the 
fidelity of their autonomous counterpart/s needs to be assured.

What if this fidelity cannot be assured? We have said that as a rule a decision tool 
should not replace a human agent in a high-stakes/safety-critical setting unless the 
tool reaches a certain crucial threshold of reliability; and we have applied this rec-
ommendation iteratively, carrying it over to DFAC decision contexts in high-stakes/
safety-critical settings such that, for any automatizable subcomponent of a decision 
procedure, a tool should not replace the human agent responsible for that (sub)deci-
sion unless the tool meets our very high (better-than-human) standard. But what if 
this standard cannot be met? Can less-than-reliable systems be deployed here? In 
other words, are there exceptions to the general rule we have defended, or special 
circumstances where the general rule gives way? The short answer is: yes. As we 
have explained, the control problem does not arise from the use of patently subop-
timal automation, only from generally dependable automation. Therefore, depend-
ing on the exact nature of the HCI at issue, a less-than-reliable system might safely 
replace the human agent charged with deciding some matter within a larger decision 
structure, for example, passport verification within the larger border control deci-
sion structure. The use of less-than-reliable systems is of course option (a) in our 
menu, and as exhibited in this example, nested within a broader decision structure 
consisting of subcomponents, as predicated by (b) (i.e. (a) and (b) are not mutually 
exclusive, again as we noted in Sect. 4). But now, why would a patently suboptimal 
decision tool be deployed here at all (or anywhere else, for that matter)? It is one 
thing to say that it avoids the control problem. It is quite another to say that a sys-
tem which is so suboptimal it does not engender human confidence should for that 
very reason be used to assist human decision-makers. Clearly we owe our readers an 
explanation for including option (a) within our menu of strategies for dealing with 
the control problem.

We think deployment of suboptimal tools may still prove useful in circumstances 
where the tools have access to information to which the human does not, or oth-
erwise “decide” things in ways that humans generally cannot. Such systems very 
literally augment human capacities: human and machine in effect share control. The 
clearest examples of this form of technology are recidivism risk prediction tools 
used in law enforcement. Not all such instruments come with the problematic biases 
of PredPol (used in so-called hot-spot policing) and COMPAS (predicting the like-
lihood of offender recidivism) built into them. Some may be genuinely useful in 
reducing crime at the same time as reducing the prison population (see e.g. Klein-
berg et al. 2018). These systems answer questions of the form: How should we dis-
tribute police officers over a locality having such and such geographical character-
istics? What is the likelihood that this prisoner will reoffend if released on parole? 
And so on. Consider how these systems decide such matters. Often they use logistic 
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regression or more advanced actuarial techniques to mine patterns from very large 
databases. This is not a feat unaided humans can hope to match. There are also some 
phenomena within human decision-making that algorithms can help to counteract—
e.g. decision fatigue and decision inertia, of which some of the classic studies actu-
ally involve judges’ parole decisions (e.g. Danziger et al. 2011).

Be that as it may, however, we would still urge that great caution be exercised 
before any form of suboptimal automation is used in high-stakes/safety-critical set-
tings. Many of these systems (like COMPAS) are after all tools which have attained 
notoriety for their problematic biases and inherent technical limitations (e.g. Blomb-
erg et al. 2010; Larson et al. 2016; Dressel and Farid 2018). And as some of these 
systems gradually begin to overcome their limitations, our worry is that the control 
problem will gradually re-emerge, taking human operators unawares and decision 
subjects along with them. It will be all too easy for a judge with decision fatigue, for 
example, to simply rely on what a predictive risk instrument “objectively” recom-
mends. It may turn out that guidelines recommending, for example, that decision-
makers consult their own judgment first before consulting an algorithm, using the 
algorithm merely as a check on their intuitions, could assist in offsetting some of 
the effects of automation complacency and bias. (Note that this would come close 
to telling decision-makers not to use the algorithm—hardly a “solution” to the prob-
lem). The Wisconsin Supreme Court, when discussing protocols around judicial use 
of the COMPAS recidivism algorithm required that sentencing judges be given a list 
of warnings about the tool as a condition of relying on its predictions. More empiri-
cal research is required to see whether such approaches really do work.

