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Highlights
Ecologists have called for more robust
studies on the impact of conservation
interventions, or environmental shocks,
on outcomes of interest, such as popula-
tions, habitat loss, or pressures.

Time-series data are increasingly avail-
able and can, if appropriately analysed,
allow such causal inferences.

However, there are important pitfalls that
make large-scale analyses involving
Humanity’s impact on the environment is increasing, as are strategies to con-
serve biodiversity, but a lack of understanding about how interventions affect
ecological and conservation outcomes hampers decision-making. Time series
are often used to assess impacts, but ecologists tend to compare average values
from before to after an impact; overlooking the potential for the intervention to
elicit a change in trend. Without methods that allow for a range of responses,
erroneous conclusions can be drawn, especially for large, multi-time-series
datasets, which are increasingly available. Drawing on literature in other disci-
plines and pioneering work in ecology, we present a standardised framework to
robustly assesses how interventions, like natural disasters or conservation
policies, affect ecological time series.
multiple time series problematic.

There has been progress in a range of
fields, but the literature is fragmented
and not all is easily accessible to
ecologists.

A framework is presented, with clear
and consistent terminology, to support
ecologists to conduct effective impact
evaluation with time-series data. This
will allow them to contribute to better-
informed environmental management
decisions.
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Impact Evaluation in Ecology
Ecologists often seek to understand the impact of a conservation intervention (e.g., a protected
area or reintroduced species), or an environmental shock (e.g., an oil spill or hurricane) on one
or more response variables (e.g., population counts or habitat loss) [1–9]. In recent years, there
has been a surge of literature calling for more rigorous impact evaluation in ecology and conser-
vation [10–14]. While the terms impact evaluation (see Glossary) and intervention are often
used to describe the impact of a deliberate intervention, such as a policy change [10], here
they are used to consider the general problem of causal inference.

To determine the impact of an intervention, onemust understand what would have happened if the
intervention had not occurred [15]. Ideally this is achieved through an experimental setup, where
units are randomly allocated to treatment and control groups. However, while experimental manip-
ulation of whole ecosystems, or random application of conservation interventions at scale do exist
[16,17], such experiments are seldom feasible [10,18,19], or indeed possible in the case of events
such as natural disasters. Instead, researchers commonly try to estimate the ‘counterfactual’
using quasi-experimental impact evaluation methods [14,20]. A commonly used approach is
to examine outcomes before and after the intervention, [before after (BA) analysis], or to identify
a separate control group that shares as many characteristics as possible with the intervention
group, except for the intervention, [control intervention (CI) analysis]. These approaches can
be combined to compare before to after, between control and intervention groups, [i.e., before
after control intervention (BACI) analysis].

Impact Evaluation with Time Series
Time-series data are a common and powerful [21] way to conduct impact evaluation in
ecology. The methods used by ecologists to conduct impact evaluation with time-series data
or cross-sectional time series, have remained largely unchanged since seminal papers
published in the 1980s and 1990s [21,22]. The standard framework tends to only consider
the average change between control and intervention; in a BACI time-series context, this
analysis has been termed BACI Paired Series (BACIPS) [21]. These methods assume that
a change in an average response variable, can capture how the time series responds to the
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intervention, by assuming that the data fluctuate around pre- and post- intervention averages.
In reality, many time series show trends through time independently of the intervention. They
could therefore respond to an intervention not only with an immediate change, but with a
change in trend, which is not always captured by comparing average differences.

Other fields, such as medicine [23,24], public health [25,26], and education [27] have long
recognised this, and methods to account for changes in trend were developed as early as the
1970s in the psychological sciences [28] (see S1 in the supplemental information online for a
brief overview of terminology in other fields). In ecological impact evaluation, trends have only
very recently been included. Thiault et al. [29,30] introduced the ‘ProgressiveChangeBACIPS’
approach in 2017, as an extension of BACIPS that considers trends in the ‘after’ period, but still
assumes no change through time in the ‘before’ period. Chevalier et al. [9] addressed this by con-
sidering trends and averages both before and after, and also introduced ‘CI-measures’, which
further quantify the nature of impact in a BACI framework [31]. This pioneering work is built
upon, by arguing that average change can be misleading when trends are present in the dataset,
and that only trend change should be considered in these cases.

