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Abstract
Along the East African coast, marine top predators are facing an increasing number of

anthropogenic threats which requires the implementation of effective and urgent conserva-

tion measures to protect essential habitats. Understanding the role that habitat features

play on the marine top predator’ distribution and abundance is a crucial step to evaluate the

suitability of an existing Marine Protected Area (MPA), originally designated for the protec-

tion of coral reefs. We developed species distribution models (SDM) on the IUCN data defi-

cient Indo-Pacific bottlenose dolphin (Tursiops aduncus) in southern Kenya. We followed a

comprehensive ecological modelling approach to study the environmental factors influenc-

ing the occurrence and abundance of dolphins while developing SDMs. Through the combi-

nation of ensemble prediction maps, we defined recurrent, occasional and unfavourable

habitats for the species. Our results showed the influence of dynamic and static predictors

on the dolphins’ spatial ecology: dolphins may select shallow areas (5-30 m), close to the

reefs (< 500 m) and oceanic fronts (< 10 km) and adjacent to the 100m isobath (< 5 km). We

also predicted a significantly higher occurrence and abundance of dolphins within the MPA.

Recurrent and occasional habitats were identified on large percentages on the existing

MPA (47% and 57% using presence-absence and abundance models respectively). How-

ever, the MPA does not adequately encompass all occasional and recurrent areas and

within this context, we propose to extend the MPA to incorporate all of them which are likely

key habitats for the highly mobile species. The results from this study provide two key con-

servation and management tools: (i) an integrative habitat modelling approach to predict

key marine habitats, and (ii) the first study evaluating the effectiveness of an existing MPA

for marine mammals in the Western Indian Ocean.
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Introduction
The habitats and ecosystems of the Western Indian Ocean (WIO) region hold some of the
highest marine biological diversity in the world, particularly for corals and reef fish [1]. How-
ever, the increasing overexploitation of marine resources and the degradation of the habitats
are threatening the marine biodiversity [2]. To mitigate these anthropogenic pressures, Marine
Protected Areas (MPAs) have been used as a main management approach to protect important
habitats and ecosystems including biodiversity hotspots [3]. Following this concept, the Con-
vention on Biological Diversity (CBD) aims to improve the status of biodiversity establishing a
10% of coast and marine areas worldwide, by 2020, applying effectively and equitably managed
ecologically representative and well connected systems of protected areas [4].

MPAs have been established with a variety of conservation goals, including biodiversity
conservation, maintenance of genetic diversity, conservation of rare and restricted range spe-
cies, prevention of overfishing [5] and enhancement of fisheries [6], among others [7]. In
Kenya, there are six MPAs covering nearly 10% of the continental shelf up to 200 m depth (835
km2), being one of the highest percentages along the WIO [8]. These MPAs were designed ini-
tially to protect the nearshore habitats and sessile or benthic organisms [9]. After more than
20 years of MPAs establishment and monitoring, many studies have highlighted their positive
impacts on local fish population (higher biomass and diversity) and status of coral reefs (higher
hard coral cover and coral diversity) [10,11].

In contrast, relatively little is known about the role that MPAs play in the protection of
marine top predators such as marine mammals, seabirds, and sea turtles. The growing number
of anthropogenic threats that these predators are facing (e.g. fisheries bycatch), requires the
implementation of urgent conservation measures to safeguard key marine areas [12]. Under-
standing the relationships between these highly mobile animals and their associated habitats is
critical to provide the predictive power to anticipate changes in habitat use patterns and to
effectively monitor and protect them. Specifically, the MPAs spatial-based conservation plans
can improve population’s recovery and intensify the protection of these marine predators
against threats.