To conclude our analysis of option (a), some of these features of suboptimal 
decision systems should be stated more explicitly. Option (a)—whether or not com-
bined with option (b)—always represents a specific type of HCI. It is noteworthy 
that whenever a patently suboptimal tool is used, the human agent does not readily 
stumble into the control problem, and may therefore be assured of an active and 
meaningful role working alongside it (assuming a certain level of diligence, aptitude 
and motivation on the part of the human). But the interaction here will not quite be 
the same as that envisaged for HMSs under the DCAF approach. Under DCAF, the 
allocation of functions is complementary. This will not generally be the case under 
option (a). Assume that a decision, D, comprises the (sub)decisions  d0,  d1,  d2 and  d3. 
Under DCAF, the human will take care of (let us say)  d0,  d1 and  d2 while the system 
will take care of  d3. This means the human can concentrate their energies entirely 
on  d0,  d1 and  d2 and essentially ignore  d3, because the system is superior in making 
decisions of the type  d3. This cannot happen when suboptimal software is used. In 
such cases, it is not as if the human can take care of  d0,  d1 and  d2 while the system 
takes care of  d3; the human must also take care of  d3, albeit with the assistance of a 
suboptimal decision tool. Both human and machine participate in  d3 (i.e. human and 
machine effectively share control). Indeed, in light of what we said earlier, in many 
cases both human and machine may aptly be described as doing (or deciding) the 
same thing in different ways: for the system may be trying to answer the same ques-
tion as the human (will she reoffend if released on parole? etc.), only with access 
to information which the human does not have, or in ways (or at speeds) which 
humans are unable to match. So there need be no complementarity of functions here, 
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as both human and machine may be performing the same function (viz.,  d3), albeit 
distinctly—a classic case of “multiple realization” (Zerilli 2017). We might even say 
that instead of a complementary coupling of skills between human and computer, 
what we have under option (a) will often be a supplementary coupling—where each 
agent adds something unique to the decision problem in point of how the agent 
goes about resolving it (somewhat analogous to the role of an expert witness who 
“assists” the judge in determining the appropriate sentence for an offender).

Table  1 summarizes the logical space of decisions that may be automated, in 
whole or in part, and our recommendations for whether or not they should be. Fig-
ure 1 depicts both the presence and danger of complacency as a function of system 
reliability. Notice that at a certain point of reliability, the presence of complacency 
no longer matters. Notice also what the figure does not capture: it does not tell us 
what over-reliance on an algorithm looks like, or otherwise calibrate for a healthy 
or sceptical level of dependence on an algorithm.3 This—which could well be called 
the measurement problem—is the subject of separate research in human factors, 
although it is probably fair to say that most design interventions and optimal task 
allocation and HCI paradigms are about preventing over-reliance rather than detect-
ing it, no doubt (at least partly) because the hallmarks of over-reliance will differ 
from system to system and context to context (see e.g. Endsley 2017).

5.1  System Reliability

The DCAF approach might be thought of as a variant of the “Privacy by Design” 
(PbD) approach—something like “Control by Design”. PbD proponents want data 
protection principles taken into account throughout the whole lifecycle of infor-
mation systems development (Bygrave 2017). Analogously, one could say that the 
DCAF approach seeks to “hardwire” human factors considerations into the develop-
ment of HMSs from the earliest stages of modeling. For algorithmic decision sup-
port tools, we would suggest that the following six principles can serve as a frame-
work both for assessing the viability of any such human–machine system as well as 
guiding their design and implementation:

• Division of labour Decisions with automatizable subcomponents should reflect 
a clear allocation of responsibilities between the human- and computer-operated 
parts of the decision.

• Complementarity The allocation of responsibilities should proceed in such a way 
that those subcomponents better suited for human handling are not automated, 
and those better suited for computer handling are not manually controlled. 
While an unhelpful aversion to algorithms can be reduced by giving users power 
to adjust a decision system’s outputs (Dietvorst et  al. 2016), human interfer-
ence also tends to introduce errors (Fildes et al. 2009). Humans should stick to 
what they do best, such as communication, symbolic reasoning, conceptualiza-

3 We owe this point to an anonymous reviewer of the journal.
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tion, empathy and intuition—provided these are the skills actually required for 
a particular decision (Pohl 2008). Intuition may be excellent in some decision 
contexts (who will be the best actor for this part?) but the last resort of a scoun-
drel in other contexts (what is the likelihood that this brown-skinned man with 
a history of mental health issues and no priors will re-offend?). A related point 
is that what may count as a virtue in a human may well count as a vice in a 
machine. “Graceful degradation” has long been regarded as one of the advan-
tages of humans over machines (Fitts 1951), but as Bainbridge (1983, p. 777) 
pointed out, “[t]his is not an aspect of human performance to be aimed for in 
computers…automatic systems should fail obviously.”4 In short, complemen-
tarity means humans and machines have clearly defined and clearly separated 
roles, where the human is effectively barred from interfering with the machine’s 