This is best understood with an example. Imagine monitoring a population of African elephants
(Loxodonta africana) before and after a hunting ban, which actually reverses a downward
population trajectory (Figure 1, first column). If the average count of the years before the ban
is compared to the average count of the years after, one may conclude that the ban has had
a negative effect (Figure 1A, average change). However, if the trend of the counts is considered,
it becomes clear that the population was declining pre-ban but has begun to increase post-
ban; suggesting that the ban has actually had a positive impact on the population (Figure 1C,
trend change). Thus, change in trend is needed to accurately assess the impact of an interven-
tion on a time series with trends. Including trend does not negate that there can also be an
abrupt shift following the intervention; this immediate change can also be analysed (Figure
1E). In this example, if conservationists had used average change, they would have erroneously
concluded that the hunting ban had a negative impact on elephant populations, and the ben-
eficial intervention may have been stopped.

Since most ecological time-series impact evaluation studies have focused on only one or a
handful of time series [32–37], using only average change has not been a big problem, as
each time series could be visually checked for indications of trends. However, risks increase
when using large numbers of time series (e.g., counts of multiple bird species at multiple
sites [38]), where checking individual series becomes impractical. Large datasets of time se-
ries are increasingly available from long-term surveys, remote-sensing, and national monitor-
ing schemes [39–43]. A clearer framework for analysis is needed to avoid inadvertent
mistakes in large datasets, and to improve clarity of analysis in smaller ones (see S2 in the
supplemental information online, which details all potential mistakes that the presented frame-
work averts).

Drawing from other disciplines and pioneering work in ecology [9], we present a framework for
conducting impact evaluation with ecological time-series data. Our framework is directed to-
wards those working with time series that show trends through time; if there is no expectation
of trend change, the models given here for ‘average change’ can be used, though more sophis-
ticated fixed effects panel regression methods also exist [44–46] (however, there are limita-
tions to this approach when interventions are staggered through time [47]). Finally, a frequentist
statistical framework is generally used through this paper for simplicity, but the concepts are
readily transferrable to Bayesian or information theoretic approaches.
2 Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx



Glossary
Before after (BA): amethod of analysis
that estimates the counterfactual by
comparing values from before to after
the intervention.
Before After Control Intervention
(BACI): a method of analysis that
estimates the counterfactual by
comparing the change from before to
after between control and intervention
groups.
BACI Contrast: a commonly used
term for BACI average change. Given
by subtracting the before–after
difference of the control group from
the before–after difference of the
intervention group. That is, BACI

Contrast = ( A
�
I – B

�
I ) – ( A

�
C – B

�
C ).

BACI Paired Series (BACIPS):
methods that discuss BACI time-series
analysis with multiple paired groups,
typically considering average change.
Causal inference: the statistical
process of concluding that an observed
association is due to causation not
correlation.
Control intervention (CI): a method of
analysis that estimates the
counterfactual by comparing values
between control and intervention
groups.
Controlled or Comparative
Interrupted Time Series Analysis:
The term used in some disciplines to
refer to models such as ours that
calculate BACI trend and immediate
change.
Counterfactual: what would have
occurred in the absence of an
intervention.
Cross-sectional time series/panel
data: time-series data of many entities,
each followed through time. For
instance, annual counts from many
identified prides of lions, or monthly
deforestation for many regions in a
country.
Difference in Differences: A term
typically used in econometrics to refer to
the BACI Contrast (i.e., average change
in a BACI framework) but is now
sometimes also used to refer to a trend
change BACI analysis.
Fixed effects panel regression: an
analysis method for panel data where
there is not an expectation of any trend in
the data. Time is included in the model
as a fixed factor to control for temporal
shocks.
Impact evaluation: determining how
an intervention has causally affected
outcomes (examples of outcomes in
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Figure 1. Average, Trend, and Immediate ChangeWhenAssessing the Impact of an Intervention (broken vertical
line) Using BA or BACI Data. Blue arrows indicate positive change and red indicate negative change. Impact can be defined
by change in average (A, B), change in trend (C, D) and/or an immediate change (E, F). BACI comparisons show the BACI
Contrast, (i.e., the difference in the change in before to after, between control (grey) and intervention (green) time series. In
this example, average and immediate change indicate a negative impact, but trend change indicates a positive impact. Many
impact evaluation questions could be considered in this framework including investigating the impact of carbon payments on
tropical deforestation (G; Richard Whitcombe/shutterstock.com), a hunting ban on elephant populations (H; Villiers Steyn/
shutterstock.com), or oil spills on populations of waterbirds (I; Mike Shooter/shutterstock.com).
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Choosing a Control
BA, CI, and BACI methods are all techniques to infer the counterfactual. BA analysis assumes
that, were it not for the intervention, the trajectory of the time series would not have changed,
while CI assumes that the difference observed between the control and intervention time series
is a result of the intervention, and that no other unobserved differences exist between the control
and intervention sites. BACI addresses these assumptions, by combining BA and CI components.
Further discussions of the relative merits of the three approaches are given in other papers [20,48],
but BACI is the best option if data allows [48]. Note that if using a BA comparison method, results
should be examined for the possibility that regression to the mean is occurring (see S7 in the sup-
plemental information online). As CI analysis is unable to effectively consider changes in trend [20],
the focus here is on BA and BACI analysis. For simplicity, ‘control’ is referred to as a control in either
space or time, and ‘temporal-control’ or ‘spatial-control’ are used to distinguish between the ‘be-
fore period’ or ‘control’ time series, respectively.