Comparative studies across species and functional groups are necessary to understand the
effectiveness of MPAs from a wider ecosystem-based management approach. It is important to
assess whether the existing MPAs (initially established for the protection of coral reefs), also
encompass key marine areas of higher trophic levels such as marine top predators. For the
Kisite-Mpunguti Marine Protected Area (KMMPA), on the southern coast of Kenya, dolphins
are considered flagship species. As the main attraction for the 60,000 yearly park visitors, dol-
phin presence is of economical importance for local communities. The Indo-Pacific bottlenose
dolphin is the most abundant marine mammal species in the study area (Pérez-Jorge, unpub-
lished data), and is currently listed as data deficient by the IUCN due to the lack of information
on population abundance, habitat use, genetic diversity and population structure [13].

To identify key habitats for the population of coastal dolphins within the existing MPA, we
developed species distribution models (SDM) to predict the occurrence (using presence/
absence data) and abundance (combining number of sightings and group size data) of the dol-
phin population around the KMMPA. First, we developed a comprehensive ecological model-
ling approach to study the environmental factors influencing the occurrence and abundance of
dolphins based on two different modelling techniques. Second, we identified recurrent, occa-
sional and unfavourable habitats based on SDM predictions by describing those areas where
dolphins are likely to occur frequently, where occurrence varies considerably inter-annually,
and where no observations occur, respectively [14]. Third, we assessed the suitability of the
existing MPA for the dolphin population by estimating the occurrence and abundance
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probabilities, as well as the percentage of recurrent, occasional and unfavourable habitats
within and outside the MPA. Finally, we discuss the conservation implications of this inte-
grated habitat modelling approach for identifying key marine areas for coastal dolphins and
evaluate the effectiveness of existing MPAs.

Materials and Methods

Ethics Statement
This study was carried out by Kenya Wildlife Service, the government authority in the area reg-
ulating research and natural resource management. Sightings data are held by Kenya Wildlife
Service. Permission for all joint Global Vision International activities was granted by the Kenya
Wildlife Service Director under a 5 year Memorandum of Understanding signed in 2006. The
field studies did not involve endangered or protected species, under the Kenyan Wildlife Con-
servation and Management Act.

Study area and data collection
Our study was focused on the southern coast of Kenya, in the Kisite-Mpunguti Marine Pro-
tected Area (KMMPA, 04°04’S—39°02’E), established in 1978. This MPA lies south of Wasini
Island and incorporates the Kisite Marine Park, the largest no-take area in Kenya (28 km2),
and the adjacent Mpunguti Marine Reserve, Kenya’s smallest reserve, artisanal fishing allowed
(11 km2). KMMPA covers shallow waters (0–15 meters) and supports a high diversity of
marine life including corals, reef fish and sea turtles (Fig 1, S1 Text).

Vessel-based surveys were conducted at an average speed of 6.9 knots all year around
between January 2006 and December 2009 (except the period from January and June 2008, due
to national political conflicts). Four observers scanned the water surface over 180° field of
vision from the two perpendiculars to the front of the boat. Each observer covered a 45° subset
of the field vision. Team members shift every 15 minutes, with an eye break after an hour of
observation. Non-systematic transects were carried out during the surveys, covering an average
of 69% (SD ± 15%) of the whole study area every three months, depending on climate and sea
state conditions [15]. Searching effort was conducted with Beaufort sea state< 4, low swells
and good visibility (� 1 km), reducing the probability of missing dolphins. Once animals were
sighted, the research vessel approached them at low speed to identify species and to collect
information on location and time of the sighting, group size and group composition.

Data processing and exploratory analysis
Observations were standardized over a common spatial grid of 1 km by 1 km throughout the
survey area using ArcMap 10.1 [16]. Survey effort was calculated on each 1 km2 using a
UTM37S projection. Data were divided by season: summer (January to March), autumn (April
to June), winter (July to September) and spring (October to December) based on local sea
weather conditions. Considering the seasonal scale in the distribution of wide-ranging marine
species improves model performance compared to annual averages and, in turn, we considered
this temporal scale biologically meaningful [17]. Only grids with a minimum of 1km of survey
effort per season and year were considered on the analysis in order to avoid small sample
biases.

