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Engineering a short-chain 
dehydrogenase/reductase for 
the stereoselective production of 
(2S,3R,4S)-4-hydroxyisoleucine 
with three asymmetric centers
Xuan Shi1, Takuya Miyakawa1, Akira Nakamura   1, Feng Hou1, Makoto Hibi   2, Jun Ogawa3, 
Yeondae Kwon1 & Masaru Tanokura   1

Fenugreek is a dietary supplement for anti-aging and human health. (2S,3R,4S)-4-hydroxyisoleucine 
(4-HIL), which is extracted from fenugreek seeds, is expected to be a promising orally active drug for 
diabetes and diabetic nephropathy because of its insulinotropic effect. Although several chemical 
synthesis methods of 4-HIL have been proposed, these methods require multistep reactions to control 
the stereochemistry of 4-HIL. In this study, we modified the key enzyme 4-HIL dehydrogenase (HILDH) 
to overcome the biggest limitation in commercial-scale production of 4-HIL. As a result, an effective 
one-step carbonyl reduction to produce (2S,3R,4S)-4-HIL was successfully accomplished with strict 
stereoselectivity (>99% de). Mass production of (2S,3R,4S)-4-HIL by our synthetic method could have 
a significant contribution to the prevention of diabetes, dyslipidemia, and Alzheimer’s disease. (120 
words/200 words)

Fenugreek (Trigonella foenum-graecum) is one of the oldest and most promising medicinal herbs1. It has been 
in use for over 2,500 years, mainly in Asia, Africa and Latin America, and has been employed for numerous 
medicinal purposes including as an antibacterial, gastric stimulant and antidiabetic agent. In recent decades, the 
therapeutic benefits of fenugreek have been identified in animal studies as well as human trials, including antidi-
abetic2–5, anti-infective6,7, anti-inflammatory8–11, anticancer12–15, hypolipidemic16–18, hypocholesterolemic2,3,5,19, 
antioxidant8,20–22, cardioprotective23–26 and digestive stimulant activities27. 4-hydroxyisoleucine (4-HIL), which is 
extracted from fenugreek seeds, is a major compound that contributes to the physiological function of fenugreek. 
4-HIL is a natural non-proteinogenic amino acid that can exist as eight stereoisomers because of its three chiral 
centers (Supplementary Fig. S1). Two diastereomers of 4-HIL were initially identified from fenugreek seeds28. 
The major one possesses a 2S,3R,4S configuration (up to 90% of total 4-HIL content of seeds) and the minor 
one has a 2R,3R,4S configuration29. (2S,3R,4S)-4-HIL has insulinotropic effect by directly affecting pancreatic 
B cells in rats and humans30–35. It has also been proven to possess insulin-sensitizing effects in liver and skeletal 
muscle36. A recent study showed that (2S,3R,4S)-4-HIL attenuates insulin resistance by decreasing tumor necrosis 
factor-α (TNF-α)37 and the activation of AMP-activated protein kinase (AMPK)38. Because of such insulinotropic 
effect and insulin sensitivity improvement, (2S,3R,4S)-4-HIL is expected to be a promising orally active drug for 
diabetes and diabetic nephropathy. In contrast to other antidiabetic agents, (2S,3R,4S)-4-HIL mediates insu-
lin response and is strictly dependent on glucose concentration30–36. This unique property prevents undesirable 
side-effects such as hypoglycemia in the therapy of type 2 diabetes mellitus (T2DM). Meanwhile, as the number 
of elderly people increases, there will be a corresponding increase in the risk of Alzheimer’s disease (AD)39–41. It 
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is hypothesized that many AD patients have comorbid T2DM42. The effects of insulin and glucose metabolism on 
the risk of developing dementia, especially AD, have been studied43–45. Therefore, increased insulin resistance is 
likely to lead not only to diabetes but also to dementia.

Extraction of 4-HIL from fenugreek seeds is poorly suited to industrial scale-up because of low content 
(0.56 wt%)35. Several routes have been proposed for the synthesis of (2S,3R,4S)-4-HIL, such as traditional 
chemical methods or chemoenzymatic synthesis46–48. These methods require multistep reactions to control the 
stereochemistry of 4-HIL, with three chiral centers. Recently, 4-HIL dehydrogenase (HILDH) from Bacillus 
thuringiensis 2e2 was identified as a microbial enzyme that dehydrogenates (2S,3R,4S)-4-HIL into (2S,3R)-
2-amino-3-methyl-4-ketopentanoic acid (AMKP) in the presence of NAD+49. HILDH belongs to the short-chain 
dehydrogenase/reductase (SDR) superfamily. Our further study found that HILDH could reversibly catalyze 
AMKP to produce 4-HIL. The racemic mixtures of AMKP that contains four stereoisomers could be reduced to 
eight possible stereoisomers of 4-HIL (Supplementary Fig. S1). HILDH reduces the racemic AMKP to (2S,3R,4S)-
4-HIL and the other seven stereoisomers of 4-HIL in an NADH-dependent manner, suggesting that HILDH 
has nearly no stereoselectivity with AMKP (Fig. 1). The (2S,3R,4S)-4-HIL could be oxidized by HILDH in an 
NAD+-dependent manner and produces only one isomer, (2S,3R)-AMKP49. Therefore, the chirality of AMKP at 
the positions 2 and 3 is not converted during the reduction reaction by HILDH, which does not contradict the 
general reaction mechanism of SDR proteins. AMKP is known as a vitamin B12 antimetabolite and could be iso-
lated as stereoisomeric mixtures from Bacillus cereus 439 fermentations50. The stereoisomeric mixtures of AMKP 
can be easily synthesized by condensation of 2-bromo-3-butanone and diethyl acetamidomalonate, followed by 
hydrolysis with 6 N HCl50. The stereoselectivity of HILDH is not strict enough for producing (2S,3R,4S)-4-HIL, as 
its production ratio is 13% among the eight 4-HIL stereoisomers, which are potentially produced by the reduction 
of the carbonyl group of the racemic AMPK, which itself occurs as four stereoisomers (Fig. 1b). Thus, protein 
engineering of HILDH is required to address the limited industrial uses of this enzyme. There are two main 
approaches for protein engineering: directed evolution and rational design. Because the directed evolution needs 
several rounds of evolution to be applied and numerous mutants to be screened, protein engineering is developing 
more and more from random approaches to rational design such as site-specific mutagenesis or structure-guided 
recombination51. In many case, changing of selectivity or activity of an enzyme usually targets directly the active 
site. Protein structure could be helped to understand the basis of reaction mechanism and provides appropriates 
ideas for point mutation. Thus, a structural basis for enhancing the stereoselectivity of (2S,3R,4S)-4-HIL could 
provide direction for the protein engineering of HILDH.

