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Abstract The evolution of the Amiran and Mesopotamian flexural basins of the Zagros belt is approached
by coupled 2-D forward modeling of orogenic wedge formation, lithospheric flexural isostasy, and stream
power erosion/transport/sedimentation. Thrust geometries and sequence of emplacement derived from
geometric and kinematic models presented here are the inputs to our evolutionary model, constrained by
basin geometry, sediment volume, and topography. Modeling results confirm that the Zagros flexural basins
evolution is consistent with two stages of deformation: (1) the obduction stage involving the Kermanshah
accretionary complex and a basement unit and (2) the collision stage, emplacing the Gaveh Rud and
Sanandaj-Sirjan domains in the hinterland and forming a basement duplex in the outer part. Results provide
quantitative insights into processes involved in mountain and basin building. The lithospheric equivalent
elastic thickness (Te) changed from 20 km during the Amiran stage (~90–50Ma) to 55 km during the
Mesopotamian subsidence stage (last 20Myr). The Amiran basin results from flexure of the Arabian plate
below the load of the Kermanshah cover and basement thrust sheets. During this stage, material eroded
in the inner parts was enough to fill the flexural trough. The Mesopotamian basin formed in front of the
outermost basement units flexing the Arabian plate. During this latter stage, material eroded from the
orogenic wedge was not enough to fill the Mesopotamian basin. An additional longitudinal sediment supply
of up to 200m/Myr is required to fill the flexural basin.

1. Introduction

The long-term convergence between Arabia and Eurasia resulted in the closure of the more than 1500 km
wide Neo-Tethys Ocean from Late Jurassic to Recent [e.g., Stöcklin, 1968; Berberian and King, 1981; Stampfli
and Borel, 2002; Golonka, 2004; Barrier and Vrielynck, 2008; McQuarrie and Van Hinsbergen, 2013]. The closure
of the Neo-Tethys was controlled by the structure of the NE margin of the Arabian plate, the large-scale
dynamics of the NE dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere close to
Arabia, and the collision of small continental and volcanic arc domains (Iranian blocks) of the SW margin of
Eurasia. A significant part of this geological history is preserved in the thin-skinned thrust system (Imbricated
Zone) and the flexural basins that run parallel to the suture zone in the internal Zagros orogenic system, from
Turkey and Iraq, in the NW, to Iran and Oman in the SE (Figure 1).

The Arabian passive margin originated from the opening of the Neo-Tethys Ocean during Late Paleozoic to
Early Triassic rifting and underwent stable and subsiding conditions during most of the Mesozoic [Berberian
and King, 1981; Talbot and Alavi, 1996; Stampfli and Borel, 2002]. During Late Jurassic to Early Cretaceous time,
the Eurasian and Arabian plates began to converge and the Neo-Tethys Ocean started subducting under
Eurasia [Stampfli and Borel, 2002; Golonka, 2004]. However, the thick Mesozoic sedimentary succession on the
NE margin of the Arabian plate did not record the transition from passive to active settings until around the
early Late Cretaceous [e.g., Braud, 1987; Sengor, 1990; Piryaei et al., 2010]. This major contractional event
manifested as obduction of a large segment of Neo-Tethys oceanic crustal domain onto the Arabian margin.
During this process, the Arabian plate flexed down, forming the Tanjero-Kolosh flexural basin, in Kirkuk
embayment in Kurdistan [James and Wynd, 1965; Jassim and Goff, 2006; Karim et al., 2011; Lawa et al., 2013],
the Amiran foreland basin in Lurestan, mostly preserved across the folded cover succession [e.g., James
and Wynd, 1965; Homke et al., 2009; Saura et al., 2011], the Gurpi-Pabdeh foreland basin in Fars [Motiei, 1993;
Hessami et al., 2001; Piryaei et al., 2010], and the Aruma foreland basin in Oman [Glennie et al., 1974; Searle
et al., 1987; Nolan et al., 1990]. During this period, the major Neo-Tethys subduction front was located at a
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distance of about 1500 km to the East [McQuarrie et al., 2003]. Subsequently, ongoing Arabia-Eurasia
convergence led to the final oceanic closure and continental collision from late Oligocene to early Miocene
[Stoneley, 1981; Agard et al., 2005; Horton et al., 2008;Mouthereau et al., 2012]. This collision resulted in amajor
lithospheric flexure of the Arabian plate and the onset of deposition in the Mesopotamian foreland basin.
Arabia-Eurasia convergence and associated deformation and deposition continued during Miocene and
Pliocene times [Homke et al., 2004; Khadivi et al., 2010; Ruh et al., 2014] to reach the current configuration of
the Zagros fold belt.

The Amiran and Mesopotamian foreland basins, in the Lurestan area, both resulting in the thickening of the
Zagros orogeny, display significantly divergent geometric and depositional characteristics despite their
partial geographic overlap. This suggests a different behavior of the Arabian plate and the depositional
system during their evolution and thus of the interplay between surface and deep processes. Since these
basins are subsequently related to the obduction and collision stages, an accurate characterization of these
features and their relationship with their source areas will give insights into the geodynamic evolution,
shortening, and timing of the deformation of the Zagros Mountains and the preorogenic geometry of the
Arabian margin in the Lurestan area.

The aims of this paper are threefold: (i) to determine the kinematic evolution of the fold system of the Zagros
using published crustal balanced sections [Vergés et al., 2011b] and a kinematic model to obtain the best fit
of existing data on basin evolution; (ii) to quantitatively ascertain the variation of the mechanical rigidity (elastic
thickness) of the different domains of the Arabian plate; and (iii) to study the coupled evolution of tectonics
and surface processes that controlled the sedimentary fill of both the Late Cretaceous to Eocene Amiran and
Miocene to Pliocene Mesopotamian foreland basins through time. To achieve these goals, the evolution of the
Amiran and Mesopotamian foreland basins is studied, along a ~700 km long transect in NW Zagros constrained
by field, seismic, and published data [Aqrawi et al., 2010; Vergés et al., 2011b] (Figure 2). We use the geometry
of the Amiran and Mesopotamian foreland basins constrained from field and seismic data [Mohammed, 2006;
Aqrawi et al., 2010; Saura et al., 2011] to estimate the elastic thickness of the lithosphere from the bending of
the Arabian plate along the study transect. A 2-D dynamic approach is then designed to quantitatively link the
topographic, tectonic, and sedimentary evolution of the system and used to constrain potential crustal and
subcrustal loads needed to account for the flexure of the Amiran and Mesopotamian stages. The presented
modeling provides a nonunique but consistent and quantitative reconstruction of the progressive involvement

Figure 1. Structural map of the Eurasia-Arabia collision zone including themain units of the area and the location of the studied transect: Pink line—Vergés et al. [2011b];
Blue line—Aqrawi et al. [2010]. AB—Amiran foreland basin; CB—Central basin; MZF—Main Zagros Fault; HZF—High Zagros Fault; MF—Minab Fault; MFF—Mountain
Front Fault; MFT—Makran frontal thrust; ZDF—Zagros deformation front; FBPO: Foreland basin pinch out, based on Fouad [2010] andHessami et al. [2001]. Modified after
Jiménez-Munt et al. [2012]. In the right-hand side a synthetic stratigraphic column of the Zagros Mountains is presented [modified after Vergés et al., 2011a].
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of the NE Arabia margin in the Zagros Alpine collision, which is useful for the geodynamic understanding of
the Zagros orogenic belt and its foreland basin development.

