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Abstract

Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often
used in parameter estimation when the likelihood functions are analytically intractable. In the context of
Hidden Markov Models (HMMs), we analyse the asymptotic behaviour of the posterior distribution in ABC
based Bayesian parameter estimation. In particular we show that Bernstein-von Mises type results still hold
but that the resulting posterior is biased in the sense that it concentrates around a point in parameter space
that differs from the true parameter value. Furthermore we obtain precise rates for the size of this bias with
respect to a natural accuracy parameter of the ABC method. Finally we discuss, via a numerical example, the
implications of our results for the practical implementation of ABC.
Key words: Parameter Estimation, Hidden Markov model, Approximate Bayesian Computation

1 Introduction
One of the most fundamental problems in statistics is that of parameter estimation. Suppose that one has a
collection of probability laws Pθ parametrised by a collection of parameter vectors θ ∈ Θ. Suppose further that
one has data Ẑ generated by a process distributed according to some law Pθ∗ where the exact value of θ∗ ∈ Θ is
unknown. The problem of parameter estimation is to infer the value of the unknown parameter vector θ∗ from
the data Ẑ. Many standard methods for estimating the value of θ∗ are based upon using the likelihood function
pθ(Ẑ). For example Bayesian approaches use the likelihood to reweight some prior distribution to obtain a posterior
distribution on the space of parameter vectors that represents ones sense of certainty of any given parameter vector
being equal to θ∗. Alternatively one may take a frequentist approach and estimate θ∗ with the parameter vector
which maximises the value of the corresponding likelihood (ie. maximum likelihood estimation (MLE)).

Of course these approaches all rely on one being able to compute the likelihood functions pθ(Ẑ), either exactly
or numerically. However, in a wide range of applications this is not possible, either because no analytic expression
for the likelihoods exists or else because computing them is computationally intractable. Despite this one is often
still able, in such cases, to generate random variables distributed according to the corresponding laws Pθ. This has
led to the development of methods in which θ∗ is estimated by implementing a standard likelihood based parameter
estimator using some principled approximation to the likelihood instead of the true likelihood function itself. In
general these approximations are estimated using Monte Carlo simulation based on generating samples from the
relevant probability distributions.

A method which has become very popular in practice and on which we shall focus our attention for the rest
of this paper is approximate Bayesian computation (ABC). A non-exhaustive list of references for applications of
the method includes: McKinley et al. (2009); Peters et al. (2010); Pritchard et al. (1999); Ratmann et al. (2009);
Tavre et al. (1997). The standard ABC approach to approximating the likelihood is as follows. Suppose that
the distributions Pθ all have a density pθ (·) on some space Rm w.r.t. some dominating measure µ. Furthermore
suppose that the functions pθ (·) cannot be evaluated directly but that one can generate random variables distributed
according to the laws Pθ. Given some data Ẑ the general ABC approach to approximating the values of the likelihood
functions pθ(Ẑ) is to choose a metric d (·, ·) on Rm and a tolerance parameter ε > 0 and for all θ ∈ Θ approximate
the likelihood pθ(Ẑ) with

pεθ(Ẑ) ,
1

µ
(
Bε
Ẑ

)Pθ (d(Ẑ, Z) ≤ ε
)
. (1)

where Bε
Ẑ
denotes the set of all points at a distance less than or equal to ε from Ẑ. Typically the probabilities (1)

are then estimated via naïve Monte Carlo simulation.
Intuitively,

1

µ
(
Bε
Ẑ

)Pθ (d(Ẑ, Z) ≤ ε
)
≈ pθ(Ẑ)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/362178189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and thus for sufficiently small ε the quantity (1) provides a good approximation to the likelihood. In general there
is a trade off in making ε small to obtain a ‘good’ approximation versus keeping ε large to ensure that one can
obtain a reasonable estimate of (1) via Monte Carlo.

Although the ABC approximation to the likelihood can be used to replace the likelihood function in any likelihood
based parameter estimation procedure it is most commonly used in the context of Bayesian parameter inference
and so we shall focus on this one particular application of ABC for the rest of this paper. In Bayesian parameter
inference one expresses the information about the parameter vector θ∗ contained in the data Ẑ in terms of a posterior
distribution on the space Θ defined by

π (θ) ∝ π0 (θ) pθ(Ẑ) (2)

where π0 is some prior distribution representing ones initial knowledge about the parameter vector θ∗. When using
the ABC approximation to the likelihood function in the context of Bayesian parameter inference the informa-
tion about the parameter vector θ∗ contained in the data Ẑ is expressed by the approximate Bayesian posterior
distribution

πε (θ) ∝ π0 (θ) pεθ(Ẑ). (3)

Hence forth we shall refer to the estimator in (3) as the ABC Bayesian parameter estimator.
Clearly in general the posterior distributions (2) and (3) will differ. There are numerous works on the theoretical

behaviour of ABC such as in Biau et al. (2015); Dean et al. (2014); Fearnhead and Prangle (2012). We stress,
however, that a lot of work has been done in the context where the observations have an independence structure
and the focus of this work is in the intrinsically more challenging hidden Markov model scenario. We follow the
approach taken in Dean et al. (2014) in which the asymptotic behaviour of the MLE implemented with the ABC
approximation to the likelihood (henceforth ABC MLE) was studied. The analysis in this paper is based on the
observation that the ABC approximation to the likelihood can be considered as being equal to the likelihood function
of a perturbed probability distribution. Using this observation it was shown that ABC MLE in some sense inherits
its behaviour from the standard MLE but that the resulting estimator has an innate asymptotic bias. Furthermore,
it is shown that this bias can be made arbitrarily small by choosing a sufficiently small values of the ABC parameter
ε.

The results in Dean et al. (2014) concerning the asymptotic behaviour of ABC MLE provide a mathematical
justification of this method analgous to that provided for the standard MLE by the results concerning asymptotic
consistency and normality. The aim of this paper is to develop an equivalent and equally rigorous mathematical
justification of the use of ABC in the context of Bayesian parameter estimation. In particular we shall develop
an understanding the resulting estimators large data set asymptotic properties. This will then allow us to provide
a mathematical justification for the ABC Bayesian parameter estimator analogous to those provided for standard
likelihood based estimators by the usual results concerning their asymptotic properties.

We shall do this by establishing Berstein-von Mises type results for Bayesian parameter estimation implemented
with ABC approximations to the likelihood. Moreover we shall show that the resulting posterior distributions are
asymptotically biased in the sense that they concentrate around a point in parameter space that differs from the
true parameter value θ∗. Further we shall derive rates for the size of this asymptotic bias as a function of the ABC
parameter ε. In the next section we provide an outline of the approach that we shall take to this problem. We
remark that some existing work for ABC asymptotics includes: Frazier et al. (2018); Li & Fearnhead (2018).

1.1 Contributions and Structure
In this paper we shall study the asymptotic behaviour of ABC Bayesian parameter estimation when used in pa-
rameter estimation for hidden Markov models. This will be convenient as (as we will show) the Markovian context
imbues the ABC MLE with a particularly nice mathematical structure. Furthermore, as HMMs are used as sta-
tistical models in a wide range of applications including Bioinformatics (e.g. Durbin et al. (1998)), Econometrics
(e.g. Kim et al. (1998)) and Population genetics (e.g. Felsenstein and Churchill (1996)) (see also Cappé et al. (2005)
for a recent overview), the class of models thus considered is sufficently general to be of genuine practical interest.

For the purpose of this paper a HMM will be considered to be a pair of discrete-time stochastic processes,
{Xk}k≥0 and {Yk}k≥0. The hidden process, {Xk}k≥0, is a homogenous Markov chain taking values in some Polish
space X and the observed process {Yk}k≥0 takes values in Rm for some m ≥ 1. Conditional on Xk the observations
Yk are statistically independent of the random variables Y0, . . . , Yk−1;X0, . . . , Xk−1.

In many models the densities of the conditional laws of the observed process w.r.t. the hidden state either have
no known analytic expression or else are computationally intractable. In this case it follows that standard methods
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to estimating the likelihoods of the observed process, eg. SMC, can no longer be used and that an alternative
approach like ABC must be used. For a more detailed discussion of this point see Dean et al. (2014).

For the rest of this paper we shall consider performing ABC Bayesian parameter estimation for HMMs using
the following specialization of the standard ABC likelihood approximation (1), proposed in Jasra et al. (2012), for
when the observations are generated by a HMM. Specifically, given a sequence of observations Ŷ1, . . . , Ŷn from a
HMM, we shall approximate the corresponding likelihood functions with the probabilities

Pθ
(
Y1 ∈ BεŶ1

, . . . , Yn ∈ BεŶn
)

(4)

where for all y ∈ Rm, Bεy denotes the ball of radius ε centered around the point y. The benefit of this approach
is that it retains the Markovian structure of the model. This facilitates both simpler Markov chain Monte Carlo
(MCMC) (e.g. McKinley et al. (2009)) and sequential Monte Carlo (SMC) (e.g. Jasra et al. (2012)) implementation
of the ABC approximation. Furthermore the resulting approximation has a structure which is particularly tractable
to mathematical analysis.

We shall begin by analysing the behaviour of the ABC Bayesian estimator in the case that the conditional laws
of the observed state {Yk}k≥0 are absolutely continuous w.r.t. Lebesgue measure. The analysis will be based upon
the observation, made in Dean et al. (2014), that the ABC approximation to the likelihood is equal to the likelihood
of a perturbed HMM. Using this observation we shall establish the following results.

Firstly we show that the resulting ABC Bayesian posterior distributions obey a Bernstein-von Mises type
theorem. Furthermore we shall show that these posteriors are asymptotically biased in the sense that as the
number of data points goes to infinity the resulting posterior distributions concentrate about a point in parameter
space that differs from the true parameter value. Finally we show that the size of the asymptotic bias goes to zero
as ε tends to zero and further that under mild differentiability conditions on the conditional laws of the observations
w.r.t. the observation state parameter one can obtain precise rates for the size of the asymptotic bias w.r.t. ε.

We then drop the assumption that the conditional laws of the observed state are absolutely continuous w.r.t. Lebesgue
measure and show that the posterior distributions again obey a Bernstein-von Mises type theorem and are again
asymptotically biased with a bias whose size goes to zero as ε tends to zero. Moreover we show that in the general
case one can again derive a precise expression for the order of the size of the asymptotic bias w.r.t. ε. We also
demonstrate, via examples, that in both cases the rates we derive for the size of the asymptotic bias are tight in
the sense that they are the best possible rates that may be obtained under such general conditions.

We note that in practice one typically works with a summary statistic of the data set rather than the entire data
set, especially when the observations {Yk}k≥0 take values in some high dimensional space. So far we have implicitly
assumed that one is working with the complete data. For ease of exposition we shall persist with this assumption
throughout the main part of the paper, leaving discussion of the conditions under which the results we derive will
continue to hold when one uses summary statistics to a dedicated section near the end.

Finally we note that the results in this paper can be used to significantly extend those in Dean et al. (2014).
Firstly we note that the results in this paper can be used to show that those derived in Dean et al. (2014) hold
under far weaker conditions than are assumed in that paper. Secondly the techniques used in this paper can also be
used to derive rates for the size of the asymptotic bias of the ABC MLE. Lastly one can use the results established
in this paper to show that for sufficiently small ε the ABC MLE has an asymptotic normality type property. These
points are all discussed in more detail at appropriate points in the text, see in particular Remarks 3.4 and 3.4. We
also note that there are practical ways to implement ABC in the context of interest; see Yildirim et al. (2015).

This paper is structured as follows. In Section 2 the notation and assumptions are given. In Section 3 we establish
the main results of the paper concerning the asymptotic behaviour of the ABC Bayesian parameter estimator as
well as their extension to the case when one works with a summary statistic of the data set. Supporting technical
lemmas and proofs of the theoretical results are housed in the appendices.

2 Notation and Assumptions

2.1 Notation and Main Assumptions
Throughout this paper we shall use lower case letters x, y, z to denote dummy variables and upper case letters
X,Y, Z to denote random variables. Observations of a random variable, i.e. data, will be denoted by Ŷ . Given any
ε > 0 and y ∈ Rm we shall let Bεy denote the closed ball of radius ε centered on the point y and let UBεy denote the
uniform distribution on Bεy. For any A ⊂ Rm the indicator function of A will be denoted by IA.

In what follows we need to refer to various different scalar, vector and matrix norms. Given a scalar z and
a vector a we shall let |z| and |a| denote the standard Euclidean scalar and vector norms respectively. For any
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d1 × d2 two dimensional matrix M we shall let ‖M‖ =
∑d1
i=1

∑d2
j=1 |mi,j | where for each pair i, j, mi,j denotes

the i, jth entry of the matrix M . Similarly, for any d1 × d2 × d3 three dimensional matrix M we shall let ‖M‖ =∑d1
i=1

∑d2
j=1

∑d3
k=1 |mi,j,k|. We note that although using |·| (likewise ‖·‖) to denote multiple norms is an abuse of

notation there is in practice no loss of clarity as the precise meaning of these terms will always be made clear by
the context in which they are used.

For any vector of variables a we shall let ∇a denote the gradient operator with respect to a. Moreover given
vectors of variables a, b, c of dimensions d1, d2 and d3 we shall let ∇a∇b and ∇a∇b∇c denote the d1 × d2 and
d1 × d2 × d3 matrices of partial derivatives with entries given by ∂2

∂aibj
and ∂3

∂aibjck
respectively. Further, for any

vector of variables a we shall let ∇2
a and ∇3

a denote ∇a∇a and ∇a∇a∇a respectively.
It is assumed that for any HMM the hidden state {Xk}k≥0 is time-homogenous and takes values in a compact

Polish space X with associated Borel σ-field B (X ). Throughout this paper it will be assumed that we have a
collection of HMMs all defined on the same state space and parametrised by some parameter vector θ taking values
in a connected compact set Θ ⊆ Rd. Furthermore we shall reserve θ∗ to denote the ‘true’ value of the parameter
vector θ. For each θ ∈ Θ we shall let Qθ (x, ·) denote the transition kernel of the corresponding Markov chain and
for each x ∈ X and θ ∈ Θ we assume that Qθ (x, ·) has a density qθ (x, ·) w.r.t. some common finite dominating
measure µ on X . The initial distribution of the hidden state will be denoted by π0, i.e. X0 has distribution π0.