Table 1  The logical space of automatizable decisions and their attendant control problems

 For any decision  
D: { d0, d1, d2 … dn}

Option (a) 
Patently suboptimal system 

D 
(whole decisions)

Option (b) 
Decomposition/allocation 

d0, d1, d2 … dn

(semiautonomous decisions) 

Option (c) 
Better-than-human system 

D 
(whole decisions) 

Supplementary coupling/ 
human in the loop 

e.g. medical diagnostic tools 
Proceed with caution 

Complementary coupling/ 
human in the loop 

(b + c)  
(DCAF) 

e.g. ACC (below) 
Recommended 

OR 

Supplementary coupling/ 
human in the loop 

(a + b) 
e.g. recidivism risk 

prediction instruments 
Proceed with caution 

OR 

Mostly reliable system/ 
human in the loop 

e.g. SAE Level 2 AV 
Danger! Control problem! 

No human in the loop 
e.g. SAE Level 5 AV 

(eventually); 
case prediction sofware 

Recommended 

4 This is not always true. An object classifier should tell you how much a given object is like a chair, 
rather than move discretely from “chair” to some other category of objects: to that extent, classifiers cer-
tainly are designed with a view to graceful degradation.
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outputs and perhaps in many cases even knowing what the outputs are. Breaking 
the task up in this way also increases the chances of finding optimally reliable 
software to handle the automated parts of a decision.

• Dynamism The allocation of responsibilities should incorporate hand-over and 
hand-back protocols where this flexibility contributes to optimal performance. 
This assumes that some decisions can be safely handled by both humans and 
computers, i.e. where humans and computers have shared competencies within 
particular subdomains. Hand-over and hand-back may also go some way towards 
alleviating the currency problem, as operators are thereby afforded an opportu-
nity to practice and maintain their manual control skills (Bainbridge 1983).

• Co-evolution User requirements co-evolve over time, and decision support tools 
should reflect this. Decision support tools within HMSs should be designed for 
adaptability and change. This means designers should not over-specify how a 
system will work, but allow its users to tailor the system so that it best meets 
their particular needs (Walker et al. 2015, p. 201).

• Pragmatism Decision support tools “should be congruent with existing prac-
tices which may on occasion appear archaic compared to what technology now 
offers” (Walker et al. 2015, p. 201). When cell phones first appeared, people did 
not throw out their telephone directories and address books in short order. The 
older technology held on for a while longer until mobiles were subsumed into 
the Internet of Things. As new decision software gets tested and then rolled out, 
we think the same approach is advisable.

• Context-sensitivity Each decision tool, situated within its own unique decision 
context, may prioritise these principles and negotiate their various trade-offs dif-
ferently.

We now turn to consider an algorithmic decision tool that exemplifies several of 
these principles in its design.

Fig. 1  Presence (i) and (ii) danger of complacency as a function of system reliability. The dashed line 
represents near perfect (better-than-human) reliability
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6  Case Study: New Zealand’s Accident Compensation Corporation 
(ACC)

Since 1974, New Zealand has run a universal no-fault accident compensation 
scheme for personal injury. Because the scheme is compulsory, all citizens/residents 
(or temporary visitors) who have suffered personal injury can expect to be cov-
ered regardless of whether or not another party is at fault. Most of the ACC’s pay-
ments cover treatment/medical costs, but they also regularly cover lost earnings and 
home and/or vehicle modifications for those with more serious injuries. The ACC 
processes around 2 million claims per year, of which (on average) about 96% are 
accepted (ACC 2018).

Over the years, the ACC has largely relied on manual control for process-
ing claims. In the past this has involved ACC staff members sorting through and 
assessing individual claims one by one. Even with improvements to case handling 
procedures over the years, such as technology allowing electronic submission, all 
claims have required some degree of manual processing (ACC 2018). At the time 
of writing, the ACC plans to introduce an improved claim registration and cover 
assessment process by the end of 2018. It aims to make the claims approval pro-
cess quicker and more efficient, removing the need for manual control in standard 
cases altogether. The ACC hopes that by harnessing the power of big data—12 mil-
lion claims submitted between 2010 and 2016—it can both reduce the wait time for 
approvals as well as more efficiently distribute the more complex claims to ACC 
teams for final determination.