2. Tectonic Structure and Evolution of NW Zagros Mountains

The NW Zagros Mountains include, from NE to SW, (i) the Sanandaj-Sirjan metamorphic Zone, in the Eurasian
plate, (ii) the accreted thrust sheets of the Imbricated Zone, (iii) the decoupled cover and basement of the
Simply Folded Belt, and (iv) the Mesopotamian foreland basin in the Arabian plate (Figures 1 and 2). The
studied transect runs from the southern front of the Alborz Mountains to the undeformed Arabian plate,
across the Lurestan arc (Figure 1). In this transect, the Imbricated zone is defined by the Kermanshah complex,
and the detached cover of the Simply Folded Belt corresponds to the Lurestan arc, also involving the
Amiran foreland basin. The crustal structure of this area is defined by a thickened crust underneath the
suture area (~60 km) [Paul et al., 2010], resulting from the overthrusting of the Sanandaj-Sirjan thrust stack
on top of the NE border of the downflexed Arabian plate. SW of the Eurasia-Arabia suture, defined in this
area by the Main Zagros Fault (MZF; Figure 2), a duplex system involving the middle crust underlies
the Imbricated Zone and the Simply Folded Belt [Blanc et al., 2003; McQuarrie, 2004; Alavi, 2007; Vergés
et al., 2011b], which are separated by the High Zagros Fault (Figure 2). Basement involvement in the
thrust system (Figures 2 and 4) is observed elsewhere in the Zagros as inferred from seismotectonic
[e.g., Berberian, 1995; Talebian and Jackson, 2004; Tatar et al., 2004], modeling [e.g., Mouthereau et al.,
2006] and structural points of view [e.g., Molinaro et al., 2004; Sherkati and Letouzey, 2004; Molinaro et al.,
2005; Mouthereau et al., 2007]. The Zagros deformation front is buried within the Mesopotamian foreland
basin, beyond the Mountain Front Fault, a kilometer-scale structural step delineating the SW border of
the Simply Folded Belt [Emami et al., 2010]. Along the SW boundary of the Mesopotamian foreland basin,
Mesozoic and Paleozoic sediments are exposed in the Arabian plate, with average altitudes of about 550m.
Crustal thicknesses of the Arabian plate calculated in this area range between ~35 and ~41 km [Gök et al.,
2008; Jiménez-Munt et al., 2012]. Vergés et al. [2011b] estimated a minimum shortening of 180 km with
an average shortening rate of ∼ 2mmyr�1 for the last 90 Myr, based on the restored geometry of the NE
Arabian plate, including from SW to NE, six different tectonosedimentary domains: the Cretaceous Lurestan
margin, the Radiolarite basin, the Harsin basin, the Bisotun platform, the Neo-Tethys, the Gaveh Rud
volcanic arc, and the Sanandaj-Sirjan zone. However, there is controversy on the original position of the
Harsin basin, with respect to the Radiolarite basin and the Bisotun platform. These units are currently
stacked in the Imbricated Zone, and their restoration is not straightforward [Braud, 1987]. Traditionally
accepted models interpret the serpentinized rocks of the Harsin basin as ophiolites of the Neo-Tethys
domain, originally located NE of the Bisotun platform [Braud, 1987; Agard et al., 2005]. Furthermore,
recent studies interpret the Harsin basin structure as a highly extended basin, exposing serpentinized
peridotites that separated the Radiolarite basin from the Bisotun continental block before the Cenomanian
[Wrobel-Daveau et al., 2010].

Regional apatite fission track studies have evidenced the occurrence of several cooling/denudation events in
the inner zones of the Zagros [Homke et al., 2010; Gavillot et al., 2010; Khadivi et al., 2012] (Figure 3). In the study
area, Homke et al. [2010] identify five main stages occurring during the pre-Middle Jurassic (~171, ~225Ma);

Figure 2. Crustal cross section across the Eurasia-Arabia suture zone from the Alborz Mountains to the undeformed Arabian plate, modified afterMorley et al. [2009],
Aqrawi et al. [2010], and Vergés et al. [2011b]. Location in Figure 1. MZF—Main Zagros Fault; HZF—High Zagros Fault; MFF—Mountain Front Fault; ZDF—Zagros
deformation front.
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early Late Cretaceous (~91Ma); Late Cretaceous to Early Paleocene (~66Ma); middle to Late Eocene (~38Ma);
and Late Oligocene to Early Miocene (~22Ma). The oldest cooling ages, obtained from clasts from the Zagros
foreland basins, most probably record cooling events in the source area, in the obduction complex, which
are to be related to preorogenic processes such as the opening of the Neo-Tethys [Stöcklin, 1968; Stampfli and
Borel, 2002], the exhumation of the mantle beneath the Harsin basin [Wrobel-Daveau et al., 2010], or ophiolite
generation in the distal Arabian margin [Delaloye and Desmons, 1980; Saccani et al., 2013]. A similar scenario was
described in the Fars area by Khadivi et al. [2012], where Jurassic to Early Cretaceous cooling ages in detrital
grains of the foreland basin can be correlated with cooling ages in the obduction complex [Babaie et al.,
2006] which is the source area. The Late Cretaceous to Early Paleocene event can be correlated with the
stacking of thrust sheets on top of the Arabian margin during the obduction stage [Agard et al., 2005],
leading to the creation of the Amiran basin. The Middle to Late Eocene event corresponds to a protracted
period of quiescence with very slow or nondeposition in the Zagros foreland. Besides, compression and
associated uplift shifted toward the NE, along the front of the Sanandaj-Sirjan domain and associated
Gaveh Rud forearc basin [Homke et al., 2010]. The Oligocene to Early Miocene cooling phase roughly
coincides with the onset of the second major phase of flexure [Agard et al., 2005; Horton et al., 2008]. This
new period can be correlated with the collision stage, whose onset has been dated between 35Ma and
20Ma [Mouthereau et al., 2007; Gavillot et al., 2010; Agard et al., 2011; Khadivi et al., 2012;McQuarrie and Van
Hinsbergen, 2013]. During the Miocene and Pliocene, deformation propagated toward the foreland across
the Simply Folded Belt [Homke et al., 2004; Emami, 2008; Fakhari et al., 2008; Khadivi et al., 2010]. Coevally, in
the hinterland, the Urumieh-Dokhtar arc is emplaced northeastward on top of the Central Basin [Morley
et al., 2009], which is also overthrusted in the north by the Alborz Mountains system [Ballato et al., 2008,
2013] (Figure 3). After this stage, the Zagros Fold Belt reached its current configuration, as did the different
domains located between the stable Arabian and Eurasian blocks.