We also assume that the observations {Yk}k≥0 take values in a state space Y ⊂ Rm for some m ≥ 1. Further-
more, for each k we assume that the random variable Yk is conditionally independent of (. . . , Xk−1;Xk+1, . . .) and
(. . . , Yk−1;Yk+1, . . .) given Xk and that the conditional laws have densities gθ (y|x) w.r.t. some common σ-finite
dominating measure ν. We further assume that for every θ the joint chain {Xk, Yk}k≥0 is positive Harris recurrent
and has a unique invariant distribution πθ. For each θ ∈ Θ we shall let Pθ denote the law of stationary distribution
of the corresponding HMM and Eθ denote expectations with respect to the stationary distribution Pθ.

We shall frequently have to refer to various kinds of both finite, infinite and doubly infinite sequences. For
brevity the following shorthand notations are used. For any pair of integers k ≤ n, Yk:n denotes the sequence of
random variables Yk, . . . , Yn; Y−∞:k denotes the sequence . . . , Yk; Yn:∞ denotes the sequence Yn, . . . and Y−∞:k;n:∞
denotes the sequence . . . , Yk;Yn, . . .. Further given a measure µ on a Polish space X we let

∫
·µ(dx1:n) denote

integration w.r.t. the n-fold product measure µ⊗n on the n-fold product space Xn. Moreover, given a function
f(x1, . . . , xn) : Xn → R and integers 1 ≤ k ≤ l ≤ n, we shall let

∫
f(·)µ(dx1:k;l:n) denote the partial integrals∫

Xn−l+k f(·)µ(dx1) · · ·µ(dxk)µ(dxl) · · ·µ(dxn).
Finally, we note that the asymptotic results that we prove for the ABC posterior distribution hold independently

of the initial condition of the hidden state process {Xk}k≥0. Thus, in order to keep the presentation as concise as
possible we shall suppress the presence of the initial condition of the hidden state except in those instances where
it needs to be referred to explicitly. In particular we shall always suppress in our notation the dependence of the
likelihood pθ(Ŷ1, . . . , Ŷn) and ABC approximate likelihood pεθ(Ŷ1, . . . , Ŷn) on the initial condition of the hidden state
X0.

2.2 Particular Assumptions
In addition to the assumptions above, the following particular assumptions are made at various points in the article.

(A1) For all y ∈ Y, x, x′ ∈ X , the mappings θ → qθ(x, x
′) and θ → gθ(y|x) are three times continuously differen-

tiable w.r.t. θ.

(A2) There exist constants c1, c1 ∈ (0,∞) such that for every y ∈ Y, x, x′ ∈ X , θ ∈ Θ

c1 ≤ qθ(x, x′) ≤ c1,
gθ(y|x) ≤ c1.

(5)

(A3) There exists a constant c2 ∈ (0,∞) such that for every x, x′ ∈ X , θ ∈ Θ

|∇θ log qθ(x, x
′)| , |∇2

θ log qθ(x, x
′)| ≤ c2.

(A4) For all θ ∈ Θ and y ∈ Y
0 <

∫
X
gθ (y|x)µ(dx) <∞. (6)
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(A5) For any K > 0

Eθ∗

[
sup
θ∈Θ

sup
x∈X

sup
z∈BK0

‖∇θ log gθ (Y + z|x)‖3
]
,

Eθ∗

[
sup
θ∈Θ

sup
x∈X

sup
z∈BK0

∥∥∇2
θ log gθ (Y + z|x)

∥∥2

]
,

Eθ∗

[
sup
θ∈Θ

sup
x∈X

sup
z∈BK0

∥∥∇3
θ log gθ (Y + z|x)

∥∥] ≤ ∞.
(7)

Remark 2.1. Assumptions (A1)-(A6) are similar to those used in Douc et al. (2004) to prove consistency of the
MLE for HMMs. We use similar assumptions in this paper as, broadly speaking, our approach will be to show
that the ABC Bayesian paramter estimator inherits its properties from the standard Bayesian parameter estimator
(2). However the methods and emphasis of this paper differ from those in Douc et al. (2004) and as a result the
assumptions we require have a slightly different flavour. In particular we shall require slightly stronger conditions
on the differentiability of the conditional densities gθ(y|x) but slightly weaker conditions on their integrability. For
more details see Remarks 3.2 and 3.3.

3 Approximate Bayesian Computation
In this section we present our results on the asymptotic behaviour of the ABC Bayesian parameter estimator when
used to perform parameter estimation for HMMs. The key component of the analysis is the observation that the
ABC approximate likelihood pεθ(· · · ) defined in (4) is (up to some suitable rescaling) equal to the likelihood of the
data under the perturbed HMM

{Xε
i , Y

ε
i }i≥1 , {Xi, Yi + εZi}i≥1 (8)

where {Xi, Yi} is equal to the original HMM corresponding to the law Pθ and {Zi}i≥1 is a sequence of i.i.d. random
variables uniformly distributed on the unit ball in Rm. Moreover one can show that under the assumptions of
Section 2.1 that for any ε > 0 the transition kernels and conditional laws of the corresponding perturbed HMM
have densities

qε (x, x′) , q (x, x′) (9)

and

gε (y|x) ,

∫
Bεy
g (z|x) ν(dz)∫
Bεy
ν (dz)

(10)

respectively w.r.t. the dominating measures µ and ν ∗ UBεy where ∗ denotes convolution. For more details see Dean
et al. (2014).

In the next section we shall study the implications of this probabilistic structure when the ABC Bayesian
parameter estimator is used to perform parametric inference for HMMs whose conditional laws are absolutely
continuous w.r.t. Lebesgue measure.

3.1 ABC for Bayesian Parameter Inference
Throughout this section we shall assume that the conditional laws of the observed state {Yk}k≥0 are absolutely
continuous w.r.t. Lebesgue measure. Recall that in standard Bayesian parameter inference one expresses the infor-
mation about the parameter vector θ∗ contained in the data Ŷ1, . . . , Ŷn in terms of the posterior distribution

πn (θ) ∝ π0 (θ) pθ(Ŷ1, . . . , Ŷn) (11)

where π0 is some suitable prior. (Not to be confused with the initial distribution π0 of X0.) When performing ABC
Bayesian parameter estimation using the ABC approximation defined in (4) the information about the parameter
vector θ∗ will be expressed by the approximate Bayesian posterior distribution

πε,n (θ) ∝ π0 (θ) pεθ(Ŷ1, . . . , Ŷn). (12)

Clearly in general the posterior distributions (11) and (12) will differ. In order to understand the qualitative
differences between the two it is instructive to study the following simple example.
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Fig 1: Unnormalized Posterior Densities of Variance Parameter for IID Gaus-
sian Random Variables

Bayesian posteriors (12) for values of ✏ equal to 0.25, 0.5, 1 and 2 (dashed
lines with crosses, circles squares and diamonds respectively). Since the pos-
terior densities are unnormalised they have all w.l.o.g. been plotted as having
equal heights.

One can see that for both the standard Bayesian and ABC Bayesian pa-
rameter estimators the posterior distributions concentrate as the amount of
data increases. However as the value of n increases the posterior (11) con-
centrates around the true value of the variance parameter while in contrast
the posteriors (12) concentrate around a quantity which underestimates the
true value of the variance by an amount which increases with ✏.

Inuitively this can be understood in the following manner. It follows from
(8) that for all ✓ the ABC approximation (4) approximates the likelihood
of the data with the likelihood function of a perturbed HMM for which the
value of the variance of the observed state is greater than for the correspond-
ing unperturbed HMM. Thus it follows that if the parameter estimator (12)
tries to ‘match’ variances, in the sense that it tends to favour those values of
✓ for which the variance of the observed state of the corresponding perturbed
HMMs (8) matches that of the observed data then it will be systematically
biased towards parameter values for which the corresponding unperturbed
models underestimate the true value of the variance of the observed state of
the HMM which generated the data.

The above argument suggests that performing Bayesian inference using

Figure 1: Unnormalized Posterior Densities of Variance Parameter for IID Gaussian Random Variables

Example 3.1. Consider a sequence of i.i.d. random variables {Xi}i≥1 such that for each i, Xi ∼ N
(
0, θ2

)
.

Suppose that we wish to use the ABC Bayesian posterior (12) to infer the value of the variance parameter of the
random variables {Xi}i≥1 given data X̂1, . . . , X̂n and a prior π0(θ) ∼ Unif (1, 3) when the true value of the variance
parameter θ∗ = 2. In this case the ABC approximation to the posterior becomes

πε,n (θ) ∝
n∏
i=1

Pθ(X̂i − ε ≤ Xi ≤ X̂i + ε).

Plots showing unnormalised versions of the resulting posterior distributions for this estimator and for the standard
Bayesian parameter estimator given in (11) for various values of n are shown in Figure 1. Each graph has a plot of
the standard Bayesian posterior (11) (solid line) and of the ABC Bayesian posteriors (12) for values of ε equal to
0.25, 0.5, 1 and 2 (dashed lines with crosses, circles squares and diamonds respectively). Since the posterior densities
are unnormalised they have all w.l.o.g. been plotted as having equal heights.

One can see that for both the standard Bayesian and ABC Bayesian parameter estimators the posterior dis-
tributions concentrate as the amount of data increases. However as the value of n increases, while the posterior
(11) should concentrate around the true value of the variance parameter, in contrast the posteriors (12) concentrate
around a quantity which underestimates the true value of the variance by an amount which increases with ε.

Intuitively, this can be understood in the following manner. It follows from (8) that for all θ the ABC approx-
imation (4) approximates the likelihood of the data with the likelihood function of a perturbed HMM for which
the value of the variance of the observed state is greater than for the corresponding unperturbed HMM. Thus it
follows that if the parameter estimator (12) tries to ‘match’ variances, in the sense that it tends to favour those
values of θ for which the variance of the observed state of the corresponding perturbed HMMs (8) matches that
of the observed data then it will be systematically biased towards parameter values for which the corresponding
unperturbed models underestimate the true value of the variance of the observed state of the HMM which generated
the data.

The above example illustrates how performing Bayesian inference using the ABC approximation to the likelihood
will lead to a biased estimate of the model parameters. We will now formulate this notion in a more mathematically
rigorous manner by comparing the asymptotic behaviour of both the standard Bayesian parameter estimate and is
ABC counterpart. We shall start by studying the asymptotic behaviour of the former. Using standard arguments
one can show that the standard Bayesian parameter estimator obeys the following Bernstein-Von Mises type theorem
(see Borwanker et al. (1971) for more details). The proof is deferred to Appendix B.

Theorem 3.1. Suppose that one has a collection of HMMs parameterized by some parameter vector θ ∈ Θ and
that one is given data Ŷ1, . . . , Ŷn generated by the HMM corresponding to the unknown parameter vector θ∗ and that
one tries to infer the true value of θ∗ using the exact Bayesian posterior (11). Suppose further that the following
conditions hold:

1. There exists a twice continuously differentiable function l (θ) : Θ→ R such that Pθ∗ a.s.

1

n

(
log pθ(Ŷ1, . . . , Ŷn)− log pθ∗(Ŷ1, . . . , Ŷn)

)
→ l (θ) (13)
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uniformly in θ.

2. The function l (θ) has a unique maximum at θ = θ∗.

Then the standard MLE, henceforth denoted θ̂n, is asymptotically consistent. Moreover suppose that the following
extra conditions are satisfied:

3. Pθ∗ a.s.

lim
δ→0

lim
n→∞

sup
|θ−θ∗|≤δ

∣∣∣∣∇2
θ

1

n
log pθ(Ŷ1, . . . , Ŷn)−∇2

θl (θ
∗)

∣∣∣∣ = 0. (14)

4.
∇2
θl (θ

∗) < 0. (15)

Then if the parameter vector θ∗ belongs to the interior of Θ and the prior distribution π0 is absolutely continuous
w.r.t. Lebesgue measure and has a continuous density on Θ which is non zero in a neighbourhood of the true
parameter value θ∗ one has for all initial conditions π0 that

lim

∥∥∥∥∥πn −N
(
θ̂n,−

∇2
θl (θ

∗)
−1

n

)∥∥∥∥∥
TV

= 0

P a.s..

Theorem 3.1 immediately implies the following more standard Bernstein-von Mises result.

Corollary 3.1. Suppose that the conditions of Theorem 3.1 hold. For any n let π̃n be the (random) probability law
on the space Rm with density proportional to πn( θ√

n
+ θ̂n). Then one has for all initial conditions π0 that P a.s. the

sequence of random laws π̃n converge in total variation to N(0,−∇2
θl (θ

∗)
−1

).

One can make several observations about the assumptions of Theorem 3.1 as well as its consquences.

Remark 3.1. The quantity ∇2
θl (θ

∗) is equal to the asymptotic Fisher information matrix I (θ∗) of the corresponding
collection of HMMs.

Remark 3.2. We now give sufficient conditions for 1-4 of Theorem 3.1. Lemma B.9 in Appendix B proves
conditions 1 and 3 hold if the underlying collection of HMMs satisfy assumptions (A1)-(A5). Furthermore it
follows from Douc et al. (2004) that given assumptions (A1)-(A2) we have that condition 2 in Theorem 3.1 holds
if the collection of HMMs obey the following additional assumption:

(A6) θ = θ∗ if and only if PYθ = PYθ∗ .

For a discussion of when condition 4 of Theorem 3.1 holds see ?.

Remark 3.3. Conditions 1-3 of Theorem 3.1 are sufficient to guarantee that the corresponding maximum likelihood
estimator (MLE) is asymptotically consistent. As Lemma B.9 establishes these conditions, it thus provides a different
approach to studying the asymptotic behaviour of the MLE based on analysing the asymptotic behaviour of the
corresponding likelihood surface. This contrasts with the standard approach to studying the asymptotic behaviour
of the MLE which involves showing that the mean log likelihood functions converge to the relative entropies of the
collection of HMMs w.r.t. the true HMM in a sufficiently uniform manner, see Douc et al. (2004) for more details.
However, in the context of ABC, the limits of the ABC approximations to the likelihood functions can no longer
be interpreted as relative entropies but can still be understood as defining a suitable limiting approximate likelihood
surface, see Remark 3.4 for more details. We note that compared to the approach taken in Douc et al. (2004) the
likelihood surface approach of Lemma B.9 requires slightly more stringent conditions on the differentiability of the
conditional densities of the HMM but slightly less stringent conditions on their integrability.