We transformed observations in three different quantitative ecological measurements. For
each grid cell, we summed up the number of sightings and the number of individuals (i.e.,
group size) observed per each season and year. We recorded the number of sightings into a
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binary presence/absence variable by transforming into “presence” those grid cells with at least
one sighting and “absence” otherwise.

Environmental variables description and selection
We selected 10 environmental variables (5 dynamic and 5 static) based on our previous knowl-
edge on dolphin ecology, environmental conditions in the study area and the availability of
oceanographic information (Table 1, S2 Text).

Species distribution modelling
We used a habitat modelling approach to identify those environmental variables that most
accurately described the key marine areas for dolphins within the information-theoretic
approach (S1 Fig)[18].

Selecting environmental predictors. First, we investigated the colinearity between predic-
tor estimating pairwise Spearman-rank correlation coefficient, which identified highly corre-
lated variables (|rs|� 0.7), previously standardized [19] (S1 Table). Second, to keep the most
explanatory environmental variable we ran Generalized Linear Models (GLMs) to check which
of these pairs of variables better explained the observed response variable using the Akaike
Information Criteria (AIC) value, using only one predictor at a time. The model with a lower
AIC value explained better the response variable. The same procedure was applied for each of

Fig 1. General map of the study area showing the location of the study area and an illustration of the study vessel, showing the overall survey
effort (km) between 2006 and 2009, and the location of the Kisite-Mpunguti Marine Protected Area, that contains the Kisite Marine Park and the
adjacent Mpunguti Marine Reserve.

doi:10.1371/journal.pone.0133265.g001
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the three ecological measurements (presence-absence, sightings and group size data. This led
to the removal of GRADIENT and CHLA.

Model construction. We used Generalized Linear Models (GLMs) and Generalized Addi-
tive Models (GAMs) to examine the relationship between response variables and explanatory
variables. In the case of occurrence data, we developed logistic regressions using a binomial dis-
tribution and logit link function. Number of sightings and group size were modelled following
a negative binomial distribution. This model was selected over the Poisson distribution since
the latter showed overdispersion in the null model. Additionally, the number of kilometres per
grid (i.e., survey effort) was included as an offset term, therefore preventing from possible
biases produced by uneven sampling. In GAMmodels, the smoothing splines were limited to a
maximum of 3 degrees of freedom to capture non-linear associations without increasing the
complexity of the functions towards unrealistic conclusions [20]. Models were built within the
R environment (version 2.15.3;[21]) using ‘MASS’ [22] and ‘mgcv’ packages [23].

Model selection and multimodel inference. We implemented the information-theoretic
approach to evaluate competing models by assessing their relative support in relation to
observed data, rather than using the best single model approach [24]. Models were constructed

Table 1. Description of environmental variables considered for habitat modelling, as well as their overall, absence and presencemean and range
values (between brackets). The type of predictor is also described as well as their ecological interpretation.

Habitat variables All data Bottlenose dolphins Predictor
category

Indicative of the following processes

Absence Presence

Bathymetry (BAT, m) 9.90 10.34 7.44 Static Coastal vs. pelagic domains

(0.12–
102.12)

(0.12–
102.12)

(1.66–
45.68)

Bathymetry gradient (GRAD, %) 71.40 71.14 72.83 Static Presence of topographic features (shelf-break,
seamounts)

(3.48–
100.00)

(3.48–
100.00)

(12.56–
99.94)

Chlorophyll a (CHL, mg m-3) 0.61 0.63 0.48 Dynamic Ocean productivity domains

(0.22–1.39) (0.22–1.39) (0.27–1.07)

CHL temporal change (CHLT, %) 46.59 46.79 45.43 Dynamic Small-scale CHL variability

(6.82–
88.59)

(6.82–
88.59)

(7.13–
87.76)

Sea surface temperature (SST,
°C)

27.71 27.74 27.53 Dynamic Water mass distribution

(25.43–
29.95)

(25.43–
29.95)

(25.46–
29.49)

SST temporal change (SSTT, %) 10.60 10.59 10.67 Dynamic Small-scale SST variability

(5.71–
15.74)