Reductases are currently the most promising kind of enzymes in producing chiral compounds due to their 
conciseness, low-cost and environment-friendly nature in reaction process. Therefore, optimizing reductases 
to improve their stereoselectivity also has been actively developed. In this study, we modified the key enzyme, 
HILDH by site-specific mutagenesis to improve its stereoselectivity toward (2S,3R,4S)-4-HIL. As a result, a double 
mutant of HILDH produces (2S,3R,4S)-4-HIL with strict stereoselectivity (>99% de). The native HILDH shows 
no stereoselectivity except for one stereoisomer. It reduces the racemic substrate with two asymmetric centers to 

Figure 1.  The enzymatic reaction of HILDH and 4-HIL stereoisomers production. (a) Schematic diagram 
of the enzymatic reaction of HILDH. HILDH reduces AMKP to 4-HIL in an NADH-dependent manner. 
Asymmetric centers are shown in asterisks. (b) HPLC chromatogram of 4-HIL stereoisomers produced (left) 
and their production ratios (right). The reaction mixtures were derivatized with GITC and detected by HPLC. 
Each peak label on the chromatogram (left) corresponds to each 4-HIL stereoisomer listed on the right. “No 
enzyme” indicates the reaction mixtures without HILDH.
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produce seven stereoisomers among eight possible types. However, the engineered HILDH has strict stereose-
lectivity toward three asymmetric centers of 4-HIL. To the best of our knowledge, this study is the first to report 
engineering of an enzyme to improve stereoselectivity toward three asymmetric centers. In addition, an NADH 
regeneration system using formate dehydrogenase (FDH) was introduced to scale up the reaction. FDH has rel-
atively low activity and is labile. To overcome such disadvantages, several FDH mutants have been developed to 
improve their catalytic properties and stability52,53. Besides, considering the ease of separating product carbon 
dioxide, NADH recycling coupled with FDH is economically viable in the industrial use of NADH-dependent 
HILDH. Mass production of this important amino acid using this synthetic method could lead to a significant 
contribution in the prevention of diabetes, dyslipidemia, and AD. In addition, it establishes the value of food for 
disease prevention beyond the conventional view that dietary supplements and herbs can only be taken for health 
maintenance.

Results and Discussion
Crystal structure of HILDH and 4-HIL-binding mode in the active site of HILDH.  The crystal 
structure of the HILDH-NADH complex has been determined at 2.20 Å resolution. HILDH forms a tetrameric 
structure, and each subunit consists of seven α-helices, seven β-strands and three 310-helices (Fig. 2a and 
Supplementary Fig. S2). The subunit structure is divided into two subdomains: the main body and the substrate 
binding unit. The main body of α/β-folding patterns adopts the Rossmann fold, which is conserved in SDRs. 
The central β-sheet consists of seven parallel β-strands (β1‒β7) sandwiched between two sets of three parallel 
α-helices (α1, α2 and α7 on one side and α3, α4 and α6 on the opposite side). The α5 helix and three 310-helices 
are located on the C-terminal side of the Rossmann fold structure to form the substrate binding unit. The crystal 
structure of the HILDH-NADH-succinate complex was determined at 2.35 Å resolution. No significant structural 
differences were found between the structures of HILDH-NADH and HILDH-NADH-succinate, with RMSDs of 
0.2-0.3 Å for α-carbons. Succinate, which has structural similarity to 4-HIL, was chosen as a substrate analogue. 

Figure 2.  Crystal structure of HILDH in complex with NADH and succinate. (a) The core β-strands, α-helices 
and 310-helices are shown in orange, slate and cyan, respectively. The N- and C-termini are labeled as N and C, 
respectively. NADH is represented as green sticks. (b) Fo - Fc electron density omit maps (σ = 1.0) of NADH and 
succinate bound in chains A (left) and B (right). The chains A and B mean two different subunits of HILDH. In 
the HILDH-NADH-succinate crystal structure, NADH, succinate and HILDH are shown in white, orange and 
slate sticks, respectively. Dotted lines show hydrogen bonds or salt bridges.
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In the HILDH-NADH-succinate complex, the electron density maps of succinate are observed in chains A and 
B. The succinate molecule in chain A is bound to the active site of HILDH through 4 hydrogen bonds and a salt 
bridge (Fig. 2b and Supplementary Table S2). The carboxy group at the C1 position is recognized by R88 and 
R147, and the carboxy group at C4 position is recognized by S137 and Y150. Additionally, the electron density 
map of the nicotinamide ring of NADH is observed clearly in each subunit. The reaction mechanism of SDRs 
requires two types of transfer: a hydride transfer from the nicotinamide ring to the carbonyl group of the sub-
strate and a proton transfer from the catalytic residue Y (Y150 in HILDH) to the carbonyl group of the substrate. 
In the structure of HILDH-NADH-succinate, the O3 atom of succinate forms hydrogen bonds with S137 and 
Y150 at 2.8 Å and 2.9 Å, respectively. The C4 atom of nicotinamide is 3.4 Å from the O3 atom of succinate. When 
the substrate binds to the active site of HILDH with the same binding mode as succinate, a hydride is effectively 
transferred from the C4 of nicotinamide to the carbonyl group of AMKP. A proton transfer can also take place 
from catalytic residue Y150 to the carbonyl group of AMKP, making the reduced hydroxyl group face toward 
Y150. In this reaction mechanism, the reduced hydroxyl group adopts the R-form; and the binding mode of suc-
cinate mimics that of AMKP to produce the 4R form of 4-HIL (Supplementary Fig. S3 and Fig. 3a).