In order to compare the performances of the two estimators (11) and (12) we next derive a Bernstein-von Mises
type result for the ABC Bayesian posterior. The key step is to show that under suitable assumptions the ABC
approximate likelihood surface will satisfy conditions analogous to those for the exact likelihood surface given by
1-4 in Theorem 3.1. This is the content of the following theorem whose proof is again deferred to Appendix B.
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Theorem 3.2. Suppose that one has a collection of HMMs parameterized by some parameter vector θ ∈ Θ and
that one is given data Ŷ1, . . . , Ŷn generated by the HMM corresponding to an unknown parameter vector θ∗ and that
one tries to infer the true value of θ∗ using the ABC approximate Bayesian posterior (12). Suppose further that
the collection of HMMs satisfies assumptions (A1)-(A5) and that the mean relative log likelihood functions (13)
satisfy conditions 1-4 of Theorem 3.1. Then for every ε > 0 there exists a twice continuously differentiable function
lε (θ) : Θ→ R such that for all initial conditions π0 one has that P̄θ∗ a.s.

1

n

(
log pεθ(Ŷ1, . . . , Ŷn)− log pεθ∗(Ŷ1, . . . , Ŷn)

)
→ lε (θ) (16)

uniformly in θ. For sufficiently small values of ε the function lε (θ) will have a unique maximum at some point θ∗,ε
such that ∇2

θl
ε (θ∗,ε) < 0 and

lim
δ→0

lim
n→∞

sup
|θ−θ∗,ε|≤δ

∣∣∣∣∇2
θ

1

n
log pεθ(Ŷ1, . . . , Ŷn)−∇2

θl
ε (θ∗,ε)

∣∣∣∣ = 0. (17)

Furthermore θ∗,ε → θ∗ and ∇2
θl
ε (θ∗,ε)→ ∇2

θl (θ
∗) as ε→ 0.

Remark 3.4. In this paper we have chosen to restrict our attention to the situation where the ABC approximation
to the likelihood is used in the context of Bayesian parameter estimation. However as already noted above the ABC
approximation can be used within various different approaches to parameter estimation. In particular it can be
used in the context of maximum likelihood estimation. Doing so results in the following ABC maximum likelihood
estimator (ABC MLE)

θ̂n,ε , arg max
θ∈Θ

{
pεθ(Ŷ1, . . . , Ŷn)

}
. (18)

The properties of the resulting estimator were extensively analysed in Dean et al. (2014) where it was shown that

lim
ε→0

lim
n→∞

∣∣∣θ̂n,ε − θ∗∣∣∣ = 0. (19)

In Dean et al. (2014) the asymptotic result (19) was proved by studying the limits of the ABC approximate log like-
lihoods pεθ(Ŷ1, . . . , Ŷn). In standard MLE the limits of the mean log likelihood functions are analysed by considering
the relative entropies of various members of the parameteric family of distributions under consideration. Since the
limits of the ABC approximate mean log likelihood functions have no obvious interpretations in terms of relative
entropies very strong assumptions concerning the behaviour of the underlying HMMs had to be made to ensure that
these limits existed and were suitably well behaved. In contrast since it is clear that Theorem 3.2 immediately im-
plies (19) it follows that one can obtain this result under much weaker conditions by instead considering the limiting
behaviour of the ABC approximate likelihood surface. Thus Theorem 3.2 provides a significant relaxation of the
results in Dean et al. (2014).

Furthermore Theorem 3.2 can be used to extend the results in that paper in two significant ways. Firstly it
follows from Theorem 3.2 that for small enough values of ε the ABC MLE θ̂n,ε will P̄θ∗ a.s. converge to the unique
(deterministic) limit point θ∗,ε as n → ∞. This is a much tighter result than (19) which, for any value of ε > 0,
allows for the ABC MLE to have more than one (and possibly infinitely many) accumulation points as n → ∞.
Secondly the results in Dean et al. (2014) provide no insight into the asymptotic distribution of the ABC MLE
θ̂n,ε about its limit point θ∗,ε. It contrast, given Theorem 3.2, one can use standard arguments to show that under
assumptions (A1)-(A5) one has that for sufficiently small ε that

√
n∇θ

(
log pεθ∗,ε(Ŷ1, . . . , Ŷn)− log pεθ∗(Ŷ1, . . . , Ŷn)

)
→ N(0,∇2

θl
ε (θ∗,ε))

and hence, using equation (17) in Theorem 3.2, that

√
n
(
θ̂n,ε − θ∗,ε

)
→ N(0,∇2

θl
ε (θ∗,ε)

−1
). (20)

For more details see Douc et al. (2004).

Given Theorem 3.2 we can easily derive the following theorem which provides an analogous result to that of
Theorem 3.1 for the ABC Bayesian estimator. We again defer the proof until Appendix B.
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Theorem 3.3. Suppose that one has a collection of HMMs parameterized by some parameter vector θ ∈ Θ and
that one is given data Ŷ1, . . . , Ŷn generated by the HMM corresponding to an unknown parameter vector θ∗ and
that one tries to infer the true value of θ∗ using the ABC approximate Bayesian posterior (12). Suppose further
that the collection of HMMs satisfy assumptions (A1)-(A5) and that the mean relative log likelihood functions (13)
satisfy conditions 1-4 of Theorem 3.1. Then if the parameter vector θ∗ belongs to the interior of Θ one has that for
sufficiently small values of ε that for all initial conditions π0

lim

∥∥∥∥∥πε,n −N
(
θ̂n,ε,

∇2
θl
ε (θ∗,ε)

−1

√
n

)∥∥∥∥∥
TV

= 0

and
lim
n→∞

θ̂n,ε = θ∗,ε

Pθ∗ a.s. where lε (θ) and θ∗,ε are as in Theorem 3.2 and where the for each n the random variable θ̂n,ε is equal
to the ABC MLE defined in (18). The convergence of the renormalised posterior is again with respect to the total
variation norm.

Theorem 3.3 immediately implies the following Bernstein-von Mises result for the ABC Bayesian parameter
estimator.

Corollary 3.2. Suppose that the conditions of Theorem 3.3 hold. For any n let π̃ε,n be the (random) probability law
on the space Rm with density proportional to πε,n(

θ−θ̂n,ε√
n

) if 1√
n

(θ− θ̂n,ε) ∈ Θ and equal to zero otherwise. Then one

has for all initial conditions π0 that P a.s. the sequence of random laws π̃ε,n converge weakly to a N(0,∇2
θl
ε (θ∗,ε)

−1
)

random variable.

Remark 3.5. Given the interpretation in (8) of the ABC approximation to the likelihood as being the likelihood of
the data under a perturbed HMM it follows from that Theorem 3.3 that a Bernstein-Von Mises type theorem still
holds when one performs parameter estimation using misspecified models in the sense of White (1982).

Theorems 3.2 and 3.3 show that asymptotically the true Bayesian and ABC Bayesian posteriors are exponentially
concentrated around the points θ∗ and θ∗,ε respectively and thus that the difference between them will asymptot-
ically be of the same order as |θ∗,ε − θ∗| (with respect to some suitable metric that respects the topology of weak
convergence - for example the Prokhorov or Lipschitz-dual norms) as n→∞. Furthermore these results show that
|θ∗,ε − θ∗| → 0 as ε→ 0.

It is natural to ask at what rate does θ∗,ε → θ∗ as ε → 0. We begin our answer to this question by revisiting
Example 3.1.

Example 3.2. We return again to the model in Example 3.1 and consider for each ε the quantity θ∗,ε as defined
in Theorem 3.2. Recall that is both the point around which the ABC Bayesian posterior concentrates and the limit
point for the corresponding ABC MLE. In figure 2 we give plots of both θ∗,ε as a function of ε (crosses) and of the
corresponding best fit quadratic curve (solid line).

Figure 2 suggests that for ε sufficiently small the size of the asymptotic bias of the ABC Bayesian (and ABC
MLE) estimator should be of order ε2. The next theorem shows that under the following extra mild assumptions
on the differentiability of the conditional likelihood functions gθ (y|x) w.r.t. the observed state variable y this is
indeed the case.

(A7) The functions gθ (y|x) and ∇θgθ (y|x) are twice continuously differentible w.r.t. the variable y and for all
K > 0

Eθ∗

sup
x∈X

sup
θ∈Θ

sup
z∈B0

K

∣∣∣∣∣∇2
ygθ (Y + z|x)

gθ (Y |x)

∣∣∣∣∣
2
 ,

Eθ∗

sup
x∈X

sup
θ∈Θ

sup
z∈B0

K

∣∣∣∣∣∇2
y (∇θgθ (Y + z|x))

gθ (Y |x)

∣∣∣∣∣
2
 <∞.

(21)

Theorem 3.4. Suppose that in addition to all of the assumptions of Theorem 3.3 one has that assumption (A7)
above also holds. Then there exists a vector ∆θ∗ such that for ε sufficiently small

θε,∗ − θ∗ = ε2∆θ∗ + o(ε2). (22)
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Fig 2: Plot of ✓⇤,✏ as a function of ✏ for IID Gaussian Random Variables

✓⇤,✏ respectively and thus that the di↵erence between them will asymptoti-
cally be of the same order as |✓⇤,✏ � ✓⇤| (with respect to some suitable metric
that respects the topology of weak convergence - for example the Prokhorov
or Lipschitz-dual norms) as n ! 1. Furthermore these results show that
|✓⇤,✏ � ✓⇤| ! 0 as ✏! 0.

It is natural to ask at what rate does ✓⇤,✏ ! ✓⇤ as ✏ ! 0. We begin our
answer to this question by revisiting Example 1.

Example 2. We return again to the model in Example 1 and consider
for each ✏ the quantity ✓⇤,✏ as defined in Theorem 2. Recall that is both the
point around which the ABC Bayesian posterior concentrates and the limit
point for the corresponding ABC MLE. In figure 2 we give plots of both ✓⇤,✏

as a function of ✏ (crosses) and of the corresponding best fit quadratic curve
(solid line).

Figure 2 suggests that for ✏ su�ciently small the size of the asymptotic
bias of the ABC Bayesian (and ABC MLE) estimator should be of order ✏2.
The next theorem shows that under the following extra mild assumptions
on the di↵erentiability of the conditional likelihood functions g✓ (y|x) w.r.t.
the observed state variable y this is indeed the case.

(A7) The functions g✓ (y|x) and r✓g✓ (y|x) are twice continuously di↵eren-

Figure 2: Plot of θ∗,ε as a function of ε for IID Gaussian Random Variables

Remark 3.6. It follows from the proof of Theorem 3.4 that one has the following exact expression for the asymptotic
bias term ∆θ∗:

∆θ∗ = −∇2
θl(θ

∗)−1

( ∞∑
i=−∞

Eθ∗
[
Eπθ,i [∇θ(log gθ(Yi|Xi)qθ(Xi−1, Xi))]

]
+Eθ∗

[
Eθ

[
∇θgθ(Y0|X0)

gθ(Y0|X0)

∇2
ygθ(Y0|X0)

gθ(Y0|X0)
− ∇

2
y∇θgθ(Y0|X0)

gθ(Y0|X0)
|Y−∞:∞

]])

where the random signed measures πθ,i are as in Lemma C.15. See Appendix C for more details.

Remark 3.7. Theorem 3.4 provides a considerable improvement on the rates obtained in Dean et al. (2014) for
the size of the asymptotic bias of the ABC MLE w.r.t. ε. The rates obtained in that paper are much less tight than
the ones obtained above and were derived under much more restrictive conditions.

3.2 ABC for Bayesian Parameter Inference - the General Case
In the previous section we studied the behaviour of the ABC Bayesian parameter estimator for HMMs in the special
case that the conditional laws of the HMMs are absolutely continuous w.r.t. Lebesgue measure. In particular we
showed that the resulting estimators obey a Bernstein-von Mises type result with an asymptotic bias whose size
goes to zero as ε goes to zero. Furthermore we showed that under mild differentiability conditions the size of the
asymptotic bias is of order ε2 for sufficiently small ε.

In this section we shall show that analogous results still hold for the more general case where one drops the
assumption that the conditional laws of the HMMs are absolutely continuous w.r.t. Lebesgue measure. We start by
considering Theorems 3.2 and 3.3. A careful reading of the proofs of these theorems shows that they are independent
of the assumption that the conditional laws of the HMMs are absolutely continuous w.r.t. Lebesgue measure and
thus that they still hold in the general case. Hence the only thing that remains is to understand the rate at which
the asymptotic bias of the ABC Bayesian (and ABC MLE) estimator goes to zero as ε goes to zero. In order to do
this it is instructive to consider the following example.

Example 3.3. Let π1 be the distribution on the set of diadic numbers of the form 1
22k ; k = 0, 1, . . . given by

π1( 1
22k ) = 1

2k+1 for all k and let π2 be the distribution on the set of diadic numbers of the form 1
22k+1 given by

π2( 1
22k+1 ) = 1

2k+1 for all k = 0, 1, . . .. Furthermore let {πα}α∈[0,1] be the set of distributions defined such that for all
α, πα = απ1 + (1− α)π2.

It is clear that the distributions πα satisfy the conditions of Theorem 3.2 and hence that for any ε the limiting
approximate mean log likelihood surface lε(α) exist and is well defined. Further if we assume that the true value of
the parameter is equal to α∗ = 1

2 then it is easy to show that ∇2
αl(α

∗) 6= 0 and that for every k ≥ 2

∇αl
1

22k (α∗) =
1

8

1

22k
, ∇αl

1

22k+1 (α∗) = −1

4

1

22k+1
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from which it follows that for all k

α∗,
1

22k − α∗ = − 1

∇2
αl(α

∗)

1

8

1

22k
+ o(

1

22k
),

α∗,
1

22k+1 − α∗ =
1

∇2
αl(α

∗)

1

4

1

22k+1
+ o(

1

22k+1
).

The above example shows that in the general case one should expect that the size of the asymptotic bias will
be at least O(ε) and that the limit θ∗,ε−θ∗

ε will not be well defined. The next theorem shows that in general the
behaviour of the asymptotic bias will be no worse than this. In order for it to hold we need to make the following
differentiability assumptions.

(A8) The functions gθ (y|x) and ∇θgθ (y|x) are twice continuously differential w.r.t. the variable y and for all K > 0

Eθ∗

[
sup
x∈X

sup
θ∈Θ

sup
z∈B0

K

∣∣∣∣∇ygθ (Y + z|x)

gθ (Y |x)

∣∣∣∣2
]
,

Eθ∗

[
sup
x∈X

sup
θ∈Θ

sup
z∈B0

K

∣∣∣∣∇y (∇θgθ (Y + z|x))

gθ (Y |x)

∣∣∣∣2
]
<∞.

(23)

Theorem 3.5. Suppose that in addition to all of the assumptions of Theorem 3.3 one has that assumption (A8)
above also holds. Then

θε,∗ − θ∗ = O(ε). (24)

The proof of Theorem 3.5 is deferred to Appendix D.

