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Abstract
Here we focus on the description of the mechanisms behind the process of information ag-

gregation and decision making, a basic step to understand emergent phenomena in society,

such as trends, information spreading or the wisdom of crowds. In many situations, agents

choose between discrete options. We analyze experimental data on binary opinion choices

in humans. The data consists of two separate experiments in which humans answer ques-

tions with a binary response, where one is correct and the other is incorrect. The questions

are answered without and with information on the answers of some previous participants.

We find that a Bayesian approach captures the probability of choosing one of the answers.

The influence of peers is uncorrelated with the difficulty of the question. The data is incon-

sistent with Weber’s law, which states that the probability of choosing an option depends on

the proportion of previous answers choosing that option and not on the total number of

those answers. Last, the present Bayesian model fits reasonably well to the data as com-

pared to some other previously proposed functions although the latter sometime perform

slightly better than the Bayesian model. The asset of the present model is the simplicity and

mechanistic explanation of the behavior.

Introduction
The process of information aggregation in social systems gives rise to emergent phenomena
like the wisdom of crowds [1, 2]. In order to understand such phenomena a quantitative under-
standing of the mechanisms by which information is aggregated and used in opinion formation
and decision making is needed. In the case of the wisdom of crowds, which refers to having a
better estimation of the solution to a question when the opinions of multiple heterogeneous
agents are aggregated, it has been shown that social interaction can lead to misleading estima-
tions [3]. The issue of information aggregation is a hot topic which is expected to give insights
into the solution of many societal problems. For example, 2014’s World Economic Forum’s
meeting has the title “Leveraging collective intelligence for unprecedented challenges”.
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Models of opinion dynamics are based on assumptions on the decision making process on
interacting individuals. Simple decision making rules employed in these models include pro-
portional imitation (i.e., the rate of the opinion conversion is proportional to the number of
peers possessing the different opinion), employed in the voter model, majority rules (i.e., the
same rate is a superlinear function), thresholding rules (i.e., thresholding function), reinforce-
ment rules (i.e., adaptive function depending on experiences of agents), and homophily rules
(i.e., similar individuals more likely interact) [4–6]. The type of the employed decision making
rule affects the possibility, final state, speed, and other dynamical phenomena of collective
opinion formation. However, in physics and even social sciences literature, justification of
these different types of models is at best based on a qualitative assessment of human behavior.
Beyond opinion dynamics, social dilemmas, which in many cases are based on binary decision
making, also offer an opportunity to bridge theory to experiments [7, 8].

For animals in groups, recent work in this direction has identified Bayesian inference as a
mechanism behind their collective behavior [9–21]. In humans, experimental evidence of
Bayesian inference has been provided in the realm of perceptual and cognitive domains [22,
23]. Effects of Bayesian types of inference on collective behavior have been investigated with
the use of mathematical and individual-based models [16, 24–29]. Toward quantitative under-
standing of social decision making of humans, the seminal experiment by Milgram and col-
leagues [30] designed to assess the probability to stop by a group of bystanders has recently
been reproduced [31] whose results are fitted by a heuristic function. There are also other re-
cent studies attempting to fit Bayesian (see the references above), evolutionary dynamical [32],
and other [33, 34] models to behavioral data. The wisdom of crowds when interaction among
participants is allowed is also a target of recent experimental studies [3, 35, 36]. However, a uni-
fying quantitative framework to infer models of social decision making on the basis of behav-
ioral data of humans is still lacking and much preceded by accumulating modeling frameworks
for social animals [11, 15, 17].

In the present study, we address the potential of the Bayesian approach to explain human
decision making under social interaction. We focus on subjects answering questions with bina-
ry options, one of which is correct. This situation contrasts with that of the previous studies on
the wisdom of crowds that allowed virtually real values of answers [3, 35, 36]. We examine bi-
nary choices because many options in nature are discrete, as exemplified by voting, purchasing,
and deciding where to live. In many of such situations, extrapolation from continuous settings
is not obvious. We use previously published data sets in which the participants first answer in
the absence of social information and later with the information about the answers submitted
by the r previous respondents; r gradually increases for the same question [33, 34]. The partici-
pants answer in a sequence, the situation akin to that for previous Bayesian models of the
emergence of herd behavior [24, 37]. We show that simple Bayesian models reasonably explain
the behavioral data.