To gain insight into the stereoselective reduction of HILDH, we chose (2S,3R,4R)-4-HIL and (2S,3R,4S)-
4-HIL as typical 4R and 4S forms of 4-HIL, respectively, and built two binding models. The binding model of 
(2S,3R,4R)-4-HIL was built by superimposing the C1 and C4 atoms of (2S,3R,4R)-4-HIL onto the positions of C1 

Figure 3.  4-HIL-binding mode in the active site of HILDH. (a) The putative binding mode of (2S,3R,4R)-4-HIL 
to HILDH. (2S,3R,4R)-4-HIL, HILDH and NADH are shown in orange, slate and white sticks, respectively. The 
hydride transfer direction is shown with an arrow. (b) The interaction between (2S,3R,4R)-4-HIL and HILDH, 
where (2S,3R,4R)-4-HIL, HILDH and NADH are shown in orange, slate and white sticks, respectively. Dotted 
lines show potential hydrogen bonds or salt bridges. Distances are denoted in angstroms. (c) The binding model 
of (2S,3R,4S)-4-HIL constructed by docking simulation; (2S,3R,4S)-4-HIL, HILDH and NADH are shown 
in yellow, slate and white sticks, respectively. The hydride transfer direction is shown with an arrow. (d) The 
interaction between (2S,3R,4S)-4-HIL and HILDH, where (2S,3R,4S)-4-HIL, HILDH and NADH are shown in 
yellow, slate and white sticks, respectively. Dotted lines show potential hydrogen bonds or salt bridges. Distances 
are denoted in angstroms.
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and C4 atoms of succinate in the HILDH-NADH-succinate structure (Supplementary Fig. S3). Figure 3b shows 
the putative binding mode of (2S,3R,4R)-4-HIL in the active site of HILDH, showing that R88, R147 and Y191 are 
located within a distance that permits the formation of hydrogen bonds and salt bridge with the carboxy group 
of (2S,3R,4R)-4-HIL. Because the enzyme reaction is performed at pH 9.1, the side chain of arginine residue 
is presumed to be positively charged and the carboxy group of substrate/product is presumed to be negatively 
charged (Supplementary Fig. S4). Thus, R88 is supposed to form salt bridge to recognize the carboxy group of 
4-HIL. As shown in Fig. 3b, the 2S-amino-group of 4R-4-HIL is recognized by the amide oxygen of the nicotina-
mide ring. Thus, it is supposed that the stereoselectivity toward 2 S form is higher than 2R form in the 4R-4-HIL 
binding mode. Besides, the 3-methyl group could be form van der Waals contact with the nicotinamide ring of 
NADH when it adopts 3S configuration, supposing that the stereoselectivity toward (2R,3S,4R)-4-HIL is higher 
than that of (2R,3R,4R)-4-HIL. These assumptions are also supported by high-performance liquid chromatog-
raphy (HPLC) analysis. As shown in Fig. 1 and Supplementary Table S3, the production ratios of (2S,3R,4R)- 
and (2S,3S,4R)-4-HIL (14.2% and 13.0%, respectively) are higher than that of (2R,3S,4R)-4-HIL (11.3%) and 
(2R,3R,4R)-4-HIL (1.3%). The binding model of (2S,3R,4S)-4-HIL was constructed by docking simulation. The 
lowest-energy docked model in which hydride/proton transfer could take place effectively was chosen as the 
binding model of (2S,3R,4S)-4-HIL to HILDH (Fig. 3c). As shown in Fig. 3d, the constructed model indicated 
that the carboxy group of (2S,3R,4S)-4-HIL could interact with R147 and Y191. No residue can directly interact 
with both binding models of 4-HIL, except for R88, R147 and Y191 and the two catalytic residues S137 and Y150. 
The distance between R88 and (2S,3R,4S)-4-HIL is more than 4 Å, meaning no ionic or hydrogen bond could be 
formed. Figure 4 shows the binding mode of (2S,3R,4R)- and (2S,3R,4S)-4-HIL. The carboxy group of 4S-4-HIL 
is recognized by R147 and Y191, while the carboxy group of 4R-4-HIL is recognized by R88, R147 and Y191. That 
is to say, the carboxy groups of 4S- and 4R-4-HIL are recognized by different residues, forming different carboxy 
group binding modes. Because R88 is the residue that participates only in the 4R-4-HIL recognition, R88 is pre-
dicted to be a key residue that enhances the stereoselectivity toward the 4R-4-HIL.

Because the substrate used for the reaction is a racemic compound, several types of substrate-binding modes 
could be formed. The substrate with the carboxy group recognized by R88, R147 and Y191 would be reduced by 
4R-4-HIL. The substrate with the carboxy group recognized by R147 and Y191 would be reduced by 4S-4-HIL. 
These recognition modes were presumed based on the product-binding modes that show different recognition 
patterns of the carboxy group of products. Thus, the product binding modes are more suitable for discussion.

