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Abstract

We experimentally investigate in the laboratory prominent mechanisms that are em-
ployed in school choice programs to assign students to public schools and study how
individual behavior is influenced by preference intensities and risk aversion. Our
main results show that (a) the Gale–Shapley mechanism is more robust to changes
in cardinal preferences than the Boston mechanism independently of whether indi-
viduals can submit a complete or only a restricted ranking of the schools and (b)
subjects with a higher degree of risk aversion are more likely to play “safer” strate-
gies under the Gale–Shapley but not under the Boston mechanism. Both results
have important implications for enrollment planning and the possible protection
risk averse agents seek.
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§Departamento de Análisis Económico II, UNED, Paseo Senda del Rey 11, 28040 Madrid, Spain and
Fundación de Estudios de Economı́a Aplicada (FEDEA), Calle Jorge Juan 46, 28001 Madrid, Spain; e-
mail: mvorsatz@cee.uned.es. He gratefully acknowledges financial support from the Spanish Ministry
of Education and Science through the project ECO2009–07530.

1

Post-print of: Experimental Economics, 16(1), 2013, 1-22.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36217637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In school choice programs parents can express their preferences regarding the assignment
of their children to public schools. Abdulkadiroğlu and Sönmez [5] showed that promi-
nent assignment mechanisms in the US lacked efficiency, were manipulable, and/or had
other serious shortcomings that often led to lawsuits by unsatisfied parents. To overcome
these critical issues, Abdulkadiroğlu and Sönmez [5] took a mechanism design approach
and employed matching theory to propose alternative school choice mechanisms. Their
seminal paper triggered a rapidly growing literature that has looked into the design and
performance of assignment mechanisms. Simultaneously, several economists were invited
to meetings with the school district authorities of New York City and Boston to explore
possible ways to redesign the assignment procedures. It was decided to adopt variants
of the so–called deferred acceptance mechanism due to Gale and Shapley [14] (aka the
Gale–Shapley mechanism) in New York City and Boston as of 2004 and 2006, respec-
tively.1 Since many other US school districts still use variants of what was baptized the
“Boston” mechanism,2 it is not unlikely that these first redesign decisions will lead to
similar adoptions elsewhere.3

Chen and Sönmez [9] turned to controlled laboratory experiments and showed that
the Gale–Shapley mechanism outperforms the Boston mechanism in terms of efficiency if
subjects are allowed to rank all schools. Since parents are only allowed to submit a list
containing a limited number of schools in many real–life instances, Calsamiglia, Haeringer,
and Klijn [8] experimentally analyzed the impact of imposing such a constraint. They
find that manipulation is drastically increased and both efficiency and stability of the
final allocations are negatively affected. Another important issue concerns the level of
information agents hold on the preferences of the others. Pais and Pintér [19] focused
on this comparing environments where subjects, while aware of their own preferences,
have no information at all about the preferences of their peers. A different approach was
taken in Featherstone and Niederle [12], where subjects may not know the preferences
of the others, but are aware of their underlying distribution. Both papers studied how
strategic behavior is affected by the level of information subjects hold. Featherstone and
Niederle [12] found that truth–telling rates of the two mechanisms are very similar. In
Pais and Pintér [19], truth–telling is higher under Gale–Shapley only when information
is substantial, so that the Gale–Shapley mechanism outperforms the Boston mechanism
only in some informational settings.

The need of reassessing the school choice mechanisms is reinforced by the recent the-
oretical findings in Abdulkadiroğlu, Che, and Yasuda [1] who showed that the Boston

1Abdulkadiroğlu, Pathak, and Roth [2, 3] and Abdulkadiroğlu, Pathak, Roth, and Sönmez [4] reported
in more detail on their assistance and the key issues in the redesign for New York City and Boston,
respectively.

2That is, the mechanism employed in Boston before it was replaced by the Gale–Shapley mechanism.
3The literature has also studied other mechanisms. Abdulkadiroğlu and Sönmez [5] proposed a mech-

anism based on Gale’s top trading cycles algorithm as a second alternative for the Boston mechanism.
However, we are not aware of school districts that employ this other alternative. More importantly, since
in Boston and New York the Boston mechanism was replaced by Gale–Shapley, our study focuses on the
ongoing debate on Gale–Shapley vs. Boston. For further recent developments on school choice we refer
to Al Roth’s blog on market design.
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mechanism Pareto dominates the Gale–Shapley mechanism in ex ante welfare in certain
school choice environments. This happens because the Boston mechanism induces par-
ticipants to reveal their cardinal preferences (i.e., their relative preference intensities),
whereas the Gale–Shapley mechanism does not. In view of this and other results, Ab-
dulkadiroğlu et al. [1] cautioned against a hasty rejection of the Boston mechanism in
favor of mechanisms such as the Gale–Shapley mechanism.4

Theoretically, whereas the Gale–Shapley mechanism is strategy–proof (that is, agents
have incentives to report their ordinal preferences truthfully), a student can increase
the likelihood of being assigned a given school by ranking it higher under the Boston
mechanism. That is, the Boston mechanism is manipulable and therefore sensitive to
underlying cardinal preferences and attitudes towards risk. Motivated by these findings,
we experimentally investigate how individual behavior in the Gale–Shapley and Boston
mechanisms is influenced by preference intensities and risk aversion and whether this
affects the performance of the two mechanisms. We opt for a stylized experimental design
that has several important advantages. First, by letting subjects participate repeatedly in
the same market with varying payoffs, we are able to investigate the impact of preference
intensities on individual behavior and welfare. Second, a special feature of our laboratory
experiment is that before subjects participate in the matching markets, they go through
a first phase in which they have to make lottery choices. This allows us to see whether
subjects with different degrees of risk aversion behave differently in the matching market.
Third, the complete information and the simple preference structure form an environment
that can be thought through by the subjects, so that clear theoretical predictions about
how preference intensities and risk aversion should affect behavior can be made.5 Finally,
our setup purposely does not include coarse school priorities in order to avoid possible
problems in entangling the causes of observed behavior.6

Our main results are as follows. Subjects tend to list a school higher up (lower down)
in the submitted ranking if the payoff of that particular school is increased (decreased)
everything else equal. Moreover, the Gale–Shapley mechanism is more robust to changes
in cardinal preferences than the Boston mechanism (Result 1). This finding has policy
appeal as robustness implies predictability, a valuable asset in enrollment planning. We
also find that subjects with a higher degree of risk aversion are more likely to play protec-
tive strategies7 under the Gale–Shapley but not under the Boston mechanism (Result 2).
Ease in recognizing protective strategies may make risk averse agents more comfortable

4Miralles [17] drew a similar conclusion based on his analytical results and simulations.
5On the other hand, since the market we consider in the second phase is small, the results may not

scale up to very large real–life matching markets.
6Coarse school priorities are a common feature of many school choice environments. Then, in order to

apply the assignment mechanisms, random tie–breaking rules are often used. However, the incorporation
of such rules in our design would make it very hard to see whether individuals with different degrees of
risk aversion behave differently because of strategic uncertainty or because of the random tie–breaking.
In other words, we assume that the schools’ priority orders are strict in order to study whether the
behavioral effect of risk aversion is associated with strategic uncertainty. For the very same reason, we
also assume that the induced game is common knowledge even though in practice individuals are likely
to have incomplete information regarding the other participants’ preferences.

7Loosely speaking, a subject plays a protective strategy if she protects herself from the worst eventu-
ality to the extent possible. Consequently, a protective strategy is a maximin strategy.
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with the Gale–Shapley mechanism.
The remainder of the paper is organized as follows. The experimental design is ex-

plained in Section 2. In Section 3, we derive hypotheses regarding the effect of relative
preference intensities and risk aversion on strategic behavior. In Section 4, we analyze
the impact of changes in cardinal preferences, how risk aversion affects behavior in the
matching market, and the implications of two variables for the welfare properties of the
mechanisms. In Section 5, we conclude with some possible policy implications.

2 Experimental Design and Procedures

Our experimental study comprises four different treatments. Each treatment is divided
into two phases.

In the first phase, which is identical for all treatments, we elicit the subjects’ degree
of risk aversion using the paired lottery choice design introduced by Holt and Laury [16].
Subjects are presented with a list of ten different choices between two lotteries (see Ta-
ble 10 in Appendix A). Lottery A is less risky than lottery B for the first nine choices, but
lottery B first–order stochastically dominates lottery A for the tenth choice. A rational
individual may choose A at the top of the list, but always chooses B at the bottom,
implying some switching point in between. The switching point, corresponding to the
first time lottery B is chosen, roughly determines the number of safe choices and, in turn,
provides a measure of the degree of risk aversion.8

In the second phase, subjects face the following stylized school choice problem: There
are three teachers, denoted by the natural numbers 1, 2, and 3, and three schools, denoted
by the capital letters X, Y , and Z, with one open teaching position each.9 The preferences
of the teachers over schools and the priority orderings of schools over teachers, both
commonly known to all participants, are presented in Table 1.

Preferences Priorities

Teacher 1 Teacher 2 Teacher 3 School X School Y School Z

Best match X Y Z 2 3 1

Second best match Y Z X 3 1 2

Worst match Z X Y 1 2 3

Table 1: Preferences of teachers over schools (left) and priority orderings of schools over teachers (right).

It can be seen in Table 1 that the preferences of the teachers form a Condorcet cycle.
The priority orderings of the schools form another Condorcet cycle in such a way that
every teacher is ranked last in her most preferred school, second in her second most
preferred school, and first in her least preferred school. The setup is competitive, so that
risk aversion may have a bite, and symmetric to simplify the data analysis.