Materials and Methods

Model
We denote the two options of a question by A and BWithout loss of generality, we assume that
A and B are the correct and wrong answers of the question q, respectively. We label the N
agents 1, . . ., N and denote the option that agent i (i = 1, . . ., N) selects in question q by xi(q) 2
{A, B}. We denote by P[xi(q) = A] the strength of the belief (hereafter, simply the belief), with
which agent i believes in A. A parallel definition is applied to P[xi(q) = B]. Note that P[xi(q) =
A], P[xi(q) = B]� 0, and P[xi(q) = A] + P[xi(q) = B] = 1.
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We update the agent i’s belief as follows. We assume that the answer of the previous respon-
dent j, i.e., xj(q), is generated according to the probability specified by the belief of agent j, i.e., P
[xj(q) = A], which equals 1 − P[xj(q) = B]. Then, by using the Bayes’ theorem, agent i is assumed
to update the belief on the basis of the old belief and xj(q). The posterior belief of agent i is
given by

P xiðqÞ ¼ A½ �post

¼
P xjðqÞ ¼ AjxiðqÞ ¼ A
h i

P xiðqÞ ¼ A½ �pre
P

Xi¼A;BP xjðqÞ ¼ AjxiðqÞ ¼ Xi

h i
P xiðqÞ ¼ Xi½ �pre

¼ cP xiðqÞ ¼ A½ �pre
cP xiðqÞ ¼ A½ �pre þ ð1� cÞP xiðqÞ ¼ B½ �pre

;

ð1Þ

where P[xi(q) = A]pre and P[xi(q) = B]pre are prior beliefs summing up to unity. Parameter c�
P[xj(q) = Ajxi(q) = A] (1/2� c< 1) represents the flexibility of agent i in response to agent j’s
answer. If c is close to unity, P[xj(q) = Bjxi(q) = A] = 1 − c is small such that 1 − P[xi(q) = A]post,
i.e., P[xi(q) = B]post is large once agent i observes xj(q) = B for a given P[xi(q) = A]pre. If c is
close to 1/2, P[xi(q) = A]post is insensitive to xj(q). By symmetry, we assumed that P[xj(q) =
Bjxi(q) = B] = c such that P[xj(q) = Ajxi(q) = B] = 1 − P[xj(q) = Bjxi(q) = B] = 1 − c.

Iterative application of Equation (1) leads to

P xiðqÞ ¼ A½ �

¼ cnA�nBP0 xiðqÞ ¼ A½ �
cnA�nBP0 xiðqÞ ¼ A½ � þ ð1� cÞnA�nB 1� P0 xiðqÞ ¼ A½ �f g

ð2Þ

and P[xi(q) = B] = 1 − P[xi(q) = A], where nA and nB are the accumulated numbers of A and B
responses of the previous respondents observed by agent i, respectively. The initial belief of
agent i in option A is denoted by P0[xi(q) = A]. It should be noted that the order in which the
previous responses are observed does not affect i’s behavior. The belief of each agent i is
uniquely determined by nA − nB and the initial belief. We can rewrite Equation (2) as

P xiðqÞ ¼ A½ � ¼ 1

1þ psnA�nB
; ð3Þ

where p = {1 − P0[xi(q) = A]}/P0[xi(q) = A] and s = (1 − c)/c. Previous studies used Equation (3)
to account for consensus decision making by fish [38, 39].

Data set
In the present study, we use the two data sets collected in Refs. [33, 34]. The first data set,
which we denote by D1, consists of two sets of face-to-face experiments [33]. Data set D1 con-
sists of the results obtained from two populations of subjects each of which contains N = 31
subjects (KUE-A and KUE-B in Ref. [33]). Each subject went through 100 questions. Each
question allowed binary options, one being correct and the other being incorrect. Generally
speaking, the subjects were asked to answer each question more than once under different in-
formation conditions. We refer to a sequence of answering sessions under a given question q (1
� q� 100) and information condition parameterized by r as a round. Subjects went through
several rounds for each question in general.

The number of rounds that a subject experienced for each question depends on the subject.
The N subjects in a population were randomly assigned labels 1, 2, . . ., N. In the first round, all
subjects answered the question without referring to others’ responses. This is the memoryless
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condition (r = 0). If everybody answered within the allocated time, there were N data points for
each population and question.