Residues recognizing the C4-Carboxy group of AMKP control the stereoselective reduction of 
HILDH.  Based on the binding models of 4-HIL, we prepared the A mutants of R88, R147 and Y191 and meas-
ured their catalytic activities. The kinetic parameters are summarized in Table 1. Compared to the wild type, 
R88A and Y191A mutants showed very low activities (4% and 6%, respectively). The R147A mutant retained 
32% activity and the catalytic efficiency (kcat/Km) was 40.7% of the wild type, mainly due to the lower kcat. These 
results suggest that the R88A, R147A and Y191A mutants affect enzyme activity in the reduction of AMKP. 
These results also suggest that the residues recognizing the C4-carboxy group of 4-HIL contributed to substrate 
recognition. To assess the effect of these residues on stereoselectivity, the 4-HIL stereoisomers produced by the 
wild type and mutants were measured by HPLC. The yield and composition of each 4-HIL stereoisomer are 
summarized in Supplementary Table S3 and Fig. 5a. The HPLC analysis showed that HILDH reduced the race-
mic AMKP to 4-HIL with loose stereoselectivity, producing eight 4-HIL stereoisomers, including (2S,3R,4S)-
4-HIL in the production ratio of 13.0%. In the wild type, the production ratios of the seven 4-HIL stereoisomers 
except (2R,3R,4R)-4-HIL were nearly the same (11.3–18.8%). The production ratios of the 4R and 4S forms of 
4-HIL were 39.7% and 60.3%, respectively. In the R88A mutant, the production ratio of the 4R form decreased 
to 13.1% and the production ratio of 4S form increased to 86.9%. This indicates that R88 plays an important role 
in recognizing the 4R form of 4-HIL, consistent with structural inspection of the 4-HIL-binding models. The 
production ratios of the 4R and 4S forms of 4-HIL in the R147A and Y191A mutants were similar to that of wild 
type (1:1.1 and 1:0.97, respectively). However, the production ratio of each 4-HIL stereoisomer changed. In the 
R147A mutant, the production of the 2S,3R,4S form fell to 0.6%, indicating that R147 is required to maintain the 
productivity of (2S,3R,4S)-4-HIL. On the other hand, the Y191A mutation increased the production ratio of the 
2S,3S,4R form to 45.2% and decreased the 2R,3S,4S and 2R,3S,4R forms to 0.8% and 1.0%, respectively, indicating 
that substitution of Y191 for A led to a decrease in stereoselectivity toward 2R,3S-AMKP.

Although we failed to obtain a substrate- or product-binding structure, the results of site-directed mutagen-
esis support the validity of the 4-HIL-binding model. Thus, we started protein engineering of HILDH to create a 
novel engineered AMKP reductase that stereoselectively produces (2S,3R,4S)-4-HIL. Because the R88A mutation 
showed the most significant improvement in selectivity toward (2S,3R,4S)-4-HIL, we performed site-saturation 
mutagenesis of R88 for the first round of enzyme engineering. The result of HPLC analysis is shown in Fig. 5b and 
Supplementary Table S4. The R88D mutant produced only two 4-HIL diastereomers, (2S,3R,4S)- and (2S,3S,4R)-
4-HIL. The purity of (2S,3R,4S)-4-HIL was 94.2%, making this mutant the most stereoselective. Similar selectivity 
changes were also observed in the R88C, R88F and R88G mutants, producing (2S,3R,4S)-4-HIL at purities of 
88.3%, 84.7% and 80.4%, respectively. The increased stereoselectivity for 4S was also observed in the R88A, R88E 
R88L and R88N mutants. The R88H, R88T, R88Q, R88S, R88K, R88I and R88V mutants showed lower stereose-
lectivity for 4S as compared with the wild type. These results suggest that acidic and some hydrophobic residues 
decrease the production of 4R by weakening its interaction with the C4-carboxy group of 4-HIL.

Improved stereoselectivity toward (2S,3R,4S)-4-HIL by the combination of mutagenesis.  To 
further improve stereoselectivity toward (2S,3R,4S)-4-HIL, 2S-amino-group recognition by polar amino acids 
may be required in addition to interaction with the C4-carboxy group. Among the amino acid residues located 
near (2S,3R,4S)-4-HIL, we chose W242 and E144 as candidate residues for protein engineering (Fig. 6a). W242 
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Figure 4.  The comparison of (2S,3R,4R)- and (2S,3R,4S)-4-HIL-binding modes. (2S,3R,4R)-4-HIL and 
(2S,3R,4S)-4-HIL are shown in cyan and magenta sticks, respectively. NADH and HILDH are shown in slate 
and white sticks, respectively. Dotted lines show potential hydrogen bonds or salt bridges.

Enzyme Specific activity (U/mg)a Km (mM)a kcat a(s−1)a kcat/ Km (s−1 mM−1)