8A rational individual may always choose lottery B, in which case the switching point is equal to 1.
9We “framed” the school choice problem from the point of view of teachers who are looking for jobs

because this presentation provides a natural environment that is easy to understand. For example,
material payoffs can be directly interpreted as salaries (see Pais and Pintér [19]).
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A 2 × 2 between–subjects design is obtained from two treatment variables that are
known to be empirically relevant in this type of market. The first treatment variable refers
to the restrictions on the rankings teachers can submit. We consider the unconstrained
and one constrained setting. In the unconstrained setting (u), teachers have to report a
ranking over all three schools. In the constrained setting (c), they have to report the two
schools they want to list first and second. The second treatment variable refers to how
reported rankings are used by the central clearinghouse to assign teachers to schools. We
apply here both Gale–Shapley’s teacher–proposing deferred acceptance algorithm (GS)
and the Boston algorithm (BOS). For the particular school choice problem at hand, they
are as follows:

Step 1. Each teacher sends an application to the school she listed first.
Step 2. Each school retains the applicant with the highest priority and rejects all other
applicants.
Step 3. If a teacher is rejected at a school, she applies to the next highest listed school.
Step 4. (The two algorithms only differ in this step.)

GS: Whenever a school receives new applications, these applications are considered to-
gether with the previously retained application (if any). Among the retained and
the new applicants, the teacher with the highest priority is retained and all other
applicants are rejected.

BOS: Whenever a school receives new applications, all of them are rejected in case the
school already retained an application before. If the school did not retain an appli-
cation so far, it retains among all applicants the one with the highest priority and
rejects all other applicants.

Step 5. The procedure described in Steps 3 and 4 is repeated until no more applications
can be rejected. Each teacher is finally assigned to the school that retains her application
at the end of the process. In case none of a teacher’s applications are retained at the
end of the process, which can only happen in the constrained mechanisms, she remains
unemployed and gets 0 ECU.10

Each subject faces one of the four treatments and plays the role of a teacher (schools
are not strategic players). The task is to submit a ranking over schools (not necessarily the
true preferences) to be used by a central clearinghouse to assign teachers to schools. This
is done three times, in three games with payoff structures that differ only in the payoff
of the second most preferred school: A subject always receives 30 ECU for her most
and 10 ECU for her least preferred schools, but in the first, second, and third games,
a subject receives 20 ECU, 13 ECU, and 27 ECU, respectively, if she obtains a job at
her second most preferred school.11 To maintain the notation as simple as possible, we

10If teachers had to list only one school, the two constrained mechanisms would be identical; that
is, for all profiles of submitted (degenerate) rankings, the same matching would be obtained under the
Gale–Shapley and Boston algorithms.

11Since the payoff of the second most preferred school varies for all subjects, subjects face different
kinds of opponents in different games. In one alternative design to possibly overcome this drawback the
payoff for only one subject (in each group of three subjects) varies. Yet, in this alternative approach, the
subjects with fixed preferences would probably believe that the third subject modifies her strategy due
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sometimes use 27ECU to refer to the payoff structure in which the second preferred school
is worth 27ECU. Moreover, GSc27 will refer to the game induced by the constrained Gale–
Shapley mechanism with the payoff structure 27ECU. All other situations are indicated
accordingly. Table 2 summarizes the experimental design.

Treatment # of Subjects First Phase Second Phase

Pref. Revelation Algorithm Game

First Second Third

GSu 54 Holt & Laury unconstrained Gale–Shapley GSu20 GSu13 GSu27

GSc 54 Holt & Laury constrained Gale–Shapley GSc20 GSc13 GSc27

BOSu 55 Holt & Laury unconstrained Boston BOSu20 BOSu13 BOSu27

BOSc 55 Holt & Laury constrained Boston BOSc20 BOSc13 BOSc27

Table 2: Experimental design.

The experiment was programmed within the z–Tree toolbox provided by Fischbacher
[13] and carried out in the computer laboratory at a local university. We used the ORSEE
registration system by Greiner [15] to invite students from a wide range of faculties. In
total, 218 undergraduates participated in the experiment. We almost obtained a perfectly
balanced distribution of participants across treatments even though some students did not
show up.12

Each session proceeded as follows. At the beginning, each subject only received in-
structions for the first phase (which included some control questions) together with an
official payment receipt. Subjects could study the instructions at their own pace and any
doubts were privately clarified. Participants were informed that they would play after-
wards a second phase, without providing any information about its structure. Subjects
also knew that their decisions in phase 1 would not affect their payoffs in the other phase
(to avoid possible hedging across phases) and that they would not receive any information
regarding the decisions of any other player until the end of the session (so that they could
not condition their actions in the second phase on the behavior of other participants in
the first phase). In theory, therefore, the two phases are independent from each other.

After completing the first phase, subjects were anonymously matched into groups of
three (within each group, one subject became teacher 1, one subject teacher 2, and one
subject teacher 3) and entered the second phase of the experiment, where they faced one
of the four treatments. The roles within the groups remained the same throughout the
second phase. Subjects were informed that three school choice games would be played
sequentially within the same group, but they never knew how the parameters would
change. It was also made clear that no information regarding the co–players’ decisions,

to the change in the preference intensities to which they respond by adapting their behavior as well, etc.

The elicitation of beliefs would certainly provide important information regarding the individual motives
but would, at the same time, further complicate the design. Also, if we only changed the preferences of
one subject the data to be collected would triple (to a total of 654 subjects).

12In each treatment using the Boston algorithm, we had one student left that could not be matched with
other participants. These two students took decisions without knowing that they remained unmatched.
Finally, we paid them as if they were assigned a place at their most preferred school.
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the induced matching, or the resulting payoffs would be revealed at any point in time. No
feedback whatsoever was provided. Apart from (very likely) avoiding issues with learning,
this prevented subjects from conditioning their decisions on former actions of other group
members.13

To prevent income effects, either phase 1 or 2 was payoff relevant (one participant
determined the payoff relevant phase by throwing a fair coin at the end of the experiment),
which was known by the subjects from the beginning. If the first phase was payoff relevant,
the computer selected randomly one of the ten decision situations and the uncertainty in
the lottery chosen by the subject then resolved in order to determine the final payoff. If
the second phase was payoff relevant, the computer randomly selected one of the games.
Subjects were then paid according to the matching induced by the submitted rankings.
At the end of the experiment, subjects were informed about the payoff relevant situation
and their final payoff. Subjects received 4 Euro (40 Eurocents) per ECU in case the first
(second) phase was payoff relevant. These numbers were chosen to induce similar expected
payoffs. A typical session lasted about 75 minutes and subjects earned on average 12.21
Euro (including a 3 Euro show–up fee) for their participation. The instructions, which
are translated from Spanish, can be found in Appendix C.

3 Experimental Hypotheses

Since the school choice problem is set up symmetrically, the three teachers face exactly
the same decision problem and we can simplify the description of the strategy spaces.
For instance, in the unconstrained (constrained) setting we make use of the notation
(2,3,1) for the ranking where a teacher lists her second most preferred school first, her
least preferred school second, and her most preferred school last (does not rank her most
preferred school). The other five strategies (1,2,3), (1,3,2), (2,1,3), (3,1,2), and (3,2,1)
have similar interpretations. Also, note that for all four mechanisms the strategies (3,1,2)
and (3,2,1) are strategically equivalent; that is, they always yield a payoff of 10ECU for
sure, independently of the other players’ strategies. Although possibly not all subjects
were aware of the strategic equivalence of (3,1,2) and (3,2,1), we nevertheless decided to
pool these two strategies in our analysis through the notation (3,×,×).

3.1 Preference Intensities

The first step in the derivation of our experimental hypotheses is the assumption that
rational subjects do not play dominated strategies. Table 3 shows the undominated
strategies for each of the four treatments.

13It is well–known (Dubins and Freedman [10] and Roth [20]) that teachers have incentives to report
their ordinal preferences truthfully in treatment GSu, in which case the induced matching would be stable
and efficient with respect to the teachers’ true preferences. However, to put all treatments at the same
level, these incentives were neither directly revealed in the instructions nor were they indirectly taught
by going over several examples. Otherwise, a convincing argument in favor of truth–telling in GSu would
render the comparison between GSu and the other mechanisms rather obvious. Also, explicit advice
would only increase the (observed) efficiency and stability gap between GSu and BOSu, i.e., strengthen
our results.
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Treatment Rankings

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,×,×)

Gale–Shapley unconstrained ×

Gale–Shapley constrained × × ×

Boston unconstrained × ×

Boston constrained × × × × ×

Table 3: A given strategy is undominated if and only if the corresponding entry is ×.

The second step is to derive predictions about how variations in the cardinal preference
structure affect individual behavior in the matching markets:

Prediction 1 Subjects no longer list school 2 or list school 2 further down in their sub-
mitted ranking if the payoff of this school decreases from 20ECU to 13ECU. Similarly,
subjects no longer exclude school 2 from their submitted ranking or list school 2 further
up in their ranking if the payoff of this school increases to 27ECU.

The economic intuition behind this prediction is fairly simple. Whenever the payoff of a
school decreases everything else equal, its relative attractiveness decreases. Consequently,
subjects who originally rank school 2 above some other school(s) may decide to push it
further down their ranking or not list it at all. A symmetric argument applies if the payoff
of school 2 is increased. Combining Table 3 and Prediction 1 we obtain Hypothesis 1, on
how the use of undominated strategies changes due to variations in cardinal preferences.

Hypothesis 1 Preference intensities affect the play of undominated strategies as de-
scribed in Table 4.

Treatment Rankings

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,×,×)

Gale–Shapley unconstrained

Change from 20 to 13ECU =

Change from 20 to 27ECU =

Gale–Shapley constrained

Change from 20 to 13ECU − + −

Change from 20 to 27ECU + − +

Boston unconstrained

Change from 20 to 13ECU + −

Change from 20 to 27ECU − +

Boston constrained

Change from 20 to 13ECU ? + − − +

Change from 20 to 27ECU ? − + + −

Table 4: Hypotheses about how preference intensities affect the play of undominated strategies.

We explain Hypothesis 1 for the case in which the payoff of the second school is re-
duced from 20ECU to 13ECU (the argument regarding an increase to 27ECU is similar).
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Consider first the Gale–Shapley mechanisms. There should not be any effect in treatment
GSu, simply because truth–telling is the only undominated strategy for this mechanism.
In treatment GSc, only the strategies (1,2,3), (1,3,2), and (2,3,1) are undominated. Sub-
jects who initially played (1,3,2) will also do so after the reduction of the payoff of school
2. Also, subjects who initially told the truth may change to play (1,3,2) instead. Finally,
subjects who initially played (2,3,1) could be tempted to play (3,2,1) or (3,1,2), as sug-
gested by our prediction. However, these strategies are dominated by (2,3,1) and (1,3,2),
respectively. Hence, if a subject who initially played (2,3,1) changes her strategy, then we
expect her to play (1,3,2). So, when the second school pays 13ECU the strategies (1,2,3)
and (2,3,1) will be played less often and (1,3,2) more often compared to the situation
where the second schools pays 20ECU.