Figure 3. Compilation of the main sedimentary, tectonic, and magmatic events in the geodynamic evolution of the NW
Zagros orogen. MZF—Main Zagros Fault; GRT—Gaveh Rud thrust; KT—Kermanshah thrust; HZF—High Zagros Fault; MFF
—Mountain Front Fault. Compiled after Ballato et al. [2008],Morley et al. [2009], Homke et al. [2010], and Ballato et al. [2013].
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2.1. The Amiran Foreland Basin

The Late Cretaceous to Eocene obduction stage resulted in the accretion of the Imbricated Zone over the
Arabian margin associated with the formation of the Amiran foreland basin (Figure 1). The Amiran foreland
basin is located within the Simply Folded Belt, between the High Zagros Fault and the Kabir Kuh anticline in
the Lurestan area (Figures 2 and 4) and probably extended northwestward into the Tanjero-Kolosh foreland
basin in the Kirkuk embayment in Kurdistan (Iraq) [James and Wynd, 1965; Jassim and Goff, 2006], as
suggested by angular unconformities observed in this area [Karim et al., 2011; Lawa et al., 2013]. Toward the
southeast, the early Eocene succession of the Fars area is characterized by marine and marine continental
transitional deposits, shallower than the Amiran basin flysch deposits (Jahrum and Sachun formations)
[James and Wynd, 1965]. A similar foreland basin evolution is envisaged in the Oman area, developing ahead
of the obducted Oman ophiolite [e.g., Alsharhan, 1989; Robertson et al., 1990; Warburton et al., 1990].

Although the Amiran basin is currently deformed, recently published isopach maps [Casciello et al., 2009;
Farzipour-Saein et al., 2009; Saura et al., 2013] and accurate dating of the basin fill [Saura et al., 2011] enable
the reconstruction of the basin geometry during the emplacement of the obduction complex (Figure 4). The
basin fill is characterized by a diachronous, shallowing upward, mixed clastic-carbonate succession that was
deposited from Late Cretaceous to early Eocene, while prograding southwestward at an average rate of
~5mmyr�1 [Saura et al., 2011]. After the emplacement of the obduction complex, the Amiran basin had a
width of 145 km and a maximum thickness of 2 km at the center of the basin, approximately. Consequently,
the basin wedges out toward the SW and NE, where a structural uplift of about 1.3 km has been estimated
[Homke et al., 2009] (Figure 4).

2.2. The Mesopotamian Foreland Basin

The Mesopotamian foreland basin and its southeastern continuation along the Persian Gulf developed in
front of the Zagros fold belt during the collision stage. The most proximal part of the foreland basin is
characterized by NW-SE Zagros trending anticlines buried beneath the large alluvial plains of Iraq and Iran
[e.g., Dunnington, 1968; Mohammed, 2006]. The Zagros deformation front separates these Zagros folds from
roughly N-S oriented large inverted folds that dominate the Persian Gulf and the Abadan plains [e.g., James
and Wynd, 1965; Alavi, 2004; Abdollahie Fard et al., 2006; Vergés et al., 2011a].

The Mesopotamian foreland basin extends along the Zagros Mountains front and continues into the Persian
Gulf with a total length of almost 2000 km (Figure 1). The Mesopotamian foreland basin developed ahead
of the growing Zagros fold belt by the down flexure of the Arabian plate, during and after the Arabia-Iran
continental collision [e.g., McQuarrie et al., 2003; Agard et al., 2011; Mouthereau et al., 2012; McQuarrie and
Van Hinsbergen, 2013]. The width of the basin is very variable, as a consequence of the sinuous trace of the
Mountain Front Fault. Its maximumwidth is ~375 km, in the Dezful Embayment, whereas the minimumwidth
is ~150 km, NW of Qatar Peninsula [Hessami et al., 2001] (Figure 1). In the study transect, the Mesopotamian
foreland basin is ~300 km wide and is filled by about 5 km of sediments [Aqrawi et al., 2010] (Figure 5).

Figure 4. Architecture of the Amiran foreland basin before collision, after Saura et al. [2011]; see location in Figure 2. Red, dashed line corresponds to the base of the
foreland basin, which is used as a modeling constraint. The location of field stratigraphic sections used to constrain this reconstruction is indicated. The basin infill is
characterized by a diachronous, southwestward migrating, shallowing upward, mixed clastic-carbonate succession. From internal to external areas, time lines cross the
formation boundaries, passing from continental Kashkan red beds to Taleh Zang mixed clastic-carbonate platforms, Amiran slope deposits and to basinal Gurpi-Pabdeh
shales and marls. Vertical white polygons indicate the location of measured and dated stratigraphic sections [Saura et al., 2011].
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The Neogene basin infill (Lower and Upper Fars formations) is mostly nonmarine within the Mesopotamian
foreland, grading into transitional and shallow water deposits in the Persian Gulf (with present maximum
water depths of around 90m). The age and geometry of the basin fill, based on horizon attribution in a
megaseismic profile across the Mesopotamian foreland basin [Mohammed, 2006], shows that basin flexure
started at around 18Ma and accelerated after 12Ma. These values are in agreement with the ages of
the onset of collision-related folding in the Simply Folded Belt, based on magnetostratigraphic and
biostratigraphic studies [Homke et al., 2004; Emami, 2008; Fakhari et al., 2008; Khadivi et al., 2010] (Figure 3).

3. Kinematic Model: Sequence of Deformation

A forward kinematic model has been chosen, in order to quantify and obtain the thrust system parameters,
geometry, displacement, and sequence of emplacement required to constrain the geodynamic modeling. We
use a kinematic forward model based on the fault-parallel flow algorithm (2DMove, Midland Valley Exploration,
Scotland) (Figure 6). This model does not include erosion and sedimentation, nor model isostasy. As a
consequence, the obtainedmodel entails some dynamic inconsistencies (i.e., exaggerated topographic values).
However, the crustal thickness in the final model, measured from the base of the crust (unflexed) to the current
erosion level, is 50 kmwhich is comparable to the samemeasure in the balanced cross section. The best fit with
the geological cross section was achieved with four basement units in the Arabian margin, which allowed a
more homogeneous thickening of the whole Arabian crust and emplacement of the basement of the Bisotun
block together with the Harsin and Radiolarite basins. The resulting sequence is described below.