Wild type 564.5 ± 12.9 2.0 ± 0.5 532.3 ± 65.1 266.2

R88A 25.0 ± 14.5 NDb NDb NDb

R147A 181.1 ± 13.1 2.3 ± 0.9 249.2 ± 47.5 108.4

Y191A 31.6 ± 4.5 NDb NDb NDb

Table 1.  NADH-dependent activity and kinetic parameters of the wild-type and the mutant HILDH. 
aMean ± standard error (n = 3). bND means not detected.
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is located near the 2S-amino group of (2S,3R,4S)-4-HIL, with a distance of 5.7 Å. E144 is located near the car-
boxy group of (2S,3R,4S)-4-HIL with a distance of 3.2 Å, and may interfere with 4-HIL binding to produce the 
4S form. We have confirmed that the amino group of 4-HIL is protonated at pH 9.1 (Supplementary Fig. S4). 
Because the distance between W242 and the amino group of 4-HIL is 5.7 Å, we presumed that W242 mutation to 
polar amino acids with long side chains may form water-mediated hydrogen bonds with the amino group or/and 
carboxy group of (2S, 3R, 4S)-4-HIL. We evaluated stereoselectivity changes induced by the W242E/K/N/Q/R/D 
mutations. All mutations except for the W242D mutation enhanced selectivity toward (2S,3R,4S)-4-HIL (Fig. 5c 
and Supplementary Table S5). Among them, the W242E mutant showed the highest stereoselectivity toward 
(2S,3R,4S)-4-HIL and produced (2S,3R,4S)-4-HIL at a purity of 86.5%. In the first round of enzyme engineering, 
the R88D, R88C, R88F and R88G mutants showed high stereoselectivity toward (2S,3R,4S)-4-HIL. Using these 
four R88 mutants as template enzymes, we constructed double mutants by substituting W242 with E, K, N, Q 
and R. When the reaction product of each mutant was analyzed by HPLC, the R88C/W242N, R88C/W242E, 
R88C/W242K, R88C/W242Q and R88G/W242R mutants produced two 4-HIL diastereomers: (2S,3R,4S)- and 
(2S,3S,4R)-4-HIL (Supplementary Table S6). The R88G/W242E, R88G/W242N and R88G/W242Q mutants pro-
duced three 4-HIL stereoisomers: (2S,3R,4S)-, (2R,3R,4S)- and (2S,3S,4R)-4-HIL, and other mutants showed no 
activity (data not shown). The R88C/W242N mutant showed the highest stereoselectivity toward (2S,3R,4S)-
4-HIL, producing (2S,3R,4S)-4-HIL at a purity of 90.8%. Because the stereoselectivity of the double mutant is 
lower than those of each single mutant at R88 and W242, other mutational combinations are required to improve 
the stereoselectivity toward (2S,3R,4S)-4-HIL.

To enhance the interaction with the C4-carboxy group in the (2S,3R,4S)-4-HIL-binding model, we constructed 
double and triple mutants of HILDH by substituting E144 to R or K in the R88 single mutants (R88D, R88C, R88F 
and R88G), the W242 single mutants (W242E, W242K, W242N, W242Q and W242R) and the R88/W242 double 
mutants (R88C/W242N, R88C/W242E, R88C/W242K, R88C/W242Q, R88G/W242R). All triple mutants showed 
no activity. On the other hand, E144K/W242E, E144K/W242N, E144K/W242Q and E144K/W242R produced 
two types of 4-HIL diastereomers: (2S,3R,4S)-4-HIL as a main product and a small amount of (2S,3S,4R)-4-HIL 
as a minor product (Fig. 6b and Supplementary Table S7). Among them, the E144K/W242Q double mutant pro-
duced (2S,3R,4S)-4-HIL at a purity of 99.1%, high enough optical purity for industrial use. The yield of (2S,3R,4S)-
4-HIL after 24 h reaction in the E144K/W242Q mutant (151.9 ± 43.3 μg/ml) was comparable to that of wild-type 
(95.2 ± 10.3 μg/ml), suggesting that these mutations did not affect the production yield of (2S,3R,4S)-4-HIL.

Figure 5.  HPLC analysis of 4-HIL stereoisomers produced by the wild-type (WT) and the mutant HILDH. (a) 
HPLC chromatogram (left) and bar graph (right) of 4-HIL stereoisomers produced by the wild-type HILDH 
and the mutants of R88, R147 and Y191. “No enzyme” represents the reaction mixtures without HILDH. The 
reaction mixtures were derivatized with GITC and detected by HPLC. For all rows, dotted line in bar graph 
divides products into 4S forms (below the dotted line) and 4R forms (above the dotted line) of 4-HIL. (b) 
4-HIL stereoisomers produced by the R88 mutants. ND means not detected by HPLC analysis. Dotted line 
divides products into 4S forms (below the dotted line) and 4R forms (above the dotted line) of 4-HIL. (c) 4-HIL 
stereoisomers produced by the W242 mutants. ND means not detected by HPLC analysis. Dotted line divides 
products into 4S forms (below the dotted line) and 4R forms (above the dotted line) of 4-HIL.
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Figure 6.  Improved stereoselectivity of the E144/W242 double mutant toward (2S,3R,4S)-4-HIL. (a) Binding 
model of (2S,3R,4S)-4-HIL to the active site of HILDH. (2S,3R,4S)-4-HIL, HILDH and NADH are shown in 
yellow, slate and white sticks. Distances in angstroms are denoted by dotted lines. (b) HPLC chromatogram 
(upper) and bar graph (lower) of 4-HIL stereoisomers produced by the wild type (WT) and the double mutants 
of E144 and W242. “No enzyme” indicates the reaction mixtures without HILDH. The reaction mixtures were 
derivatized with GITC and detected by HPLC. Dotted line in bar graph divides products into 4S forms (below 
the dotted line) and 4R forms (above the dotted line) of 4-HIL. (c) Fo - Fc electron density omit map (σ = 1.0) of 
K144 and Q242 of HILDHE144K/W242Q-NADH- succinate complex. Succinate, HILDH and NADH are shown in 
orange, slate and white sticks, respectively. Red spheres represent water molecules. Dotted lines show potential 
hydrogen bonds or salt bridges. Distances are denoted in angstroms. (d) Fo - Fc electron density omit map 
(σ = 1.0) of succinate bounded in the structure of HILDHE144K/W242Q-NADH- succinate complex. Succinate, 
HILDH and NADH are shown in orange, slate and white sticks, respectively. Dotted lines show hydrogen 
bonds or salt bridges. (e) The binding model of (2S,3R,4S)-4-HIL to HILDHE144K/W242Q constructed by docking 
simulation. K144 and Q242 are shown in pink sticks. (2S,3R,4S)-4-HIL, HILDH and NADH are shown in 
yellow, slate and white sticks, respectively. Red spheres represent water molecules. Dotted lines show potential 
hydrogen bonds or salt bridges. Distances are denoted in angstroms.
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Structural basis of strict stereoselectivity toward (2S,3R,4S)-4-HIL.  To explain the structural 
mechanism of the high selectivity of the E144K/W242Q mutant toward (2S,3R,4S)-4-HIL, we solved the crystal 
structure of HILDHE144K/W242Q in complex with NADH and succinate at 1.90 Å resolution. The electron densities of 
succinate molecules, K144 and Q242 are clearly observed in the active site of all four subunits to HILDHE144K/W242Q  
(Fig. 6c and d). The electron density of the K residue is often obscured because the side-chain is flexible. However, 
in the crystal structure of HILDHE144K/W242Q, the electron density of K144 is clearly observed; the side-chain 
configuration of K144 is fixed by a hydrogen-bonding network with succinate, Q242 and a water molecule. The 
side-chain amino group of K144 forms a hydrogen bond with the side-chain amide oxygen of Q242. A water 
molecule is trapped by the side-chain amino group of K144, the side-chain amide nitrogen of Q242 and the 
C1-carboxy group of succinate. The succinate molecule bound to the active site of HILDHE144K/W242Q is recognized 
by 7 residues of HILDHE144K/W242Q (Fig. 6d). The C4-carboxy group interacts with S137, S139, K144 and Y150. The 
carboxy group at C-1 is recognized by R88, R147 and Y191. The binding mode of succinate in the HILDHE144K/

