
 1 

Genetically predicted circulating protein biomarkers and ovarian cancer risk 1 
 2 
Daniel P. C. Considine*1, Guochong Jia*2, Xiang Shu2,3, Joellen M. Schildkraut4, Paul D. P. Pharoah†1,5, Wei 3 
Zheng†2, and Siddhartha P. Kar†++6,7 for the Ovarian Cancer Association Consortium 4 
 5 
1. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of 6 
Cambridge, Cambridge, UK. 7 
2. Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram 8 
Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA. 9 
3. Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10 
USA. 11 
4. Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA. 12 
5. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, 13 
Cambridge, UK. 14 
6. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 15 
7. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 16 
 17 
*These authors contributed equally and are co-first authors. 18 
†These authors contributed equally and are co-last authors. 19 
++Indicates corresponding author. 20 
 21 
For correspondence: 22 
 23 
Siddhartha P. Kar, MBBS, PhD, MPH 24 
MRC Integrative Epidemiology Unit 25 
BS11, Oakfield House, Oakfield Grove 26 
University of Bristol, Bristol BS8 2BN, UK 27 
Email: siddhartha.kar@bristol.ac.uk 28 
 29 
Word counts: Abstract = 252, Manuscript = 3,646 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 

mailto:siddhartha.kar@bristol.ac.uk


 2 

Abstract 53 
 54 
Objective 55 
 56 
Most women with epithelial ovarian cancer (EOC) are diagnosed after the disease has metastasized 57 
and survival in this group remains poor.  Circulating proteins associated with the risk of developing 58 
EOC have the potential to serve as biomarkers for early detection and diagnosis.  We integrated large-59 
scale genomic and proteomic data to identify novel plasma proteins associated with EOC risk. 60 
 61 
Methods 62 
 63 
We used the germline genetic variants most strongly associated (P<1.5×10−11) with plasma levels of 64 
1,329 proteins in 3,301 healthy individuals from the INTERVAL study to predict circulating levels of 65 
these proteins in 22,406 EOC cases and 40,941 controls from the Ovarian Cancer Association 66 
Consortium (OCAC).  Association testing was performed by weighting the beta coefficients and 67 
standard errors for EOC risk from the OCAC study by the inverse of the beta coefficients from 68 
INTERVAL. 69 
 70 
Results 71 
 72 
We identified 26 proteins whose genetically predicted circulating levels were associated with EOC 73 
risk at false discovery rate<0.05.  The 26 proteins included MFAP2, SEMG2, DLK1, and NTNG1 and a 74 
group of 22 proteins whose plasma levels were predicted by variants at chromosome 9q34.2.  All 26 75 
protein association signals identified were driven by association with the high-grade serous 76 
histotype that comprised 58% of the EOC cases in OCAC.  Regional genomic plots confirmed overlap 77 
of the genetic association signal underlying both plasma protein level and EOC risk for the 26 78 
proteins.  Pathway analysis identified enrichment of seven biological pathways among the 26 79 
proteins (Padjusted<0.05), highlighting roles for Focal Adhesion-PI3K-Akt-mTOR and Notch signaling. 80 
 81 
Conclusion 82 
 83 
The identified proteins further illuminate the etiology of EOC and represent promising new EOC 84 
biomarkers for targeted validation by studies involving direct measurement of plasma proteins in EOC 85 
patient cohorts. 86 
 87 
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 89 
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Research Highlights 104 
 105 
• This study analyzed 667 germline genetic variants known to be associated with circulating 106 

(plasma) levels of 1,329 proteins 107 
 108 
• These variants were used to predict plasma protein levels in 22,406 epithelial ovarian cancer 109 

cases and 40,941 controls 110 
 111 
• Genetically predicted levels of 26 proteins were associated with all invasive epithelial ovarian 112 

cancer risk 113 
 114 
• The identified proteins were enriched for the Focal Adhesion-PI3K-Akt-mTOR signaling, Notch 115 

signaling, and other pathways 116 
 117 

• The identified proteins have the potential to serve as circulating biomarkers particularly for high-118 
grade serous epithelial ovarian cancer risk 119 

 120 
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Introduction 155 

 156 

Ovarian cancer is the most common cause of death from gynecological malignancy in the United 157 

States and accounted for an estimated 295,000 incident cases and 184,000 deaths globally in 2018 158 

[1,2].  Despite advances in treatment, survival rates in ovarian cancer continue to remain low, in 159 

part, due to the late detection of most cases [3].  Nearly four decades after its discovery [4], 160 

circulating levels of the protein cancer antigen 125 (CA-125) continue to be used to screen women at 161 

high risk of developing ovarian cancer, such as those with a hereditary cancer syndrome, and 162 

women with abnormal findings on examination and/or ultrasound.  However, CA-125 has limited 163 

sensitivity and specificity in these settings [5].  Furthermore, screening asymptomatic women for CA-164 