(5.71–
15.74)

(5.80–
14.79)

Distance to coastline (COAST,
km)

2.73 2.76 2.54 Static Onshore-offshore distribution patterns

(0.03–7.22) (0.03–7.22) (0.09–6.25)

Distance to reef (REEF, km) 0.87 0.90 0.70 Static Reef influence on dolphins diet

(0.03–4.60) (0.03–4.60) (0.04–3.31)

Distance to 100 m isobath
(BATH100, km)

6.42 6.84 4.06 Static Proximity with shelf-break (slope currents, vertical
mixing and prey concentration)

(0.19–
18.44)

(0.19–
18.44)

(0.63–
11.61)

Distance to oceanographic front
(FRONT, km)

24.14 24.77 20.51 Dynamic Mesoscale frontal systems

(0.19–
106.38)

(0.19–
106.38)

(0.92–
102.14)

doi:10.1371/journal.pone.0133265.t001
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for all possible combinations of explanatory variables and then ranked depending on the sup-
port of each of these models using the AIC values and the Akaike weight [24]. The Akaike
weight of each model is the relative likelihood of that model compared with the remaining
models and was used to identify the 95% confidence set of models. To identify the 95% confi-
dence set, we selected the model with the highest Akaike weight and added the models with the
next highest weights until the cumulative Akaike weights> 0.95. When the model with lowest
AIC value has an Akaike weight value lower than 0.9, a model averaging procedure might be
more appropriate to account for model and parameter uncertainty [24]. The model averaged
predictions were expected to be more robust than those from single best model approach.
Averaged coefficients were estimated using the MuMIn package [25]

Model checking. Species distribution data are characterised by spatial autocorrelation since
distribution data in close location are more similar than would be expected in randomly distrib-
uted data [26]. Significant spatial autocorrelation can invalidate the common assumption that
observations are independent, and identify spurious significant relationships (Type I error) [27].
Spatial autocorrelation was checked on the residuals of the model with the lowest AIC using the
Moran’s I index [28] and spatial correlograms with the ‘ncf’ package [29]. The Moran’s I index
ranges from -1 (negative autocorrelation—perfect dispersion) to +1 (positive autocorrelation—
perfect correlation), with values around zero being indicative of random spatial patterns [28]. The
spatial correlogram estimate the spatial dependence through testing significance within each dis-
tance class by a randomization test [30]. We did not include any spatial autocorrelation structure
in our models since we did not find significant spatial autocorrelation (S2 Table).

Model evaluation. A crucial stage of the SDMs is to determine the predictive ability of
final models to assess their applicability in conservation and management programmes. To
this end, we used a cross-validation procedure to evaluate the accuracy of final models. Models
were built with the 70% of the original data (training data: 2006, 2007 and 2008) and evaluated
on the remaining 30% (test data: 2009). The predictive performance of models was measured
through the concordance index (C-index) with the R package ‘Hmisc’ [31]. The C-index is
applicable to continuous and categorical data, as the predictive discrimination is related to a
rank correlation between predicted and observed outcomes [32]. This index is identical to the
most widely used measures for model discrimination, the area under the Receiver Operating
Characteristic curve (AUC) [33]. The C-index ranges from 0 to 1 and models with values from
0.7 onwards are considered with good discrimination ability (0.7–0.8: ‘moderate discrimina-
tion’, 0.8–0.9: ‘good discrimination’; 0.9–1: ‘excellent discrimination’) [34].

Ensemble predictions. Averaged models of GLMs and GAMs were combined to produce
an ensemble prediction since the accuracy of SDMs predictions could be improved by applying
consensus methods [35–38]. The weighted average (WA) consensus method was used to create
the ensemble predictions from single-model predictions assigning weights to each model and
using the pre-evaluated C-index, as follows [38]: WAi = Sj (C-indexmji x mji)/ Sj C-indexmji,
where mji are the probability-of-occurrence of values of the ith model in a given grid cell for
the j-selected single- models for which pre-evaluation C-index values were the highest.