W242Q mutant mimics that of the 4R form of 4-HIL, as well as the wild-type structure. The O3 atom of succinate 
forms hydrogen bonds with two catalytic residues: S137 and Y150. The O4 atom is recognized by S139 and K144, 
but not when the O4 atom is substituted by a methyl group in the 4R form of 4-HIL, the hydrophobic methyl 
group would hardly be adopted by hydrophilic S139 and K144. Therefore, the mutated K144 and Q242 play crit-
ical roles in decreasing stereoselectivity toward the 4R form of 4-HIL.

The binding model of (2S,3R,4S)-4-HIL to HILDHE144K/W242Q was built by docking simulation in the same 
way as the wild-type HILDH (Fig. 6e). The side-chain amino group of K144 can form a salt bridge with the 
C4-carboxy group of (2S,3R,4S)-4-HIL. Together with the side chain of Q242, K144 forms a hydrogen-bonding 
network through a water molecule that is used to recognize the 2S-amino group and C4-carboxy group of 
(2S,3R,4S)-4-HIL. Furthermore, the binding model showed that the 3R-methyl group of (2S,3R,4S)-4-HIL favora-
bly faced the hydrophobic pocket formed by the nicotinamide ring of NADH, L187 and T188. These interactions 
allow (2S,3R)-AMKP to specifically bind the active site, with the orientation enabling the substrate to be reduced 
to the 4S form. The HILDHE144K/W242Q mutant produced (2S,3R,4S)-4-HIL with strict stereoselectivity (>99% de), 
and the production yield of (2S,3R,4S)-4-HIL after 24 h reaction was the same as the wild type, despite it showed 
4% enzyme activity compared with the wild type. Compared to engineered enzymes, naturally evolved enzymes 
may be highly optimized through selection over millions of years. We used the Basic Local Alignment Search 
Tool (BLAST) to search for proteins carrying mutations similar to HILDHE144K/W242Q. We found no native enzyme 
possessing residues that determined stereoselectivity of HILDHE144K/W242Q toward (2S,3R,4S)-4-HIL, namely 
K144, R147, L187, T188, Y191 and Q242 of HILDHE144K/W242Q were not found by BLAST search (Supplementary 
Table S8).

Conclusions
Fenugreek seeds contain nutrients including β-carotene, ascorbate, fiber, vitamins and amino acids and are thus 
one of the most ancient medicinal herbs and an important dietary supplement for anti-aging and human health. 
To overcome the biggest limitation to commercial scale production of (2S,3R,4S)-4-HIL, we applied protein engi-
neering approach to modify the key enzyme 4-HIL dehydrogenase (HILDH). HILDH reduces the racemic AMKP 
to 4-HIL with loose stereoselectivity, producing seven 4-HIL stereoisomers, including (2S,3R,4S)-4-HIL in a pro-
duction ratio of 13%. Based on the structural insights obtained from the crystal structure and 4-HIL-binding 
models of HILDH, we succeeded in generating the E144K/W242Q double mutant (HILDHE144K/W242Q)  
via a protein engineering approach. The crystal structure of HILDHE144K/W242Q was solved to elucidate the struc-
tural mechanism of its strict stereoselectivity toward (2S,3R,4S)-4-HIL. The binding model of (2S,3R,4S)-4-HIL 
to HILDHE144K/W242Q suggests that mutated K144 and Q242 could not only strengthen the stereoselective rec-
ognition of (2S,3R,4S)-4-HIL but also decrease stereoselectivity toward the 4R form of 4-HIL. The engineered 
enzyme proposed in this study is expected to be used in industrial synthesis of (2S,3R,4S)-4-HIL. Furthermore, 
the structure-based protein engineering approach of HILDH could be useful for the synthesis of other 4-HIL ste-
reoisomers, including (2S,3S,4R)-4-HIL, which is extracted from Quararibea funebris flowers and used as a spice 
in Mexico54. This stereoisomer is also used in local medicine to control cough, fevers, menstrual disorder and 
psychopathic fears. Our innovative and effective method of synthesizing (2S,3R,4S)-4-HIL by modifying HILDH 
is expected to lead to its mass production and contribute to drug development for its application to various dis-
eases including diabetes. Further research would be needed in separating starting materials or using other race-
mic compound for commercial use. However, we expect that the structure-based protein engineering approach 
discussed in this study would be of general interest in protein engineering especially for asymmetric reductase.