3.3 Sufficient Statistics
So far we have assumed that one is working with the complete data sequence Ŷ1, . . . , Ŷn. In practice the full data
set is often too high-dimensional and instead one performs inference using a summary statistic S(Ŷ1, . . . , Ŷn) where
S(· · · ) is some mapping from Rm × · · ·Rm to a lower dimensional Euclidean space, see for example Tavre et al.
(1997).

In general this mapping will destroy the Markovian structure of the data and the results so far derived will not
be applicable to ABC based parameter inference conducted using the corresponding summary statistic. However
in practice it is often the case that the mapping S(· · · ) is of the form S(Ŷ1, . . . , Ŷn) = S(Ŷ1), . . . , S(Ŷn) for some
function S(·) that maps from Rm to a space Rm′ of lower dimension. When this is true it is easy to see that the
Markovian structure of the data is preserved. Moreover suppose that assumptions (A1)-(A5) as well as any of (A7)
and (A8) as appropriate hold for the underlying HMM. It is easy to see that these assumptions will be preserved
by any ‘reasonably smooth’ mapping S(·). (For the sake of brevity we shall not provide a rigorous formulation of
this statement.) Hence it follows that if the mapping S(·) preserves the identifiability of the system, that is to say
if assumption (A6) also holds for the HMMs with observations S(Y1), S(Y2), . . ., then all the relevant results of this
section will continue to hold for the ABC Bayesian parameter estimator implemented with the sufficient statistic
S(·).

Appendix A: Auxillary Results
In this section we present some results that will be needed in the proofs of Theorems 3.1 , 3.2 , 3.3 and 3.4. The
first two lemmas are standard result from real analysis which we state without proof.

Lemma A.1. Let a compact set G ⊂ Ru be given and a sequence of continuously differentiable functions fn : G→
Rv, n ≥ 1, such that the sequence ∇fn(z) is Cauchy uniformly in z. Let the function g(z) be the limit of ∇fn(z).

Assume also that fn(z∗) is Cauchy for some z∗ ∈ G. Then there exists a continuously differentiable function f
such that fn(z)→ f(z) uniformly in z and ∇f(z) = g(z).

Lemma A.2. Let a compact set G ⊂ Ru and some constant L > 0 be given. Suppose that there exists a continuous
function f : G → Rv and sequence of continuous functions fn : G → Rv, n ≥ 1, such that for all n the function
fn is L Lipschitz continuous. Then fn → f uniformly in G if and only if fn → f pointwise on a countable dense
subset of G.
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The next two Lemmas are standard results from the theory of uniformly ergodic Markov chains, see for example
Del Moral (2004); Dean et al. (2014).

Lemma A.3. Suppose that the transition kernel and conditional likelihoods of some HMM {Xi, Yi}i≥1 satisfy
assumption (A2). Then there exists some 0 < ρ < 1 such that for all f ∈ L∞, for all constants a ∨ b < r and
s < l ∧m and for all x, x′ ∈ X one has that∣∣∣E [f (Xr, . . . , Xs) |Xa = x;Yk, . . . , Yl]− E [f (Xr, . . . , Xs) |Xb = x′;Yk, . . . , Ym]

∣∣∣
≤ 4ρ(l−s)∧(m−s)∧(r−a)∧(r−b)) ‖f‖∞ . (A-25)

Moreover
E [f (X0, . . . , Xr) | . . . , Y−1, Y0, Y1, . . .]

(r ≥ 0) is well defined for any doubly infinite sequences . . . , Y−1, Y0, Y1, . . . and f ∈ L∞. For l, k ≥ 0,

sup
x

∣∣∣E [f (X0, . . . , Xr) |X−l = x;Y−l, . . . , Yr+k]

− E [f (X0, . . . , Xr) | . . . , Y−1, Y0, Y1, . . .]
∣∣∣ ≤ 4ρl∧k ‖f‖∞ (A-26)

and constant ρ depends only on the quantities c and c appearing in (5).

Lemma A.4. Suppose that the transition kernel and conditional likelihoods of some HMM {Xi, Yi}i≥1 satisify
assumption (A2). Then for any f, g ∈ L∞, all l, k ≥ 0, all sequences Y−l, . . . , Yk and −l ≤ r ≤ s ≤ k one has that∣∣∣E [f (Xr) g (Xs) |Y−l, . . . , Yk]− E [f (Xr) |Y−l, . . . , Yk]E [g (Xs) |Y−l, . . . , Yk]

∣∣∣
≤ 4ρs−r ‖f‖∞ ‖g‖∞ (A-27)

where ρ is as in Lemma A.3. Note that the value of ρ again depends only on the quantities c and c appearing in
(5).

The fifth lemma is essentially a corollary and extension of Propositions 4 and 5 in Douc et al. (2004).

Lemma A.5. Suppose that one has two collections of HMMs both defined on the same state spaces and parameterised
by vectors θ ∈ Θ and θ̂ ∈ Θ̂ respectively. Suppose further that both collections of HMMs satisfy assumption (A2)
with the same values of c and c. Finally suppose that some parameter vector θ∗ ∈ Θ is given and let {Xi, Yi}i≥1

denote the corresponding stochastic process.
Given measurable functions φ1, φ2, φ3 : Θ̂×X × Y → R and y ∈ Y, k < l and s ∈ {1, 2, 3} let

‖φs‖∞ (y) , sup
θ̂∈Θ̂

sup
x
|φs (θ, x, y)| , φs;k:l(θ) ,

l∑
i=k+1

φs (θ,Xi, Yi) .

Further for any n > 0 define the random variables ∆0,n, Γ0,n, Ψ0,n and Ω0,n by

∆0,n(θ̂) , Eθ̂

[
φ1;−n:0(θ)

∣∣Y−n:0

]
− Eθ̂

[
φ1;−n:−1(θ)

∣∣Y−n:−1

]
,

Γ0,n(θ̂) , Eθ̂

[
φ1;−n:0(θ)φ2;−n:0(θ)

∣∣Y0:−n

]
− Eθ̂

[
φ1;−n:−1(θ)φ2;−n:−1(θ)

∣∣Y−n:−1

]
+ Eθ̂

[
φ1;−n:−1(θ)

∣∣Y−n:−1

]
Eθ̂

[
φ2;−n:−1(θ)

∣∣Y−n:−1

]
− Eθ̂

[
φ1;−n:0(θ)

∣∣Y−n:−0

]
Eθ̂

[
φ2;−n:0(θ)

∣∣Y−n:−0

]
,

Ψ0,n(θ̂) , Eθ̂

[
φ1;−n:0(θ)φ2;−n:0(θ)

∣∣Y0:−n

]
Eθ̂

[
φ3;−n:0(θ)

∣∣Y−n:−0

]
− Eθ̂

[
φ1;−n:0(θ)

∣∣Y−n:−0

]
Eθ̂

[
φ2;−n:0(θ)

∣∣Y−n:−0

]
Eθ̂

[
φ3;−n:0(θ)

∣∣Y−n:−0

]
+ Eθ̂

[
φ1;−n:−1(θ)

∣∣Y−n:−1

]
Eθ̂

[
φ2;−n:−1(θ)

∣∣Y−n:−1

]
Eθ̂

[
φ3;−n:−1(θ)

∣∣Y−n:−1

]
− Eθ̂

[
φ1;−n:−1(θ)φ2;−n:−1(θ)

∣∣Y−n:−1

]
Eθ̂

[
φ3;−n:−1(θ)

∣∣Y−n:−1

]
,
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and

Ω0,n(θ̂) , Eθ̂

[
φ1;−n:0(θ)φ2;−n:0(θ)φ3;−n:0(θ)

∣∣Y−n:−0

]
− Eθ̂

[
φ1;−n:0(θ)

∣∣Y−n:−0

]
Eθ̂

[
φ2;−n:0(θ)

∣∣Y−n:−0

]
Eθ̂

[
φ3;−n:0(θ)

∣∣Y−n:−0

]
+ Eθ̂

[
φ1;−n:−1(θ)

∣∣Y−n:−1

]
Eθ̂

[
φ2;−n:−1(θ)

∣∣Y−n:−1

]
Eθ̂

[
φ3;−n:−1(θ)

∣∣Y−n:−1

]
− Eθ̂

[
φ1;−n:−1(θ)φ2;−n:−1(θ)φ3;−n:−1(θ)

∣∣Y−n:−1

]
.

Then

(i) if ‖φ1‖∞ ∈ L1
(
Pθ∗
)
there exists an integrable random variable ∆0,∞ such that

∆0,n (θ)→ ∆0,∞ (θ) (A-28)

in L1
(
Pθ∗
)
.

(ii) if ‖φ1‖∞ , ‖φ2‖∞ ∈ L2
(
Pθ∗
)
then there exists an integrable random variable Γ0,∞ such that

Γ0,n (θ)→ Γ0,∞ (θ) (A-29)

in L1
(
Pθ∗
)
.

(iii) if ‖φ1‖∞ , ‖φ2‖∞ , ‖φ3‖∞ ∈ L3
(
Pθ∗
)
then there exist integrable random variables Ψ0,∞ and Ω0,∞ such that

Ψ0,n (θ)→ Ψ0,∞ (θ) , Ω0,n (θ)→ Ω0,∞ (θ) (A-30)

in L1
(
Pθ∗
)
.

Moreover there exist constants C <∞ and 0 < ρ < 1 which depend only on c and c such that for all n ≥ m > 0

Eθ∗
[
supθ̂∈Θ̂

∣∣∣∆0,n(θ̂)−∆0,m(θ̂)
∣∣∣]

Eθ∗
[
supθ̂∈Θ̂

∣∣∣Γ0,n(θ̂)− Γ0,m(θ̂)
∣∣∣]

Eθ∗
[
supθ̂∈Θ̂

∣∣∣Ψ0,n(θ̂)−Ψ0,m(θ̂)
∣∣∣]

Eθ∗
[
supθ̂∈Θ̂

∣∣∣Ω0,n(θ̂)− Ω0,m(θ̂)
∣∣∣]


≤ Cρm



Eθ∗
[
‖φ1‖∞

]
sups∈{1,2}Eθ∗

[
‖φs‖∞

]
sups∈{1,2,3}Eθ∗

[
‖φs‖∞

]
sups∈{1,2,3}Eθ∗

[
‖φs‖∞

] (A-31)

and
Eθ∗

[
supθ̂∈Θ̂,n>0

∣∣∣∆0,n(θ̂)
∣∣∣]

Eθ∗
[
supθ̂∈Θ̂,n>0

∣∣∣Γ0,n(θ̂)
∣∣∣]

Eθ∗
[
supθ̂∈Θ̂,n>0

∣∣∣Ψ0,n(θ̂)
∣∣∣]

Eθ∗
[
supθ̂∈Θ̂,n>0

∣∣∣Ω0,n(θ̂)
∣∣∣]


≤ C



Eθ∗
[
‖φ1‖∞

]
sups∈{1,2}Eθ∗

[
‖φs‖∞

]
sups∈{1,2,3}Eθ∗

[
‖φs‖∞

]
sups∈{1,2,3}Eθ∗

[
‖φs‖∞

] . (A-32)

The proof of this lemma follows very closely the proofs of Propositions 4 and 5 in Douc et al. (2004) hence we
restrict ourselves to giving only the essential details.

Proof. We shall just provide proofs for the results concerning the quantities Ω0,n(θ̂). The proofs of the other results
follow in an identical fashion.

We begin by proving (A-31). For any n ≥ m > 0 we have that

sup
θ̂∈Θ̂

∣∣∣Ω0,n(θ̂)− Ω0,m(θ̂)
∣∣∣ ≤ α+ β1,2,3 + β2,3,1 + β3,1,2 + γ1,2,3 + γ2,3,1 + γ3,1,2 + δ

+ψ1,2,3 + ψ2,3,1 + ψ3,1,2 + κ1,2,3 + κ2,3,1 + κ3,1,2 + ω1,2,3 + ω2,3,1 + ω3,1,2
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where

α =

−1∑
i,j,k=−m+1

sup
θ̂∈Θ̂

∣∣∣∣Eθ̂[φ1(θ,Xi, Yi)φ2(θ,Xj , Yj)φ3(θ,Xk, Yk)
∣∣Y−n:0

]
− Eθ̂

[
φ1(θ,Xi, Yi)

∣∣Y−n:0

]
Eθ̂

[
φ2(θ,Xj , Yj)

∣∣Y−n:0

]
Eθ̂

[
φ3(θ,Xk, Yk)

∣∣Y−n:0

]
− Eθ̂

[
φ1(θ,Xi, Yi)φ2(θ,Xj , Yj)φ3(θ,Xk, Yk)

∣∣Y−n:−1

]
+ Eθ̂

[
φ1(θ,Xi, Yi)

∣∣Y−n:−1

]
Eθ̂

[
φ2(θ,Xj , Yj)

∣∣Y−n:−1

]
Eθ̂

[
φ3(θ,Xk, Yk)

∣∣Y−n:−1

]
− Eθ̂

[
φ1(θ,Xi, Yi)φ2(θ,Xj , Yj)φ3(θ,Xk, Yk)

∣∣Y−m:0

]
+ Eθ̂

[
φ1(θ,Xi, Yi)

∣∣Y−m:0

]
Eθ̂

[
φ2(θ,Xj , Yj)

∣∣Y−m:0

]
Eθ̂

[
φ3(θ,Xk, Yk)

∣∣Y−m:0

]
+ Eθ̂

[
φ1(θ,Xi, Yi)φ2(θ,Xj , Yj)φ3(θ,Xk, Yk)

∣∣Y−m:−1

]
− Eθ̂

[
φ1(θ,Xi, Yi)

∣∣Y−m:−1

]
Eθ̂

[
φ2(θ,Xj , Yj)

∣∣Y−m:−1

]
Eθ̂

[
φ3(θ,Xk, Yk)

∣∣Y−m:−1

]∣∣∣∣, (A-33)

βa,b,c =

−1∑
i,j=−m+1

sup
θ̂∈Θ̂

∣∣∣∣Eθ̂[φa(θ,X0, Y0)φb(θ,Xi, Yi)φc(θ,Xj , Yj)
∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,Xi, Yi)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xj , Yj)

∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)φb(θ,Xi, Yi)φc(θ,Xj , Yj)

∣∣Y−m:0

]
+ Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−m:0

]
Eθ̂

[
φb(θ,Xi, Yi)

∣∣Y−m:0

]
Eθ̂

[
φc(θ,Xj , Yj)