For BACI comparisons, statistical matching can be used to identify a control time series that is as
equivalent as possible to the intervention time series, based on a set of matching variables
Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx 3
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ecology include population counts, body
mass, or rate of habitat loss).
Interrupted Time Series Analysis:
The term used in some disciplines to
refer to models such as ours which
consider BA trend and immediate
change.
Intervention: an event that disturbs a
system. The event could be intentional,
accidental, or natural, for instance the
designation of a protected area, an oil
spill, or a wildfire.
Average/Trend/Immediate Change:
compares change in average, trend, or
immediate from before to after in BA
analysis, and the difference in change
from before to after between control and
intervention time series in BACI analysis.
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[49,50]. Crucially, the matched control and intervention time series should show similar trends in
the ‘before’ time period [51]; this is often referred to as the parallel trends assumption. For
example, if trends in populations of elephants were being compared before and after a hunting
ban was introduced in one population, the parallel trends assumption is met if the elephants at
both sites were declining at approximately the same rate over the ‘before’ years (Figure 1D). Many
matching methods are available to facilitate the matching process [49,50,52,53], though it always
requires careful consideration of the assumptions involved [50]. [31] provides ‘CI- measures’ to
estimate the similarity of control and intervention groups before and after an intervention, which
can be useful for further interrogating the nature of impact, especially when matches are imperfect.

Choosing a Change Metric
Time series can respond to an intervention either by an abrupt change when the intervention is
introduced, a gradual change over time, or both. The change can be measured in three ways:
average, trend, or immediate (Figure 1; note these terms were introduced to ecology by [9]). Box 1
Progressive Change BACIPS: a
modified form of BACIPS that considers
multiple linear and nonlinear responses
in the after period. These methods
assume a steady state, or no trend, in
the before period.
Quasi-experimental: a range of
approaches used to estimate the causal
impact of an intervention without
randomisation.
Time-series data: a series of
measurements at intervals through time.
For example, annual counts of lions in a
pride, monthly measures of
deforestation in a region, and annual
hunting rate of a bird species.

Box 1. Simplified Formulae for Calculating Average, Trend, and Immediate Change

Average Change

To compare the change in average with BA data, each value of the time series (where value could be population count,
percentage forest cover, etc.) is predicted by a binary Before-After variable (BA), which is 0 pre-intervention and 1 after.

Value � BA ½I� ðBA averageÞ

If the coefficient of BA is significantly positive, the average value of the time series is higher post-intervention.

In a BACI analysis, this average change is then compared between intervention and spatial-control time series (Figure 1b),
this is often termed the BACI contrast [31,60]. A Control-Intervention variable (CI) is included, which is 0 for the spatial-
control time series and 1 for the intervention time series.

Value � BA þ CI þ BA� CIð Þ ½II� ðBACI averageÞ

The interaction between BA and CI describes how the intervention affects the change from before to after. A positive
coefficient indicates that the average difference from before to after is more positive in the intervention time series.