125 level, despite the use of serial measurements and algorithmic approaches to the interpretation 165 

of these levels [6] – and even in combination with transvaginal ultrasound – does not reduce ovarian 166 

cancer mortality and is not recommended by the US Preventive Services Task Force [7].  Human 167 

epididymis secretory protein E4 (HE4) has been developed in recent years as a blood-based protein 168 

biomarker for the diagnosis of ovarian carcinoma [8], and the combination of CA-125 and HE4 is a 169 

more accurate predictor of ovarian malignancy than either biomarker alone [9].  However, there 170 

remains an urgent unmet need to identify novel circulating protein biomarkers that will be more 171 

useful for the early detection of this aggressive disease. 172 

 173 

 Studies in search of new plasma protein biomarkers in ovarian cancer have been restricted 174 

to small sample sizes and evaluated limited protein panels [10,11].  In the current study, we adopted 175 

a different approach to the identification of circulating protein biomarkers of ovarian cancer risk 176 

using large-scale data from two genome-wide association studies (GWAS).  The first data set was a 177 

GWAS of healthy blood donors in the INTERVAL study that has identified robust associations 178 

between inherited genetic variants and plasma protein levels [12].  The second data set was the the 179 

largest and latest published GWAS meta-analysis from the Ovarian Cancer Association Consortium 180 
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(OCAC) [13].  While epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian 181 

cancer cases, EOC itself is a diverse entity with distinct histological subtypes: high-grade serous (the 182 

most common and lethal histotype), low-grade serous, clear cell, mucinous, endometrioid, and low 183 

malignant potential (serous or mucinous) tumors.  The OCAC GWAS included associations with all 184 

invasive and histotype-specific EOC susceptibility.  We used the inherited genetic variants robustly 185 

associated with plasma protein levels in the INTERVAL GWAS to predict these levels in the OCAC 186 

GWAS where plasma protein levels have not actually been measured but the variants have been 187 

genotyped.  Such predictions are likely to suffer from less selection bias and confounding because 188 

the genetic variants on which they are based are randomly allocated at gametogenesis and fixed 189 

after conception.  Our study design enabled a comprehensive appraisal of the role of the levels of 190 

over 1,300 plasma proteins in more than 22,000 ovarian cancer cases and over 40,000 controls. 191 

 192 

Methods 193 

 194 

Circulating (plasma) protein data set 195 

 196 

We used effect size estimates (beta coefficients) from genome-wide association analyses linking 667 197 

single nucleotide polymorphisms (SNPs) to the circulating (plasma) levels of 1,329 proteins in 3,301 198 

healthy participants from the INTERVAL study [12], a bioresource of blood donors in England who 199 

were recruited into a multi-center randomized trial of blood donation frequency [14].  Each of these 200 

SNPs was associated with at least one of the plasma proteins at genome-wide significance (defined 201 

as P < 1.5 × 10−11 in the INTERVAL analysis [12]) and was the SNP most strongly associated with the 202 

circulating levels of that protein.  Five hundred and eight-five SNPs were associated with the levels 203 

of only one circulating protein each while 82 SNPs were associated with multiple proteins (ranging 204 

from 36 SNPs that were associated with two proteins each to one SNP that was associated with 95 205 

proteins; Table S1).  We restricted analysis to SNPs that had minor allele frequency (MAF) > 1% and 206 
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had either been genotyped or imputed with quality score > 0.8 – both in the INTERVAL analytic 207 

sample and in the OCAC data set (described below).  These SNP-protein associations included 908 208 

trans-associations where the top SNP associated with the protein was > 1 Mb away from the gene 209 

encoding the protein and 421 cis-associations where the top SNP associated with the protein was < 1 210 

Mb away from the gene encoding the protein.  Plasma protein levels in the INTERVAL study were 211 

quantified using an expanded aptamer-based multiplex protein assay called SOMAscan [12,15] and 212 

germline genotypes were measured on Affymetrix Axiom UK Biobank array with imputation into a 213 

combined combined 1000 Genomes Phase 3-UK10K reference panel.  We used the same protein 214 

names and identifiers, including UniProt and SOMAmer IDs (Table S1), as used in the original 215 

INTERVAL genetic report [12] for consistency.  That report contains additional details of sample and 216 

genotype quality control, imputation, and association analysis in the INTERVAL study. 217 