∣∣Y−m:0

]∣∣∣∣,
γa,b,c =

−1∑
i=−m+1

sup
θ̂∈Θ̂

∣∣∣∣Eθ̂[φa(θ,X0, Y0)φb(θ,X0, Y0)φc(θ,Xi, Yi)
∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xi, Yi)

∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)φb(θ,X0, Y0)φc(θ,Xi, Yi)

∣∣Y−m:0

]
+ Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−m:0

]
Eθ̂

[
φb(θ,X0, Y0)

∣∣Y−m:0

]
Eθ̂

[
φc(θ,Xi, Yi)

∣∣Y−m:0

]∣∣∣∣,
δ = sup

θ̂∈Θ̂

∣∣∣∣Eθ̂[φ1(θ,X0, Y0)φ2(θ,X0, Y0)φ3(θ,X0, Y0)
∣∣Y−n:0

]
− Eθ̂

[
φ1(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φ2(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φ3(θ,X0, Y0)

∣∣Y−n:0

]
− Eθ̂

[
φ1(θ,X0, Y0)φ2(θ,X0, Y0)φ3(θ,X0, Y0)

∣∣Y−m:0

]
+ Eθ̂

[
φ1(θ,X0, Y0)

∣∣Y−m:0

]
Eθ̂

[
φ2(θ,X0, Y0)

∣∣Y−m:0

]
Eθ̂

[
φ3(θ,X0, Y0)

∣∣Y−m:0

]∣∣∣∣,
ψa,b,c =

−m∑
i=−n+1

−1∑
j,k=−n+1

sup
θ̂∈Θ̂

∣∣∣∣Eθ̂[φa(θ,Xi, Yi)φb(θ,Xj , Yj)φc(θ,Xk, Yk)
∣∣Y−n:0

]
− Eθ̂

[
φa(θ,Xi, Yi)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,Xj , Yj)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xk, Yk)

∣∣Y−n:0

]
− Eθ̂

[
φa(θ,Xi, Yi)φb(θ,Xj , Yj)φc(θ,Xk, Yk)

∣∣Y−n:−1

]
+ Eθ̂

[
φa(θ,Xi, Yi)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,Xj , Yj)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xk, Yk)

∣∣Y−n:−1

]∣∣∣∣,
14



κa,b,c =

−m∑
i=−n+1

−1∑
j=−n+1

sup
θ̂∈Θ̂

∣∣∣∣Eθ̂[φa(θ,X0, Y0)φb(θ,Xi, Yi)φc(θ,Xj , Yj)
∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,Xi, Yi)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xj , Yj)

∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)φb(θ,Xi, Yi)φc(θ,Xj , Yj)

∣∣Y−n:−1

]
+ Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,Xi, Yi)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xj , Yj)

∣∣Y−n:−1

]∣∣∣∣,
and

ωa,b,c =

−m∑
i=−n+1

sup
θ̂∈Θ̂

∣∣∣∣Eθ̂[φa(θ,X0, Y0)φb(θ,X0, Y0)φc(θ,Xi, Yi)
∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xi, Yi)

∣∣Y−n:0

]
− Eθ̂

[
φa(θ,X0, Y0)φb(θ,X0, Y0)φc(θ,Xi, Yi)

∣∣Y−n:−1

]
+ Eθ̂

[
φa(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φb(θ,X0, Y0)

∣∣Y−n:0

]
Eθ̂

[
φc(θ,Xi, Yi)

∣∣Y−n:−1

]∣∣∣∣.
If ‖φ1‖∞ , ‖φ2‖∞ , ‖φ3‖∞ ∈ L3

(
P̄θ∗
)
then it follows that supθ̂∈Θ̂ supx∈X |φ1 (θ, x, Y )|, supθ̂∈Θ̂ supx∈X |φ2 (θ, x, Y )|

and supθ̂∈Θ̂ supx∈X |φ3 (θ, x, Y )| are all finite P̄θ∗ a.s.. Thus that we can apply Lemmas A.3 and A.4 to each
individual term in the sum on the right hand side of (A-33) to get that for any −m+1 ≤ i, j ≤ −1 the corresponding
term is bounded by

sup
θ̂∈Θ̂

sup
x∈X
|φ1 (θ, x, Yi)| sup

θ̂∈Θ̂

sup
x∈X
|φ2 (θ, x, Yj)| sup

θ̂∈Θ̂

sup
x∈X
|φ3 (θ, x, Yk)|

× 16
(
ρ|i−j|∧|j−k|∧|k−i| ∧ ρi∧j∧k−m ∧ ρ1−i∨j∨k

)
. (A-34)

where the quantity ρ is as in Lemma A.3 and hence can be determined purely as a function of the quantities c and
c. It then immediately follows from the expression for α and (A-34) that there exist Cα and 0 < ρα < 1 which are
functions purely of c and c such that for all n ≥ m > 0

Eθ∗ [α] ≤ Cαρmα sup
s∈{1,2,3,}

Eθ∗

[
sup
θ̂∈Θ̂

sup
x∈X

∣∣∣φs (θ, x, Y )
2
∣∣∣] . (A-35)

Clearly one can prove analogous results for the expected values Eθ∗ [βa,b,c], Eθ∗ [γa,b,c], Eθ∗ [δ], Eθ∗ [ψa,b,c], Eθ∗ [κa,b,c]
and Eθ∗ [ωa,b,c] from which (A-31) immediately follows. Moreover it is easy to see that (A-32) follows from (A-31)
by using that

Eθ∗

[
sup
θ̂∈Θ̂

∣∣∣Γ0,1

(
θ̂
)∣∣∣] <∞

and

Eθ∗

[
sup
θ̂∈Θ̂

∣∣∣Ω0,n

(
θ̂
)∣∣∣] = Eθ∗

[
sup
θ̂∈Θ̂

∣∣∣Ω0,1

(
θ̂
)∣∣∣]+

n∑
r=2

Eθ∗

[
sup
θ̂∈Θ̂

∣∣∣Ω0,r

(
θ̂
)
− Ω0,r−1

(
θ̂
)∣∣∣]

for all n > 1.
Finally we note that the existence of a limit in L1

(
Pθ∗
)
of the sequence of random variables Ω0,n(θ̂) is again an

immediate consequence of (A-31).

The next lemma is a well known result concerned with the question of when the differentiation and expectation
operators can be interchanged. However since we shall need to refer to it we state it here explicitly for clarity of
exposition. Its proof is a simple application of the dominated convergence theorem.
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Lemma A.6. Let a Polish space X , a positive σ-finite measure µ on X , a compact set Γ and a function f(γ, x) :
Γ×X → R be given. Suppose that f is everywhere differentiable w.r.t. to γ and∫

X
sup
γ∈Γ

∣∣∣∣ ∂∂γ f(γ, x)

∣∣∣∣µ(dx) <∞.

Then
∫
X f(γ, x)µ(dx) is everywhere differentiable w.r.t. to γ and

∂

∂γ

∫
X
f(γ, x)µ(dx) =

∫
X

∂

∂γ
f(γ, x)µ(dx).

The next Lemma is a statement of the Fisher identity and the Louis missing information principle (see for
example Douc et al. (2004)) plus an extension of these to third order derivatives of the log likelihood function.
Under assumptions (A1)-(A5) its proof is a standard application of Lemma A.6 which we leave to the reader.

Lemma A.7. Suppose that assumptions (A1)-(A5) hold for a collection of HMMs parametrised by some vector
θ ∈ Θ where for each θ ∈ Θ we let gθ (y|x) and qθ (x′, x) denote the densities of the conditional law and transition
kernel of the corresponding HMM. For any ε ≥ 0 let gεθ (y|x) denote the density of the conditional law of the
corresponding perturbed HMM defined in (10). By convention we let g0

θ (y|x) = gθ (y|x).
For any θ ∈ Θ, ε ≥ 0 and n > 0 let ψ(θ, x, x′, y) = log gεθ (y|x′) qθ (x, x′) and following the notation of Lemma

A.5 let ψn(θ) ,
∑n
i=1 ψ(θ,Xi−1, Xi, Yi). Then one has that for any θ ∈ Θ and ε ≥ 0 the log ABC approximate

likelihood function log pεθ(· · · ) is three times differentiable and

∇θ log pεθ(Y1, . . . , Yn) = Eθε
[
∇θψn(θ)

∣∣Y1:n

]
, (A-36)

∇2
θ

1

n
log pεθ(Y1, . . . , Yn) = Eθε

[
∇2
θψn

∣∣Y1:n

]
+ Eθε

[
(∇θψn)

2 ∣∣Y1:n

]
− Eθε

[
∇θψn

∣∣Y1:n

]2
, (A-37)

and

∇3
θ

1

n
log pεθ(Y1, . . . , Yn) = Eθε

[
∇3
θψn

∣∣Y1:n

]
+ 3Eθε

[
∇2
θψn∇θψn

∣∣Y1:n

]
− 3Eθε

[
∇2
θψn

∣∣Y1:n

]
Eθε

[
∇θψn

∣∣Y1:n

]
− 3Eθε

[
(∇θψn)

2 ∣∣Y1:n

]
Eθε

[
∇θψn

∣∣Y1:n

]
+ Eθε

[
(∇θψn)

3 ∣∣Y1:n

]
+ 2Eθε

[
∇θψn

∣∣Y1:n

]3 (A-38)

where Eθε [·|·] denotes conditional expectation w.r.t. the law of the perturbed HMM defined by (8).

The final Lemma shows that the Fisher identity, Louis missing information principle etc. also hold in a mean
sense.

Lemma A.8. Suppose that assumptions (A1)-(A5) hold for a collection of HMMs parametrised by some vector
θ ∈ Θ. Then one has that for any θ ∈ Θ and ε ≥ 0 the log ABC approximate likelihood function log pεθ(· · · ) is three
times differentiable and

∇θEθ∗
[

log pεθ(Y1, . . . , Yn)
]

= Eθ∗
[
∇θ log pεθ(Y1, . . . , Yn)

]
, (A-39)

∇2
θEθ∗

[
log pεθ(Y1, . . . , Yn)

]
= Eθ∗

[
∇2
θ log pεθ(Y1, . . . , Yn)

]
, (A-40)

and

∇3
θEθ∗

[
log pεθ(Y1, . . . , Yn)

]
= Eθ∗

[
∇3
θ log pεθ(Y1, . . . , Yn)

]
. (A-41)

Proof. Equations (A-39), (A-40) and (A-41) will follow immediately from Lemmas A.6 and A.8 if one can establish
that

Eθ∗

[
sup
θ∈Θ
|∇θ log pεθ(Y1, . . . , Yn)|

]
, Eθ∗

[
sup
θ∈Θ

∣∣∇2
θ log pεθ(Y1, . . . , Yn)

∣∣] ,
Eθ∗

[
sup
θ∈Θ

∣∣∇3
θ log pεθ( Y1, . . . , Yn)

∣∣] <∞.
However this follows immediately from assumptions (A1)-(A5) and expressions (A-36)-(A-38).
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Appendix B: Proofs of Theorems 3.1 , 3.2 and 3.3
We start with the the proof of Theorem 3.1.

Proof of Theorem 3.1 . Consistency of the MLE can be deduced from conditions 1-2 by standard arguments.
Let p0 denote the density of the prior π0 w.r.t. Lebesgue measure. It follows from conditions 1-4 of the theorem

that for any δ > 0 there exist some η > 0 such that

sup
θ,θ′∈Bη

θ∗

p0(θ)

p0(θ′)
≤ (1 + δ), (B-42)

and some and γ > 0 such that Pθ∗ a.s. there exists some n′ such that for all n ≥ n′

πn(Θ/Bηθ∗) ≤ e−nγ , (B-43)

and

sup
θ∈Bη

θ∗

sup
v∈Rd

∣∣∣vT∇2
θ

1
n

(
log pθ(Ŷ1, . . . , Ŷn)− log pθ∗(Ŷ1, . . . , Ŷn)

)
v − vT∇2

θl (θ
∗) v
∣∣∣

|vT∇2
θl (θ

∗) v| ≤ δ. (B-44)

Using the fact that ∇θ log pθ̂n(Ŷ1, . . . , Ŷn) = 0 it follows from the consistency of the MLE and Taylor’s theorem that
Pθ∗ a.s. one has that for all n sufficiently large that for all θ ∈ Bηθ∗

log pθ(Ŷ1, . . . , Ŷn)− log pθ∗(Ŷ1, . . . , Ŷn) =
1

2
n(θ − θ̂n)T∇2

θl (θ
∗) (θ − θ̂n) +Rn(θ) (B-45)

where for all θ ∈ Bηθ∗ the remainder term Rn(θ) is bounded by

sup
θ′∈Bη

θ∗

1

2

∣∣∣(θ − θ̂n)T∇2
θ log pθ′(Ŷ1, . . . , Ŷn)(θ − θ̂n)− n(θ − θ̂n)T∇2

θl (θ
∗) (θ − θ̂n)

∣∣∣ . (B-46)

It then follows from (B-44), (B-45) and (B-46) that Pθ∗ a.s. one has that for all n sufficiently large that

e
1
2n(θ−θ̂n)T∇2

θl(θ
∗)(θ−θ̂n)(1+δ) ≤ pθ(Ŷ1, . . . , Ŷn)

pθ∗(Ŷ1, . . . , Ŷn)
≤ e 1

2n(θ−θ̂n)T∇2
θl(θ

∗)(θ−θ̂n)(1−δ) (B-47)

for all θ ∈ Bηθ∗ . The result now follows from (B-42), (B-43) and (B-47).

The proofs of Theorems 3.2 and 3.3 rely on the following three lemmas which show firstly that the relative mean
log ABC likelihood surface

θ → 1

n
(log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn))

converges uniformly P̄θ∗ a.s. to the surface defined by some function lε (θ) and secondly that the curvature of the
limiting function lε (θ) converges to that of the function l (θ) defined in (13) as ε→ 0. The proofs of these lemmas
are deferred to Section B.4.

Lemma B.9. Suppose that assumptions (A1)-(A5) hold for a collection of HMMs parametrised by some vector
θ ∈ Θ. Then for any ε ≥ 0 there exists a three times continuously differentiable function lε (θ) such that

lim
n→∞

sup
θ∈Θ

∣∣∣∣ 1n (log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn))− lε (θ)

∣∣∣∣ = 0 (B-48)

Pθ∗ a.s. where for all θ and ε, pεθ(· · · ) denotes the ABC approximate likelihood function defined in (??). By
convention we define p0

θ(· · · ) to be equal to the true likelihood function pθ(· · · ). Moreover there exists some constant
0 < K <∞ such that for all θ ∈ Θ and ε ≥ 0

∇θlε (θ) ,∇2
θl
ε (θ) ,∇3

θl
ε (θ) ≤ K (B-49)
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Further one has that Pθ∗ a.s. there exists some n′ such that for all n ≥ n′

supθ∈Θ

∥∥ 1
n∇θ

(
log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn)

)∥∥
supθ∈Θ

∥∥ 1
n∇2

θ

(
log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn)

)∥∥
supθ∈Θ

∥∥ 1
n∇3

θ

(
log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn)

)∥∥
 ≤ K (B-50)

for the same K as in (B-49).