Trend and Immediate Change

To estimate trend and immediate change, we must include time in the model. In order to compare immediate change
between the last time step before intervention, to the first time step after intervention, the simplest way to construct the
model is for time to be centred around 0, with 0 being the first time step after intervention {similar to [9], though see
[54,61] and https://nawmp.org/sites/default/files/2018-01/1986%20OriginalNAWMP.pdf for an alternative method}.

For a BA study, the value of the time series is predicted by Time and the BA coefficient.

Value � Time þ BA þ Time� BAð Þ ½III� ðBA trend=immediateÞ

The BA coefficient gives the change in values from before to after at Year 0 – this is the immediate change. The interaction
betweenBA and Time gives the trend change frombefore to after. A positive coefficient indicates the trend after the intervention
is more positive than before the intervention (note that it could still be negative, just less negative than before).

As before, for a BACI study an intervention (CI) coefficient is introduced.

Value � Time þ BA þ CIþ
BA� CIð Þ þ BA� Timeð Þ þ CI� Timeð Þ þ

BA� CI� Timeð Þ
½IV� ðBACI trend=immediateÞ

The interaction betweenBA andCI describes the BACI immediate change andBA, CI, and Time the BACI trend change, (i.e., the
difference in before-after immediate, or trend change, respectively, between control and intervention time series). A positive co-
efficient for these interactions indicates that the intervention time series has had a more positive change in immediate/trend than
the control time series.
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gives simplifiedmodels to calculate these metrics, and Box 2 gives a real-world example. Full models
can be found in S3 in the supplemental information online. An example of interpreting coefficients can
be found in S4 in the supplemental information online.

Which metric to use will depend on the response expected, and the type of data used. If there is
no expectation that the time series shows trends through time, then comparing average change
between intervention and control is suitable. If the time series shows trends through time and no
immediate change is expected after the intervention, then trend change should be used (note that
without any immediate change, average changewill still give a correct direction of response under
Box 2. Case Study: Interpreting the Impact of a Protected Area on Populations of the Common Merganser

We use trends in a population of common merganser, or goosander (Mergus merganser), from a protected and unpro-
tected site as a worked example to demonstrate how to interpret model coefficients from BACI time series analysis,
and the importance of using the right metric of change.

The common merganser is a sea duck that is distributed across Europe and North America. It is currently classified as
‘Least Concern’ but has previously been a target species for conservation in the United States [61]. We analysed Christ-
mas Bird Count data to determine how a wintering population of commonmerganser was impacted by a protected area’s
designation in 1997, when compared to a similar but unprotected population, identified through statistical matching
(Figure I, see [38] for detailed methodology).

We ran Model 4 (see Equation IV in Box 1), using a generalised linear model with a negative binomial distribution [38], and
conducted a robustness check by comparing models constructed with and without the BA term (see ‘Is there any change
at all?’). The model with BA had a better fit to the data, so analysis proceeded (Figure I). To evaluate the impact of the
protected area, we were most interested in three coefficients: (i) the BA:CI term, which indicates immediate change; (ii)
theBA:CI:Year term; which indicates trend change; and (iii) theCI:Year term, which tells us if the parallel trends assumption
is satisfied (see S4 in the supplemental information online for details of how to interpret all coefficients).

The CI:Year term was not significant (P = 0.09), meaning the parallel trends assumption was satisfied. The immediate
change term (BA:CI) was also insignificant (P = 0.97), however, the trend change term (BA:CI:Year) was significantly
positive (Estimate = 0.31 ± 0.12, P = 0.01), indicating that the trend change from before to after was more positive in
the protected site.

If we had applied an average changemodel to this data (i.e., Model 2, see Equation II in Box 1), we would have detected no
significant impact of the protected area (P = 0.38), indicating the importance of adopting the trend and immediate change
model when working with time series that show trends.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Common Merganser (Mergus merganser) Case Study Site Locations and Count Data (A) Map
Showing Protected (light green) and unprotected (grey) sites where merganser (Mergus merganser) have been
monitored in the North East USA (Photo: Frank Schulenburg/Wikimedia Commons/CC BY-SA 3.0) (B) Merganser
counts, with lines showing modelled trend; vertical broken line shows the year of protected area designation.