Identifying key marine areas for dolphins to measure the influence of the
existing MPA
To identify priority marine areas for dolphins in southern Kenya, we predicted the spatial dis-
tribution of the three ecological measurements through maps of 1x1km resolution with R. We
extracted seasonal predictors from 2006 to 2008, training data, and applied the 95% of confi-
dence set of models to forecast the occurrence, sightings and group sizes distributions. From
this, we obtained an average prediction of the study area and calculate the standard deviation
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(SD) to measure the stability of the predicted distribution, with stable and unstable habitat rep-
resented by low and high SD [39]. We combined these predictions to define three categories of
distribution areas [14] (1) recurrent areas, where dolphins are frequently observed every year,
represented by grid cells with high mean (higher than the average mean across all grids cells
and study years) and low SD (lower than the average SD across all grid cells and study years);
(2) occasional areas, where dolphins’ presence varies from year to year, represented by grid
cells with high SD (higher than the average SD across all grid cells and study years); and
(3) unfavourable areas, where dolphins are almost never seen, represented by grid cells with
low mean (lower than the average mean across all grid cells and three years) and low SD (lower
than the average SD across all grid cells and three years). Recurrent and occasional cells were
used to define key areas for dolphins.

Finally, to evaluate how the existing MPA encompasses key habitat areas we compared the
percentage of each category of distribution areas and mean predictions inside and outside the
MPA for each of the occurrence and abundance models, and applied sequential t tests [14].

Abundance estimates
The ensemble predictions obtained for sightings and group size on each grid cell were multi-
plied to predict abundance of dolphins [40]. As we did not apply line transect methodologies
[41], we calculated an approximate effective sampling width with the distance and angles data
from the 2008–2009 sightings (those data were not recorded for the 2006–2007). The average
effective sampling width was 92 m (SD ± 92). Thus, we assumed that we missed only a small
part of dolphins’ sightings. The total number of dolphins on the study area was obtained by
summing the previously predicted abundance of all the grid cells.

Results
We conducted a total of 551 dedicated vessel-based surveys between 2006 and 2009 (Table 2).
Overall, dolphins were present in 77 of the total 194 surveyed grid cells, with an average of 2.53
(SD ± 5.48) sightings and 23.26 (SD ± 52.22) individuals per group. During the surveys, dol-
phins were mainly encountered on the east side of the study area, with the highest number of
sightings and group sizes within and around the MPA, and the lowest in the North-East side of
the survey area (S2 Fig).

Modelling ecological measurements
To estimate the average models and reduce models uncertainty, a higher number of models
were combined to achieve the 95% confidence set in GAMs compared to GLMs (Table 3). Like-
wise, GAM showed a higher deviance explained on the best model than GLMs. In terms of the
GLM output, BATH100 and FRONT were the predictors with the strongest negative effect,
showing the highest probabilities close to the 100 meter isobaths and oceanic fronts for all
three ecological measurements (S3 Fig), as well as SST in a minor degree. In the case of GAM,
REEF and FRONT were the most important variables describing the three ecological measure-
ments; with higher probabilities occurring in close proximity to the reefs and frontal systems,
and in shallow waters relatively close to the shelf-break (S3 Fig, see S3 Text for further explana-
tion on the modelling results). Sightings were influenced by small temporal variations on chlo-
rophyll among seasons. In addition, group size showed an increase during the season with low
temperatures. Regarding model evaluation, the ensemble predictions yielded the best model
performance for all three ecological measurements (note C-index values>0.8; Table 3).

Habitat Protection for Highly Mobile Marine Top Predators
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Dolphin abundance estimations
The estimated total abundance for the 2006–2008 period was 91.54 ± 55.32 dolphins, with an
average predicted abundance of 0.83 ± 1.74 dolphins/km2. The highest abundance predictions
occurred within the MPA with 54.85 ± 40.75 dolphins compared to the 36.69 ± 18.30 dolphins
outside the MPA.