 218 

Epithelial ovarian cancer data set 219 

 220 

Summary statistics (beta coefficients and standard errors) from a GWAS meta-analysis for EOC 221 

susceptibility in women of European ancestry were obtained from OCAC [13].  The GWAS meta-222 

analysis included 22,406 invasive EOC cases overall and 40,941 controls and this “all invasive EOC” 223 

case-control set was the focus of the primary analysis in the current study.  EOC histotype-specific 224 

summary statistics from the same GWAS meta-analysis were also evaluated for seven histological 225 

subtypes as a secondary analysis in the current study.  This included high-grade serous (13,037 226 

cases), low-grade serous (1,012 cases), low malignant potential serous (1,954 cases), invasive 227 

mucinous (1,417 cases), low malignant potential mucinous (1,149), clear cell (1,366), and 228 

endometrioid (2,810 cases) EOC cases and 40,941 controls.  Additional details of sample and 229 

genotype quality control, imputation, and association analytic procedures for the OCAC GWAS meta-230 

analysis have been previously published [13]. 231 

 232 
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Statistical analysis 233 

 234 

We used the Wald ratio to estimate the effect of genetically predicted circulating protein levels on 235 

ovarian cancer risk.  The Wald estimator in this context is the ratio of the beta coefficient for a SNP 236 

from the ovarian cancer GWAS meta-analysis to the beta coefficient for the same SNP from the 237 

plasma protein genome-wide association analysis.  The SNP most strongly associated with the 238 

circulating level of each protein in the INTERVAL data set was used.  The standard error of the Wald 239 

estimator is the ratio of the standard error for the SNP from the ovarian cancer GWAS meta-analysis 240 

to the absolute value of the beta coefficient for the SNP from the plasma protein genome-wide 241 

association analysis.  These analyses were performed using the R (version 3.6.2) statistical 242 

computing language.  P-values were calculated using the formula: 243 

“pnorm(abs(Wald_estimator)/standard_error_of_Wald_estimator, lower.tail=FALSE) * 2” and the 244 

multiple comparisons burden for testing 1,329 SNP-protein-ovarian cancer associations was 245 

accounted for using false discovery rate (FDR) control by the method of Benjamini and Hochberg as 246 

implemented in the “p.adjust” function.  The Wald estimator allowed for incorporation of the beta 247 

coefficient for the SNP from the plasma protein analysis and allowed easy inference of the direction 248 

of the association (whether positive or inverse) between plasma protein level and ovarian cancer 249 

risk.  Therefore, we preferred the Wald estimator over directly testing for the genetic association 250 

between the top plasma protein level-associated SNP and ovarian cancer risk (although in practice 251 

both approaches provided almost identical P-values).  As noted above, our primary analysis was for 252 

all invasive EOC risk, given that this combined phenotype had the largest sample size, while in 253 

secondary analyses we evaluated histotype-specific risk. 254 

 255 

 We followed up genetically predicted circulating levels of proteins that were found to be 256 

associated (FDR < 0.05) in our study with ovarian cancer risk to assess whether the top plasma 257 

protein level-associated SNP was part of the top ovarian cancer genetic association signal in the 258 



 8 

same genomic region – a positional overlap that would reinforce the role of the SNP as a driver of 259 

both circulating protein levels and ovarian cancer risk.  We did this by visualizing ovarian cancer 260 

genetic associations for all SNPs with MAF > 1% and imputation quality > 0.8 in the OCAC data set in 261 

the 500 kb window centered on the top protein-associated SNP (i.e., +/- 250 kb on either side) using 262 

two-way scatter plots generated in Stata (version 14, StataCorp LP, College Station, TX).  For SNPs 263 

with stronger P-values for association with ovarian cancer risk in OCAC as compared to the top 264 

protein-associated SNP, the correlation between the stronger P-value SNPs and the top protein-265 

associated SNP was calculated using the LDlink online tool and data from the 1000 Genomes 266 

European ancestry populations [16].  If the same SNP association signal drives both plasma protein 267 

level and ovarian cancer risk, we expected one of the following three scenarios to be true: (i) the top 268 

protein-associated SNP is also the top ovarian cancer associated SNP or (ii) it is strongly correlated 269 

(r2 > 0.9) with the top ovarian cancer associated SNP(s) or (iii) there are multiple independent (r2 < 270 

0.01) genetic association signals in OCAC in the same region and the top protein-associated SNP is 271 

one of these associations.  A second follow-up analysis of proteins that achieved FDR < 0.05 in our 272 

study involved mapping these to the genes encoding them and evaluating the genes for enrichment 273 

of pathways (at P < 0.05 after adjustment for testing multiple pathways) using the Enrichr online tool 274 