Trends in Eco
logy & Evolution, Month 2020, Vol. xx, No. xx 5
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BACI, because of the parallel trends assumption, but may not give the correct magnitude; see S5
in the supplemental information online). If the time series shows trends through time and an im-
mediate change is expected following the intervention, then both trend and immediate change
must be compared, as average change will be misleading (as demonstrated in Figure 1). Some-
times, it may not be known what response is expected, in which case it may be best to assess all
three types of change, and carefully examine them in the light of knowledge of the system, to as-
certain which is most appropriate. CI-measures that quantify how much of the change is occur-
ring in control versus intervention time series, can also be useful [31].

For example, rates of deforestation are often not considered to show consistent trends
through time, and so to estimate the impact of a new policy aiming to reduce deforestation
(Figure 1G), average deforestation rates before and after the policy could be compared
(Figure 1A,B). Conversely, a population of elephants that has been declining due to hunting
is likely to respond to a hunting ban by a gradual increase in individuals (Figure 1H). If
analysing only BA data, trend change is needed, but either average change or trend change
would be appropriate with BACI data (Figure 1C,D; as long as the parallel trends assump-
tion is satisfied). An oil spill affecting a population of waterbirds, would cause immediate
mortality for many individuals (Figure 1I), so comparing immediate change would best reflect
the impact of the spill (Figure 1E,F). However, a waterbird population could respond to the resto-
ration of a wetland both with an immediate change, as more adults are able to migrate to the
area, as well as a gradual increase in individuals, through improved breeding success. In this
case, both trend and immediate change should be compared; Box 2 gives an example of this.

In large datasets, it can sometimes be difficult to summarise the signal of impact across many
time series, especially if they do not all respond in the same way. Box 3 discusses the complex-
ities of such cases and provides some suggested solutions.
Box 3. Making Conclusions from Large Datasets

When working with datasets containing many time series (e.g., annual counts of many species across many sites), further
decisions must be made to effectively analyse the data and deduce the impact of an intervention.

Where possible, the best strategy is to analyse all data in one model that includes random or fixed factors to account for
correlations within groups (e.g., species and sites, see [9] for an example). However, this strategy relies on some key
assumptions. First, that there are no all-zeroes in the dataset, as these could be interpreted incorrectly by the model
(Figure 2A), and second, that each time series will respond to the intervention in a similar way, as random intercept models
assume parallel slopes. Random slope models are a solution but they can be very time consuming to run with a large
dataset.

An alternative solution, if these assumptions are not met, is to run individual models of each time series separately and
summarise outcomes. For example, if there are not cases of all-zeroes in the dataset, the immediate and trend coefficients
from individual models can be compared on a scatter plot, as demonstrated in Figure I. In this case, we can see that most
points cluster in the positive immediate change and positive trend change quadrant. Although there are some cases of
opposing outcomes, it seems that overall, there has been a positive impact from this intervention.

If there are some time series with all-zeroes in the dataset, the situation becomes more complex as these time series can
only have a categorical outcome (e.g., counts in the before period, all-zeroes in the after period would be a negative
impact), while the time series that do not have all zeroes will havemodel coefficients. One solution is to categorise the data,
based on careful consideration of the different outcomes expected, and how they could be reflected. For example, a study
assessing protected area effectiveness, might define a positive impact as any positive change, whether immediate or trend
change from a model, or where a population has immigrated to the site. Each population time series could then be
classified as a ‘positive’, ‘neutral’, or ‘negative’ outcome (see S6 in the supplemental information online), and the number
of time series in each category examined to assess impact.

6 Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx
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Figure I. Hypothetical Pot of Model Coefficient Output from Comparisons of Immediate and Trend Change
Across Many Time Series (each point).
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Considerations
There are certain attributes of observational data that can further complicate time-series impact
evaluation, especially when time series have trends. If not properly considered, these can lead
to additional inadvertent mistakes (see S2 in the supplemental information online). Here, are
three considerations and how to take them into account.