Key areas for dolphins
Our model predictions matched observed patterns within the range of the dolphins and identi-
fied important distribution areas on the east side of the study area (Fig 2). The MPA was identi-
fied as a critical area for all three ecological measurements, with high variability (SD) in
predictions probably due to seasonal variations (S4 Fig). The occurrence models predicted the
highest dolphin probabilities within the MPA and on the east side of Wasini Island (Fig 2). For
abundance models, predicted maps matched the key areas identified by the occurrence models,
but the maximum abundances were concentrated on a smaller area (Fig 2). In this case, the
highest probabilities were mostly encountered within the MPA. The combination of the previ-
ous predictions maps resulted in the identification of recurrent, occasional and unfavourable
habitats (Fig 3). The ensemble predictions of the occurrence and abundance models defined a
59% and 71% of unfavourable habitats within the study area respectively, and a total of 31%
and 18% combining recurrent and occasional habitats for each ensemble prediction (Fig 4)
However, an important percentage (47%) of these recurrent and occasional areas was identified
inside the MPA using presence-absence models and a 57% using abundance models. Moreover,
presence probability and abundance predictions were significantly higher within the MPA

Table 2. Searching effort per year and numbers of the three ecological measurements.

Year Seasons Searching effort (Km) Number of grid cells present Sightings Group size

2006 4 3887 73 131 981

2007 4 3757 89 137 1184

2008 2 1849 42 70 747

2009 4 4009 94 152 1601

Total 14 13502 298 490 4513

doi:10.1371/journal.pone.0133265.t002

Table 3. Summary of the habitat modelling output andmodel evaluation.

Ecological
index

Model ED from MwlAIC # variables in
MwLAIC

Number models in
95CS

TRAIN DATA TEST DATA

TRAIN
DATA

TEST
DATA

Mean C-
index

SD C-
index

Mean C-
index

SD C-
index

Presence/
absence

GLM 9.84 6.28 3 52 0.86 0.03 0.85 0.04

GAM 17.50 19.00 5 13 0.81 0.03 0.78 0.04

Ensemble NA NA NA NA 0.87 0.03 0.84 0.04

Sightings GLM 15.27 10.20 3 45 0.85 0.03 0.84 0.03

GAM 27.00 31.10 6 10 0.79 0.03 0.78 0.04

Ensemble NA NA NA NA 0.86 0.02 0.84 0.03

Group size GLM 15.14 15.81 4 102 0.82 0.03 0.81 0.03

GAM 28.60 41.30 7 7 0.77 0.03 0.75 0.04

Ensemble NA NA NA NA 0.84 0.03 0.81 0.04

ED: explained deviance. MwlAIC: Model with Lowest Akaike’s Information Criteria (AIC). 95CS: 95% confidence set. C-index: concordance index.

doi:10.1371/journal.pone.0133265.t003
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Fig 2. Distribution maps of the binomial and abundance predictions (Mean and SD) over the 2006 and
2008 period (training data)

doi:10.1371/journal.pone.0133265.g002

Fig 3. Type of habitats for the binomial and abundance predictions over the 2006–2008 period (training data). (1) recurrent areas, (2) occasional
areas; and (3) unfavourable areas.

doi:10.1371/journal.pone.0133265.g003
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than outside (for occurrence predictions t = -6.622, P>0.05; for abundance predictions t =
-6.618, P>0.05), showing the higher preference for these areas (Fig 5).

Discussion

Spatial ecology of coastal dolphins
As a result of our integrative ecological modelling approach, we ascertain that both static and
dynamic variables influenced the spatial ecology of the T.aduncus. Our modelling showed that
the reefs inside the MPA and along the east side of Wasini Island are selected by coastal

Fig 4. Percentage of areas with recurrent, occasional and unfavourable habitats inside and outside
the MPA for the predicted ensemble binomial and abundance. A 10.52% of grid cells have no category
due to the lack of sampling during certain periods.

doi:10.1371/journal.pone.0133265.g004

Fig 5. Mean and SD of the binomial and abundance predictions (median, 25–75%, inter-quartile range,
non-outlier range, and outliers) in relation to the MPA (inside-outside).