Lemma B.10. Suppose that assumptions (A1)-(A5) hold for a collection of HMMs parametrised by some vector
θ ∈ Θ and for any ε > 0 let lε (θ) be equal to the corresponding limit function defined in Lemma B.9. Then for all
θ ∈ Θ one has that

lim
ε→0
∇θlε (θ) = ∇θl (θ) .

Lemma B.11. Suppose that assumptions (A1)-(A5) hold for a collection of HMMs parametrised by some vector
θ ∈ Θ and for any ε > 0 let lε (θ) be equal to the corresponding limit function defined in Lemma B.9. Then for all
θ ∈ Θ one has that

lim
ε→0
∇2
θl
ε (θ) = ∇2

θl (θ) .

Proof of Theorem 3.2. It follows immediately from (B-48), (B-50) and Lemma A.2 that for all ε

lim
n→∞

1

n
(log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn)) = lε (θ) (B-51)

uniformly in θ P a.s. where lε is the limiting function defined in Lemma B-48. Furthermore we have from (B-50)
and Lemma B.10 that

lim
ε→0

sup
θ∈θ
|lε (θ)− l (θ)| = 0. (B-52)

For any ε > 0 letMε denote the set of maximizers of lε. We begin by noting that since lε is continuous for all
ε the setsMε are always non-empty. Since by assumption l(θ) has a unique maximum at θ∗ and is continuous in
Θ it follows from (B-52) that

lim
ε→0

sup
θ∈Mε

|θ − θ∗| = 0. (B-53)

Suppose that for all ε sufficiently small the setMε consists of a single element

Mε = {θ∗,ε} (B-54)

for some θ∗,ε ∈ Θ. It would then follow from (B-53) that θ∗,ε → θ∗ and hence from (B-50) and Lemma B.11 that
∇2
θl
ε(θ∗,ε) → ∇2

θl(θ
∗) as ε → 0. Thus in order to complete the proof of the theorem it is sufficient to prove that

(B-54) holds for sufficiently small ε.
We start by noting that from Lemma B.11 we have that

lim
ε→0

∥∥∇2
θl
ε(θ∗)−∇2

θl(θ
∗)
∥∥ = 0. (B-55)

Since we have by Lemma B.9 that there exists some finite constant K such that∥∥∇2
θl
ε(θ′)−∇2

θl
ε(θ)

∥∥ ≤ K |θ′ − θ| (B-56)

for all ε and θ, θ′ ∈ Θ it follows from (B-55) and the assumption that ∇2
θl(θ

∗) < 0 that there exists some η > 0 such
that

lim
ε→0

sup
θ∈Bη

θ∗

sup
v∈Rd

∣∣∇2
θl
ε(θ)v −∇2

θl(θ
∗)v
∣∣

|∇2
θl(θ

∗)v| ≤ 1

2
. (B-57)

It then follows from (B-57) and a simple application of Taylor’s theorem that

lim
ε→0

inf
θ,θ′∈Bη

θ∗ :θ 6=θ′

|∇θlε(θ)−∇θlε(θ′)|
|∇2

θl(θ
∗)(θ − θ′)| > 0 (B-58)

and hence that for sufficiently small ε that there is at most one θ ∈ Bηθ∗ such that ∇θlε(θ) = 0. Equation (B-54)
and hence the proof of the theorem now follows from the preceding observation and (B-53).

Proof of Theorem 3.3. Given the results in Theorem 3.2 the proof of Theorem 3.3 follows in exactly the same way
as the proof of Theorem 3.1. We leave the details to the reader.
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B.4 Proofs of Lemmas B.9, B.10 and B.11
In order to complete this section we need to provide the proofs of Lemmas B.9, B.10 and B.11. We start with the
proof of Lemma B.9.

Proof of Lemma B.9. For any n the gradient of the log ABC likelihood may be decomposed into the following
telescoping sum

∇θ
1

n
log pεθ(Y1, . . . , Yn) =

1

n

n∑
i=1

(
∇θ log pεθ(Y1, . . . , Yi)−∇θ log pεθ(Y1, . . . , Yi−1)

)
. (B-59)

It follows from (A-36) and (A-28) that for all θ ∈ Θ and ε ≥ 0 there exists some σ(Y−∞:0) measurable random
variable Rεθ(Y−∞:0) such that

∇θ log pεθ(Y−n, . . . , Y0)−∇θ log pεθY−n, . . . , Y−1)→ Rεθ(Y−∞:0) (B-60)

in L1
(
P̄θ∗
)
as n → ∞. Furthermore it follows from (A-36) and (A-31) that there exist constants C < ∞ and

0 < ρ < 1 such that for all θ ∈ Θ, ε ≥ 0 and n > 0

Eθ∗

[
sup
k≥n

∣∣∣∇θ log pεθ(Y−k, . . . , Y0)−∇θ log pεθ(Y−k, . . . , Y−1)−Rεθ(Y−∞:0)
∣∣∣] ≤ Cρn.

Thus we have from the ergodic theorem that for any m > n > 0

lim sup
m→∞

∣∣∣∣∣ 1

m

m∑
i=1

(
∇θ log pεθ(Y1, . . . , Yi)−∇θ log pεθ(Y1, . . . , Yi−1)

)
− Eθ∗

[
Rεθ(Y−∞:0)

]∣∣∣∣∣
≤ lim sup

m→∞

∣∣∣∣∣ 1

m

n∑
i=1

(
∇θ log pεθ(Y1, . . . , Yi)−∇θ log pεθ(Y1, . . . , Yi−1)

)
− Eθ∗

[
Rεθ(Y−∞:0)

]∣∣∣∣∣
+ lim sup

m→∞

∣∣∣∣∣ 1

m

m∑
i=n+1

Rεθ(Y−∞:i)− Eθ∗
[
Rεθ(Y−∞:0)

]∣∣∣∣∣
+ lim sup

m→∞

1

m

m∑
i=n+1

sup
k≥−1

∣∣∣∣∇θ log pεθ(Y−k, . . . , Yi)−∇θ log pεθ(Y−k, . . . , Yi−1)−Rεθ(Y−∞:i)

∣∣∣∣
≤ Cρn. (B-61)

It now follows from (B-59) and (B-61) that

∇θ
1

n
log pεθ(Y1, . . . , Yn)→ Eθ∗

[
Rεθ(Y−∞:0)

]
(B-62)

Pθ∗ a.s.. Moreover it follows from (A-32) and the ergodic theorem that

lim sup
m→∞

sup
θ∈Θ

∣∣∣∣∣ 1

m

m∑
i=1

(
∇θ log pεθ(Y1, . . . , Yi)−∇θ log pεθ(Y1, . . . , Yi−1)

)∣∣∣∣∣
≤ lim sup

m→∞

1

m

n∑
i=1

sup
θ∈Θ

sup
k≤i−1

∣∣∣∣(∇θ log pεθ(Yk, . . . , Yi)−∇θ log pεθ(Yk, . . . , Yi−1)
)∣∣∣∣

= C (B-63)

Pθ∗ a.s.. Similarly one can show that

lim sup
m→∞

sup
θ∈Θ

∣∣∣∣∣ 1

m

m∑
i=1

(
∇2
θ log pεθ(Y1, . . . , Yi)−∇2

θ log pεθ(Y1, . . . , Yi−1)
)∣∣∣∣∣ ,

lim sup
m→∞

sup
θ∈Θ

∣∣∣∣∣ 1

m

m∑
i=1

(
∇3
θ log pεθ(Y1, . . . , Yi)−∇3

θ log pεθ(Y1, . . . , Yi−1)
)∣∣∣∣∣ ≤ C (B-64)
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Pθ∗ a.s. and that for any θ ∈ Θ and ε ≥ 0 there exist σ(Y−∞:0) measurable random variable Sεθ(Y−∞:0) and
T εθ (Y−∞:0) such that

∇2
θ log pεθ(Y−n, . . . , Y0)−∇2

θ log pεθ(Y−n, . . . , Y−1)→ Sεθ(Y−∞:0),

∇3
θ log pεθ(Y−n, . . . , Y0)−∇3

θ log pεθ(Y−n, . . . , Y−1)→ T εθ (Y−∞:0)
(B-65)

in L1
(
Pθ∗
)
and

∇2
θ

1

n
log pεθ(Y1, . . . , Yn)→ Eθ∗

[
Sεθ(Y−∞:0)

]
,∇3

θ

1

n
log pεθ(Y1, . . . , Yn)→ Eθ∗

[
T εθ (Y−∞:0)

]
(B-66)

Pθ∗ a.s..
Clearly (B-50) follows from (B-63) and (B-64). Furthermore, under the assumption that (B-48) holds (for a

three times differentiable lε) it is easy to see that (B-49) is then an immediate consequence of (B-50), (B-62) and
(B-66). Thus in order to complete the proof of the lemma it remains to show (B-48).

We start by noting that it follows from Lemma A.8 that for any θ ∈ Θ, ε ≥ 0 and n > 0

∇θEθ∗
[(
∇θ log pεθ(Y−n, . . . , Y0)−∇θ log pεθ(Y−n, . . . , Y0)

)]
= Eθ∗

[(
∇2
θ log pεθ(Y−n, . . . , Y0)−∇2

θ log pεθ(Y−n, . . . , Y0)
)]

(B-67)

and

∇θEθ∗
[(
∇2
θ log pεθ(Y−n, . . . , Y0)−∇2

θ log pεθ(Y−n, . . . , Y0)
)]

= Eθ∗
[(
∇3
θ log pεθ(Y−n, . . . , Y0)−∇3

θ log pεθ(Y−n, . . . , Y0)
)]
. (B-68)

Since (A-31) implies that the convergence in (B-60) and (B-65) is uniform w.r.t. θ it follows from Lemma A.1
that Eθ∗ [Rεθ(Y−∞:0)] and Eθ∗ [Sεθ(Y−∞:0)] are differentiable and that ∇θEθ∗ [Rεθ(Y−∞:0)] = Eθ∗ [Sεθ(Y−∞:0)] and
∇θEθ∗ [Sεθ(Y−∞:0)] = Eθ∗ [T εθ (Y−∞:0)].

One more application of Lemma A.1 will complete the proof of (B-48) if we can show that

lim
n→∞

sup
θ∈Θ

∣∣∣∣ 1n∇θ (log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn))− Eθ∗ [Rεθ(Y−∞:0)]

∣∣∣∣ = 0 (B-69)

Pθ∗ a.s. (Note that the gradient of the empirical functions are converging uniformly while the functions themselves are
Cauchy at θ∗.) (B-50) implies that Pθ∗ a.s. the sequence of random variables 1

n∇θ (log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn))
are eventually uniformly Lipschitz continuous w.r.t. θ. Furthermore equation (B-62) also implies that there exists
a countable dense set of Θ, say D, such that Pθ∗ a.s. the sequence of random variables
1
n∇θ (log pεθ(Y1, . . . , Yn)− log pεθ∗(Y1, . . . , Yn)) converge to Eθ∗ [Rεθ(Y−∞:0)] for all θ ∈ D. We can now deduce (B-69)
from the two preceding observations and a direct application of Lemma A.2.

In remains to provide the proofs of Lemmas B.10 and B.11. Since the proofs of these two lemmas are almost
identical we prove only Lemma B.10.

Proof of Lemma B.10. We start by stating some properties of the perturbed conditional likelihood (10) that will
needed in the sequel. First note that it follows from assumptions (A2) and (A5) and Lemma A.6 that

∇θgεθ (y|x) ,

∫
Bεy
∇θgθ (z|x) ν(dz)∫
Bεy
ν (dz)

. (B-70)

Furthermore since ∫
Bεy

∇θgθ (z|x) ν(dz) ≤ sup
θ∈Θ

sup
x∈X

sup
z∈Bεy

(∇θgθ (z|x)

gθ (z|x)

)
×
∫
Bεy

gθ (z|x) ν (dz)
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it follows from (B-70) and assumption (A5) that for any ε > 0

Ēθ∗

[
sup
θ∈Θ

sup
x∈X
‖∇θ log gεθ (Y |x)‖

]
<∞. (B-71)

We are now ready to begin the proof of Lemma B.10 proper. It follows from (A-31), (A-36), (B-59), (B-60),
(B-69) and assumptions (A1)-(A5) that for any δ > 0 there exists n′ such that∣∣∣∣∇θlε (θ)− Ēθ∗

[
1

n
∇θ log pεθ(Y1, . . . , Yn)

]∣∣∣∣ ≤ δ
for all n ≥ n′, θ and ε ≥ 0. Thus in order to prove the result it is sufficient to show that

lim
ε→0

Ēθ∗

[
1

n
∇θ log pεθ(Y1, . . . , Yn)

]
= Ēθ∗

[
1

n
∇θ log pθ(Y1, . . . , Yn)

]
for all θ and hence by (A-36) that

lim
ε→0

Ēθ∗
[
Eθε
[
∇θ (log gεθ (Yk|Xk) qθ (Xk−1, Xk))

∣∣Y1:n

]]
= Ēθ∗

[
Eθ
[
∇θ (log gθ (Yk|Xk) qθ (Xk−1, Xk))

∣∣Y1:n

]]
(B-72)

for all θ and 1 ≤ k ≤ n. Assumption (A3) implies that

|∇θ (log gεθ (Yk|Xk) qθ (Xk−1, Xk))| ≤ sup
θ∈Θ

sup
x∈X
|∇θ log gεθ (Yk|x)|+K

for some finite positive constant that is independent of θ and ε and hence it follows from (B-71) and the dominated
convergence theorem that in order to prove (B-72) it is sufficient to show that

lim
ε→0

Eθε [∇θ (log gεθ (Yk|Xk) qθ (Xk−1, Xk)) |Y1:n]

= Eθ [∇θ (log gθ (Yk|Xk) qθ (Xk−1, Xk)) |Y1:n] (B-73)

Pθ∗ a.s.. Recall that

Eθε [∇θ (log gεθ (Yk|Xk) qθ (Xk−1, Xk)) |Y1:n]

=

∫
Xn ∇θ (log gεθ (Yk|xk) qθ (xk−1, xk))