The second round was implemented as follows. First, subject 1 left this question without
participating in the second and following rounds. Second, subject 2 observed the answer of sub-
ject 1 in the first round and possibly updated the private answer. Similarly, subject i observed
subject (i − 1)’s answer in the first round and possibly updated the answer, where i runs from
i = 3 to i = N in an ascending order. In the best case whereby everybody answered, N − 1 data
points were collected in the second round. The collected data correspond to information condi-
tion r = 1.

The third round, corresponding to r = 2, was implemented as follows. First, subject 2 left
without participating in the third and further rounds. Second, subject 3 observed the number
of answers (nA, nB) submitted most recently by the previous r = 2 respondents and answered
the question again. It should be noted that (nA, nB) = (2, 0), (1, 1), or (0, 2). To calculate (nA,
nB), the answer of subject 1 in the first round and that of subject 2 in the second round were
used. This is because subject 1 already left the question before the second round. In other
words, the answer of subject 1 is assumed to be quenched to that made in the first round in the
subsequent (i.e., second and later) rounds. Third, subject i answered after observing (nA, nB)
calculated on the basis of the most recent choice of subjects i − 1 and i − 2, where i runs from 4
to N. There are at most N − 2 answers obtained from the third round.

After the third round was completed, further rounds were carried out with r = 3, 5, 7, 9, and
1 in this order, where r =1 implies that the subjects can refer to the most recent answers of
all the preceding respondents. Subject 3 had left before the fourth round, corresponding to
r = 3, started. Subjects 4 and 5 had left before the fifth round, corresponding to r = 5, started.
There are eight rounds in total. The labels of the subjects were fixed throughout the
100 questions.

The second data set, which we denote by D2, consists of two sets of web-based experiments.
They are denoted by HUE-A and HUE-B in Ref. [33] and the O and C treatments, correspond-
ing to r = 0 and r> 0, respectively, in Exp-II in Ref. [34]. Data set D2 consists of the results ob-
tained from two subject populations each of which contains N = 52 subjects. Each
subpopulation of subjects went through 120 questions. In D2, each subject experienced up to 6
rounds, i.e., r = 0, 1, 5, 11, 21, and1 for each question. The labels of the subjects were random-
ly shuffled in the beginning of each question.

Results
Let us first consider the aggregate results for each experiment. As described previously, a sub-
ject answers a question after observing the number of the correct answer, nA, and that of the in-
correct answer, nB, from the last r = nA + nB respondents. By the aggregate results we mean
that we aggregate the number of correct answers across questions for the same condition (nA,
nB). We denote by R(nA, nB) the number of answers obtained under condition (nA, nB),
summed over respondents i and questions q. Out of these answers, the number of answer A,
denoted by NA(nA, nB), is given by

NAðnA; nBÞ ¼
X
i;q

xiðq; nA; nBÞ: ð4Þ

The fraction of A answers under condition (nA, nB) is given by NA(nA, nB)/R(nA, nB). This frac-
tion for various (nA, nB) pairs is plotted in Fig. 1(a) and (b) for D1 and D2, respectively. We fit P
[xi = A] given by Equation (3) to the experimental data, where we suppress q in the argument
of xi because we have aggregated the data over the questions. We estimate the values of p and s
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by an exhaustive sampling in the parameter space. For each sampled (p, s) pair, we calculate
the error by the total square distance between Equation (3) and the empirical values summed
over the available (nA, nB) pairs. The parameter values yielding the smallest error are adopted.
The results of the best fitting are shown by the solid curves in Fig. 1(a) and (b) for D1 and D2,
respectively. For D1, the best fit is obtained for p = 0.81, s = 0.75 which lead to a root mean
squared error RMSE� 0.042. For D2, we obtain p = 0.82, s = 0.87 leading to RMSE� 0.059.
Fig. 1 indicates that Equation (3) fits both data sets reasonably well. The value of the RMSE as a
function of both parameters is shown in Fig. 2.