There are two key features of the new claims handling process. First, the 
ACC’s machine-learning algorithm (developed in-house) has been designed to 
identify such characteristics of a claim as are strictly relevant to whether it can 
be accepted. Thus, “[s]imple claims—where the information provided shows 
that an injury was caused by an accident—will be fast-tracked and immediately 
accepted” (ACC 2018). For example, the system would fast-track “someone going 
to the emergency clinic to have a cut stitched,” but not someone presenting with 
“multiple severe injuries” (ACC 2018). Claims that are not accepted at this step 
will be passed along to ACC teams for manual processing. Second, the system 
is not able to decline claims—it can only accept claims that show up as straight-
forwardly involving accidents based on information provided by the claimant. In 
giving the tool this limited jurisdiction, its designers have ingeniously converted 
what is potentially a high-stakes decision into an extremely low one: for the tool 
cannot decide adversely, only inclusively.

The process runs as follows. Each claim moves through a series of automated 
system checks. At each “checkpoint,” one of two things can happen: the claim 
passes, or it does not. If it passes, it proceeds to the next checkpoint. If it does 
not pass, the system flags it for manual processing. There are three checkpoints: 
one for validation and eligibility; a second for accident description; and a third 
for cover decision (final determination). At the validation and eligibility check-
point, the system checks that the claimant has provided all essential information 
(e.g. location and date of accident, type of injury, healthcare provider, claimant’s 
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employment and residency status, etc.). If the information is complete, the system 
passes the claim on to the accident description checkpoint. If the information is 
incomplete, the system flags it for manual processing. At the accident description 
checkpoint, the system attempts to categorize the claim in accordance with a pre-
determined taxonomy of claim types (“fall,” “rugby accident,” etc.). The system 
searches the claim form for words that correlate with recognized claim types. If 
the claim can be categorized in this way, it is passed on to the final checkpoint for 
determination. If it cannot be categorized, it is flagged for manual processing. At 
the final checkpoint, two statistical models are employed:

The “Probability of Accept” model is informed by a statistical model that 
uses data from 12 million previous, anonymised claims to calculate the 
probability a new claim should be approved. Each claim is then given 
a score, and ACC sets a threshold for scores that will be automatically 
accepted or not. A claim that scores above the threshold set by ACC will be 
automatically accepted for cover.

A claim that scores below the auto-acceptance threshold would then be run 
through the “Complexity” model, which categorises the claim on a scale 
of low-complexity through to high-complexity. Each claim is then given a 
complexity score, and ACC sets a threshold for complexity scores that will 
be automatically accepted or not. A claim that scores below the threshold 
set by ACC will be automatically accepted.

A claim that scores above the auto-acceptance threshold for complexity would 
then be referred for further manual processing by an ACC staff member.

Example: If a client submits a claim for treatment relating to multiple severe 
injuries and post- traumatic stress following a motor vehicle accident, their 
claim is likely to receive a high complexity score and would be referred for 
handling by ACC teams. (ACC 2018)

How well does the ACC tool incorporate the six human factors principles we out-
lined in the previous section? We think it performs commendably on at least three of 
our stated principles:

• Division of labour There is here a clear allocation of responsibilities between 
the human- and computer-operated parts of the decision regarding whether to 
approve claims.

• Complementarity The allocation of responsibilities proceeds in such a way that 
those subcomponents of the decision better suited for human handling are not 
automated, and those better suited for computer handling are not manually con-
trolled. Human controllers do not interfere with the automated parts of the pro-
cess, which are therefore left to operate as essentially risk-free zones of auto-
mated decision-making. Humans are not able to perform such aspects of the 
“accident description” and “cover decision” subcomponents of the decision as 
are handled by the algorithm either as accurately or as quickly as the algorithm. 
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In the ACC model, humans only intervene at the point where the algorithm 
reaches the limit of its competence to determine a claim.

• Context-sensitivity The allocation of responsibilities does not incorporate hand-
over and hand-back protocols (i.e. it is not dynamic), but in this particular setup, 
such flexibility would not contribute to optimal performance. This means that 
the ACC tool has been deployed in a context-sensitive manner, dispensing with 
or trading off against principles that are not especially salient in the specific cir-
cumstances of deployment.

7  Are There Other Ways to Address the Control Problem?

Earlier we mentioned that the control problem appears to be resistant to training, and 
that experts are as prone to complacency as novices. Before concluding, we should 
say a little about some of the other commonly suggested strategies for overcoming 
the control problem.