The initial modeling stages correspond to Campanian-Maastrichtian times when the cover units of the
Kermanshah complex imbricated (Figure 6b), resulting in a shortening of 145 km. This value, which can be
assumed to correspond to obduction overlap, is slightly below 180 km of overlap as proposed by McQuarrie
and Van Hinsbergen [2013], who extrapolated their estimation from the Omanmountains obduction complex.
This stage also corresponds to the onset of deposition in the Amiran flexural basin, where the oldest dated
sediments were deposited about 82.5–76Ma (Campanian; Saura et al. [2011], and Movie S1 in the supporting
information of that article). Deposition is also expected to occur on the NE side of the orogen, toward the
open Neo-Tethys domain.

During the Paleocene to Early Eocene stage (Figure 6c) the stacking of the cover thrust sheets of the
Kermanshah Complex, when the Zagros Mountains building occurred, is associated with erosion and
deposition which are both toward the NE and SW. This stage corresponds to the main development of the
Amiran flexural basin (Figure 4). The effects of early growth have not been modeled. At some point, between
this stage and the previous, the basement of the Bisotun block started to be emplaced on the hinterland of the
Kermanshah complex. This entails the closure of the Harsin basin and the subsequent underthrusting of the
Arabian basement beneath the Bisotun basement. The oldest sediments dated in the Gaveh Rud domain
correspond to this stage [Braud, 1987], recording the onset of subduction of the Neo-Tethys lithosphere

Figure 5. Architecture of the Mesopotamian foreland basin based on a megaseismic transect [modified after Aqrawi et al.,
2010]. Age attribution based on Mohammed [2006]. Red, dashed line corresponds to the base of foreland basin used as a
modeling constraint. See location in Figure 2.
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beneath this unit. At about 56Ma, the subduction trench was located ~1500 km NE of the Arabian margin
(Figure 6c) [McQuarrie et al., 2003].

The following stage, from late Eocene to early Miocene, corresponds to a period of quiescence, whose onset
can be correlated with the deposition of the shallow water Shahbazan Formation, fossilizing the Amiran basin
at ~34Ma (Figure 5). During this stage, the Gaveh Rud domain continued its emplacement on top of the
Arabian Margin and reached its final position on top of the Kermanshah complex (Figure 3). During this
process, the final closure of the Neo-Tethys Ocean took place and was followed by the onset of the collisional
stage. Based on obduction overlap,McQuarrie and Van Hinsbergen [2013] propose that this occurred at about
28–27Ma. Since we propose a shorter overlap, onset of collision in our model is to be expected not earlier
than 25–26Ma.

Figure 6. Kinematic model constrained by field data showing the evolution of the Zagros Mountains across the Lurestan area. The SW part of the section, mainly
corresponding to the Arabian margin, illustrates the results of the kinematic forward model, without reproducing lithospheric flexure. The NE part, corresponding
to the Gaveh Rud volcanic arc and the Sanandaj-Sirjan zone are only qualitatively represented. (a) Initial model at ~90 Ma. (b) Accretion of the Kermanshah
complex on top of the Arabian Margin. Onset of deposition in the Amiran basin. (c) Emplacement of the Bisotun basement coeval to evolving subduction below
the Sanandaj-Sirjan zone in the northern boundary of the Neo-Tethys ocean. (d) Collision of Arabia and Eurasia and propagation of the shortening along a
basement duplex. (e) Final emplacement of the basement duplex along the Mountain Front Fault and associated uplift of the Simply Folded Belt.
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FromMiocene to Quaternary (Figures 6d and 6e), the basement of the Arabian margin deformed underneath
the decoupled cover units. The emplacement of the basement units was in a piggyback sequence, associated
with the out-of-sequence emplacement of the Sanandaj-Sirjan zone in the hinterland. The last stages of the
kinematic model (Figure 6e) correspond to the final uplift of the Lurestan area, associated with the major
development of the Mesopotamian foreland basin toward the SW (Figure 5).

4. Static Flexural Model: Estimation of Elastic Thickness

The present depth of the Mesopotamian basement and the reconstruction of the Amiran basin thickness
allow for a preliminary estimation of the elastic thickness at both stages, which is important to understand
the mechanical behavior of the Arabian plate under external forces (tectonic or gravitational). For this
purpose, a pure elastic thin plate model is used to calculate the regional isostatic response of the lithosphere
under the weight of the Zagros Mountains. Here we fix the final topography and invert the flexural basin
depth that isostatically compensates it. To solve the flexural equations, we use an updated version of tAo
software [Garcia-Castellanos et al., 1997]. It is well established that the vertical motions of a flexural plate
submitted to vertical forces are governed by its elastic thickness (Te) [Watts, 2001]. To convert from flexural
rigidity to elastic thickness, Young’s modulus and Poisson’s ratio of 7 · 1010 N/m2 and 0.25, respectively, have
been used.

For the Amiran stage, we modify Te to search for the best match between the calculated flexural profile and
the depth of the basement of the Amiran basin. The Amiran foreland basin is a fossilized flexural basin which
has undergone some deformation after its formation. The correlation at 23Ma presented by Saura et al.
[2011] using the Asmari Formation horizontal datum grants the best approximation to the geometry of the
foreland basin at the end of the obduction stage at about 50Ma, since major differential vertical movements
are not expected within the Amiran basin between 50 and 23Ma. At 50Ma the Amiran basin was practically
full and presented a structural step in the basement, imaged by the differential depth of the Amiran basin
(Figure 4). Taking this into account, the part of the Amiran basin we are trying to fit with the flexural model, is
that located ahead of this step in the basement, which would correspond to the geometry of the basin at
50Ma (Figure 4). Since we lack constraints on the elevation of the topographic load at the time, we assume a
1 km topography, based on the structural step in the inner part of the Amiran basin (Figure 4), associated with
the emplacement of the Kermanshah complex in the innermost domains of the chain. The mean density
needed to quantitatively explain the basin thickness is 2800 kg/m3 (see Figure 7), a relatively high value. The

Figure 7. Static flexural profiles calculated for the Amiran and the Mesopotamian stages. The dashed red and white lines indi-
cate observed basin depth (base of the foreland basin subsidence). Bold lines show the best fit model. The result for Te= 40 km
is shown in each panel for comparison. The different width of the Amiran and Mesopotamian basins can only be reproduced
with markedly different lithospheric elastic thicknesses of ~ 20 and 55 km, respectively.
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minor occurrence of tectonic slices with high-density rocks (peridotite and gabbro) within the deformed
sedimentary cover in the Imbricated Zone could be a reason for this slight deviation from average densities of
sedimentary rocks. The best fit between the flexural profile and the Amiran section is obtained for a Te value
of 20 km (Figure 7), but acceptable results are obtained within a range of 15–30 km.