All-Zeroes
Time series in ecology can have ‘all zeroes’ (or, more often, almost all zeroes, but we use the term
for any such case), in the years before or after an intervention. For example, if a restoration project
establishes new habitat, a population might immigrate to the area, and a survey of the site would
return only zero counts in the years before the restoration, but non-zero counts after. Similarly, a
fire might destroy all suitable habitat of a population, leaving it locally extinct in the after period.
Analysing such cases is difficult, as trend change models will interpret an ‘all-zero’ population
as stable (no trend) at zero. Figure 2A shows a case where a population has gone locally extinct
post-intervention, but where the trend change has gone from declining to stable, and so shows a
positive impact. For analyses with a small number of time series this is easy enough to manage
manually, or by changing to an average/immediate change framework. However, for large
datasets that are being analysed in a trend framework, all-zero cases need to be analysed
separately. See Box 3 for suggestions on how to do this.

Time Lags and Breakpoints
In some cases, theremay be the expectation of a time lag betweenwhen an intervention occurs, and
when it impacts a population. For example, there may be a lag period of a number of years between
a new conservation policy being introduced, and when management starts. In these cases, the ‘lag
period’ (between the two vertical lines in Figure 2B) can be excluded from analysis by removing the
Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx 7
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Figure 2. Three Considerations
when Conducting BA or BACI
Time Series Impact Evaluation
(intervention shown by vertical
broken line). Only BA shown in this
figure for simplicity. (A) are there
cases of all-zeroes? (B) Is there likely
to be a lag time between the
intervention (left broken line) and
when the population responds (right
broken line)? (C) Does the impact
evaluation model perform better than
a null model which does not include
the intervention (grey line)?

Trends in Ecology & Evolution
lag years, or by being modelled separately [54,55]. Alternatively, the time of the intervention can be
shifted to when it would be expected to start taking effect. Often, this point is not known, in which
case various methods are available to statistically identify the most likely breakpoint between before
and after [56–59], though this can still be difficult to ascertain at times and there is more work to be
done in this area. Once the breakpoint has been identified either through knowledge of the system,
or through breakpoint estimation, analysis can proceed, adjusting the ‘before’ and ‘after’ years of the
datasets to centre around the estimated breakpoint.

Is There Any Change at All?
Finally, it is prudent to ascertain whether there is, in fact, any impact at all from the intervention, as
in some cases it may be plausible that the outcome variable has not responded (Figure 2C). The
models discussed here explicitly fit a break in the time series from before to after, but the model
may fit better without this. To check, we recommend running two models, one with the full model
of interest (average/immediate/trend and BA/BACI; Box 1), and the other the same model
but with the BA term removed. The performance of these two models can be compared
(e.g., through hypothesis testing or information-theoretic approaches), and if the model without
8 Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx



Outstanding Questions
Is there a generalisable way to conduct
impact evaluation when responses are
not linear? By necessity, the models we
describe, and those that are used by
most disciplines for impact evaluation
with trends, assume linearity, or that
linearity can be achieved through
transformation. Though some methods
are described to deal with nonlinear
models, there is as yet no framework
for making robust conclusions from
nonlinear data.

Are there better ways to incorporate
all-zeroes into a trend change
modelling framework? This article sug-
gests analysing cases of all-zeroes
separately, but a better solution
would be a model that can distinguish
between a stable trend, and a case of
all-zeroes, indicating extinction or
immigration.

How can analyses that identify the
breakpoint be improved when there is
no obvious change?

How can the terminology used in
impact evaluation be aligned between
fields, to improve sharing of methods?
Different fields have long traditions of

Trends in Ecology & Evolution
OPEN ACCESS
the BA term fits better, then the most parsimonious model does not include any impact from
the intervention.

Concluding Remarks
Effective conservation decisions require a robust understanding of how interventions and environ-
mental shocks affect biodiversity. Time series data in ecology offer rich opportunities for causal in-
ference, but care is needed to avoid drawing erroneous conclusions, especially with large datasets.
Devising simple and generalisable ways to include non-linear responses would greatly increase the
power of impact evaluations (see Outstanding Questions), particularly as the length of available
time series increase. Some methods are explored by [29], but there is further work to be done.
By using the framework presented, ecologists and conservationists can avoid misinterpreting the
effectiveness of conservation measures, and the impact of environmental disasters, providing
the best opportunities for effective and efficient conservation decisions.
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