Now consider the Boston mechanisms. According to Table 3, only the strategies (1,2,3)
and (2,1,3) are undominated in BOSu. Clearly, every individual who told the truth under
the original payoffs will still prefer to tell the truth when the payoff of school 2 is reduced.
On the other hand, subjects who initially played the strategy (2,1,3) may switch to telling
the truth. Hence, our hypothesis states that the change in the payoffs makes subjects
report more often the ranking (1,2,3) and less often the ranking (2,1,3). Finally, we
consider BOSc. Here, every strategy is undominated. Similarly to GSc, subjects who
initially played (1,3,2) will also do so after the reduction of the payoff, and subjects who
initially told the truth may change to play (1,3,2) instead. Individuals who submitted the
ranking (3,×,×) opted for the school that guarantees access and hence a payoff reduction
of school 2 should not affect their choice. However, subjects who initially chose (2,3,1)
may now submit the riskless strategy (3,×,×) so that this strategy could be played more
often after the reduction of the payoff. Finally, subjects who initially played (2,1,3) could
possibly change to (1,2,3) or (1,3,2). All in all, strategies (1,3,2) and (3,×,×) will be
played more often, and strategies (2,1,3) and (2,3,1) will be played less often. Since there
are two opposite effects regarding strategy (1,2,3), we do not make a prediction regarding
the change in truth–telling.

3.2 Risk Aversion

In the second phase of the experiment, subjects face strategic uncertainty and thus form
subjective beliefs about the other group members’ strategies. So, for instance they have
to ponder the economic benefits from working at their top school against the probability
that another subject with a higher priority for that school applies and grabs the slot.

To investigate whether subjects with different attitudes towards risk as obtained in
the first phase of the experiment act differently in the second phase, we use the concept
of protective strategies introduced by Barberà and Dutta [6]. Loosely speaking, when
an agent has no information about the others’ submitted preferences, she behaves in a
protective way if she plays a strategy so as to protect herself from the worst eventuality
to the extent possible.14 We discuss the formal definition of protective strategies in Ap-
pendix B, where we also prove that protective strategies in the second phase are those

14Two settings in which protective strategies have been studied are two-sided matching markets (Bar-
berà and Dutta [7]) and, more recently, paired kidney exchange (Nicolò and Rodŕıguez-Alvárez [18]).
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reported in Table 5.

Treatment Rankings

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,×,×)

Gale–Shapley unconstrained ×

Gale–Shapley constrained × ×

Boston unconstrained × ×

Boston constrained ×

Table 5: A given strategy is protective if and only if the corresponding entry is ×.

We can now formally state our prediction regarding the use of protective strategies.

Hypothesis 2 Subjects who are more risk averse are more likely to play a protective
strategy in the matching market.

4 Results

4.1 Preference Intensities

First, we present aggregate data and analyze how the empirical distribution of submitted
rankings changes according to the applied cardinal preferences.

Game Submitted Rankings

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,×,×)

Gale–Shapley unconstrained

20 ECU 0.50 0.00 0.41 0.03 0.06
13 ECU 0.65 0.04 0.19 0.02 0.10
27 ECU 0.44 0.00 0.43 0.07 0.06

Gale–Shapley constrained

20 ECU 0.24 0.19 0.15 0.31 0.11
13 ECU 0.17 0.31 0.09 0.28 0.15
27 ECU 0.21 0.13 0.26 0.31 0.09

Boston unconstrained

20 ECU 0.40 0.02 0.40 0.16 0.02
13 ECU 0.62 0.04 0.14 0.07 0.13
27 ECU 0.31 0.00 0.55 0.09 0.05

Boston constrained

20 ECU 0.27 0.20 0.15 0.25 0.13
13 ECU 0.18 0.37 0.13 0.16 0.16
27 ECU 0.14 0.06 0.27 0.44 0.09

Table 6: Each row gives the probability distribution of submitted rankings in the corresponding game. For each row, the
most salient strategies (undominated strategies) are indicated in boldface (underlined).

It can be seen from Table 6 that the most salient ranking is always an undominated
strategy. It follows from inspection of column (1,2,3) that for each payoff constellation
and among all four mechanisms, the level of truth–telling is highest in GSu. This is
not a surprise because it is the only mechanism for which truth–telling is the unique
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undominated strategy (Table 3). Still, it falls well short of 100% in this treatment, as
several subjects did not recognize that it is in their best interest to reveal preferences
honestly.15,16

Next, we study the impact of cardinal preferences on individual behavior. The relevant
data is provided in Table 7, which shows the differences in the probability distribution
of submitted rankings when the payoff of the second best school is decreased (increased)
from 20 ECU to 13 ECU (27 ECU). For the sake of completeness, we also present the
one–sided p–values of the χ2 tests for homogeneity that analyze whether the respective
distributions differ.

Treatment Rankings p–value

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,×,×)

Gale–Shapley unconstrained

Change from 20 to 13 ECU 0.15 0.04 -0.22 -0.02 0.06 0.0300

Change from 20 to 27 ECU -0.06 0.00 0.02 0.04 0.00 0.4650

Gale–Shapley constrained

Change from 20 to 13 ECU -0.07 0.13 -0.06 -0.04 0.04 0.2300

Change from 20 to 27 ECU -0.04 -0.06 0.11 0.00 -0.02 0.3300

Boston unconstrained

Change from 20 to 13 ECU 0.22 0.02 -0.25 -0.09 0.11 0.0002

Change from 20 to 27 ECU -0.09 -0.02 0.15 -0.07 0.04 0.1400

Boston constrained

Change from 20 to 13 ECU -0.09 0.16 -0.02 -0.09 0.04 0.1450

Change from 20 to 27 ECU -0.13 -0.15 0.13 0.18 -0.04 0.0100

Table 7: Changes in the probability distributions of submitted rankings. A negative (positive) number indicates that the
corresponding ranking is used more (less) often with the payoff structure 20ECU. We also present the one–sided p–value of
the χ2 test for homogeneity that analyzes whether the empirical distribution depends on the relative preference intensities.
A boldfaced number indicates that the use of the corresponding ranking changes (one–sided Wilcoxon signed–rank test at
the 5% significance level). Undominated strategies are underlined.

We see that a reduction of the payoff of school 2 from 20 to 13ECU changes the
distribution of submitted rankings in the unconstrained but not in the constrained setting,
while raising its payoff from 20 to 27ECU only affects the distributions in BOSc. To
analyze these findings in more detail, we run Wilcoxon signed–rank tests as they allow us
to see whether the use of a particular ranking changes. The boldfaced numbers in Table 7
indicate which rankings are used significantly more often or less often. Since Hypothesis 1
only deals with undominated strategies, we simply have to check whether the sign of each
boldfaced number that is underlined in Table 7 coincides with the corresponding sign in

15In Chen and Sönmez [9], in their “random” and “designed” treatments of GSu, 56% and 72% of the
subjects, respectively, submitted their true preferences. The numbers are 58% and 57% in Calsamiglia
et al. [8]. Our numbers seem to be slightly lower but a real comparison is not possible due to the very
different environments.

16Using χ2 tests for homogeneity one verifies that for all cardinal payoff constellations, (a) the distribu-
tion of submitted rankings in treatment GSu (BOSu) is significantly different from the one in treatment
GSc (BOSc) and (b) the distributions of submitted rankings in treatments GSu and BOSu (GSc and
BOSc) are not significantly different from each other. The second finding might create the impression
that subjects perceive the Gale–Shapley matching algorithm in the same way as the Boston algorithm.
Results 1 and 2 presented below, however, will reveal that this is not the case.
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Table 4. One finds that almost all significant changes related to undominated strategies
are in line with the hypothesis, the only exception is that the strategy (1,2,3) is used
significantly more often in GSu when the payoff of the second best school is reduced from
20 to 13 ECU (Hypothesis 1 suggested no change). Moreover, for both the constrained and
the unconstrained settings, all significant changes that take place under the Gale–Shapley
mechanism also occur under the corresponding Boston mechanism. Consequently, we can
summarize our findings as follows.

Result 1 (Cardinal preferences.) Hypothesis 1 cannot be rejected. Moreover, for
both the constrained and the unconstrained settings, the Gale–Shapley mechanism is more
robust to changes in cardinal preferences than the corresponding Boston mechanism.

4.2 Risk Aversion

To test Hypothesis 2, we look at the proportion of protective strategies played in each
treatment as we eliminate step–by–step the subjects with the lowest degree of risk aversion
from the subject pool.

Figure 1: Proportion of protective strategies played in each of the four treatments (averages over the three games) as the
subjects with lowest degree of risk aversion (i.e., lowest switching point) are eliminated step–by–step from the subject pool.

The data obtained from this process is presented in Figure 1. The horizontal axis
indicates which subjects are being considered; on the vertical axis, we plot the proportion
with which the considered subjects play a protective strategy. In category 1, the subject
pool consists of all subjects with switching point 1 or higher, i.e., the whole pool of rational
subjects;17 in category 2, the reduced subject pool consists of all rational subjects with
switching point 2 or higher; and so forth. Consequently, as we move from the left to
the right in the graph, the subjects with the lowest risk aversion among all those still
considered are being discarded. This procedure has the potential drawback that the
distributions of rankings for high switching points are likely to be determined by only a
few subjects. It turns out that this is true only in the last step of elimination, when we

17We only considered data from subjects who behaved rationally in the first phase of the experiment,
omitting those that switch from lottery B to lottery A.
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solely consider subjects with switching point 10 (a total of five in our subject pool), which
is why we decided not to include this as a separate category in Figure 1. The numbers for
all the other switching points are based on a considerable amount of data. For instance,
in each treatment, approximately half the subjects choose lottery B for the first time in
the seventh decision situation or later (GSu: 25 out of 48 subjects; GSc: 21 out of 48
subjects; BOSu: 30 out of 50 subjects; and BOSc: 25 out of 47 subjects).