We proceed in a similar manner for the Mesopotamian stage. In this case, we use the 18Ma horizon by Aqrawi
et al. [2010] as the base of the foreland basin since it is the first horizon that clearly thickens toward the
orogen. The best fit is obtained by using an elastic thickness of 55 km (Figure 7), but acceptable results are
obtained within a range of 45–70 km.

These results imply a different flexural behavior for both basins, in terms of lithospheric elastic thickness,
increasing from about 20 km in the distal parts of the Arabian margin to ~ 55 km under the present
Mesopotamian basin. However, the method does not provide information on whether this different
behavior of both basins is due to inherited spatial heterogeneities, to temporal changes in lithospheric
rigidity, or both.

Figure 8. (a) Geometry of the numerical model at�37Myr, corresponding to the Amiran basin before the onset of collision.
(b) Final geometry of the numerical model, corresponding to the present. Sediment horizons every 5 Myr, shade color
indicates precollision (orange) and postcollision (yellow). Vertical exaggeration in lower panel is 5X. Note that despite the
density of the thrusting units being overestimated in this model (Table 1), the calculated subsidence is insufficient to match
the depth of the basement in the Mesopotamian basin.
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5. Evolutionary tAo Model: Tectonic, Isostasy, and Surface Transport Evolution

For the evolutionary tAo model (Figure 8), we use the same 2-D (cross section) software, as in the previous
section, but here the flexural loads are calculated as a response to the motion of tectonic units with a
predefined geometry and velocity. The evolving topography resulting from the motion of these units and
their isostatic compensation is eroded by a surface process model. A more exhaustive description is provided
in Garcia-Castellanos [2007]. The initial model geometry is taken from the restored cross section by Vergés
et al. [2011b] and the sequence of emplacement, age, and velocities of the model units (Table 1) are based on
the kinematic forward model (Figure 6). The density of each unit used to convert motions into load
distribution changes is listed in Table 1. For the flexural calculations, we use the Te estimates obtained in the
previous section. The output model is expected to fit present-day topography and sediment volume, which
will add robustness to the geometric model presented by Vergés et al. [2011b].

Erosion and sediment transport is calculated as a function of water discharge at each node of the surface.
Water is assumed to flow downslope forming lakes in local topographic minima where evaporation is taken
into account. Erosion is proportional to the collected water discharge and the local slope at each location,
following a stream power law. We use the undercapacity model, as described in van der Beek and Bishop
[2003], with erosion proportional to the difference between the equilibrium transport capacity and the actual
sediment load of the river. Water discharge is calculated from a constant precipitation rate of 500mm/yr,
and constant evaporation rate of 1800mm/yr is adopted. This can trigger the formation of endorheic
basins within the deformed area, if the catchment area of a lake is not large enough to overcome evaporation
and allow the lake to overtop. Themodel parameterization is to some point arbitrary, because of the limitations
imposed by the 2-D approach where we lack good constraints on the paleoclimate of the region for the whole
modeled period and ignore how much of the precipitation did actually reach the drainage network and
participate in eroding the landscape. Since we also lack erodability constraints, we tested different erodability
and precipitation values with the only purpose of matching the total cross-sectional area of erosion (estimated
from the balanced and restored cross sections) and sediment (obtained from seismic and field data). For the
purpose of this study, the key requirement is that the surface transport model roughly reproduces the sediment
volumes constrained from the section restoration. The used precipitation and evaporation parameters, with
erosion rate much larger than precipitation rate, fall within the range of semiarid to arid climates, which is in
agreement with paleoclimate conditions since Late Eocene times which have been proposed for Iran
[Davoudzadeh et al., 1997; Ballato et al., 2008; Khadivi et al., 2012].

Modeling results reproduce the main characteristics of the Amiran foreland basin from�83 to�48Myr, with
a width of 140 km and maximum sediment thickness of 2.2 km (Figure 8a). The topography evolution of the
hinterland remains below 2 km altitude, reaching its maximum in the early stages and then progressively
flattening by erosion. The vertical deflection under the Imbricate Zone reaches 5 km during the last stages of
thrust sheet emplacement. Sedimentation continues for ~12 Myr after the end of the obduction-related
tectonic processes, prograding outward to complete the basin fill. A 2-D conservative erosion/sedimentation
budget is enough to fill this first flexural basin with an average sedimentation rate of 45m/Myr, in agreement
with the restricted nature of the Amiran basin, transversally filled with sediments eroded from the adjacent
Imbricated Zone [Saura et al., 2011].

Table 1. Velocities, Densities, and Timing of the Different Units Used in the Geodynamic Model

Unit Structural Domain Horizontal Velocity (km/Myr) Density (kg/m3) Onset of Displacement (Ma) End of Displacement (Ma)

1 Bisotun cover �3.5 2600 �90 �80
2 Harsin basin/Bisotun basement �4.5 2890 �80 �70
3 Radiolarite basin �4.5 2600 �70 �60
4 Arabian cover 1 �1 2600 �60 �49
5 Eurasia �11 2890 �35 �20
6 Arabian basement 1 �4 2890 �20 �11
7 Arabian cover 2 �2 2600 �20 �9
8 Arabian basement 2 �4 2890 �11 0
9 Arabian cover 3 �1 2600 �9 0
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The Mesopotamian foreland basin is also reproduced by modeling results after �23 Myr, under the load of
the Sanandaj-Sirjan zone and the thick basement unit below the obduction complex and the Simply Folded
Belt (Figure 8b). However, a 2-D conservative model (i.e., with sediment flow solely along the modeling plane)
only accounts for 40% of the sediments currently observed in the Mesopotamian wedge. Based on the
current axial drainage network and associated sediment income in the Mesopotamian foreland basin, an
additional sedimentation rate of up to 200m/Myr is introduced into the model, accounting for 60% of the
sediments in the basin. This also allows sedimentation to keep pace with subsidence, always remaining
above sea level as is the case in the Mesopotamian foreland basin.

The loading of the Iranian plate on top of the Arabian lithosphere together with the imbrication of the
basement below the Simply Folded Belt are identified as the main process responsible for the vertical
deflection of the Arabian lithosphere below the Imbricated zone, with a maximum of about 10 km and
maximum depth and width of the foreland basin of 4 km and 200 km, respectively.