doi:10.1371/journal.pone.0133265.g005
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dolphins. This habitat preference is supported by previous studies on the foraging ecology of
the species, that found T. aduncus to feed upon inshore reef fish and cephalopods [42]. In addi-
tion to reef prey, species comprised within the Tursiops genera feed upon alternative prey such
as bathydemersal fish and cephalopods in offshore waters along the WIO [43]. Thus, the strong
influence of the isobaths of 100m on dolphin spatial ecology would likely indicate that they
exploit not only inshore (shallow waters) but also offshore waters (proximity to deep waters)
feeding on different prey.

In addition to static features, the spatial ecology of coastal dolphins was strongly affected by
dynamic variables such as distance to frontal systems, when oceanographic fronts are closer to
shore. Oceanographic fronts are important features due to their intense mesoscale activity
where processes of upwelling/downwelling take place that enhance marine productivity, lead-
ing to the formation of predictable prey patches [44]. Other dynamic variables that played a
secondary role on driving sightings and group size patterns were SST and CHL. Several studies
have linked cetacean habitat preferences to dynamic variables, showing the effect of these pre-
dictors to define the species distribution [15,45].

Transferring modelling outputs into a MPA context
Species distribution models (SDM) are the first essential step to understand the influence of
environmental drivers on the spatial distribution of a given species. Previous studies have
shown that non-parametric regression methods, such as GAMs, had better predictive perfor-
mance than parametric methods, such as GLMs [46]. In comparison, our results yield slightly
higher predictive performance for GLMs than GAMs for the three ecological measurements.
Despite these minor differences in predictive performance, both techniques provided very dif-
ferent spatial predictions, probably due to the underlying assumptions relationship between
the modelling technique and the environmental predictors [47]. Additionally, comparing the
predictions from all models revealed that occurrence and sightings models had marginally bet-
ter discrimination ability than group size models. The accuracy of the predictive models was
improved by applying consensus methods and combining them into an ensemble model,
reducing also the uncertainty from the most traditional approach of selecting the best model
from an ensemble of forecasts [36]. Another way of minimising model uncertainty was through
the multimodel inference based on the information-theoretic approach. To our knowledge this
is the first time that ensemble models and model averaging are used to predict marine mammal
habitats.

To develop effective conservation science, modelling outputs have to be discussed directly
within the context of a MPA. For instance, this study highlights the association of coastal dol-
phins to static as well as dynamic oceanographic variables, revealing the need to incorporate
dynamic and spatially explicit conservation actions for marine top predators [48]. Recent con-
servation planning demands a shift to more dynamic and adaptive management of marine
resources to adjust to the current challenges facing the marine environment and marine species
[49]. While it is important to consider dynamic marine features (e.g., eddies, fronts) to identify
pelagic biodiversity hotspots for the establishment of dynamic MPAs [50], we need to recog-
nize that those MPAs pose a management challenge compared to static systems established as
permanent closures [51].

Conservation implications: the role of existing MPA for coastal dolphins
An effective ecosystem-level management of a MPA depends acutely upon the quality of
information available, not only for delineating boundaries but also to understand how these
areas are used by animals and which components influence their distribution and
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abundance [52]. Our modelling output evidences the positive benefits of the existing MPA
for coastal dolphins, whose occurrence and abundance were higher within this spatial-based
management unit than outside. In addition, there is evidence that other taxonomic groups
have benefited from the establishment of this and other MPAs along the coast of Kenya. For
instance, abundance and biomass of coral reef fish have significantly increased since the
establishment of the existing MPA [53]. While the use of presence-absence data determined
31% of the total study area as recurrent and occasional areas, the abundance data reduced to
only 18% of the area. This shows the hierarchical patterns of distributions, with localised
areas of high relative abundance nested within the distribution area used by the species in
the study area [54]. Nevertheless, 53% and 43% of recurrent and occasional areas occurred
outside the MPA using presence-absence and abundance models respectively, suggesting
that MPA does not encompass the whole ecological needs of dolphins. Finally, more than
65% of our study area was defined as unfavourable for Indo-Pacific bottlenose dolphins,
probably due to multiple factors such as non-optimal environmental conditions, evolution-
ary strategies to reduce competition with other closely related species (e.g., Sousa chinensis
[55]) and intensive fishing (Pérez Jorge, unpublished data).