An alternative hypothesis of collective decision making is that P[xi = A] obeys Weber’s law
such that it is a function that only depends on (nA − nB)/(nA + nB), or equivalently, nA/(nA +
nB) [15, 17]. To test this hypothesis, we aggregate the data over q and i using the same aggrega-
tion as that used in Fig. 1, but separately for r to examine the effect of r on the decision making,
and plot P[xi = A] as a function of nA/(nA + nB). The results are shown in Fig. 3(a) and (b) for
D1 and D2, respectively. Each color corresponds to a value of r = nA + nB. If Weber’s law holds
true, all curves collapse on a single curve. Fig. 3 indicates that it is not the case. To be more

Fig 1. Bayesian inference and experimental data.We plot the probability to report a correct answer A as a function of nA − nB for various (nA, nB) pairs: (a)
Data set D1, (b) Data set D2. The circles correspond to the data. The solid curves indicate the best fits of Equation (3): (p, s) = (0.80, 0.75) in (a) and (0.82,
0.87) in (b).

doi:10.1371/journal.pone.0121332.g001
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quantitative, in Fig. 3(c), we plot the slope of the curves obtained by applying the least square
method to the data shown in Fig. 3(a) and (b). The figure indicates that the slope increases
with r( = nA + nB) and seems to saturate. That would mean that Weber’s law is correct for suffi-
ciently large r values. Nevertheless, for the r values accessed by the experiment, Weber’s law
does not hold. With data for larger r values one could assess if Weber’s law holds and from
which r value on.

We have a reasonable fit of the data to Equation (3) even without aggregation over the ques-
tions. To show this, for a given question, we calculate the fraction of the correct answers
Nq

AðnA; nBÞ=RqðnA; nBÞ, where Rq(nA, nB) is the number of answers to question q obtained
under condition (nA, nB), and N

q
AðnA; nBÞ �

P
ixiðq; nA; nBÞ is the corresponding number of

answer A. The relationship between P[xi(q) = A] and z = (nA − nB) ln sq + ln pq for different
questions is plotted in Fig. 4(a). If Equation (3) holds true, the results for different questions
should collapse on a single curve P[xi(q) = A] = [1 + exp(z)]−1 shown by the solid line. The re-
sults for the different questions do roughly collapse on this curve. The estimated values of pq
and sq for individual questions are shown in Fig. 4(b). As before, we obtained parameter values
pq and sq by sampling the parameter space and finding the values giving the smallest error.
Fig. 4(b) shows that the estimated parameter values depend on the question to a large extent.
For some questions, p> 1, implying that the initial belief in the correct answer is worse than
the random coin flip, i.e., P0[xi(q) = A]< 0.5. For a majority of questions, however, the initial
belief is better than the random coin flip, and for some questions, it is quite accurate (for exam-
ple, p = 0.1 corresponds to P0[xi(q) = A] = 0.91). Another remark is that p and s are apparently
uncorrelated. This implies that the flexibility of the opinion change does not depend on the dif-
ficulty of the question.

In the literature one can find different models that propose different functional forms for P
[AjnA, nB]. Following [17], we fitted several of them [17, 39–42] to the current data. The quality
of fitting is shown in Figs. 5 and 6 for data sets D1 and D2, respectively, in different colors for
different values of nB. For D1, the best results are produced with the model in Ref. [42] with a

Fig 2. Parameter estimation.Root mean squared error associated to the fitting of the model given by Equation (3) to data sets (a) D1 and (b) D2. The
contour line shows a level of 0.05 and 0.07 in (a) and (b), respectively.

doi:10.1371/journal.pone.0121332.g002
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Fig 3. Dependence on the fraction of correct answers. (a) Probability to answer correctly as a function of
the fraction of correct answers of the previous respondents for data set D1. Black r = 1, red r = 2, green r = 3,
blue r = 4, yellow r = 7, and brown r = 9. (b) Same results for data set D2. Black r = 1, red r = 5, green r = 11,
and blue r = 21. (c) Slope as a function of r obtained by the least square method applied to the plots in panels
(a) and (b). The closed and open circles correspond to D1 and D2, respectively.

doi:10.1371/journal.pone.0121332.g003

Bayesian Decision Making in Human Collectives with Binary Choices

PLOS ONE | DOI:10.1371/journal.pone.0121332 April 13, 2015 7 / 14



Fig 4. Dependence on the question. (a) Probability of correct answers as function of rescaled accumulated
answers of previous respondents (nA − nB) ln (s) + ln (p). Each symbol represents a question. Black, open
symbols correspond to D1, and blue filled circles to D2. We estimated the s and p values for each question by
applying the least square method to the data for the corresponding question. (b) Estimated p and s values for
different questions. The top and side panels show the distributions of p and s, respectively.

doi:10.1371/journal.pone.0121332.g004
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RMSE� 0.035, followed closely by the model presented in this paper (RMSE� 0.042). For D2,
the best fitting (RMSE� 0.046) is produced with the model in Ref. [42], and followed closely
by the models in Refs. [40, 41] (RMSE� 0.053) and Ref. [17] (RMSE� 0.054), with none of
them being the one in this paper. See Table 1 for more information.