6. Comparison Between the Geometric, Kinematic, and Evolutionary tAo Models

Significant differences arise in the final geometry of the constructed geometric, kinematic, and
evolutionary tAo models along the same transect of NW Zagros in Iran (Figure 9). However, these
differences are mostly related to the varying initial boundary conditions used for each model, which are
mainly conditioned by the modeling method. The geometric model is based on a cross section by
Vergés et al. [2011b], modified according to geological and geophysical data from different sources

Figure 9. Comparison of the three models presented in this work. Despite evident differences in their final geometry,
quantitative comparison of several parameters of the geometric, kinematic, and numerical models (Table 2) provides
insights in the understanding of the evolution of the Zagros Mountains.
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[Mohammed, 2006; Morley et al., 2009; Aqrawi et al., 2010; Jiménez-Munt et al., 2012]. Of the presented
models, this is the closest to the actual geometry of the Arabia-Eurasia collision zone. The kinematic
model is a forward model aiming to establish the thrust sequence that reproduces the best fit with
the geometric model, which would provide insights on the kinematic evolution of the Lurestan area,
whereas the evolutionary tAo model is a forward model aimed to fit the observed topography and
sediment budget in order to better understand the geodynamic behavior of the area during the
orogenic evolution. This required granting realistic and consistent intermediate stages, which further
required a simplification exercise. The main similarities and differences between the different models
and their implications are discussed below.

6.1. Basin Geometry

Deformation in the Arabian cover of the Simply Folded Belt is mostly characterized by detachment folding
and subsidiary thrusting [e.g., Sattarzadeh et al., 2000; Sherkati et al., 2005; Vergés et al., 2011a]. This
deformation style is included in the geometric model, although folding of the cover has not been included
in the Kinematic model. Besides, detached cover deformation in the Simply Folded Belt is represented by
two thrust sheets in the evolutionary tAo model. The geometry of the basement duplex is also different
from one model to the other. These are the best fit geometries to reproduce a homogeneous uplift of the
Simply Folded Belt, as observed in nature.

The kinematic model does not reproduce flexure, erosion, or sedimentation. This results in a higher
topographic profile north of the deformation front and, especially in the innermost parts of the belt, where
tectonic stacking is the highest. Erosion has been manually implemented using the present erosion level of
each unit as constrain. Sedimentation is not manually added, although the hypothetic location of the
foreland basins is indicated (Figures 6 and 9).

Some geometric parameters of the different models can be quantitatively compared (Table 2). The three
models show similar widths of the Simply Folded Belt (191–202 km) and the Imbricated Zone (56–63 km).
The Mesopotamian foreland basin is 100 km narrower (33%) and 1 km shallower (25%) in the evolutionary
tAo model than in the geometric model. This basin is not included in the kinematic model, although the
structural step associated with the Mountain Front fault implies 3 km of thickness of the basin fill, 40%
less than the geometric model. The geometric and the evolutionary tAo models also present very similar
maximum crustal thicknesses (56 and 57 km, respectively), and the maximum crustal thickness of kinematic
model measured using the same points as in the geometric model is 54 km which is also very similar to the
other models. The maximum depth of the midcrustal detachment is very variable from one model to the other.
The geometric model, with a maximum depth of 60 km, supplies the highest value. Instead, the kinematic
model with a depth of 23 km supplies the shallowest detachment, but this is mainly due to the Arabian plate
remaining unflexed in this model. A simple correction adding the excess topography to the detachment
depth, with respect to the geometric model (Table 2), supplies a value of 36 km which is still much below the
geometric model. The evolutionary tAo model presents a maximum depth of the midcrustal detachment at
52 km which is also shallower than the geometric model. Final shortening values from the deformation front
to the caudal part of the Bisotun thrust sheet are also very similar in the three models (172–182 km).

The final subsidence curve, implicit in the geometric model and the one resulting from the evolutionary tAo
model, show very similar trends (Figure 10). These curves overlap from the Zagros deformation front (ZDF) to

Table 2. Comparison of Geometric Results Between the Geometric, the Kinematic, and the Evolutionary tAo Models

Geometric Model (km) Kinematic Model (km) Evol. tAo Model (km)

Simply Folded Belt width 195 202 191
Imbricated Zone width 56 62 63
Mesopotamian foreland basin width 300 - 200
Mesopotamian foreland basin depth 5 3 4
Maximum crustal thickness 56 38 (54) 57
Maximum detachment depth 60 23 (36) 52
Maximum topography 3.5 16.5 4.4
Final shortening 180 172 182
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the High Zagros fault (HZF). North of this point, the subsidence is higher in the evolutionary tAo model,
although this trend is inverted again below the Imbricated Zone.

6.2. Erosion and Sediment Balance (Cross-Sectional Area of Erosion and Deposition)

Comparison of the balanced and restored cross sections by Vergés et al. [2011b] allows us to calculate the final
amount of eroded material for each unit in the Lurestan area (Table 3). Given the used 2-D approach, the
estimated values of erosion and sediment volume are given in square kilometers of the cross-sectional area.
These values supply an initial estimation that can be used to qualitatively constrain the presented geodynamic
model. Most of the Radiolarite basin was eroded (~90%), whereas only about 10% of the Harsin basin was
washed out. However, since the width of this unit is unconstrained, this is only a minimum value, which would
increase if we considered an originally wider Harsin basin. More than 75% of the Bisotun platform was eroded
away. This contrasts with the lack of a significant amount of reworked pebbles of this unit within the Amiran
basin sediments, which suggests that most of them could have been transported northeastward into the
Neo-Tethys Ocean, as already discussed by Saura et al. [2013]. In summary, half of the Kermanshah complex
was eroded during the whole collision process, which corresponds to a surface of 127 km2 on the
geometrical model (Table 3). This value is comparable to the 133 km2 of eroded material, calculated by the
evolutionary tAo model in the Kermanshah complex. In the SW part of the section, only a small proportion of
the upper part of the Arabian margin was eroded (<5% in the Simply Folded Belt). This corresponds to
55 km2 of eroded section on the geometric model, which is also very similar to the 49 km2 calculated by the
evolutionary tAo model on the same area (Table 3).

During the obduction stage, a maximum accumulation of 210 km2 of sediments can be estimated for the
Amiran basin, one third of which was eroded during the collisional stage. The maximum accumulation of
sediments in the Amiran Basin calculated with the evolutionary tAo model is 171 km2. Finally, a minimum of
300 km2 is inferred to have been deposited in the inner part of the Mesopotamian basin during the initial
collision stages. About 85% of these sediments were eroded during the uplift of the Simply Folded Belt,
associated with the emplacement of basement thrust units. The Tertiary sediments preserved in the
Mesopotamian basin add up to 565 km2, whereas the evolutionary tAo model only fills the basin with
316 km2 of sediments (Table 4). This difference is consistent with the smaller basin dimensions (Table 2).