Intuitively, the figure should be looked at in the following way: If a curve is flat, then
the use of protective strategies does not depend on the degree of risk aversion. On the
other hand, if a curve is increasing (decreasing), protective strategies are more (less) likely
to be used by the subjects with a higher degree of risk aversion.

The figure suggests only for the Gale–Shapley mechanisms a positive dependence be-
tween risk aversion and the use of protective strategies. To formally test this, we estimate
the parameters of the following linear model. Let pi(t) be the pooled probability (over
all three payoff constellations) that individual i who participates in treatment t plays a
protective strategy. Similarly, si(t) is the switching point of individual i in treatment t

extracted in the first phase of the experiment. We then have that

pi(t) = β0 + β1 si(t) + εi(t),

where εi(t) is the error of individual i in treatment t. We assume that the errors are i.i.d.
across individuals in a given treatment. The parameter estimates of the Tobit Maximum
Likelihood estimation procedure are presented in Table 8.

Variable Treatment

GSu GSc BOSu BOSc

Constant (β0) −0.2581 −0.3367 1.0957∗ −0.1658
(0.4349) (0.3461) (0.6409) (0.8481)

Switching point (β1) 0.1376∗∗ 0.1454∗∗ 0.0620 −0.0646
(0.0686) (0.0569) (0.0960) (0.1291)

Table 8: Tobit ML estimation results on how risk aversion affects behavior in each treatment. Standard errors are in
parentheses. Errors are robust to heteroskedasticity. ∗ Significant at the 10–percent level (two–sided). ∗∗ Significant at the
5–percent level (two–sided). OLS and Probit ML (with standard errors clustered at the individual level) estimations yield
similar results.

Table 8 fully confirms the intuition from Figure 1. In the two treatments using the
Gale–Shapley algorithm, protective strategies are played more often the more risk averse
subjects are. With respect to the two treatments using the Boston algorithm, we find
that risk aversion is uncorrelated with the use of the protective strategies.

Result 2 (Risk aversion.) Subjects who are more risk averse are more likely to play a
protective strategy under the Gale–Shapley mechanisms but not under the Boston mecha-
nisms.

4.3 Performance

In this section, we study how preference intensities and risk aversion affect the performance
of the mechanisms in terms of efficiency and stability. Efficiency for teachers is the primary
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welfare goal (school slots are mere objects and are hence not taken into account). Formally,
efficiency is defined as the expected payoff per teacher. To obtain this number, we first
calculate all possible preference profiles. Next, we determine for each profile the induced
average payoff. Finally, we calculate the weighted average of the induced average payoffs,
where the weight for each profile is obtained from the empirical distribution presented in
Table 6.

Treatment Efficiency Stability

20ECU 13ECU 27 ECU 20ECU 13ECU 27 ECU

Gale–Shapley unconstrained 21.06 19.53 26.06 0.85 0.71 0.86

21.24 21.42 27.33 0.88 1.00 1.00
21.49 18.16 25.83 0.76 0.55 0.77

Gale–Shapley constrained 17.31 14.77 21.53 0.54 0.48 0.58

16.91 15.41 21.58 0.57 0.44 0.66
17.51 14.98 23.82 0.51 0.46 0.67

Boston unconstrained 20.63 20.09 25.36 0.65 0.43 0.67

20.29 21.32 25.68 0.68 0.45 0.70
21.05 19.85 24.55 0.61 0.42 0.54

Boston constrained 17.99 16.22 22.89 0.33 0.30 0.60

17.80 14.62 24.60 0.42 0.28 0.76
18.45 17.05 22.23 0.29 0.29 0.53

Table 9: Efficiency (to the left) and probability of stable matchings (to the right) for the whole population (in boldface
on top), the high risk aversion subjects (in the middle), and the low risk aversion subjects (at the bottom) in every game.

We first focus on the data for the whole population. The left–hand side of Table 9
shows that expected payoffs under the Boston mechanisms are not always lower than those
under the Gale–Shapley mechanisms. In fact, whereas Gale–Shapley has the tendency to
create a higher welfare than Boston in the unconstrained case, it turns out that the
efficiency is always higher in BOSc than in GSc. Using all possible recombinations of
submitted rankings, we find with the help of t–tests for equal means that all differences
across mechanisms are significant at p = 0.0001.

Two elements contribute to the observed differences across mechanisms. First, the
mechanisms produce different outcomes for some strategy profiles. This can be accounted
for by looking at the efficiency levels when the same distribution of strategy profiles is
applied to the Gale–Shapley and Boston mechanisms. Second, even though neither GSu

and BOSu nor GSc and BOSc induce significantly different distributions of submitted
rankings (Footnote 16), differences in individual behavior across mechanisms have an
impact on efficiency. For instance, when comparing BOSu20 and GSu20, the former yields
a higher average payoff than the latter independently of the exact (common) distribution
of strategy profiles;18 this strongly suggests that the observed efficiency differences between
these two treatments relies exclusively on those small differences in behavior and, in fact,
an inspection of Table 6 reveals that the proportion of truth–telling under GSu20 is higher
than under BOSu20.

To see whether the differences in efficiency are related to the subjects’ risk aversion, we
divide the subject pool for each treatment into two subgroups. The first group, which we
label as the “high risk aversion” subjects, consists of the individuals who selected lottery

18The slightly cumbersome calculations are available from the authors upon request.
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B for the first time in the seventh decision situation or later. The remaining individuals
are labeled “low risk aversion” subjects.19

The second and third row of each treatment on the left–hand side of Table 9 present
the efficiency for the high and low risk aversion groups, respectively. Note that these
numbers are obtained by taking recombinations at the subgroup level. We find for the
subjects with a high risk aversion that efficiency is higher in GSu than in BOSu. This
result is not surprising if one takes into account that for this subgroup, the proportion of
truthfully submitted rankings (aggregated over all three games) is 0.60 in treatment GSu

but “only” 0.43 in treatment BOSu. On the other hand, efficiency for the subjects with
a low risk aversion is higher in treatment BOSu than in treatment GSu if the payoff of
the second school is 13ECU. Regarding the constrained treatments, we observe that GSc

outperforms BOSc for the subjects with high (low) risk aversion only if the payoff of the
second school is 13ECU (27ECU). For both subgroups, all differences across mechanisms
are significant at p = 0.05.

Result 3 (Efficiency.) For both the low and high risk aversion groups as well as the
whole experimental population, (i) GSu tends to outperform BOSu and (ii) BOSc tends
to outperform GSc.

Finally, we report on stability. Stability of the matchings reached should be met for the
assignment procedure to be “successful” (it avoids lawsuits or the appearance of matches
that circumvent the mechanism). A matching is blocked if there is a teacher that prefers
to be assigned to some school with a slot that is either available or occupied by a teacher
with a lower priority. A matching is stable if it is not blocked. In our setup, there are
three stable matchings labeled teacher optimal, compromise, and school optimal. Under
each of these symmetric matchings, every teacher is assigned to its most preferred, second
most preferred, and least preferred school, respectively.

Again, we first concentrate on the whole population. The numbers on the right–hand
side of Table 9 are the proportions of stable matchings reached for each treatment given
all possible recombinations of submitted rankings and taking into account the empirical
distribution presented in Table 6. We can see that Gale–Shapley is in general more
successful than Boston in producing stable matchings; the only exception regards the
constrained mechanisms when the payoff of the second school is 27ECU (all differences
are significant at p = 0.0001). This is in line with the findings in Calsamiglia et al.
[8].20 More importantly, when the magnitude of the changes in the proportion of stable
matchings is taken into account, it appears to be the case that, very much in resemblance
to Result 1, the Gale–Shapley mechanisms are less sensitive to changes in the payoff
of school 2 than the Boston mechanisms. In fact, when comparing the percentage of
stable matchings reached when school 2 is worth 13 and 27ECU, differences in stability

19The common switching point has not been chosen arbitrarily. According to our data, the average
switching point is 6.47 in GSu, 5.98 in GSc, 6.70 in BOSu, and 6.55 in treatment BOSc so that the
difference in the group sizes is minimal if the seventh decision situation is taken as the dividing line.

20In theory, the two unconstrained mechanisms should yield stable matchings if subjects recognize that
telling the truth is weakly dominant (in the case of GSu) and do not fail to play Nash equilibria (in the
case of BOSu, see Ergin and Sönmez [11]).
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reach 0.14 and 0.10 under GSu and GSc, respectively, against 0.23 and 0.29 under BOSu

and BOSc (all differences are significant at p = 0.0001). Interestingly, the advantage of
Gale–Shapley over Boston is obtained because Gale–Shapley tends to produce far more
compromise stable matchings.

A final comment on how stability is affected by the degree of risk aversion. The relevant
numbers are again presented in the second and third rows belonging to each mechanism
in Table 9. All differences are significant at p = 0.0001. In general, the differences in
the percentage of stable matchings obtained within each group of subjects follow roughly
the same rules as those obtained when the full sample is considered. One point is worth
noticing, though: The levels of stability are typically higher among the highly risk averse
subjects, reaching even 100% under GSu when the second school is worth 13 and 27ECU.

Result 4 (Stability.) For both the low and high risk aversion groups as well as the whole
experimental population, the Gale–Shapley mechanisms are more stable and “stability–
robust” to changes in payoffs than the Boston mechanisms.

5 Conclusion

In this paper, we have seen that cardinal preferences affect individual behavior in a stylized
experimental matching market. In particular, the Gale–Shapley mechanism turned out to
be more robust to changes in the preference intensities than the Boston mechanism or, to
phrase this as in Abdulkadiroğlu et al. [1], the Boston mechanism induces agents to reveal
their cardinal preferences more often. Even though robustness is unrelated to efficiency
and stability, this result has policy appeal inasmuch as robustness implies predictability,
which is crucial in enrollment planning. A second contribution of the present study to
the ongoing debate on Gale–Shapley vs. Boston is related to risk aversion. It is widely
accepted that individual participants in a market try to manage risk in ways that affect
the market as a whole. Matching markets are no exception. One reason for this lies in the
fact that the Gale–Shapley mechanism fosters the use of “safe” strategies by the highly
risk averse. In fact, we observe that there is a clear tendency for highly risk averse agents
to resort to protective strategies under this mechanism.