[17] and the “WikiPathways Human 2019” database [18] that contains annotations for 472 known 275 

biological pathways.  A final follow-up analysis involved searching for genome-wide signficant 276 

associations (P < 5 x 10-8) between the top plasma protein level-associated SNP for each of the 277 

proteins that achieved FDR < 0.05 in our study and other diseases and traits in the published (i.e., 278 

MEDLINE indexed) literature.  This search was performed using the PhenoScanner (version 2) online 279 

tool [19], querying published European-ancestry GWAS.  The aim was to identify pleiotropic diseases 280 

and traits that may provide an alternative explanation for the plasma protein-EOC risk associations 281 

identified, stemming from their associations with the same top SNPs.  Such pleiotropic diseases and 282 

traits associated with the same SNPs may also be the cause or consequence of plasma protein level 283 

changes that in turn are associated with EOC risk. 284 
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 285 

Results 286 

 287 

Genetically predicted circulating levels of 26 proteins were associated with all invasive EOC risk at 288 

FDR < 0.05 (13 positive and 13 inverse associations; Table 1 and Table S1).  First, this included a 289 

positive association between MFAP2 encoded by MFAP2 on chromosome 1 and all invasive EOC risk 290 

(Microfibrillar-associated protein 2; PWald = 1.8 x 10-4, FDR = 0.01).  The top MFAP2 plasma protein-291 

associated SNP rs4920605 (POCAC-GWAS-all = 1.82 x 10-4) in the INTERVAL study was ~8 kb from the 292 

transcription start site (TSS) of MFAP2.  There was only one SNP in the same region, rs143483351 293 

(POCAC-GWAS-all = 1.76 x 10-4), a multi-allelic variant 2 kb from rs4920605, with a slightly stronger 294 

association with all invasive EOC risk (Fig. 1 (a) and Table S2).  SNP rs143483351 could not be 295 

evaluated in LDlink [16] for correlation with rs4920605 because it was a multi-allelic variant.  296 

Second, our FDR < 0.05 results also included an inverse association between NTNG1 encoded by 297 

NTNG1 on chromosome 1 (in a genomic region distinct from MFAP2) and all invasive EOC risk 298 

(Netrin-G1; PWald = 4.9 x 10-4, FDR = 0.03).  The top NTNG1 plasma protein-associated SNP 299 

rs115668827 (POCAC-GWAS-all = 4.9 x 10-4) in the INTERVAL study was ~4 kb from the TSS of NTNG1.  300 

There was only one SNP in the same region, rs11185086 (POCAC-GWAS-all = 3.8 x 10-4), 173 kb from 301 

rs115668827, with a stronger association with all invasive EOC risk (Fig. 1 (b) and Table S2).  302 

However, rs11185086 and rs115668827 represented independent signals in the same region (r2 = 7 x 303 

10-4).  Third, the list of 26 plasma proteins identified included positive associations between SEMG2 304 

(Semenogelin-2) and ovarian cancer risk and DLK1 (Protein delta homolog 1) and ovarian cancer risk 305 

(for both associations – PWald = 4.0 x 10-4, FDR = 0.02).  The top SEMG2 plasma protein-associated 306 

SNP and the top DLK1 plasma protein-associated SNP in the INTERVAL study was the same SNP, 307 

rs12881760 (POCAC-GWAS-all = 3.96 x 10-4), which is ~16 kb from the TSS of DLK1 on chromosome 14.  308 

SEMG2 is encoded by SEMG2 on chromosome 20 and rs12881760 is associated with its circulating 309 

level by acting in trans.  SNP rs12881760 is part of a cluster of three SNPs that includes rs10144381 310 
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(POCAC-GWAS-all = 3.50 x 10-4) and rs12881545 (POCAC-GWAS-all = 3.56 x 10-4), which are within 3 kb of each 311 

other and strongly correlated (r2 > 0.93), and together mark the strongest association signal with all 312 

invasive EOC risk in the DLK1 region (Fig. 1 (c) and Table S2). 313 

 314 

 The remaining 22 of the 26 all invasive EOC risk-associated circulating proteins identified were 315 

proxied by 10 correlated SNPs (r2 > 0.38) spanning a ~10 kb interval on chromosome 9 (Table 1).  Three 316 

of these SNPs were the top SNP for one protein each, four for two proteins each, two for three proteins 317 

each, and one SNP was the top SNP for five proteins in the INTERVAL data set (Table 1).  Ten proteins 318 

demonstrated a positive association and 12 showed an inverse association with all invasive EOC risk.  319 

Twenty-one of the 22 proteins were encoded by genes > 1 Mb away from this chromosome 9 interval 320 