Figure 10. Subsidence curves resulting from the flexural numerical model in this work and from subtracting the current
(cyan line) and restored (blue line) geometries of the Moho, according to Vergés et al. [2011b] and Paul et al. [2010]. ZDF:
Zagros deformation front, MFF: Mountain Front fault, HZF: High Zagros fault, MZF: Main Zagros fault. The curves present a
good match SW of the High Zagros fault, where the Amiran and Mesopotamian basins are located.

Table 3. Initial and Eroded Areas of the Main Units of the Geometric and Numerical Cross Sections Across NW Zagros

Structural Domain Initial Area (km2) Geometric Model Eroded Area (km2) Numerical Model Eroded Area (km2)

Arabian margin cover 3124 (1414) 55 49
Kermanshah Complex 216 127 133
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7. Discussion: Structural and Flexural Evolution of NW Zagros Mountains
7.1. Kinematic Evolution of NW Zagros Mountains

The presented kinematic forward model shows the emplacement sequence as two main stages. The initial
stage, associated with obduction, involves the thin thrust sheets of the Kermanshah complex together with
the Bisotun basement. The second stage, associated with collision, corresponds to the emplacement of the
basement duplex and associated crustal thickening. The number and geometry of the thrust units have
been slightly modified in order to generate a best fit with the observed apparent homogeneous uplift of the
Simply Folded Belt. This stage also involves the out-of-sequence emplacement of the Gaveh Rud and the
Sanandaj-Sirjan zone in the hinterland, on top of the Kermanshah complex. Although the presented model
does not reproduce the detailed geometry of the thrust system and the Tertiary basins (Figure 9), it
reproduces the main characteristics of the NW Zagros crustal structure [Vergés et al., 2011b]. These authors
presented the largest shortening estimation published to date for the Zagros Mountains based on crustal
area balancing, with an average shortening rate of ∼ 2.0mm/yr. However, this value is well below the current
plate velocities of the Arabian plate, with respect to a fixed Eurasian plate [Sella et al., 2002; Vernant et al.,
2004] and recently published plate scale reconstructions [Barrier and Vrielynck, 2008; Hatzfeld and Molnar,
2010], leaving a large amount of unaccounted shortening which should probably be concentrated within
the boundaries of the minor blocks located on the SW part of the Eurasian plate (Figure 1).

7.2. Flexural Behavior of the Arabian Plate

The best fit between the constraints imposed by the data and the evolutionary tAo model was obtained by
considering lateral variations in plate rigidity and stress fields that range from Te values of 55 km under the
Mesopotamian basin to values of 20 km under the reconstructed Amiran basin and beyond. The lateral
Te variation is the key to simultaneously explain the flexural behavior and the deviations in the record of
vertical motions in the foreland basin and the infill geometries. This northeastward decrease in plate rigidity
is consistent with the Temaps obtained by Pérez-Gussinyé et al. [2009], based on topography and gravity data.
It is also in agreement with Te estimations from Tesauro et al. [2013], based on global data sets of Moho depth
and temperature, particularly with their results adopting a “hard” rheology. Te values of 20 km during the
obduction stage are in agreement with those calculated in Oman [Ali and Watts, 2009]. Te values of 55 km
under the Mesopotamian basin are in agreement with previously published data [Snyder and Barazangi, 1986]
and fall within the range of similar scenarios elsewhere [Watts, 2001; Garcia-Castellanos and Cloetingh, 2011;
Tesauro et al., 2013; Watts et al., 2013]. The changing behavior of the Arabian plate could be explained by the
eastward increasing stretching of the Arabian plate related to the Late Paleozoic to early Mesozoic rifting
episode preceding the opening of the Neo-Tethys [Stöcklin, 1968; Stampfli and Borel, 2002]. Additionally, the fit
between the flexural profile and the Amiran section obtained for the obduction stage also indicates that a 1 km
high plateau during the Amiran stage is a likely scenario, although this would require a more detailed study.

7.3. Flexural Loads and Sediment Balance in the NE Zagros Mountains

The evolutionary tAo model provides a tectonic evolution, quantitatively consistent with the history of
the foreland basins, with the regional isostasy model and with a simple scenario for the surface process
efficiency. The emplacement of Bisotun basement during the obduction stage supplied the tectonic load
granting the flexure of Arabian plate and formation of the Amiran foreland basin. Material eroded from the

Table 4. Maximum and Final Sediment Accumulations in the Geometric Restoration and the Flexural Numerical Modela

Geometric Model Numerical Model

Age of Sediment
Maximum
Area (km2)

Final Area
(km2)

Maximum Area
(km2)

Final Area
(km2)

Paleocene to Oligocene 280 189 - 164
Paleocene to Oligocene (only Amiran Basin,
maximum volumes are at ~37Ma)

210 137 171 67

Miocene to Quaternary (SFB + IZ) >300 57 - 93
Mesopotamian basin 565 565 316 316
Syn-orogenic sediments 811 573

aSFB—Simply Folded Belt; IZ—Imbricated Zone. Values are given in cross-sectional area, consistent with 2-D
cross-sectional approach.
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imbricated zone during this stage was enough to fill the Amiran basin, as already proposed by Saura et al.
[2013]. This suggests a transversal drainage system during the Late Cretaceous to Early Eocene.

Flexure of the Arabian plate below the Mesopotamian basin was triggered by the emplacement of basement
units under the Simply Folded Belt during the last 20 Myr. However, the maximum subsidence obtained by
the geodynamic model was well below that observed in seismic data (Figure 8b). This suggests that an extra
load is required to accomplish total flexure of the Arabian plate which is probably related to subcrustal
processes. Similar mantle-sourced additional loads have been derived from previous flexural studies in
foreland basin settings, such as the Guadalquivir Basin [García-Castellanos et al., 2002] and the Sub-Andean
Basin [Dávila et al., 2007]. Comparing our flexural model (Figure 8) with the Mesopotamian basin architecture
of Aqrawi et al. [2010] (Figure 5) suggests that this additional subsidence may have taken place during the
early stages of Mesopotamian sedimentation (18–12Ma), since deformation along the frontalmost thrusts
started significantly later than that (<10Ma) [e.g., Homke et al., 2004; Emami et al., 2010]. The uncertainties in
these kinematic constraints of the forefront deformation and in the basin infill geometry call for future
independent assessment of this point. García-Castellanos et al. [2002] quantified the excess subsidence of
the Guadalquivir basin, relative to that expected from the isostatic compensation of the Betic cordillera
topography, and related it to the lateral variations of crustal and lithospheric thickness. In contrast, Dávila
et al. [2005, 2007] link an excess subsidence of the Sub-Andean foreland to dynamic loads, purportedly
related to mantle flow. Garcia-Castellanos and Cloetingh [2011] summarize other possible mechanisms for
foreland basin subsidence different from thrust stacking, such as the pull of a subducted slab, the horizontal
compression, and the effects of the developing thrusts on the stress distribution within the bending plate
[see also Simpson, 2014]. Finally, the 2-D approach also disregards the combined 3-D effect of topography
and weight of sediment accumulation.