All this serves as a word of caution for experimentalists (when considering new designs
and when bringing ordinal models to the laboratory) and theorists (when constructing
new models) both alike, but perhaps more importantly, it should be taken into account by
market designers as our results unveil additional dimensions in which the Gale–Shapley
and Boston mechanisms can be compared. The Gale–Shapley mechanism is more efficient
and more stable than the Boston mechanism in the unconstrained setting, almost inde-
pendently of the subject pool and the preference intensities.21 One could conclude from
this that the Gale–Shapley mechanism is to be preferred for “small” markets where it is
both allowed and no burden for the participants to submit complete full rankings. Our
message is different if the market is “large,” in the sense that it is unfeasible for the partic-
ipants to rank all schools and for which policy–makers decide to implement a constrained

21The only two exceptions are found in the efficiency levels for the full subject pool and the low risk
aversion group when school 2 has a value of 13 ECU.
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mechanism.22 In that case the Boston mechanism performs better in terms of efficiency
not only for the whole subject pool (for all preference intensities) but also within the more
homogeneous subgroups (for most preference intensities). The Gale–Shapley mechanism
is still more stable and, therefore, the ultimate decision of which mechanism to choose
in the constrained setting would depend on whether efficiency or stability is considered
more desirable.
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Appendix A: Holt and Laury [16]

Situation Lottery A Lottery B Difference

1 (1/10 of 2.00 ECU, 9/10 of 1.60ECU) (1/10 of 3.85ECU, 9/10 of 0.10ECU) 1.17ECU

2 (2/10 of 2.00 ECU, 8/10 of 1.60ECU) (2/10 of 3.85ECU, 8/10 of 0.10ECU) 0.83ECU

3 (3/10 of 2.00 ECU, 7/10 of 1.60ECU) (3/10 of 3.85ECU, 7/10 of 0.10ECU) 0.50ECU

4 (4/10 of 2.00 ECU, 6/10 of 1.60ECU) (4/10 of 3.85ECU, 6/10 of 0.10ECU) 0.16ECU

5 (5/10 of 2.00 ECU, 5/10 of 1.60ECU) (5/10 of 3.85ECU, 5/10 of 0.10ECU) -0.18ECU

6 (6/10 of 2.00 ECU, 4/10 of 1.60ECU) (6/10 of 3.85ECU, 4/10 of 0.10ECU) -0.51ECU

7 (7/10 of 2.00 ECU, 3/10 of 1.60ECU) (7/10 of 3.85ECU, 3/10 of 0.10ECU) -0.85ECU

8 (8/10 of 2.00 ECU, 2/10 of 1.60ECU) (8/10 of 3.85ECU, 2/10 of 0.10ECU) -1.18ECU

9 (9/10 of 2.00 ECU, 1/10 of 1.60ECU) (9/10 of 3.85ECU, 1/10 of 0.10ECU) -1.52ECU

10 (10/10 of 2.00ECU, 0/10 of 1.60 ECU) (10/10 of 3.85ECU, 0/10 of 0.10 ECU) -1.85ECU

Table 10: The Holt and Laury [16] paired lottery choice design. For each of the ten decision situations, we also indicate
the expected payoff difference between the two lotteries. Since we did not want to induce a focal point, subjects were not
informed about the expected payoff difference during the experiment.
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Appendix B: Protective Strategies

Consider the game G = [I, A, S, g, u], where I = {1, 2, ..., n} is the set of players, A

is the set of outcomes, S = S1 × ... × Sn and Si is the set of strategies of player i,
g : S → A is an outcome function, and u = (u1, ..., un) denotes a vector of utility
functions ui : A → R, where i = 1, 2, ..., n. Take any number k ∈ R, any i ∈ I, and
si ∈ Si. Let c(k, si) = {s−i ∈ S−i : ui(g(si, s−i)) = k}.

Definition 1 (Barberà and Dutta [7]) For any i ∈ I and si, s
′

i ∈ Si, si protectively
dominates s′i, if there exists k ∈ R such that

P1. c(r, si) ∩ c(r′, s′i) = ∅ for all r ≤ k and r < r′, and

P2. c(k, si) ⊂ c(k, s′i).

It follows from the definition that if si protectively dominates s′i, then s′i does not protec-
tively dominate si.

Definition 2 A protective strategy is a strategy that is not protectively dominated.

Let us now apply the above definition to our school choice problem. Take, for in-
stance the mechanism BOSu and the payoff structure 20 ECU. They define a game G =
[I, A, S, BOSu, u], where I = {1, 2, 3} is the set of teachers; A is the set of matchings; S =
S1 × S2 × S3, where Si = {(X, Y, Z), (X, Z, Y ), (Y, X, Z), (Y, Z, X), (Z, X, Y ), (Z, Y, X)}
is the set of rankings over schools of teacher i, i ∈ I; and u = (u1, u2, u3) is a vector of
utility functions. To define player i’s utility function ui, note that i is indifferent between
matchings that deliver the same partner, but has strict preferences over matchings that
deliver different partners; four situations have to be considered: i may end up unmatched
and receive a level of utility of 0, matched to the school ranked third in her preference
profile and receive utility of 10, matched to the school ranked second and receive 20, and
matched to the school ranked first, receiving a utility of 30.

Now let us consider teacher 1’s problem. The other teachers’ problems are similar.
Note that every strategy guarantees that teacher 1 is matched, so that c(k, (×,×,×)) = ∅
for all k < 10, implying that P2 is never satisfied for k in this range. Therefore, let us
compute for each strategy of teacher 1 the set of complementary strategy profiles that
match teacher 1 with school Z, with a corresponding utility of 10:

c(10, (X, Y, Z)) = {((X, Y, Z), (X, Y, Z)), ((X, Y, Z), (Y, X, Z)), ((X, Y, Z), (Y, Z, X)),

((X, Z, Y ), (X, Y, Z)), ((X, Z, Y ), (Y, X, Z)), ((X, Z, Y ), (Y, Z, X)),

((Y, X, Z), (X, Y, Z)), ((Y, X, Z), (X, Z, Y )), ((Y, Z, X), (X, Y, Z)),

((Y, Z, X), (X, Z, Y ))}

c(10, (X, Z, Y )) = {((X, Y, Z), (X, Y, Z)), ((X, Y, Z), (X, Z, Y )), ((X, Y, Z), (Y, X, Z)),

((X, Y, Z), (Y, Z, X)), ((X, Z, Y ), (X, Y, Z)), ((X, Z, Y ), (X, Z, Y )),

((X, Z, Y ), (Y, X, Z)), ((X, Z, Y ), (Y, Z, X)), ((Y, X, Z), (X, Y, Z)),

((Y, X, Z), (X, Z, Y )), ((Y, Z, X), (X, Y, Z)), ((Y, Z, X), (X, Z, Y ))}
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c(10, (Y, X, Z)) = {((X, Y, Z), (Y, X, Z)), ((X, Y, Z), (Y, Z, X)), ((X, Z, Y ), (Y, X, Z)),

((X, Z, Y ), (Y, Z, X)), ((Y, X, Z), (Y, X, Z)), ((Y, X, Z), (Y, Z, X))}

c(10, (Y, Z, X)) = {((X, Y, Z), (Y, X, Z)), ((X, Y, Z), (Y, Z, X)), ((X, Z, Y ), (Y, X, Z)),

((X, Z, Y ), (Y, Z, X)), ((Y, X, Z), (Y, X, Z)), ((Y, X, Z), (Y, Z, X)),

((Y, Z, X), (Y, X, Z)), ((Y, Z, X), (Y, Z, X))}

c(10, (Z,×,×)) = S2 × S3

Let us start by comparing strategies (X, Y, Z) and (X, Z, Y ). Since c(10, (X, Y, Z)) ⊂
c(10, (X, Z, Y )), P2 is fullfilled for k = 10. Moreover, P1 is fullfilled for r = 10. Since
c(r, (X, Y, Z)) = ∅ for all r < 10, P1 is also fullfilled for r < 10. It follows that strategy
(X, Y, Z) protectively dominates (X, Z, Y ) (and (X, Z, Y ) does not protectively dominate
(X, Y, Z)).

On the other hand, c(10, (Y, X, Z)) ⊂ c(10, (Y, Z, X)) and c(r, (Y, X, Z)) = ∅ for all
r < 10 guarantee that (Y, X, Z) protectively dominates (Y, Z, X) (and (Y, Z, X) does
not protectively dominate (Y, X, Z)). Furthermore, since c(10, (Z,×,×)) = S2 × S3, the
strategies (Z,×,×) are protectively dominated by the other four strategies (and do not
protectively dominate any of them).

Comparing c(10, (X, Y, Z)) and c(10, (Y, X, Z)), P2 is not verified for k = 10. To
make sure none of these strategies protectively dominates the other, we have to check
what happens for higher levels of k. Computing c(20, (Y, X, Z)), it is easy to show that
c(10, (X, Y, Z)) ∩ c(20, (Y, X, Z)) 6= ∅, so that P1 fails to hold for k > 10 (with r = 10
and r′ = 20) and (X, Y, Z) does not protectively dominate (Y, X, Z). On the other hand,
(Y, X, Z) does not protectively dominate (X, Y, Z) as c(10, (Y, X, Z))∩c(30, (X, Y, Z)) 6= ∅
and P1 fails to hold for k > 10 (with r = 10 and r′ = 30).

To ensure (X, Y, Z) is not protectively dominated, we still have to compare it with
(Y, Z, X). Note that P2 is not verified for k = 10. As for k > 10, it can easily be shown
that c(10, (Y, Z, X)) ∩ c(30, (X, Y, Z)) 6= ∅, so that P1 fails (with r = 10 and r′ = 30).
Similarly, (X, Z, Y ) does not protectively dominate (Y, X, Z) as P2 is not verified for
k = 10 and c(10, (X, Z, Y ))∩ c(20, (Y, X, Z)) 6= ∅, invalidating P1 for k > 10 (with r = 10
and r′ = 20).