(trans-associations) and most were in fact encoded by genes located on other chromosomes.  The 321 

only exception to this was the plasma protein BGAT (Histo-blood group ABO system transferase) 322 

encoded by ABO and the top BGAT plasma level-associated SNP, rs505922, is ~2 kb from the TSS of 323 

ABO.  The ABO locus (chromosome 9q34.2) is a known genome-wide significant (P < 5 x 10-8) locus for 324 

all invasive and high-grade serous ovarian cancer risk [13,20].  The ten protein level-associated SNPs 325 

spanned the ABO locus and were among the top 50 all invasive EOC risk SNPs in the 500 kb region 326 

(Table S2 and Fig. 1 (d)).  The top all invasive EOC risk SNP in the region, rs587729126 (POCAC-GWAS-all = 327 

8.3 x 10-10), was the top SNP in the INTERVAL study for association with circulating levels of FA20B 328 

(Glycosaminoglycan xylosylkinase) and sICAM-2 (Intercellular adhesion molecule 2).  This overlap of 329 

top associations led to these two proteins emerging as the plasma proteins whose genetically 330 

predicted levels were most strongly associated with all invasive EOC risk in our analysis (for both 331 

associations – PWald = 8.1 x 10-10, FDR = 4.5 x 10-7; Table 1).  The PhenoScanner search indicated that 332 

eight of the ten protein level-associated SNPs that spanned the ABO locus were associated with 62 333 

traits (Table S3).  Overall, for all 26 proteins identified (associated with SNPs in the regions presented 334 

in Fig. 1 and discussed above), we observed a clear overlap between the top circulating protein level-335 

associated SNP and the top all invasive EOC risk association, lending further confidence to the 336 
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association between plasma protein levels predicted by these SNPs and disease risk.  We did not 337 

identify any additional proteins at FDR < 0.05 in any of the histotype-specific analyses (Table S1).  An 338 

inspection of the high-grade serous EOC results (Table S1) confirmed that all 26 FDR < 0.05 protein 339 

associations with all invasive EOC risk were driven by associations in the high-grade serous EOC 340 

sample, which contributed the largest number of cases to the all invasive EOC sample.  Pathway 341 

enrichment analysis of the genes encoding the 26 proteins identified seven pathways at Padjusted < 0.05 342 

(Table 2). 343 

 344 

Discussion 345 

 346 

By combining genome-wide association data from 22,406 all invasive EOC cases and 40,941 controls 347 

and plasma proteome-wide genetic association data from 3,301 healthy individuals, we identified 26 348 

proteins whose genetically inferred circulating levels were associated with EOC risk after false 349 

discovery rate control (FDR < 0.05).  The combination of these data sets offered unprecedented scale 350 

to evaluate the role of over 1,300 plasma proteins in the development of EOC and identified 351 

circulating protein biomarkers with the potential for clinical translational in the early detection and 352 

diagnosis of EOC. 353 

 354 

We observed that the top plasma protein level-associated SNP was either the top all invasive 355 

EOC risk SNP in the 500 kb region centred on the SNP (Fig. 1 (a) and (d))  or it was the top SNP of one 356 

of two independent (r2 < 0.01) all invasive EOC risk associations in the region (Fig. 1 (b)) or it was part 357 

of a cluster of highly correlated (r2 > 0.9) SNPs that together marked the top all invasive EOC risk 358 

association in the region (Fig. 1 (c)).  This suggests that our results are unlikely to be due to linkage 359 

disequilibrium contamination, i.e., regional genetic architecture where the top plasma protein level-360 

associated SNP is weakly correlated with the top all invasive EOC risk SNP and results in a spurious 361 

association underpinned by two distinct SNP signals (one for protein and another for EOC).  While 362 
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the focus of our analysis was the use of SNPs associated with plasma protein levels to evaluate the 363 

association between plasma protein levels and EOC risk and not the direct genetic association 364 

between SNPs and EOC risk, we note that there were 667 unique SNPs used in the analysis (Table S1) 365 

and the 13 unique SNPs underpinning the 26 proteins identified (Table 1) were all associated with all 366 

invasive EOC risk at P < 0.05/667, which would be the conventional threshold for statistical 367 

significance if this was a SNP-based association study of 667 SNPs.  Ten of the 13 SNPs were 368 

genome-wide significant (P < 5 x 10-8) as they are located at a previously reported all invasive and 369 

high-grade serous EOC risk locus at or near ABO on chromosome 9q34.2 [13,20].  The three 370 

remaining SNPs (spanning three distinct genomic regions; Fig. 1 (a), (b), and (c)) may well represent 371 

as yet unidentified genetic susceptibility loci for all invasive EOC that we are presently 372 

underpowered to detect at GWAS levels of significance (P < 5 x 10-8).  Thus, loci known to be 373 

associated with the plasma proteome may aid in the discovery of sub-threshold GWAS loci for 374 

disease susceptibility in much the same way as previously demonstrated for other biological 375 

information integrated into genetic association studies [21]. 376 

 377 

 Pathway analysis highlighted that five of the 26 proteins whose genetically predicted plasma 378 

levels were associated with all invasive EOC risk at FDR < 0.05 belonged to the “Focal Adhesion-PI3K-379 