It should be noted that the first model in Table 1 is equivalent to a special case of our model
(i.e., p = 1). Therefore, the fitting cannot be better than the present model. Note also that we fit-
ted the model in Ref. [17] with k = 0. The result of fitting with k as a free parameter gives rise to
very small values of k (k = 0.04 for D1 and k = 0.065 for D2), in the order of 10−2. The parameter
� is insensitive to the small value of k being different to 0 (� = 1.60 for D1 and � = 1.30 for D2),
while parameter δ is a much more sensitive (δ = 7.04 for D1 and δ = 8.72 for D2) (compare to

Fig 5. Testing different models for data setD1. (a) P½A� ¼ dnA=ðdnA þ dnB Þ, δ = 1.33, RMSE = 0.06, (b) P[A] = (δ + nA)
ε/[(δ + nA)

ε + (δ + nB)
ε], δ = 3.90, ε =

1.95, RMSE = 0.05, (c) P[A] = (δ + εnA)/[1 + ε(nA + nB)], δ = 0.63, ε = 0.41, RMSE = 0.03, (d) P[A] = 1/2 + δ(nA − nB)/(nA + nB + ε), δ = 0.68, ε = 5.06,
RMSE = 0.06, (e) P[A] = [1 + (1 + δε−nA)/(1 + δε−nB)]-1, δ = 8.32, ε = 1.60, RMSE = 0.05, (f) P[A] = (1 + psnA−nB)−1, p = 0.81, s = 0.75, RMSE = 0.04. The different
colors correspond to nB = 0 (black), 1 (red), 2 (green), 3 (blue), 4 (yellow), 5 (brown), 6 (grey), 7 (violet).

doi:10.1371/journal.pone.0121332.g005

Bayesian Decision Making in Human Collectives with Binary Choices

PLOS ONE | DOI:10.1371/journal.pone.0121332 April 13, 2015 9 / 14



results in Table 1), as the minimum in the optimization is flatter in the direction of the δ pa-
rameter, as happens also for parameter p in the present model (see Fig. 2). The quality of the
fittings is of the same order as when using k = 0 (RMSE = 0.054 for D1 and RMSE = 0.054 for
D2). This also happens for the zebrafish data in Ref. [17].

Discussion
We showed that the simple Bayesian model provides a quantitative agreement with behavioral
data of humans sequentially answering questions with binary options. At least two other stud-
ies used the same model as ours to be fit to data in different contexts. In Ref. [39], sequential

Fig 6. Testing different models for data setD2. (a) P½A� ¼ dnA=ðdnA þ dnB Þ, δ = 1.15, RMSE = 0.07, (b) P[A] = (δ + nA)
ε/[(δ + nA)

ε + (δ + nB)
ε], δ = 3.66, ε =

1.52, RMSE = 0.05, (c) P[A] = (δ + εnA)/[1 + ε(nA + nB)], δ = 0.62, ε = 0.35, RMSE = 0.05, (d) P[A] = 1/2 + δ(nA − nB)/(nA + nB + ε), δ = 0.57, ε = 4.39,
RMSE = 0.06, (e) P[A] = [1 + (1 + δε−nA)/(1 + δε−nB)]−1, δ = 12.01, ε = 1.30, RMSE = 0.05, (f) P[A] = (1 + psnA−nB)−1, p = 0.82, s = 0.87, RMSE = 0.06. The
different colors correspond to nB = 0 (black), 1 (red), 2 (green), 3 (blue), 4 (yellow), 5 (brown), 6 (grey), 7 (violet), 8 (cyan), 9 (pink).

doi:10.1371/journal.pone.0121332.g006
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choices by fish between two identical refugia are modeled. Depending on whether the two refu-
gia are identical or nonidentical (i.e., only one arm was with a replica predator), the unbiased
prior (p = 1 in our notation) or a biased one (p 6¼ 1) is used, respectively. In both unbiased and
biased prior cases, the authors concluded s� 0.4 (and the results are robust for 0.25� s� 0.5),
translating into c = 1/(s + 1)� 0.7 in our notation. In another experiment with a different fish
species, where fish individuals chose one of the two arms of a maze to avoid replica predators,
Ward and colleagues [38] estimated s� 1/e0.478 � 0.62, translating into c� 0.62. In contrast,
our results indicate s� 0.7 − 0.8 and hence c� 0.56 − 0.59. This difference may result from dif-
ferent species; humans may have lower responsitivity to social stimuli (i.e., c value closer to 0.5)
than fish (see Ref. [32] for related experiments). The type of the task may also contribute to
this difference. In the current study, the data sets used are quizzes asking general knowledge of
the participants. By contrast, in the fish experiments, each fish chose between two pathways
that were identical except for the possible presence of a replicator predator.