First, there is some evidence that increasing accountability mechanisms can have 
a positive effect on human operators whose primary responsibility is monitoring an 
autonomous system. In an important study, Skitka et al. (2000, p. 701) found that 
“making participants accountable for either their overall performance or their deci-
sion accuracy led to lower rates of automation bias”. This seems to imply that if 
the threat of random checks and audits were held over monitors, the tendency to 
distrust one’s own senses might be attenuated. What effects these checks could have 
on other aspects of human performance and job satisfaction is a separate question, as 
is the question of how accountability mechanisms affect complacency (as opposed 
to bias). Parasuraman and Manzey (2010, p. 396) also warn that the results of this 
study are not conclusive. But clearly auditing protocols, and perhaps more creative 
accountability measures, such as “catch-trials”—in which system errors are delib-
erately generated to keep human invigilators on their toes—could be quite useful 
in counteracting automation bias. Catch trials look particularly promising. While 
more research on their efficacy is needed before concrete guidelines can be promul-
gated recommending their adoption, they do seem to offer a viable means of getting 
humans more actively engaged in the control task.5 But in any case, much like other 
touted solutions to the control problem, they do not offer a literal solution: rather, 
they render systems that are mostly dependable (but not better-than-human) less 
reliable by stealth (as it were), capitalizing on the premise that less reliable systems 
do not induce the same complacency and bias that attend more reliable systems. 
Thus catch trials really fall under option (a) in our menu of strategies above.

Second, might having a group of humans in the loop, working together and able 
to keep watch on one another, alleviate automation bias? Apparently not:

5 Catch trials might not be such a good thing if case workers came to think that “odd” looking cases 
were “probably not real”.
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Sharing monitoring and decision-making tasks with an automated aid may 
lead to the same psychological effects that occur when humans share tasks 
with other humans, whereby “social loafing” can occur—reflected in the ten-
dency of humans to reduce their own effort when working redundantly within 
a group than when they work individually on a given task….Similar effects 
occur when two operators share the responsibility for a monitoring task with 
automation…. (Parasuraman and Manzey 2010, p. 392)

Finally we should note that Parasuraman and Manzey (2010, p. 387) added these 
observations in connection with the effects of training regimes:

Although extended practice does not eliminate automation complacency, other 
training procedures may provide some benefit. In particular, given that com-
placency is primarily found in multitasking environments and represents atten-
tion allocation away from the automated task, training in attention strategies 
might mitigate complacency.

We are not aware of research empirically substantiating this latter claim, but would 
anyway caution against task allocations that reduce human agents to monitors of 
largely static displays of information (if that is the implicit proposal here). Other 
studies cited by the authors, albeit in the context of automation bias, indicate that 
even explicit briefings about risk factors in HCI do not mitigate the strength of auto-
mation bias, and this seems to be true in both multitasking and singletasking envi-
ronments. An idle mind is not an empty mind, but rather a wandering mind, and 
when the stakes are high, the risk of complacency is still too great to be managed 
by rubber-stamp training interventions that make only a questionable difference to 
deep-seated psychological propensities. Perhaps there is then reason to be sceptical 
about the effectiveness of “warnings” or other guidelines about how best to use deci-
sion tools in judicial settings (as we mentioned earlier in regards to COMPAS). But 
it is a live research question.

8  Conclusion

Automation introduces more than just automated parts: it very often also transforms 
the nature of the interaction between human and machine in profound ways. One of 
its most alarming effects is to induce a sense of complacency in its human control-
lers. To date, little has been said about whether and to what extent the same problem 
arises from the use of ever more sophisticated algorithmic decision tools, including 
those exploiting cutting-edge machine learning techniques such as deep learning. 
We have endeavoured to show how insights from human factors research have great 
relevance to policy specialists working in AI regulation and policy. Among the fac-
tors which should be considered in the decision to automate any part of an adminis-
trative or business decision is the tendency of human operators to hand over effec-
tive control to an algorithm just because it works well in most instances. We argue 
that, except in special cases, whenever an automatizable decision is high-stakes or 
safety-critical, the decision support tool under consideration should not be deployed 
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unless it has genuinely earned its keep. Failing that, a dynamic and complementary 
allocation of functions between actively engaged human operators and simpler but 
more nearly perfectly reliable autonomous systems should be considered the safest 
course.
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