An optimal design of an MPA expected to protect a population would include the entire
year-round distribution of that population [56]. Although the design for some resident or
non-migratory species may be possible to achieve, the protection of highly migratory or
mobile species present a major challenge for spatial management. Thus, when only a small
portion of a population’s range can be included within a MPA, it is crucial to protect critical
habitats for the species’ survival (e.g., breeding and foraging areas) where they are particu-
larly vulnerable to anthropogenic impacts [12]. This study determined that the area encom-
passed by the MPA is certainly insufficient to satisfy the spatial requirements of the species,
not covering a high percentage of the recurrent areas that constitutes critical habitat for vital
activities every year. However, areas containing critical habitat outside the MPA are partially
incorporated in the proposed collaborative co-management initiative introduced by the
Kenyan government in 2006 [8]. Co-management areas are developed and enforced by local
bylaws with respect to the use of and access of fisheries. Early findings suggest that they
increase fish biomass if an effective compliance takes place [57]. Nevertheless, this will
require further investigation due to the recent implementation of these co-management
initiatives.

MPAs have been advocated for the conservation of marine mammals, but few examples
have empirical evidence that they are effective [58]. Quantifying the effects of MPAs is crucial
to evaluate their efficiency as management tools and the protection of the species [59]. The
results from this study suggest that Kisite-Mpunguti MPA represents an important area that
seemingly encompasses key habitat features of ecological and behavioral importance to the
Indo-Pacific bottlenose dolphins, and it should be considered as a critical habitat for the species
which requires special management considerations. This species is important ecologically, as a
potential indicator species which protection may ensure the health of other key elements of the
marine ecosystem, and economically, through the growing dolphin-watching industry [12]. It
has been shown that dolphin tourism can have negative impacts on dolphin populations, espe-
cially when not monitored or unsustainably managed [60]. Impacts may be long-term and life-
threatening; both at the individual and population level [61]. Other anthropogenic impacts on
the cetacean populations such as overfishing [62] and seismic exploration [63] have recently
been identified as the main threats for marine mammals around Kisite-Mpunguti MPA [64].
Especially taking into account the restricted inshore habitat of the species, it is important to
evaluate the effectiveness of the code of conduct implemented by Kenya Wildlife Service in
2007 as well as, to assess the other identified threats.
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Conclusions
We provide two key conservation and management tools: (i) an integrative habitat model-
ling approach to predict key marine habitats, and (ii) the first study evaluating the effective-
ness for marine mammals of an existing MPA in the WIO. Our results show how the
modelling technique selection may influence the identification of key marine areas, and how
using ensemble models can improve the predictive performance, successfully predicting
areas of importance of a given species. We recommend the use of these robust ensemble
models for decision makers in designing and identifying MPAs. In the case of coastal dol-
phins, these ensemble predictions forecast a higher occurrence and abundance of dolphins
within the MPA, covering a large percentage of recurrent and occasional areas (47% and
57% using presence-absence and abundance models respectively), but does not adequately
protect all of them. We propose to extend the protection to incorporate all occasional and
recurrent areas, which are critical habitats for the species. MPAs not only benefit fish and
invertebrate populations, but also improve the prey base for top marine predators and
reduce their threats through spatial protection [12,56]. We highlight the need to analyze the
level of actual protection of existing MPAs as it may not provide the proper representation
for upper-trophic level species. Finally, this study could also be applied to evaluate the
potential effects on the distribution and abundance of top marine predators within a global
change scenario, taking into account that climate change will affect the distribution and
availability of prey in the short and long term [65].
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