Akt-mTOR-signaling pathway (Ppathway (adjusted) = 0.006; Table 2), which was the maximum overlap seen 380 

between any established biomolecular pathway and the 26 proteins.  The genes encoding these 381 

proteins were located across different chromosomes, but the SNPs associated most strongly with 382 

their plasma levels were all located at the 9q34.2 locus.  The PI3K-Akt-mTOR intracellular signaling 383 

cascade is a major regulator of the cell cycle and has key roles in cellular quiescence, growth and 384 

proliferation, and cancer cell survival and metastasis [22].  Somatic aberrations in this pathway are 385 

found in the majority of high-grade serous ovarian tumors [23].  Another pathway identified at 386 

Ppathway (adjusted) < 0.05 was Notch signaling and this association was driven, in turn, by associations 387 

between genetically predicted circulating levels of two Notch proteins, MFAP2 (chromosome 388 
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1p36.13) and DLK1 (chromosome 14q32.2), and all invasive EOC risk.  It is noteworthy that these two 389 

plasma proteins associated with EOC risk at FDR < 0.05 were encoded by genes located on distinct 390 

chromosomes but the genes/proteins were members of the same biological pathway.  DLK1, a non-391 

canonical Notch ligand, has a demonstrated role in promoting ovarian carcinogenesis via Notch 392 

activation and epithelial-mesenchymal transition [24].  The microfibrillar-associated protein 2 393 

(MFAP2), previously named microfibril-associated glycoprotein 1 (MAGP1), activates integrin 394 

signaling and is a potential oncogene [25–27].  Another protein identified at FDR < 0.05, Netrin-G1 or 395 

NTNG1, is involved in apoptosis and known to be dysregulated particularly in endocrine-related 396 

tumors [28,29].  Further, the gene that encodes NTNG1 has been shown to be overexpressed in 397 

malignant ovarian tumors [30]. 398 

 399 

 Larger genetic association studies of the circulating proteome as well as for EOC 400 

susceptibility may identify additional candidate biomarkers for EOC.  Moreover, such studies may 401 

profile additional proteins (including CA-125, which was not profiled in the INTERVAL study) and 402 

include individuals of non-European ancestries, offering new opportunities for plasma protein 403 

biomarker discovery.  The present study was unable to identify associations for EOC histotypes other 404 

than for the most common high-grade serous hisotype and this is another area where larger sample 405 

sizes might help.  The INTERVAL and OCAC data sets used in this analysis were based on participants 406 

of European ancestry and there is a compelling need for similar trans-ancestry analyses.  Smaller 407 

GWAS of ovarian cancer risk in women of African and East Asian ancestry have been reported by 408 

OCAC but there is no circulating protein level GWAS comparable to the INTERVAL study as yet in a 409 

cohort that is not of European ancestry [31,32].  A major strength of the current analysis was the 410 

ability to appraise the roles of over 1,300 proteins.  A vital next step in assessing the role of the 411 

plasma proteome in EOC risk and validating our findings will involve directly measuring the 26 412 

proteins shortlisted by our study in EOC case and control sample collections that have pre-diagnostic 413 

and longitudinal follow-up biospecimens available such as the Prostate, Lung, Colorectal and Ovarian 414 
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(PLCO) Cancer Screening Trial [33].  The pleiotropic associations observed at the 9q34.2 locus where 415 

eight of the ten SNPs associated with plasma protein levels were also associated with 62 other traits 416 

leaves open the possibility that some of these traits, rather than the protein levels, may underlie the 417 

association with EOC risk.  Alternatively, some of these traits may lie up- or downstream of the 418 

protein levels and mediate the association with EOC risk as part of the same causal pathway.  419 