∏n
i=1 (gεθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn)∫

Xn
∏n
i=1 (gεθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn)

(B-74)

and

Eθ [∇θ (log gθ (Yk|Xk) qθ (Xk−1, Xk)) |Y1:n]

=

∫
Xn ∇θ (log gθ (Yk|xk) qθ (xk−1, xk))

∏n
i=1 (gθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn)∫

Xn
∏n
i=1 (gθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn)

. (B-75)

Since by assumptions (A2) and (A5) we have for any K > 0 that

sup
θ∈Θ

sup
x∈X

sup
z∈BK0

‖∇θgεθ (Y + z|x)‖ <∞

Pθ∗ a.s. it follows that we can use the Lebesgue differentiation theorem (see for example Wheeden and Zygmund
(1977)) to deduce that for µ a.s. all x ∈ X that

∇θgεθ (Yk|x)→ ∇θgθ (Yk|x) , gεθ (Yk|x)→ gθ (Yk|x) (B-76)

ν a.s.. Standard arguments show that for all θ ∈ Θ the set N (θ) ∈ X × Y defined by

N (θ) =
{
x, y : lim

ε→0
gεθ (y|x) = gθ (y|x)

}
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is B(X )×B(Y) measurable. Furthermore it follows from (B-76) that the set N (θ) has µ× ν full measure and hence
that Pθ∗ a.s.

lim
ε→0

gεθ (Y |x) = gθ (Y |x) ν a.s.. (B-77)

Similarly one can show that Pθ∗ a.s.

lim
ε→0
∇θgεθ (Y |x) = ∇θgθ (Y |x) ν a.s.. (B-78)

It follows from assumptions (A2) and (A5) that

sup
θ∈Θ

sup
x∈X
∇θ (log gεθ (Yk|xk) qθ (xk−1, xk))

n∏
i=1

(gεθ (Yi|xi) qθ (xi−1, xi)) <∞

(B-79)

and

sup
θ∈Θ

sup
x∈X

n∏
i=1

(gεθ (Yi|xi) qθ (xi−1, xi)) <∞

(B-80)

Pθ∗ a.s. and hence from (B-77) and (B-78) and from the dominated convergence theorem that∫
Xn
∇θ (log gεθ (Yk|xk) qθ (xk−1, xk))

n∏
i=1

(gεθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn)→

∫
Xn
∇θ (log gθ (Yk|xk) qθ (xk−1, xk))

n∏
i=1

(gθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn) (B-81)

and ∫
Xn

n∏
i=1

(gεθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn)→

∫
Xn

n∏
i=1

(gθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn) (B-82)

Pθ∗ a.s.. Since by assumption (A4) we have that∫
Xn

n∏
i=1

(gθ (Yi|xi) qθ (xi−1, xi))µ(dx1) · · ·µ(dxn) > 0

Pθ∗ a.s. it now follows that (B-73) is implied by (B-81) and (B-82).

Appendix C: Proof of Theorem 3.4
The proof of Theorem 3.4 is based on the following lemma whose proof is deferred to Section C.5.

Lemma C.12. Suppose that assumptions (A1)-(A5) and (A7) hold for a collection of HMMs parametrised by some
vector θ ∈ Θ. Furthermore for any θ ∈ Θ and ε > 0 let lε (θ) be equal to the corresponding limit function defined in
Lemma B.9. Then for all θ there exists a vector Vθ such that for all ε > 0

∇θlε (θ∗)−∇θl (θ∗) = ε2Vθ + o(ε2). (C-83)

Proof of Theorem 3.4. We have by Theorem 3.2 and Lemma B.9 that for any η > 0 there exists some εη such that
for all ε ≤ εη the surface lε(θ) has a unique maximum at some point θ∗,ε ∈ Bηθ∗ , is differentiable in Bηθ∗ and

∇θlε(θ∗,ε) = 0. (C-84)
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For all ε let θ̃ε = θ∗ − ε2∇2
θl(θ

∗)−1Vθ∗ where Vθ∗ is as in Lemma C.12. It follows from (B-50), Lemma B.11 and
(C-83) that

∇θlε(θ̃ε) = o(ε2). (C-85)

We then have from (B-58), (C-84) and (C-85) that∣∣∣θ̃ε − θ∗,ε∣∣∣ = o(ε2)

which concludes the proof of the theorem.

C.5 Proof of Lemma C.12
A central role in the proof of Lemma C.12 will be played by the following time inhomogeneous versions of the
perturbed HMM (8).

Suppose that one has a collection of HMMs parametrised by some parameter vector θ ∈ Θ and that for each
value of θ the conditional laws and transition kernels of the corresponding HMM have densities gθ(y|x) and qθ(x, x′)
respectively. Given some θ ∈ Θ and ε > 0 we define the HMM

{
X+
i , Y

+
i

}
i∈{...,−1,0,1,...} to be the time inhomogeneous

HMM such that at each time i the process has transition kernel qθ (i− 1, xi−1, xi) and conditional law gε,+θ,i (y|x)
where

qθ (i− 1, xi−1, xi) = qθ (xi−1, xi) , gε,+θ,i (y|x) =

{
gεθ (y|x) if i > 0
gθ (y|x) otherwise (C-86)

and where the quantity gεθ (y|x) in (C-86) is equal to the ABC perturbed conditional likelihood defined in (10).
Similarly we define the HMM

{
X−i , Y

−
i

}
i∈{...,−1,0,1,...} to be the time inhomogeneous HMM such that at each time

i the process has transition kernel qθ (i− 1, xi−1, xi) and conditional law gε,−θ,i (y|x) where

qθ (i− 1, xi−1, xi) = qθ (xi−1, xi) , gε,−θ,i (y|x) =

{
gεθ (y|x) if i ≥ 0
gθ (y|x) otherwise . (C-87)

In what follows we shall be interested in the law of the HMM
{
X+
i , Y

+
i

}
as the time of the initial distribution

tends to −∞. Clearly the restriction of the resulting law to the set of all times less than or zero should be equal to
that of the stationary distribution Pθ of the corresponding unperturbed HMM while in general one would expect
the two laws to diverge for later times. This leads us to define, for all θ ∈ Θ and ε > 0, the distribution Pθε,+ on
the space (X × Y)

∞ by
Pθε,+ (A) = Pθ (A) (C-88)

for all A ∈ σ(X−∞:0 × Y−∞:0) and

Pθε,+ (A|X−∞:0, Y−∞:0) = Pθε,+ (A|X0) = Pθε (A|X0) (C-89)

for all A ∈ σ(X1:∞ × Y1:∞) where Pθε denotes the stationary distribution of the perturbed HMM defined in (8).
Similarly we define the distribution Pθε,− on the space (X × Y)

∞ by

Pθε,− (A) = Pθ (A) (C-90)

for all A ∈ σ(X−∞:−1 × Y−∞:−1) and

Pθε,− (A|X−∞:−1, Y−∞:−1) = Pθε,− (A|X−1) = Pθε (A|X−1) (C-91)

for all A ∈ σ(X0:∞ × Y0:∞). Finally for all θ and ε > 0 we shall let pθε,+(· · · ), Eθε,+ [·] and Eθε,+ [·|·] and pθε,−(· · · ),
Eθε,− [·] and Eθε,− [·|·] denote the likelihood functions and expectation and conditional expectation operators w.r.t.
to the laws Pθε,+ and Pθε,− respectively.

Remark C.8. Using the same techniques as were used to prove Lemma A.3 one can show that analogous results
hold for the inhomogeneous HMMs defined in (C-86) and (C-87). See for example Cappé et al. (2005) for more
details.

Remark C.9. It follows from (C-86)-(C-91) and Remark C.8 that for all r 6= 0

‖Pθε,+(Xr|Y−∞:∞) = Pθε,−(Xr|Y−∞:∞)‖TV ≤ 4ρ|r|.
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The following relation, which is an immediate consequence of the definitions of Pθε,+ and Pθε,− , will prove very
useful:

Pθε,+(X−∞:∞|Y−∞:−1;1:∞) = Pθε,−(X−∞:∞|Y−∞:−1;1:∞). (C-92)

The next three results show how the inhomogeneous perturbed HMMs above relate to the limiting behaviour of
the gradients of the log likelihood surfaces lε(θ).

Lemma C.13. Suppose that assumptions (A1)-(A5) and (A7) hold for a collection of HMMs parametrised by some
vector θ ∈ Θ. Furthermore for any θ ∈ Θ and ε > 0 let lε (θ) be equal to the corresponding limit function defined in
Lemma B.9. Then for all ε > 0 and θ ∈ Θ

∇θlε (θ)−∇θl (θ) =

−1∑
i=−∞

(
Eθ∗

[
Eθε,+ [∇θ (log gθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]

]
− Eθ∗

[
Eθε,− [∇θ (log gθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]

])
+

∞∑
i=1

(
Eθ∗

[
Eθε,+ [∇θ (log gεθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]

]
− Eθ∗

[
Eθε,− [∇θ (log gεθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]

])
+ Eθ∗

[
Eθε,+ [∇θ (log gθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]

]
− Eθ∗

[
Eθε,− [∇θ (log gεθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]

]
. (C-93)

Proof of Lemma C.13. First we recall that by (A-31), (A-36), (B-59), (B-60), (B-69) and assumptions (A1)-(A5)
we have that

∇θlε (θ)−∇θl (θ) = lim
n→∞

1

n
(Eθ∗ [∇θ log pεθ(Y1, . . . , Yn)]− Eθ∗ [∇θ log pθ(Y1, . . . , Yn)]) . (C-94)

Next note that by definition it follows that

pθ(y1, . . . , yn) = pθε,+(Y−n+1 = y1, . . . , Y0 = yn)

and thus
Eθ∗ [∇θ log pθ(Y1, . . . , Yn)] = Eθ∗ [∇θ log pθε,+(Y−n+1, . . . , Y0)] . (C-95)

Similarly one can show that

Eθ∗ [∇θ log pεθ(Y1, . . . , Yn)] = Eθ∗ [∇θ log pθε,−(Yn−1, . . . , Y0)] . (C-96)

Moreover it follows from (C-86) and (C-87) that for any l < 0 < k

Eθ∗ [∇θ log pθε,+(Yl, . . . , Yk+1)] = Eθ∗ [∇θ log pθε,−(Yl−1, . . . , Yk)] . (C-97)

It now follows from (C-94), (C-95), (C-96) and (C-97) that

∇θlε (θ)−∇θl (θ) = lim
n→∞

1

n

n∑
i=1

(
Eθ∗ [∇θ log pθε,+(Y−n+i, . . . , Yi−1)]

− Eθ∗ [∇θ log pθε,−(Y−n+i, . . . , Yi−1)]
)
. (C-98)

Finally we note that in the light of Remark C.8 it follows that results analogous to Lemmas A.3, A.4 and A.7
hold for the conditional laws and expecations of the HMMs defined in (C-86) and (C-87) and for the corresponding
likelihood functions pθε,+(· · · ) and pθε,−(· · · ) and thus we can use exactly the same kind of reasoning as was used
to prove Lemma A.5 to show that the limit on the right hand side of (C-98) is equal to the right hand side of
(C-93).
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Lemma C.14. Suppose that assumptions (A1)-(A5) and (A7) hold for a collection of HMMs parametrised by some
vector θ ∈ Θ. Then for any θ ∈ Θ and integers l ≤ k

lim
ε→0
‖Pθε,+ (Xl, . . . , Xk|Y∞:∞)− Pθ (Xl, . . . , Xk|Y∞:∞)‖TV = 0,

lim
ε→0
‖Pθε,− (Xl, . . . , Xk|Y∞:∞)− Pθ (Xl, . . . , Xk|Y∞:∞)‖TV = 0,

lim
ε→0
‖Pθε,+ (Xl, . . . , Xk|Y0:∞)− Pθ (Xl, . . . , Xk|Y0:∞)‖TV = 0,

lim
ε→0
‖Pθε,− (Xl, . . . , Xk|Y∞:0)− Pθ (Xl, . . . , Xk|Y∞:0)‖TV = 0

(C-99)

for Pθ∗ a.s. all doubly infinite sequences . . . , Y−1, Y0, Y1, . . ..

Proof. We will just prove the result for the conditional probabilities Pθε,+ (Xl, Xk|Y0:∞). The proofs of the other
results are identical and we leave it to the reader to fill in the details. First note that by the definition of the total
variation norm and by Lemma A.3 we have that for all r > k

‖Pθε,+ (Xl, . . . , Xk|Y0:∞)− Pθε,+ (Xl, . . . , Xk|Y0:r)‖TV ≤ 4ρr−k

‖Pθ (Xl, . . . , Xk|Y0:∞)− Pθ (Xl, . . . , Xk|Y0:r)‖TV ≤ 4ρr−k.
(C-100)

Thus in order to prove the result it suffices to prove that

lim
ε→0
‖Pθε,+ (Xl, . . . , Xk|Y0:r)− Pθ (Xl, . . . , Xk|Y0:r)‖TV = 0

for every r > k.
Thus it is sufficient to show that

lim
ε→0

sup
f∈l∞

|Eθε,+ [f(Xl, . . . , Xk)|Y0:r]− Eθ [f(Xl, . . . , Xk)|Y0:r]| = 0 (C-101)

Pθ∗ a.s.. As in the proof of Lemma B.10 we can express the conditional expectations of interest as

Eθε,+ [f(Xl, . . . , Xk)|Y0:r]

=

∫
X r−l+1 f(Xl:k)gθ (Y0|x0)

∏r
i=1 g

ε
θ (Yi|xi)

∏r
j=l qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr)∫

X r−l+1 gθ (Y0|x0)
∏r
i=1 g

ε
θ (Yi|xi)

∏r
j=l qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr)

(C-102)

and

Eθ [f(Xl, . . . , Xk)|Y0:r]

=

∫
X r−l+1 f(Xl:k)

∏r
i=0 gθ (Yi|xi)

∏r
j=l qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr)∫

X r−l+1

∏r
i=0 gθ (Yi|xi)

∏r
j=l qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr)

(C-103)

Furthermore by arguing in the same way as in the proof of (B-82) we have that∫
X r−l+1

gθ (Y0|x0)

r∏
i=1

gεθ (Yi|xi)
r∏
j=l

qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr)→

∫
X r−l+1

r∏
i=0

gθ (Yi|xi)
r∏
j=l

qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr). (C-104)

Next we note that

sup
f∈L∞

∣∣∣∣∣
∫
X r−l+1

f(Xl:k)gθ (Y0|x0)

r∏
i=1

gεθ (Yi|xi)
r∏
j=l

qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr)

−
∫
X r−l+1

f(Xl:k)

r∏
i=0

gθ (Yi|xi)
r∏
j=l

qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr)

∣∣∣∣∣
≤
∫
X r−l+1

gθ (Y0|x0)

r∏
i=1

∣∣∣gθ (Yi|xi)− gεθ (Yi|xi)
∣∣∣ r∏
j=l

qθ (xj−1, xj)Pθ(dxj−1)µ(dxj) · · ·µ(dxr). (C-105)

However it follows from (B-77) and dominated convergence theorem that Pθ∗ a.s. the right hand side of (C-105)
goes to 0 as ε→ 0. Equation (C-101) is then a consequence of (C-102)-(C-105).