Therefore, strategies (X, Y, Z) and (Y, X, Z) are not protectively dominated. The set
of protective strategies of teacher 1 in BOSu20 —in fact, in any game induced by BOSu—
is {(X, Y, Z),(Y, X, Z)}.

Protective strategies can readily be calculated for the other mechanisms. In fact,
following the informal description of protective strategies in Barberà and Dutta [7] (page
289), in our school choice problem protective behavior means the following. For any
distribution over the others’ strategy profiles: First, choosing a strategy that guarantees
access to a school; second, among these, if possible, one that maximizes the probability
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of obtaining the best or the second best schools; and finally, within this set of strategies
and whenever possible, picking one that maximizes the probability of being matched to
the best school.

As such, since under GSu telling the truth never hurts and, for some strategy profiles
of the others, leads to a better school slot, truth–telling is the unique protective strat-
egy under this mechanism.23 In what constrained mechanisms are concerned, protective
behavior ensures in the first place that a subject is not left unassigned for any profile of
complementary strategies. This implies using a strategy where the least preferred school
is ranked first under BOSc —the unique protective strategy under this mechanism— and,
given that acceptance is deferred in GSc, ranking the least preferred school first or sec-
ond in the list under this mechanism. Moreover, given that ranking the least preferred
school second increases the chances of being assigned to a better school both (X, Z, Y )
and (Y, Z, X) are protective strategies for teacher 1 in GSc.

23Barberà and Dutta [7] showed that under GSu truth–telling is the unique protective strategy for all
participants on both sides of a two-sided matching market.
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Appendix C: Instructions (Translated from Spanish)24

Welcome

Dear participant, thank you for taking part in this experiment. It will last at most 90
minutes. If you read the following instructions carefully, you can – depending on your
decisions – earn some more money in addition to the 3 Euro show-up fee, which you can
keep in any case. In order to ensure that the experiment takes place in an optimal setting,
we would like to ask you to abide to the following rules during the whole experiment:

• do not communicate with your fellow students!

• do not forget to switch off your mobile phone!

• read the instructions carefully. If something is not well explained or you have any
question now or at any time during the experiment, then ask one of the experi-
menters. Do, however, not ask out loud, raise your hand instead. We will clarify
questions privately.

• you may take notes on this instruction sheet if you wish.

• after the experiment, remain seated till we paid you off.

If you do not obey the rules, the data becomes useless for us. In that case, we will have
to exclude you from this experiment and you will not receive any compensation. Also,
note that all participants receive the same instructions.

The Experiment

This experiment consists of two phases. Now, we will only introduce the first phase. Once
it has finished, we are going to explain the second phase. However, always remember the
following very important points:

1. The two phases take place in a completely anonymous setting. So, you will neither
know nor learn whom you are playing with.

2. You will only be paid for phase 1 or phase 2, but not for the combined results. At the
end of the whole experiment, the participant playing at terminal 9 will determine
which phase is payoff relevant by throwing a coin.

3. You will not receive any feedback about your decision or the decision of your co-
players until the very end of the experiment.

4. We will not speak of Euro during the experiment, but rather of ECU (experimental
currency units). Your whole income will first be calculated in ECU. At the end of
the experiment, the total amount you have earned will be converted to Euro. We
will always indicate the exchange rate between ECU and Euro.

24We first provide the full instructions for GSu. After that, we only provide the instructions for the
“Second Phase” of other three treatments, since the rest of the instructions are exactly as in GSu.
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The First Phase

First we introduce you to the basic decision situation. Then, you will learn how the
experiment is conducted. Note that if phase 1 is randomly selected for payment, then you
will receive 4 Euro for every ECU earned during this phase.

The First Decision Environment

In the first phase of the experiment, your basic task is to choose several times between
two lottery tickets that are denoted Option A and Option B, respectively. In particular,
lottery ticket A gives you a monetary payoff of xA ECU with probability px(A) and a
monetary payoff of yA ECU with the remaining probability py(A) = 1− px(A). Similarly,
lottery ticket B gives a you a monetary payoff of xB ECU with probability px(B) and a
monetary payoff of yB ECU with probability py(B) = 1 − py(B). As a simple example
consider the lottery ticket A which is such that you get 5 ECU in 3 out of 10 cases and
10 ECU in 7 out of ten cases. Then, xA = 5.00 ECU, px(A) = 0.3, yA = 10.00 ECU and
py(A) = 0.7.

The First Experiment

The first phase includes the basic decision environment just described to you. In total,
there are ten pairs of lottery tickets; so, you have to make ten choices. In all ten situations,
monetary payoffs are such that xA = 2.00 ECU, xB = 3.85 ECU, yA = 1.60 ECU, and
yB = 0.10 ECU. However, the probabilities with which you are going to get each prize
change across situations. The following figure shows the computer screen you are going
to encounter during the experiment.
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The computer screen presents all ten situations simultaneously with the lottery ticket
A to the left of lottery ticket B. For example, in situation number 4 lottery ticket A

gives you 2.00 ECU in 4 out of 10 cases and 1.60 ECU in 6 out of 10 cases. You choose
between the lottery tickets by clicking the desired option on the right hand side of the
screen. Once you have made all ten choices, click on the button “Continue”.

If it happens that phase 1 is randomly selected for payment, one of the ten pairs
of lotteries is randomly selected by the computer (each pair is selected with the same
probability). Given this random draw, your payoff is then determined by using the lottery
you have chosen in that particular situation. For example, if situation 9 is randomly
selected and you have chosen option A in that case, then you get 2 ECU with probability
0.9 and 1.6 ECU with probability 0.1. Finally, please answer the question below. Once
ready, please raise your hand.

QUESTION: Suppose lottery ticket A is such that it gives you 3 ECU with probability
0.7 and 1 ECU with probability 0.3. Similarly, lottery ticket B gives you 3 ECU with
probability 0.7 and 2 ECU with probability 0.3. Which option do you choose?
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The Second Phase (GSu)

First we introduce you to the basic decision situation. Next, you will find control ques-
tions that help you to understand the situation better. Finally, you will learn how the
experiment is conducted. Note that if phase 2 is randomly selected for payment, then you
will receive 40 Eurocents for every ECU earned during this phase.

The Second Decision Environment

The basic decision environment in the second phase of the experiment is as follows: There
are three teachers —let us call them teacher 1, teacher 2, and teacher 3— who are looking
for a new job. There are three schools in town (denoted X, Y , and Z) and every school
happens to have one open teaching slot. Since the schools turn out to differ in their
location and quality, teachers have different opinions of where they want to teach. The
desirability of schools in terms of location and quality is expressed in the following table:

Teacher 1 Teacher 2 Teacher 3
Most preferred school X Y Z

Second most preferred school Y Z X

Least preferred school Z X Y

For example, teacher 1 prefers school X to school Y and school Y to school Z. Schools
when offering positions consider the quality of each applicant and the experience they
have. On this basis, they build a priority ordering where all teachers are ranked. The
following table summarizes the priority ordering of each school.

School X School Y School Z

Best candidate 2 3 1
Second best candidate 3 1 2
Worst candidate 1 2 3

For example, in school Z, teacher 1 is ranked first, teacher 2 is ranked second, and teacher
3 is ranked third. To decide which teacher gets offered a position at which school, teachers
are first asked to submit their ranking of schools; that is, they have to indicate at which
school they would like to work most, at which school they would like to work second most,
and at which school they would like to work least. Observe that teachers can indicate
whatever ranking they like, it does not have to coincide with the actual preferences. Given
the submitted rankings, the following procedure is used to assign teachers to schools:

1. Every teacher applies to the school she/he listed first.

2. Each school temporarily accepts the applicant with the highest priority and rejects
all other applicants (if any).
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3. Whenever a teacher is rejected at a school, she/he applies to the next highest listed
school.

4. Whenever a school receives new applications (from teachers that have been rejected
in a previous round by other schools), these applications are considered together
with the previously retained application (if any). Among the previously retained
application and new applications, the applicant with the highest priority is tem-
porarily accepted, all others are rejected.

5. This process is repeated until no more applications can be rejected and the allocation
is finalized. Each teacher is assigned the position at the school that holds her/his
application at the end of the process.

Example

Before we explain how the experiment is conducted, we would like to ask you to go over
the following example. It helps illustrating how the allocation mechanism works. Once
ready, please raise your hand, and one of the experimenters will check your answers. In
case of questions, please contact any experimenter as well.

In the example, there are three teachers (1, 2, and 3) and three schools (A, B, and C)
who have one teaching position each. Suppose that the submitted school rankings are as
follows:

Teacher 1 Teacher 2 Teacher 3
1st ranked school B C B

2nd ranked school C A C

3rd ranked school A B A

Also, suppose that the priority orderings of the schools are given by the following table:

School A School B School C

1st ranked teacher 2 2 1
2nd ranked teacher 3 1 3
3rd ranked teacher 1 3 2

Please, answer the following questions:

1. In the first round of the procedure, every teacher applies to the school she/he ranked
first; that is, teacher 1 applies to school , teacher 2 applies to school
, and teacher 3 applies to school . Given these applications, every school
temporarily accepts the applicant with the highest priority and rejects all other
teachers. Hence, school B retains teacher and rejects teacher , while
school C retains teacher .
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2. In the second round, all teachers rejected in the first round apply to the school they
ranked second; that is, teacher 3 applies to school . Now, schools compare
the new applicants with the previously retained teachers. As a consequence, school
C retains teacher and rejects teacher .

3. In the third round, the teacher that got rejected in the second round applies to the
next highest ranked school. Hence, teacher applies to school . Since this
school has still a free place all teachers are assigned to a school and the mechanism
stops.

4. The final allocation of teachers to school is therefore as follows:

• Teacher gets a job at A.

• Teacher gets a job at B.

• Teacher gets a job at C.

The Second Experiment

In the beginning of the second phase, the computer randomly divides the participants
into groups of 3. The assignment process is random and anonymous, so no participant
will know who is in which group. Participants within the same group will only play
among themselves. Then, each participant in a group gets randomly assigned the role of
a teacher in such a way that one group member will be in the role of teacher 1, another
group member will be in the role of teacher 2, and the final group member will be in the
role of teacher 3. Neither the division of participants into groups nor the assignment of
roles within groups is going to change during the second phase.