Further studies will be required to dissect these possibilities.  For example, five of the eight SNPs at 420 

the 9q34.2 (ABO) locus are associated with low density lipoprotein-cholesterol (LDL-C) levels with 421 

the SNP alleles predicting lower LDL-C levels associating with reduced EOC risk (Table S3).  This is 422 

consistent with a recent analysis based on the OCAC data set which showed that lower LDL-C level 423 

genetically predicted by SNPs in or near HMGCR, which encodes the enzyme inhibited by statins, 424 

was associated with reduced EOC risk [34]. 425 

 426 

In conclusion, our integrative analysis of large-scale proteomic and genomic data sets 427 

identified several associations between genetically predicted circulating protein levels and EOC risk 428 

that were statistically significant after FDR control and biologically plausible.  These plasma proteins 429 

are candidate biomarkers with the potential for application in the early diagnosis of this aggressive 430 

gynecological cancer.  The associations shed new light on EOC biology and should inform a range of 431 

follow-up laboratory-based studies and targeted biomarker validation projects wherein the 26 432 

identified plasma proteins are directly tracked in incident EOC cases and controls over time. 433 
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2/MediaObjects/41586_2018_175_MOESM4_ESM.xlsx 463 
 464 
Code used to perform the analysis reported in this paper is available at: 465 
https://github.com/siddhartha-kar/circulating-proteins-and-ovarian-cancer 466 
 467 
Other online tools used – 468 
 469 
LDlink: https://ldlink.nci.nih.gov 470 
 471 
Enrichr: https://amp.pharm.mssm.edu/Enrichr 472 
 473 
WikiPathways: https://www.wikipathways.org 474 
 475 
PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk/ 476 
 477 
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Table Legends 698 
 699 
Table 1. Associations identified between genetically predicted circulating (plasma) protein levels and 700 
all invasive epithelial ovarian cancer risk. 701 
 702 
Table 2. Pathways enriched among the genes encoding the 26 all invasive epithelial ovarian cancer 703 
risk-associated circulating protein biomarkers identified. 704 
 705 
Figure Legends 706 
 707 
Fig. 1. Regional genetic association plots.  Genetic association with all invasive epithelial ovarian 708 
cancer risk (negative logarithm base 10 P-value) from the Ovarian Cancer Association Consortium 709 
study is plotted on the Y-axis and chromosomal position (build 37/hg 19) is plotted on the X-axis.  SNPs 710 
are marked with blue dots or colored diamonds.  SNPs marked with colored diamonds are the SNPs 711 
most strongly associated in the INTERVAL study with circulating (plasma) levels of the proteins named 712 
in the titles of the plots. 713 
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Tables 749 
 750 
 751 

Table 1. Associations identified between genetically predicted circulating (plasma) protein levels and all invasive epithelial ovarian cancer risk. 

Protein Protein full name Top SNP 
associated 
with plasma 
level of protein 

Chr Posa Cis 
/transb 

Gene 
encoding 
protein 

Gene 
mapped to 
SNP 

ORc L95
%CL 

U95
%CL 

P FDR 

FA20B Glycosaminoglycan 
xylosylkinase 

rs587729126 9 136138765 trans FAM20B ABO 1.47 1.30 1.66 8.1x10-10 4.5x10-7 

sICAM-2 Intercellular adhesion 
molecule 2 

rs587729126 9 136138765 trans ICAM2 ABO 0.65 0.57 0.75 8.1x10-10 4.5x10-7 

VEGF sR2 Vascular endothelial 
growth factor receptor 2 

rs635634 9 136155000 trans KDR ABO 0.84 0.80 0.89 3.0x10-9 4.5x10-7 

ISLR2 Immunoglobulin 
superfamily containing 
leucine-rich repeat 
protein 2 

rs115478735 9 136149711 trans ISLR2 ABO 0.80 0.75 0.86 2.8x10-9 4.5x10-7 

Met Hepatocyte growth factor 
receptor 

rs635634 9 136155000 trans MET ABO 0.77 0.71 0.84 3.0x10-9 4.5x10-7 

TPST2 Protein-tyrosine 
sulfotransferase 2 

rs115478735 9 136149711 trans TPST2 ABO 1.36 1.23 1.51 2.8x10-9 4.5x10-7 

LIF sR Leukemia inhibitory 
factor receptor 

rs635634 9 136155000 trans LIFR ABO 0.72 0.64 0.80 3.0x10-9 4.5x10-7 

Endoglin Endoglin rs635634 9 136155000 trans ENG ABO 0.66 0.57 0.76 3.0x10-9 4.5x10-7 

IGF-I sR Insulin-like growth factor 
1 receptor 

rs635634 9 136155000 trans IGF1R ABO 0.64 0.55 0.74 3.0x10-9 4.5x10-7 

sE-Selectin E-selectin rs2519093 9 136141870 trans SELE ABO 0.92 0.89 0.95 4.2x10-9 4.7x10-7 