Additionally, material eroded from the Simply Folded Belt and the Imbricated Zone was not enough to fill
the Mesopotamian basin, which required additional sediment supply of 200m/Myr in the foredeep. In the
Mesopotamian basin, this additional supply should be provided by an axial drainage system, which can be
correlated by the influx of paleo-Tigris and paleo-Eufrates Rivers, transporting sediments from northwesternmost
areas [e.g., Vergés, 2007]. During the collision stage, two different wedge top basins can be differentiated. The
Neogene basins located more to the south correspond to the innermost parts of the Mesopotamian foreland
basin, uplifted and eroded during the latest stages of collision, after �15 Myr. The youngest sediments
filling these basins are very recent and could be correlated with the youngest sediments in the Lurestan
domain [James and Wynd, 1965; Emami, 2008; Pirouz et al., 2011]. On the other hand, a small basin forms
between the Imbricated and the Sanandaj-Sirjan zones, which is thrusted southwestward to be finally
emplaced on top of the Imbricated Zone (Figure 8b). During the emplacement of this basin it is partially
eroded and feeds younger basins forelandward. This basin could be correlated with the Gaveh Rud domain,
a fore-arc basin developed in front of the Sanandaj-Sirjan zone. Erosion and resedimentation of Gaveh Rud
basin fill could explain the Middle to Late Eocene exhumation stage recorded in the Agha Jari formation in the
foreland basin [Homke et al., 2010].

7.4. Implications of the Evolutionary tAo Model in the Understanding of the Innermost
Zagros Domains

The thrust system depicted in the geometric model implies a very efficient basement cover decoupling,
along which the Sanandaj-Sirjan zone emplaced on top of the Kermanshah complex, transmitted a portion of
the collision-related shortening to the Zagros belt cover (Figure 9). This decoupling surface was rooted at
depth along the Main Zagros Fault, the Arabia-Eurasia suture. Notwithstanding, the evolutionary tAo model
required a NE directed thrust fault to step up and breach the surface, about 160 km NE of the High Zagros
Fault. This double verging structural configuration of the entire collision zone (Figure 2) agrees with the NE
verging fault system bounding thick Neogene sedimentary basins in the Central Basin region in Iran,
according to Morley et al. [2009] and Ballato et al. [2011].

The evolutionary tAo model shows the distal segment of the Arabian plate, including the Neo-Tethys
domain, subducted below Eurasia (Figure 8b). The rather flat resultant of the Eurasia-Arabia contact is a
consequence of the used code not differentiating crust and mantle, although a similar model based on
receiver functions was proposed for this transect by Paul et al. [2010] and Hatzfeld and Molnar [2010]. This
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model would imply a relatively flat subduction with more than 200 km of overthrusting between the
Sanandaj-Sirjan Zone and the Neo-Tethys oceanic domain. Nonetheless, seismic tomography profiles show
a contrasting subvertical change in mantle velocities coinciding with the Arabia-Eurasia suture at surface
[Vergés et al., 2011b] and thus implying a steep contact between the Arabia and Iran plates at depth, as
proposed by Vergés et al. [2011b]. Therefore, the results of the evolutionary tAo model depicted the portion
of the Arabian plate that should sink into the mantle during Neogene times. This subducted subvertical
oceanic lithosphere beneath the inner part of the Zagros Belt could be the source for the hidden load
required by the evolutionary tAo model to fit the depth and wavelength of the modeled Mesopotamian
foreland basin (Figure 8b).

8. Conclusions

The comparison of the presented geometric, kinematic, and evolutionary models demonstrates that the
geometric model proposed for the Arabia-Eurasia collision along NE Iranian Zagros, implying a shortening of
~180 km, well above most shortening estimations in the area, is a plausible scenario. The restored geometry
of the Arabian Margin combined with plate reconstructions of the area [McQuarrie and Van Hinsbergen, 2013]
allows us to propose that onset of collision is to be expected not earlier than 25–26Ma.

The kinematic forward model confirms a thrust emplacement sequence in two major stages, the first
involving the Bisotun basement and the Kermanshah complex cover thrust sheets. The second stage
corresponds to the duplexing of the basement thrust units, the deformation of the Arabian cover in the
Simply Folded Belt, and the out-of-sequence emplacement of Gaveh Rud and Sanandaj-Sirjan Zone in the
hinterland. Deformation in the basement seems to be less localized than initially proposed, and therefore, the
number and geometry of the thrust units have been slightly modified in order to generate a better fit with
the observed apparently homogeneous uplift of the Simply Folded Belt.

Variation in time and space of the elastic thickness of the Arabian plate is needed in order to fit the different
geometries of the Amiran and Mesopotamian foreland basins. According to elastic thin plate modeling, the
elastic thickness increased from about 20 km in the distal parts of the Arabianmargin during the Late Cretaceous
and Paleocene to ~55 km under the present Mesopotamian basin during Miocene and Pliocene times.

The results of the evolutionary tAo model show that the proposed sequence and timing of thrust
emplacement during the obduction phase generate a foreland basin whose dimensions are comparable to
the Amiran basin at 41Ma. Emplacement of Bisotun basement during this stage is fundamental to the supply
of the required load. Similarly, the emplacement sequence during the collision phase generates a foreland
basin that is comparable to the present Mesopotamian basin, although ~100 km narrower and ~1 km
shallower. The bulk of this flexural basin is formed in response to the emplacement of basement units during
the last 10 Myr. However, an extra load which is coeval to this process is required to explain about 20% of the
Arabian plate flexure. This hidden load could be related to the proposed hanging steep Neo-Tethys slab
beneath the inner Zagros Belt.

The evolutionary tAo model of tectonic, topographic, and surface transport evolution shows that erosion of
the Kermanshah complex during the obduction stage supplied enough sediment to fill the Amiran basin. In
contrast, the sediment supplied by the Zagros uplift during the collision stage was not sufficient to fill the
Mesopotamian flexural foreland, which required an additional sediment supply of up to 200m/Myr. This
additional deposition could be supplied by the axial income of the paleo-Tigris and paleo-Euphrates Rivers
from elevated regions to the north and northeast (Anatolian and Iranian plateaus).
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