The basic decision situation explained above will be played three times with varying
payoffs. In what follows, we will only explain the first payoff constellation in detail,
the remaining two situations have a similar structure. In particular, the first payoff
constellation is such that you receive 30 ECU if you end up at the school you prefer
most, 20 ECU if you are assigned to your second most preferred school, and 10
ECU if you get a job at the school you prefer least. To clarify how the experiment
proceeds, we will present next the computer screen you are going to encounter during the
experiment.

On the top of the screen, we remind you of the preferences of the teachers over schools
together with the material consequences and the priorities of schools over teachers. Below
you see that you are assigned the role of teacher 1. Consequently, your payoff is highest
if you end up working at school X, it second highest if you work at school Y , and it is
lowest if you finally get a job at school Z.

At the bottom of the screen, you are asked to submit a ranking of schools. Remember
that you are allowed to submit any ranking you want. On the left hand side you indicate
the school that you rank first, in the middle you indicate the school you rank second, and
to the right hand side you indicate the school you rank last. The submitted rankings are
then used by the computer to determine (by means of the procedure presented before)
the final assignment of teachers to schools.
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Finally, observe that if the second phase is randomly chosen to be payoff relevant,
then the computer is going to determine randomly one of the three situations for payment
(every situation is randomly selected with the same probability). Also, note that you will
never receive any feedback about decisions until the very end of the experiment. Please
answer the following final question. Once ready, please raise your hand.

QUESTION: Suppose that you prefer school X over school Z over school Y . Assume also
that you submit the following ranking of schools: X is listed higher than Y , which, in
turn, is listed higher than Z. Using the same payoffs in ECU as in the example on the
computer screen above, what will be your final payoff if you finally end up working at
school Y ?

ANSWER: ECU.
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The Second Phase (GSc)

First we introduce you to the basic decision situation. Next, you will find control ques-
tions that help you to understand the situation better. Finally, you will learn how the
experiment is conducted. Note that if phase 2 is randomly selected for payment, then you
will receive 40 Eurocents for every ECU earned during this phase.

The Second Decision Environment

The basic decision environment in the second phase of the experiment is as follows: There
are three teachers —let us call them teacher 1, teacher 2, and teacher 3— who are looking
for a new job. There are three schools in town (denoted X, Y , and Z) and every school
happens to have one open teaching slot. Since the schools turn out to differ in their
location and quality, teachers have different opinions of where they want to teach. The
desirability of schools in terms of location and quality is expressed in the following table:

Teacher 1 Teacher 2 Teacher 3
Most preferred school X Y Z

Second most preferred school Y Z X

Least preferred school Z X Y

For example, teacher 1 prefers school X to school Y and school Y to school Z. Schools
when offering positions consider the quality of each applicant and the experience they
have. On this basis, they build a priority ordering where all teachers are ranked. The
following table summarizes the priority ordering of each school.

School X School Y School Z

Best candidate 2 3 1
Second best candidate 3 1 2
Worst candidate 1 2 3

For example, in school Z, teacher 1 is ranked first, teacher 2 is ranked second, and teacher
3 is ranked third. To decide which teacher gets offered a position at which school, teachers
are first asked to submit their ranking of schools; that is, they have to indicate at which
school they would like to work most and at which school they would like to work second
most. Observe that teachers can indicate whatever ranking they like, it does not have
to coincide with the actual preferences. Given the submitted rankings, the following
procedure is used to assign teachers to schools:

1. Every teacher applies to the school she/he listed first.

2. Each school temporarily accepts the applicant with the highest priority and rejects
all other applicants (if any).
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3. Whenever a teacher is rejected at a school, she/he applies to the next highest listed
school.

4. Whenever a school receives new applications (from teachers that have been rejected
in a previous round by other schools), these applications are considered together
with the previously retained application (if any). Among the previously retained
application and new applications, the applicant with the highest priority is accepted,
all others are rejected.

5. This process finishes when no more applications can be rejected or no teacher can
send more applications. Each teacher is assigned the position at the school that
holds her/his application at the end of the process. If a teacher’s application was
rejected by every school in her/his ranking, she/he will be unemployed.

Example

Before we explain how the experiment is conducted, we would like to ask you to go over
the following example. It helps illustrating how the allocation mechanism works. Once
ready, please raise your hand, and one of the experimenters will check your answers. In
case of questions, please contact any experimenter as well.

In the example, there are three teachers (1, 2, and 3) and three schools (A, B, and C)
who have one teaching position each. Suppose that the submitted school rankings are as
follows:

Teacher 1 Teacher 2 Teacher 3
1st ranked school B C B

2nd ranked school C A C

Also, suppose that the priority orderings of the schools are given by the following table:

School A School B School C

1st ranked teacher 2 2 1
2nd ranked teacher 3 1 3
3rd ranked teacher 1 3 2

Please, answer the following questions:

1. In the first round of the procedure, every teacher applies to the school she/he ranked
first; that is, teacher 1 applies to school , teacher 2 applies to school
, and teacher 3 applies to school . Given these applications, every school
temporarily accepts the applicant with the highest priority and rejects all other
teachers. Hence, school B retains teacher and rejects teacher , while
school C retains teacher .
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2. In the second round, all teachers rejected in the first round apply to the school they
ranked second; that is, teacher 3 applies to school . Now, schools compare
the new applicants with the previously retained teachers. As a consequence, school
C retains teacher and rejects teacher .

3. In the third round, the teacher that got rejected in the second round applies to the
next highest ranked school. Hence, teacher applies to school . Since this
school has still a free place all teachers are assigned to a school and the mechanism
stops.

4. The final allocation of teachers to school is therefore as follows:

• Teacher gets a job at A.

• Teacher gets a job at B.

• Teacher gets a job at C.

The Second Experiment

In the beginning of the second phase, the computer randomly divides the participants
into groups of 3. The assignment process is random and anonymous, so no participant
will know who is in which group. Participants within the same group will only play
among themselves. Then, each participant in a group gets randomly assigned the role of
a teacher in such a way that one group member will be in the role of teacher 1, another
group member will be in the role of teacher 2, and the final group member will be in the
role of teacher 3. Neither the division of participants into groups nor the assignment of
roles within groups is going to change during the second phase.

The basic decision situation explained above will be played three times with varying
payoffs. In what follows, we will only explain the first payoff constellation in detail,
the remaining two situations have a similar structure. In particular, the first payoff
constellation is such that you receive 30 ECU if you end up at the school you prefer
most, 20 ECU if you are assigned to your second most preferred school, and 10 ECU
if you get a job at the school you prefer least. If you end up unassigned because all of
your applications have been rejected, you receive 0 ECU. To clarify how the experiment
proceeds, we will present next the computer screen you are going to encounter during the
experiment.

On the top of the screen, we remind you of the preferences of the teachers over schools
together with the material consequences and the priorities of schools over teachers. Below
you see that you are assigned the role of teacher 1. Consequently, your payoff is highest
if you end up working at school X, it second highest if you work at school Y , and it is
lowest if you finally get a job at school Z. Remember that you will receive 0 ECU in case
all of your applications are rejected.

At the bottom of the screen, you are asked to submit a ranking of schools. Remember
that you are allowed to submit any ranking you want. On the left hand side you indicate
the school that you rank first and on the right hand side you indicate the school you
rank second. The submitted rankings are then used by the computer to determine (by
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means of the procedure presented before) the final assignment of teachers to schools. Also,
note that you will never receive any feedback about decisions until the very end of the
experiment.

Finally, observe that if the second phase is randomly chosen to be payoff relevant, then
the computer is going to determine randomly one of the three situations for payment
(every situation is randomly selected with the same probability). Please answer the
following final question. Once ready, please raise your hand.

QUESTION: Suppose that you prefer school X over school Z over school Y . Assume also
that you submit the following ranking of schools: X is ranked first and school Y is ranked
second. Using the same payoffs in ECU as in the example on the computer screen above,
what will be your final payoff if you finally end up working at school Y ?

ANSWER: ECU.

33



The Second Phase (BOSu)

First we introduce you to the basic decision situation. Next, you will find control ques-
tions that help you to understand the situation better. Finally, you will learn how the
experiment is conducted. Note that if phase 2 is randomly selected for payment, then you
will receive 40 Eurocents for every ECU earned during this phase.

The Second Decision Environment

The basic decision environment in the second phase of the experiment is as follows: There
are three teachers —let us call them teacher 1, teacher 2, and teacher 3— who are looking
for a new job. There are three schools in town (denoted X, Y , and Z) and every school
happens to have one open teaching slot. Since the schools turn out to differ in their
location and quality, teachers have different opinions of where they want to teach. The
desirability of schools in terms of location and quality is expressed in the following table:

Teacher 1 Teacher 2 Teacher 3
Most preferred school X Y Z

Second most preferred school Y Z X

Least preferred school Z X Y

For example, teacher 1 prefers school X to school Y and school Y to school Z. Schools
when offering positions consider the quality of each applicant and the experience they
have. On this basis, they build a priority ordering where all teachers are ranked. The
following table summarizes the priority ordering of each school.

School X School Y School Z

Best candidate 2 3 1
Second best candidate 3 1 2
Worst candidate 1 2 3

For example, in school Z, teacher 1 is ranked first, teacher 2 is ranked second, and teacher
3 is ranked third. To decide which teacher gets offered a position at which school, teachers
are first asked to submit their ranking of schools; that is, they have to indicate at which
school they would like to work most, at which school they would like to work second most,
and at which school they would like to work least. Observe that teachers can indicate
whatever ranking they like, it does not have to coincide with the actual preferences. Given
the submitted rankings, the following procedure is used to assign teachers to schools:
Step 1

1. Every teacher applies to the school she/he listed first.

2. Each school accepts the applicant with the highest priority and rejects all other
applicants (if any).
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Step 2

1. Whenever a teacher is rejected at a school, an application is sent to the second listed
school.

2. A school that received one or more applications in step 1 rejects the applications
received in step 2 (if any). A school that did not receive any applications in step
1 accepts the applicant with the highest priority and rejects the other application
received (if any).

Step 3

1. If a teacher’s application is rejected in step 2, she/he is assigned to the school
she/he listed third. The other teachers are assigned to the schools that accepted
their applications.