Materials and Methods
Protein preparation and crystallization.  The HILDH-coding gene from B. thuringiensis 2e2 was ampli-
fied by polymerase chain reaction (PCR) with two primers, 5′-CACCATGAGAGAGAATAAAATAATTATGA-3′ 
and 5 ′-CTCGAGCTACAAGTTTTTCCCAGCAGTCCAA-3 ′ ,  and cloned into the pET101/D-
TOPO vector (Invitrogen). The recombinant protein had an additional sequence at the C terminus 
(LEKGELNSKLEGKPIPNPLLGLDSTRTGHHHHHH) that contains a V5 epitope and a hexahistidine tag (both 
shown by underline). Escherichia coli Rosetta (DE3) cells harboring the expression plasmid pET101-HILDH were 
grown at 37 °C in lysogeny broth (LB) medium until the OD600 reached 0.6‒0.8. Protein expression was induced 
by addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) at a final concentration of 0.5 mM, and the culture 
was further incubated for 18 h at 25 °C. After harvesting, the cells were lysed by sonication in lysis buffer contain-
ing 20 mM Tris-HCl (pH 7.4), 0.5 M NaCl, 30 mM imidazole and 1 mM dithiothreitol (DTT), and the disrupted 
cells were centrifuged at 40,000 × g for 30 min. The supernatant was purified using Ni-NTA Superflow resin 
(Qiagen, Tokyo, Japan) and an elution buffer containing 20 mM Tris-HCl (pH 7.4), 0.5 M NaCl, 200 mM imida-
zole and 1 mM DTT. After dialysis against 20 mM Tris-HCl (pH 8.5) and 1 mM DTT, the sample was applied to a 
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Resource Q (GE Healthcare Tokyo, Japan) column and eluted with a linear gradient of 100−400 mM NaCl. The 
fractions containing HILDH were further purified using a Superdex 200 (GE Healthcare Tokyo, Japan) column 
equilibrated with 20 mM Tris-HCl (pH 7.4), 300 mM NaCl and 1 mM DTT. Pooled fractions were dialyzed against 
20 mM Tris-HCl (pH 7.4) and were concentrated to 15 mg/ml for crystallization.

HILDH was crystallized using the sitting-drop vapor diffusion method at 20 °C. NADH-bound crystals were 
obtained by mixing 1.0 μl protein (10 mg/ml) containing 10 mM NADH with 1.0 μl reservoir solution consisting 
of 30% (w/v) PEG 400, 0.1 M acetate (pH 4.5) and 0.2 M calcium acetate. Crystals of HILDH complexed with 
NADH and succinate were obtained by mixing 1.0 μl protein (10 mg/ml) containing 10 mM NADH and 100 mM 
succinic acid with 1.0 μl reservoir solution consisting of 2.0 M ammonium sulfate, 0.1 M citrate (pH 5.5).

The expression plasmids for the HILDH E144K/W242Q mutant (HILDHE144K/W242Q) were generated by 
site-directed mutagenesis. PCR was carried out using PrimeSTAR Max DNA polymerase (Takara Bio., Shiga, 
Japan) and the expression plasmid pET101-HILDH as a template. Mutations were confirmed by DNA sequencing 
(Fasmac Co., Ltd, Kanagawa, Japan). Mutant enzyme was purified according to the same method as the wild-type 
enzyme. Crystals of HILDHE144K/W242Q bound with NADH and succinate were obtained by mixing 1.0 μl protein 
(8 mg/ml) containing 10 mM NADH with 1.0 μl reservoir solution (0.8 M succinic acid, pH 7.0).

Data collection, processing and structure analysis.  X-ray diffraction data sets of the HILDH-NADH 
complex and HILDH-NADH-succinate complex were collected at the BL-5A beamline at the Photon Factory 
(Tsukuba, Japan). X-ray diffraction data of the HILDHE144K/W242Q-NADH-succinate complex was collected 
on the BL-17A beamline at the Photon Factory. All diffraction data sets were indexed, integrated and scaled 
with HKL-200055 and XDS56. The structure of HILDH-NADH was determined using the molecular replace-
ment method performed by the program MOLREP57 on the CCP4 suite using the structure of 3-ketoacyl-(
acyl-carrier-protein) reductase (PDB code, 3F9I; sequence identity, 34%)58 as the initial model. The structures 
of HILDH-NADH-succinate and HILDHE144K/W242Q-NADH- succinate were determined by the molecular 
replacement method using the structure of HILDH-NADH as the initial model. Refinement was performed with 
COOT59 and Refmac60. The data collection and processing statistics are summarized in Supplementary Table S1. 
The structure coordinates and structural factors have been deposited in the Protein Data Bank under acces-
sion codes 5GWR (HILDH-NADH form), 5GWS (HILDH-NADH-succinate form) and 5GWT (HILDHE144K/
W242Q-NADH- succinate form).

Model building of 4-HIL to the active site of HILDH.  Because the binding mode of succinate to the 
active site of HILDH mimics the 4R form of 4-HIL in the crystal structure of the HILDH-NADH-succinate com-
plex, we chose (2S,3R,4R)-4-HIL as a typical 4R form of 4-HIL and constructed the binding model of (2S,3R,4R)-
4-HIL to HILDH based on succinate binding using PyMol (http://pymol.sourceforge.net). The (2S,3R,4R)-4-HIL 
molecule was generated using the Molecular builder of the Molecular Operating Environment software package 
(MOE, Ryoka Systems Inc., Montreal, Canada). The C1 and C4 atoms of 4-HIL were superimposed onto the C1 
and C4 atoms of succinate, respectively, and the hydroxyl group of (2S,3S,4R)-4-HIL was positioned to face toward 
the hydroxyl group of Y150, so that effective hydride transfer can occur.