Quantitatively, some models fit better to our data than the present model does, in particular
for data set D2 (Table 1). However, it should be noted that some of these previous models were
proposed as fits, without particular mechanistic derivation [40–42]. Another model, i.e., the
fourth model in Table 1 [17], which results from the Taylor expansion of the model proposed
in Ref. [15], has mechanistic underpinning. However, the model is derived from ant’s random
walk on a specific arena [15]. In particular, the exit point that corresponds to the decision of
one of the two alternatives is literally the spatial exit point of the animal. That may be why this
model [15, 17] does not fit well to the present data. Compared to Arganda’s model [17] (fifth
model in Table 1), the present model fits better to data set D1 and worse to D2.

A way to differentiate between models is to have data on the behavior for large number of
information sources (large r). In that limit the different models provide different functional
forms for P[x = A]. Therefore, the models from Table 1 give rise to different limits r!1. The
first and the last one (model used in this paper) give rise to a step function. The second model
converges to x�/(x� + (1 − x)�), where x is the fraction of A responses, which coincides with We-
ber’s law for � = 1. However, the values of � estimated for our data are much larger than unity.
The third function for large r approximates the fraction of A responses. The fourth function
gives 1/2 + δ(2x − 1), which is a good approximation of the previous model given that the fit-
ting parameter δ’ 1/2 for our data sets. The fifth model gives a constant value P[x = A] = 1/2
in the limit r!1. More experimental data for large r would enable the further validation
of models.

Table 1. Fitting results for different models.

Model P[A] Fitted parameters and RMSE [Refs.]

D1 RMSE D2 RMSE

dnA
ðdnAþdnB Þ δ = 1.33 0.061 δ = 1.15 0.070 [39]

ðdþnAÞ�
ðdþnAÞ�þðdþnBÞ�

δ = 3.90, ε = 1.95 0.054 δ = 3.66, ε = 1.52 0.053 [40, 41]

dþ�nA
1þ�ðnAþnBÞ

δ = 0.63, ε = 0.41 0.035 δ = 0.62, ε = 0.35 0.046 [42]

1
2
þ d nA�nB

nAþnBþ�
δ = 0.68, ε = 5.06 0.056 δ = 0.57, ε = 4.39 0.057 [15]

1þ 1þd��nA

1þd��nB

� ��1 δ = 8.32, ε = 1.60 0.054 δ = 12.01, ε = 1.30 0.054 [17]

(1 + psnA − nB)−1 p = 0.81, s = 0.75 0.042 p = 0.82, s = 0.87 0.059 [here]

Results of fitting different models for P[A] to data sets D1 and D2.

doi:10.1371/journal.pone.0121332.t001
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There are some limitations of the present study. First, we ignored the individuality of the re-
spondents. In fact, for each question, there should be those who know the correct answer and
those who do not. Such personal knowledge can be incorporated to models for sequential an-
swering [24, 33]. Clarifying this issue warrants future work. Second, we tried to incorporate the
information about the previous responses into our model. However, the design of the experi-
ment makes it difficult to cope with this issue. The answers offered to subject i in each round
are not a random sample from the pool of responses in the previous round, but are the re-
sponses of the previous respondents i − 1, i − 2, . . ., i − r as initially labeled, which represents a
biased sampling. Together with the influence of the history of self-responses on the new deci-
sion, these features affect the decision making process of the subjects and thus the evolution of
the fraction of correct answers. Indeed in many situations individuals are not making decision
from a tabula rasa but they are shaping decisions continuously from social interactions and ex-
ternal signals. Future developments of the theory are expected to incorporate these ingredients
to deal with more realistic situations. Besides, large scale experiments taking advantage of the
new technologies available would be welcome to confront with decision making theories.
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