2. If no teacher’s application was rejected in step 2, each teacher is assigned to the
school that accepted her/his application.

Example

Before we explain how the experiment is conducted, we would like to ask you to go over
the following example. It helps illustrating how the allocation mechanism works. Once
ready, please raise your hand, and one of the experimenters will check your answers. In
case of questions, please contact any experimenter as well.

In the example, there are three teachers (1,2, and 3) and three schools (A, B, and C)
who have one teaching position each. Suppose that the submitted school rankings are as
follows:

Teacher 1 Teacher 2 Teacher 3
1st ranked school B C B

2nd ranked school C A C

3rd ranked school A B A

Also, suppose that the priority orderings of the schools are given by the following table:

School A School B School C

1st ranked teacher 2 2 1
2nd ranked teacher 3 1 3
3rd ranked teacher 1 3 2

Please, answer the following questions:
Step 1

1. In the first round of the procedure, every teacher applies to the school she/he ranked
first; that is, teacher 1 applies to school , teacher 2 applies to school ,
and teacher 3 applies to school .
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2. Given these applications, every school accepts the applicant with the highest priority
and rejects all other teachers. Hence, school B accepts teacher and rejects
teacher , while school C accepts teacher .

Step 2

1. In the second round, all teachers rejected in the first round apply to the school they
ranked second; that is, teacher 3 applies to school .

2. Each school that received an application in step 2 rejects the applications received
in step 2 (if any). As a consequence, school rejects teacher .

Step 3
In the third round, the teacher that got rejected in the second round is assigned to his third
ranked school. Hence, teacher is assigned to school . The other teachers are
assigned to the schools that accepted their applications. The final allocation of teachers
to school is therefore as follows: teacher gets a job at A; teacher gets a job
at B; and teacher gets a job at C.

The Second Experiment

In the beginning of the second phase, the computer randomly divides the participants
into groups of 3. The assignment process is random and anonymous, so no participant
will know who is in which group. Participants within the same group will only play
among themselves. Then, each participant in a group gets randomly assigned the role of
a teacher in such a way that one group member will be in the role of teacher 1, another
group member will be in the role of teacher 2, and the final group member will be in the
role of teacher 3. Neither the division of participants into groups nor the assignment of
roles within groups is going to change during the second phase.

The basic decision situation explained above will be played three times with varying
payoffs. In what follows, we will only explain the first payoff constellation in detail,
the remaining two situations have a similar structure. In particular, the first payoff
constellation is such that you receive 30 ECU if you end up at the school you prefer
most, 20 ECU if you are assigned to your second most preferred school, and 10
ECU if you get a job at the school you prefer least. To clarify how the experiment
proceeds, we will present next the computer screen you are going to encounter during the
experiment.

On the top of the screen, we remind you of the preferences of the teachers over schools
together with the material consequences and the priorities of schools over teachers. Below
you see that you are assigned the role of teacher 1. Consequently, your payoff is highest
if you end up working at school X, it second highest if you work at school Y , and it is
lowest if you finally get a job at school Z.

At the bottom of the screen, you are asked to submit a ranking of schools. Remember
that you are allowed to submit any ranking you want. On the left hand side you indicate
the school that you rank first, in the middle you indicate the school you rank second, and
to the right hand side you indicate the school you rank last. The submitted rankings are
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then used by the computer to determine (by means of the procedure presented before)
the final assignment of teachers to schools.

Finally, observe that if the second phase is randomly chosen to be payoff relevant,
then the computer is going to determine randomly one of the three situations for payment
(every situation is randomly selected with the same probability). Also, note that you will
never receive any feedback about decisions until the very end of the experiment. Please
answer the following final question. Once ready, please raise your hand.

QUESTION: Suppose that you prefer school X over school Z over school Y . Assume
also that you submit the following ranking of schools: X is listed first, Y is listed second,
and Z is listed third. Using the same payoffs in ECU as in the example on the computer
screen above, what will be your final payoff if you finally end up working at school Y ?

ANSWER: ECU.
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The Second Phase (BOSc)

First we introduce you to the basic decision situation. Next, you will find control ques-
tions that help you to understand the situation better. Finally, you will learn how the
experiment is conducted. Note that if phase 2 is randomly selected for payment, then you
will receive 40 Eurocents for every ECU earned during this phase.

The Second Decision Environment

The basic decision environment in the second phase of the experiment is as follows: There
are three teachers —let us call them teacher 1, teacher 2, and teacher 3— who are looking
for a new job. There are three schools in town (denoted X, Y , and Z) and every school
happens to have one open teaching slot. Since the schools turn out to differ in their
location and quality, teachers have different opinions of where they want to teach. The
desirability of schools in terms of location and quality is expressed in the following table:

Teacher 1 Teacher 2 Teacher 3
Most preferred school X Y Z

Second most preferred school Y Z X

Least preferred school Z X Y

For example, teacher 1 prefers school X to school Y and school Y to school Z. Schools
when offering positions consider the quality of each applicant and the experience they
have. On this basis, they build a priority ordering where all teachers are ranked. The
following table summarizes the priority ordering of each school.

School X School Y School Z

Best candidate 2 3 1
Second best candidate 3 1 2
Worst candidate 1 2 3

For example, in school Z, teacher 1 is ranked first, teacher 2 is ranked second, and teacher
3 is ranked third. To decide which teacher gets offered a position at which school, teachers
are first asked to submit their ranking of schools; that is, they have to indicate at which
school they would like to work most and at which school they would like to work second
most. Observe that teachers can indicate whatever ranking they like, it does not have
to coincide with the actual preferences. Given the submitted rankings, the following
procedure is used to assign teachers to schools:
Step 1

1. Every teacher applies to the school she/he listed first.

2. Each school accepts the applicant with the highest priority and rejects all other
applicants (if any).
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Step 2

1. Whenever a teacher is rejected at a school, an application is sent to the second listed
school.

2. A school that received one or more applications in step 1 rejects the applications
received in step 2 (if any). A school that did not receive any applications in step
1 accepts the applicant with the highest priority and rejects the other application
received (if any).

Step 3

1. If a teacher’s application is rejected in step 2, she/he is left unassigned. The other
teachers are assigned to the schools that accepted their applications.

2. If no teacher’s application was rejected in step 2, each teacher is assigned to the
school that accepted her/his application.

Example

Before we explain how the experiment is conducted, we would like to ask you to go over
the following example. It helps illustrating how the allocation mechanism works. Once
ready, please raise your hand, and one of the experimenters will check your answers. In
case of questions, please contact any experimenter as well.

In the example, there are three teachers (1,2, and 3) and three schools (A, B, and C)
who have one teaching position each. Suppose that the submitted school rankings are as
follows:

Teacher 1 Teacher 2 Teacher 3
1st ranked school B C B

2nd ranked school C A A

Also, suppose that the priority orderings of the schools are given by the following table:

School A School B School C

1st ranked teacher 2 2 1
2nd ranked teacher 3 1 3
3rd ranked teacher 1 3 2

Please, answer the following questions:
Step 1

1. In the first round of the procedure, every teacher applies to the school she/he ranked
first; that is, teacher 1 applies to school , teacher 2 applies to school ,
and teacher 3 applies to school .
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2. Given these applications, every school accepts the applicant with the highest priority
and rejects all other teachers. Hence, school B accepts teacher and rejects
teacher , while school C accepts teacher .

Step 2

1. In the second round, all teachers rejected in the first round apply to the school they
ranked second; that is, teacher 3 applies to school .

2. Each school that received an application in step 2 rejects the applications received
in step 2 (if any). School did not receive any applications in step 1, but
receives the application of teacher in step 2. Since this is the only application
it receives, it accepts the application.

Step 3
Since no teacher was rejected in step 2, each teacher is assigned to the school that accepted
her/his application. The final allocation of teachers to school is therefore as follows:
teacher gets a job at A; teacher gets a job at B; and teacher gets a job
at C.

The Second Experiment

In the beginning of the second phase, the computer randomly divides the participants
into groups of 3. The assignment process is random and anonymous, so no participant
will know who is in which group. Participants within the same group will only play
among themselves. Then, each participant in a group gets randomly assigned the role of
a teacher in such a way that one group member will be in the role of teacher 1, another
group member will be in the role of teacher 2, and the final group member will be in the
role of teacher 3. Neither the division of participants into groups nor the assignment of
roles within groups is going to change during the second phase.

The basic decision situation explained above will be played three times with varying
payoffs. In what follows, we will only explain the first payoff constellation in detail,
the remaining two situations have a similar structure. In particular, the first payoff
constellation is such that you receive 30 ECU if you end up at the school you prefer
most, 20 ECU if you are assigned to your second most preferred school, and 10
ECU if you get a job at the school you prefer least. If you are unassigned because
all of your applications got rejected, you receive 0 ECU. To clarify how the experiment
proceeds, we will present next the computer screen you are going to encounter during the
experiment.

On the top of the screen, we remind you of the preferences of the teachers over schools
together with the material consequences and the priorities of schools over teachers. Below
you see that you are assigned the role of teacher 1. Consequently, your payoff is highest
if you end up working at school X, it second highest if you work at school Y , and it is
lowest if you finally get a job at school Z. Remember that you get 0 ECU in case all of
your applications get rejected.

At the bottom of the screen, you are asked to submit a ranking of schools. Remember
that you are allowed to submit any ranking you want. On the left hand side you indicate
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the school that you rank first and to the right hand side you indicate the school you rank
second. The submitted rankings are then used by the computer to determine (by means
of the procedure presented before) the final assignment of teachers to schools.

Finally, observe that if the second phase is randomly chosen to be payoff relevant,
then the computer is going to determine randomly one of the three situations for payment
(every situation is randomly selected with the same probability). Also, note that you will
never receive any feedback about decisions until the very end of the experiment. Please
answer the following final question. Once ready, please raise your hand.

QUESTION: Suppose that you prefer school X over school Z over school Y . Assume also
that you submit the following ranking of schools: X is listed first and Y is listed second.
Using the same payoffs in ECU as in the example on the computer screen above, what
will be your final payoff if you finally end up working at school Y ?

ANSWER: ECU.
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