The (2S,3R,4S)-4-HIL binding model was built by docking simulation using MOE software. All water 
molecules in the HILDH-NADH complex were removed and the hydrogen atoms were generated using the 
Protonate3D program at pH 9.1. The amino group of 4-HIL was protonated and the carboxy group of 4-HIL was 
deprotonated (Supplementary Fig. S4). Partial charges of all atoms were calculated, and rigid-body energy mini-
mization was used under the MMFF94x (Merck molecular force field 94x) force field. The Site Finder module was 
used to find the potential binding site of (2S,3R,4S)-4-HIL, which was generated with the Molecular builder of 
MOE. Docking simulation was performed using the ASEDock module. The docking models were searched with 
the following parameters: methodology, LowModeMD which is appropriate to generate conformations of small 
molecules and protein loops; cutoff, 4.5 Å; RMS gradient, 10 kcal/mol/Å and energy threshold, 500 kcal/mol/Å. 
Docking results of complex structures were sorted by the rank of U_dock score [U_ele (electric energy) + U_vdw 
(van der Waals energy) + U_solv (Solvation energy) + U_strain (Strain energy)] (kcal/mol)] (Supplementary 
Fig. S5). We selected the binding model by two criteria: i) Model shows low U_dock score (means energeti-
cally stable) and ii) hydride/proton transfer could take place in the model. Among the docking models of the 
wild type HILDH, the model 1 shows the lowest U_dock score and the hydride/proton transfer could take place 
(Supplementary Fig. S6). Therefore, we selected the model 1 (PDB file 2) as the binding model of (2S,3R,4S)-
4-HIL to the wild type (also shown in Fig. 3c). The binding model of (2S,3R,4S)-4-HIL to the E144K/W242Q 
mutant HILDH was built in the same way as the wild-type HILDH (Supplementary Fig. S7). Among the docking 
models, the model 1 shows the lowest U_dock score. However, hydride/proton transfer could not take place in the 
model 1 (Supplementary Fig. S8). We selected the model 4 (PDB file 3), which shows the fourth lowest U_dock 
score and where hydride/proton transfer could take place.

Preparation of HILDH and its mutants for enzyme assay.  Expression plasmids for HILDH mutants 
were generated by site-directed mutagenesis. PCR was carried out using PrimeSTAR Max DNA polymerase 
(Takara Bio., Shiga, Japan) and the expression plasmid pET101-HILDH as a template. Mutations were confirmed 
by DNA sequencing (Fasmac Co., Ltd, Kanagawa, Japan). The Wild-type and mutant enzymes were prepared by 
the following steps. Culture supernatants were lysed by sonication in lysis buffer containing 20 mM Tris-HCl (pH 
7.4), 0.5 M NaCl, 30 mM imidazole and 1 mM DTT, and then centrifuged. The supernatant was purified using 
Ni-NTA Superflow resin (Qiagen, Tokyo, Japan). The protein was eluted with elution buffer containing 20 mM 
Tris-HCl (pH 7.4), 0.5 M NaCl, 200 mM imidazole and 1 mM DTT, dialyzed against 50 mM Tris-HCl (pH 9.1) 
and concentrated (~10 mg/ml) for enzyme assay and product analysis.
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Enzyme assay.  Enzyme activity was measured by detecting the decrease in absorbance of NADH at 340 nm 
using a Shimadzu UV-2450 spectrophotometer (Shimadzu, Japan). The reaction solution contained 30 μg/ml 
enzyme, 2 mM AMKP and 0.2 mM NADH and 50 mM Tris-HCl (pH 9.1). The reaction was performed at 37 °C 
for 2 min. The initial rate for AMKP were determined using different concentrations (2 mM, 2.5 mM, 3 mM) of 
AMKP in the presence of 0.2 mM NADH. One unit was defined as the amount of enzyme catalyzing 1.0 nmol of 
substrate per minute. The kinetic parameters were determined by Lineweaver-Burk plot using the initial rate. All 
assays were performed at least three times. The Km and kcat values were calculated using SigmaPlot 13.0 (Systat 
Software Inc., Chicago, IL.).

Product analysis.  The reaction solution contained 0.2 mM enzyme, 2 mM AMKP, 27 mM NADH and 
50 mM Tris-HCl (pH 9.1). The reaction was performed at 37 °C for 24 h. For product analysis, reaction mix-
tures were derivatized with 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate (GITC). Reaction mixtures 
were mixed with the same volume of trimethylamine (1.8% in acetonitrile) and two volumes of GITC (10 mg/
ml in acetonitrile) and were reacted for 30 min at 25 °C. The amino acid derivatives were analyzed by HPLC on 
a Shimadzu LC-10ATvp HPLC system (Shimadzu, Kyoto, Japan) equipped with two CAPCELLC18 Type MG 
columns (Shiseido, Tokyo, Japan, 4.6 × 250 mm) at a flow rate of 1 ml/min at 40 °C, with 254 nm UV detection. 
Solvent gradients were as follows: solution A, 10 mM KH2PO4 (pH 2.95); and solution B, 100% acetonitrile. The 
elution was performed with a linear gradient from 80% solution A/20% solution B to 73% solution A/27% solu-
tion B. Retention time of AMKP and 4-HIL stereoisomers were determined from the injection of each synthe-
sized stereoisomer. HPLC chromatogram of four stereoisomers of AMKP and eight stereoisomers of 4-HIL to 
indicate the retention time of each stereoisomer was show in Supplementary Figure S9. The mixtures of racemic 
AMKP and racemic 4-HIL were derivatized with GITC and detected by HPLC. The derivatized (2R,3R,4R)-
4-hydroxyisoleucine was separately detected from other 4-HIL stereoisomers and AMKP. The amount of each 
stereoisomer of 4-HIL was estimated on the basis of comparison with a (2S,3R,4S)-4-HIL standard.
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