IL-3 Ra Interleukin-3 receptor 
subunit alpha 

rs2519093 9 136141870 trans IL3RA ABO 0.89 0.86 0.93 4.2x10-9 4.7x10-7 

C1GLC C1GALT1-specific 
chaperone 1 

rs2519093 9 136141870 trans C1GALT1C1 ABO 1.17 1.11 1.24 4.2x10-9 4.7x10-7 

IR Insulin receptor rs507666 9 136149399 trans INSR ABO 0.85 0.80 0.90 8.4x10-9 8.6x10-7 

QSOX2 Sulfhydryl oxidase 2 rs149092047 9 136139907 trans QSOX2 ABO 1.09 1.06 1.13 1.2x10-7 1.0x10-5 

FAM3D Protein FAM3D rs149092047 9 136139907 trans FAM3D ABO 1.12 1.07 1.16 1.2x10-7 1.0x10-5 

GOLM1 Golgi membrane protein 
1 

rs149092047 9 136139907 trans GOLM1 ABO 1.15 1.09 1.22 1.2x10-7 1.0x10-5 

Desmoglein-2 Desmoglein-2 rs687621 9 136137065 trans DSG2 ABO 1.39 1.23 1.57 1.7x10-7 1.3x10-5 

ST4S6 Carbohydrate 
sulfotransferase 15 

rs550057 9 136146597 trans CHST15 ABO 0.79 0.72 0.86 2.0x10-7 1.4x10-5 

Alkaline phosphatase, 
intestine 

Intestinal-type alkaline 
phosphatase 

rs550057 9 136146597 trans ALPI ABO 0.74 0.66 0.83 2.0x10-7 1.4x10-5 

Coagulation Factor 
VIII 

Coagulation Factor VIII rs9411377 9 136145404 trans F8 ABO 1.16 1.09 1.22 5.5x10-7 3.7x10-5 

BGAT Histo-blood group ABO 
system transferase 

rs505922 9 136149229 cis ABO ABO 1.05 1.03 1.08 6.7x10-7 4.0x10-5 

DC-SIGN CD209 antigen rs505922 9 136149229 trans CD209 ABO 1.09 1.05 1.12 6.7x10-7 4.0x10-5 

MFAP2 Microfibrillar-associated 
protein 2 

rs4920605 1 17315425 cis MFAP2 MFAP2 1.27 1.12 1.45 1.8x10-4 0.011 

SEMG2 Semenogelin-2 rs12881760 14 101176335 trans SEMG2 DLK1 1.10 1.04 1.15 4.0x10-4 0.021 

DLK1 Protein delta homolog 1 rs12881760 14 101176335 cis DLK1 DLK1 1.10 1.04 1.16 4.0x10-4 0.021 

NTNG1 Netrin-G1 rs115668827 1 107678268 cis NTNG1 NTNG1 0.89 0.84 0.95 4.9x10-4 0.025 

a Build 37/h19 position. 
b Cis if the top SNP is < 1 Mb from the gene encoding protein and trans if the top SNP is > 1 Mb from the gene encoding the protein. 
c Odds ratio (OR), lower 95% confidence limit (L95%CL), upper 95% confidence limit (U95%CL), P-value, and false discovery rate (FDR) from the current study.  OR is in terms of all invasive EOC risk per standard 
deviation increase in circulating (plasma) protein level. 
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Table 2. Pathways enriched among the genes encoding the 26 all invasive epithelial ovarian cancer risk-associated circulating protein 
biomarkers identified. 

Pathwaya Overlapb P-value Adjusted Pc Genesd 

Pathways Regulating Hippo Signaling WP4540 4/98 7.5 x 10-6 0.004 INSR; KDR; MET; IGF1R 

Hippo-Merlin Signaling Dysregulation WP4541 4/120 1.7 x 10-5 0.004 INSR; KDR; MET; IGF1R 

Focal Adhesion-PI3K-Akt-mTOR-signaling pathway WP3932 5/303 3.9 x 10-5 0.006 INSR; IL3RA; KDR; MET; IGF1R 

PI3K-Akt Signaling Pathway WP4172 5/340 6.8 x 10-5 0.008 INSR; IL3RA; KDR; MET; IGF1R 

Ras Signaling WP4223 4/184 8.9 x 10-5 0.008 INSR; KDR; MET; IGF1R 

Ebola Virus Pathway on Host WP4217 3/129 6.1 x 10-4 0.041 CD209; ICAM2; IGF1R 

Canonical and Non-canonical Notch signaling WP3845 2/27 5.6 x 10-4 0.044 MFAP2; DLK1 

a From the “WikiPathways 2019 Human” pathway database (with associated WP identifier number). 
b The number of genes out of the 26 genes evaluated/the total number of genes annotated to the pathway. 
c Adjusted for testing 472 pathways. 
d The genes (out of the 26 genes evaluated) that are annotated to the pathway. 
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