25



Lemma C.15. Suppose that assumptions (A1)-(A5) and (A7) hold for a collection of HMMs parametrised by some
vector θ ∈ Θ. Furthermore for any h ∈ L2(Pθ∗) let

Lh∞ =

{
f : Y × X 2 → R : sup

x,x′∈X 2

|f(Y, x, x′)| ≤ h(Y ) Pθ∗a.s.

}
.

Then there exists a finite constant C such that for all h ∈ L2(Pθ∗), θ ∈ Θ, ε > 0 and integers i

sup
f∈Lh∞

Eθ∗ [|Eθε,+ [f(Yi, Xi−1, Xi)|Y∞:∞]− Eθε,− [f(Yi, Xi−1, Xi)|Y∞:∞]|]

≤ Cε2ρ|i|Eθ∗
[
h2
] 1

2 . (C-106)

Moreover, for all θ ∈ Θ there exists a sequence of σ(Y−∞:∞) measurable random finite signed measures πθ,i such
that for all h ∈ L2(Pθ∗), i and ε > 0

sup
f∈Lh∞

Eθ∗
[∣∣Eπθ,i [f(Yi, x, x

′)]
∣∣] ≤ Cρ|i|Eθ∗ [h2

] 1
2 . (C-107)

and

1

ε2
sup
f∈Lh∞

Eθ∗
[∣∣Eθε,+ [f(Yi, Xi−1, Xi|Y∞:∞]− Eθε,− [f(Yi, Xi−1, Xi|Y∞:∞]

− ε2Eπθ,i [f(Yi, x, x
′)]
∣∣]→ 0 (C-108)

as ε→ 0.

Proof. Throughout this proof we shall make extensive use of the following simple fact: for all i and f ∈ Lh∞

Eθε,+ [f(Yi, Xi−1, Xi)|Y∞:∞] =
Eθε,+ [f(Yi, Xi−1, Xi)gθ (Y0|X0) |Y∞:−1;1:∞]

Eθε,+ [gθ (Y0|X0) |Y∞:−1;1:∞]
. (C-109)

We note that an analogous result holds for the conditional expectations Eθε,− [·|Y∞:∞]. We also note that by a
simple application of Taylor’s theorem we have that there exist constants K1 and K2 such that

gεθ (y|x) = gθ (y|x) +K1ε
2∇2

ygθ (y|x) + r(θ, ε, x, y) (C-110)

where the remainder term r(θ, ε, x, y) is bounded by

K2ε
2 sup
z∈Bε0

∣∣∇2
ygθ (y + z|x)−∇2

ygθ (y|x)
∣∣ (C-111)

for all x, y and ε.
We shall show that the lemma holds true with the signed measures πθ,i defined such that for all θ, i and f ∈ L∞

Eπθ,i [f(Yi, Xi−1, Xi)] = Eθ [f(Yi, Xi−1, Xi)|Y∞:∞]Eθ

[
K1∇2

ygθ (Y0|X0)

gθ (Y0|X0)
|Y∞:∞

]

− Eθ
[
f(Yi, Xi−1, Xi)

K1∇2
ygθ (Y0|X0)

gθ (Y0|X0)
|Y∞:∞

]
. (C-112)

We have by (C-109) that for any h ∈ L2(Pθ∗) and all i

sup
f∈Lh∞

Eθ∗
[∣∣Eθε,+ [f(Yi, Xi−1, Xi)|Y∞:∞]− Eθε,− [f(Yi, Xi−1, Xi)|Y∞:∞]

∣∣]
= sup
f∈Lh∞

Eθ∗

[∣∣∣∣Eθε,+ [figθ|Y∞:−1;1:∞]

Eθε,+ [gθ|Y∞:−1;1:∞]
− Eθε,− [fig

ε
θ|Y∞:−1;1:∞]

Eθε,− [gεθ|Y∞:−1;1:∞]

∣∣∣∣] (C-113)
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where we have used the shorthand gθ = gθ (Y0|X0), fi = f(Yi, Xi−1, Xi) etc.. Simple algebra and (C-92) show that
the right hand side of (C-113) is bounded by

sup
f∈Lh∞

Eθ∗

[∣∣∣∣Eθε,+ [figθ|Y∞:−1;1:∞]

Eθε,+ [gθ|Y∞:−1;1:∞]
− Eθε,− [fig

ε
θ|Y∞:−1;1:∞]

Eθε,− [gθ|Y∞:−1;1:∞]

+
Eθε,− [fig

ε
θ|Y∞:−1;1:∞]

Eθε,− [gεθ|Y∞:−1;1:∞]

(
Eθε,− [gεθ|Y∞:−1;1:∞]− Eθε,− [gθ|Y∞:−1;1:∞]

Eθε,− [gθ|Y∞:−1;1:∞]

) ∣∣∣∣]
= sup
f∈Lh∞

Eθ∗

[∣∣∣∣− ε2Eθε,+ [K1
fi
gθ
∇2
ygθ|Y∞:∞

]
− Eθε,+

[
r (θ, ε)

gθ
fi|Y∞:∞

]
+ Eθε,− [fi|Y∞:∞]

(
ε2Eθε,+

[
K1

1

gθ
∇2
ygθ|Y∞:∞

]
+ Eθε,+

[
r (θ, ε)

gθ
|Y∞:∞

]) ∣∣∣∣] (C-114)

where K1 is as in (C-110), ∇2
ygθ = ∇2

ygθ (Y0|X0) and r (θ, ε) = r (θ, ε,X0, Y0) and r(θ, ε, x, y) is as in (C-110).
The next step is to bound the terms on the right hand side of (C-114). First note that by Hölder’s inequality,

Lemma A.4 and Remarks C.8 and C.9 we have that

sup
f∈Lh∞

Eθ∗

[∣∣∣∣Eθε,− [fi|Y∞:∞]Eθε,+

[
r (θ, ε)

gθ
|Y∞:∞

]
− Eθε,+

[
fi
r (θ, ε)

gθ
|Y∞:∞

] ∣∣∣∣]
= sup
f∈Lh∞

Eθ∗

[∣∣∣∣(Eθε,− [fi|Y∞:∞]− Eθε,+ [fi|Y∞:∞]
)
Eθε,+

[
r (θ, ε)

gθ
|Y∞:∞

]
+Eθε,+ [fi|Y∞:∞]Eθε,+

[
r (θ, ε)

gθ
|Y∞:∞

]
− Eθε,+

[
fi
r (θ, ε)

gθ
|Y∞:∞

] ∣∣∣∣]
≤ 8ρ|i|−1Eθ∗

[
sup
x∈X
|r (θ, ε, x, Y0)|2

] 1
2

Eθ∗
[
h2
] 1

2 . (C-115)

Similarly one may show that

sup
f∈Lh∞

ε2Eθ∗

[∣∣∣∣Eθε,− [fi|Y∞:∞]Eθε,+

[
K1

1

gθ
∇2
ygθ|Y∞:∞

]
− Eθε,+

[
K1

fi
gθ
∇2
ygθ|Y∞:∞

] ∣∣∣∣],
sup
f∈Lh∞

ε2Eθ∗

[∣∣∣∣Eθ [fi|Y∞:∞]Eθ

[
K1

1

gθ
∇2
ygθ|Y∞:∞

]
− Eθ

[
K1

fi
gθ
∇2
ygθ|Y∞:∞

] ∣∣∣∣]

≤ 8ε2ρ|i|−1Eθ∗

[
sup
x∈X

∣∣∣∣∣K1

∇2
ygθ (Y0|x)

gθ (Y0|x)

∣∣∣∣∣
]
Eθ∗

[
h2
] 1

2 . (C-116)

Equations (C-106) and (C-107) now follow from (C-112), (C-114), (C-115) and (C-116). We have by (C-111) and
(C-115) and assumption (A7) that

lim
ε→0

1

ε2
sup
f∈Lh∞

Eθ∗

[∣∣∣∣Eθε,− [fi|Y∞:∞]Eθε,+

[
r (θ, ε)

gθ
|Y∞:∞

]
− Eθε,+

[
fi
r (θ, ε)

gθ
|Y∞:∞

] ∣∣∣∣] = 0

and hence it follows from (C-112) and (C-114)that in order to prove (C-108) it is sufficient to show that

lim
ε→0

sup
f∈Lh∞

Eθ∗

[∣∣∣∣Eθ [K1
fi
gθ
∇2
ygθ|Y∞:∞

]
− Eθ [fi|Y∞:∞]Eθ

[
K1

fi
gθ
∇2
ygθ|Y∞:∞

]
+ Eθε,− [fi|Y∞:∞]Eθε,+

[
K1

fi
gθ
∇2
ygθ|Y∞:∞

]
− Eθε,+

[
K1

fi
gθ
∇2
ygθ|Y∞:∞

] ∣∣∣∣] = 0. (C-117)

Finally we note that

lim
ε→0

sup
f∈Lh∞

Eθ∗

[∣∣∣∣Eθ [K1
fi
gθ
∇2
ygθ|Y∞:∞

]
− Eθε,+

[
K1

fi
gθ
∇2
ygθ|Y∞:∞

] ∣∣∣∣]
≤ lim
ε→0

K1Eθ∗

[
|h| sup

x∈X

∣∣∣∣ 1

gθ
∇2
ygθ

∣∣∣∣ ‖Pθ (Xi−1, X1|Y∞:∞)− Pθε,+ (Xi−1, X1|Y∞:∞)‖TV
]

which is equal to zero by Lemma C.14. A similar result holds for the remaining terms in (C-117) and thus the proof
is complete.
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Proof of Lemma C.12. It follows from (C-93) that in order to prove the lemma it is sufficient to show that there
exists a constant C <∞ and a constant 0 < ρ < 1 such that∣∣∣Eθ∗ [Eθε,+ [∇θ (log gθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]]

− Eθ∗ [Eθε,− [∇θ (log gθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]]
∣∣∣ ≤ Cε2ρ|i| (C-118)

for all i 6= 0 and that there exists a sequence of vectors . . . , V−1, V0, V1, . . . such that

|Vi| ≤ Cρ|i| (C-119)

for all i,

Eθ∗ [Eθε,+ [∇θ (log gθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]

− Eθ∗ [Eθε,− [∇θ (log gεθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]] = ε2V1 + o(ε2) (C-120)

and

Eθ∗ [Eθε,+ [∇θ (log gθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]]

− Eθ∗ [Eθε,− [∇θ (log gθ (Yi|Xi) qθ (Xi−1, Xi)) |Y∞:∞]] = ε2Vi + o(ε2) (C-121)

for all i 6= 0.
We shall show that (C-118)-(C-121) hold with the sequence of vectors

Vi , Eπθ,i [∇θ (log gθ (Yi|Xi) qθ (Xi−1, Xi))]

where for all i the signed measure πθ,i is as in Lemma C.15. We start by noting that, with the sequence of vectors Vi
defined above, equations (C-118), (C-119) and (C-121) are immediate consequences of Lemma C.15. Furthermore
since

Eθ∗ [Eθε,+ [∇θ (log gθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]

− Eθ∗ [Eθε,− [∇θ (log gεθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]

= Eθ∗ [Eθε,+ [∇θ (log gθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]

− Eθ∗ [Eθε,+ [∇θ (log gεθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]

+ Eθ∗ [Eθε,+ [∇θ (log gεθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]

− Eθ∗ [Eθε,− [∇θ (log gεθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]] (C-122)

it follows from Lemma C.15 that in order to prove (C-120) it is sufficient to show that

lim
ε→0

1

ε2

(
Eθ∗ [Eθε,+ [∇θ (log gθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]

− Eθ∗ [Eθε,+ [∇θ (log gεθ (Y0|X0) qθ (X−1, X0)) |Y∞:∞]]
)

(C-123)

exists and is finite. We first observe that by (C-109) we have that (C-123) is equal to

lim
ε→0

1

ε2
Eθ∗

[
Eθε,+

[∇θgθ (Y0|X0)

gθ (Y0|X0)
− ∇θg

ε
θ (Y0|X0)

gεθ (Y0|X0)
|Y∞:∞

]]
.

The result now follows from (C-110), assumptions (A2), (A3), (A5) and (A7), the dominated convergence theorem
and the fact that

∇θgθ (Y0|X0)

gθ (Y0|X0)
− ∇θg

ε
θ (Y0|X0)

gεθ (Y0|X0)
=

(∇θgθ (Y0|X0)

gθ (Y0|X0)
− ∇θg

ε
θ (Y0|X0)

gθ (Y0|X0)

)
+
∇θgεθ (Y0|X0)

gεθ (Y0|X0)

(
gεθ (Y0|X0)− gθ (Y0|X0)

gθ (Y0|X0)

)
.
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Appendix D: Proof of Theorem 3.5
The proof of Theorem 3.5 is very similar to that of Theorem 3.4 and so we shall just provide a sketch of the most
important points. Firstly, given any h ∈ L2(Pθ∗), recall the definition of Lh∞ in Lemma C.15. Using exactly the
same methods as were used to prove that lemma one can show that for all θ and ε there exist a finite constant C
and a sequence of signed measures πθ,i,ε such that

Eθε,+ [f(Yi, Xi−1, Xi)|Y∞:∞]− Eθε,− [f(Yi, Xi−1, Xi)|Y∞:∞] = εEπθ,i,ε [f(Yi, x, x
′)]

and

sup
f∈Lh∞

Eθ∗
[∣∣Eπθ,i [f(Yi, x, x

′)]
∣∣] ≤ Cρ|i|Eθ∗ [h2

] 1
2 .

One can then use the above result along with Lemmas C.13 and C.14 to show that

∇θlε(θ∗)−∇θl(θ∗) = O(ε). (D-124)

Theorem 3.5 can then be proved from (D-124) in exactly the same way that Theorem 3.4 is proved using (C-83).
We leave the details to the reader.
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