Article type: Original Article

Attributing forest responses to global-change drivers: limited evidence of a CO₂-fertilization effect in Iberian pine growth

J. Julio Camarero^{1*}, Antonio Gazol¹, Jacques C. Tardif² and France Conciatori²

¹Instituto Pirenaico de Ecología (IPE-CSIC). Avda. Montañana 1005, Apdo. 202, E-50192 Zaragoza, Spain.
 ²Canada Research Chair in Dendrochronology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, Manitoba, Canada.

*Corresponding author: J. Julio Camarero Instituto Pirenaico de Ecología (IPE-CSIC) Avda. Montañana 1005, Apdo. 202 E-50192 Zaragoza, Spain. E-mail: jjcamarero@ipe.csic.es; Tel.: (+34) 976 716031, Fax: (+34) 976 716019

Short running head: Drought cancels growth stimulation by rising CO₂

Word count: 6791 words.

Estimated number of journal pages required by figures and tables: 5

1 ABSTRACT

2 Aim Forest responses to global-change drivers such as rising atmospheric CO₂ 3 concentrations (C_a), warming temperatures and increased aridification will depend on 4 tree species and site characteristics. We aim to determine if rising C_a enhances growth 5 of coexisting pine species along broad ecological gradients in a drought-prone area. 6 Location Iberian Range, Spain. 7 Methods We sampled 557 trees of five pine species encompassing a wide climatic 8 gradient and measured their radial growth. We used non-linear flexible statistics 9 (generalize additive mixed models) to characterize growth trends and relate them to C_a , 10 temperature and water balance. 11 Results The sites most responsive to the growing-season water balance were dominated 12 by *Pinus pinaster* and *Pinus nigra* at low elevations whereas those most responsive to 13 temperatures were high-elevation Pinus sylvestris and Pinus uncinata stands. From 14 1950 onwards, most sites and species showed decreasing radial- growth trends. Growth 15 trends were coherent with a CO₂-related fertilization effect only in one *P. sylvestris* site. 16 Main conclusions We found little evidence of growth stimulation of Iberian pine 17 forests due to rising C_a . The results indicated that any any positive effect of a C_a -18 induced growth increase was unlikely to reverse or cancel out the drought-driven trends 19 of reduced growth in most Mediterranean pine forests. Further assessments of CO2-20 fertilization effects on forest growth should be carried out in sites where climatic 21 stressors such as drought do not override the effects of rising C_a on forest growth. 22 23 Keywords: basal area increment, CO2-fertilization effect, dendroecology, drought,

24 Generalized Additive Models, Mediterranean pines, *Pinus*, Spain, water balance.

25 Introduction

26	Forests dominate the carbon fluxes of terrestrial communities since wood accounts for
27	80% of land biomass (Bonan, 2008). Thus, forest responses to rising atmospheric CO_2
28	concentrations (C_a) will determine their role as carbon sinks (Le Quéré <i>et al.</i> , 2009). In
29	May summer 2014, C_a surpassed 400 ppm and this concentration may double in the 21 st
30	century relative to that previous to 1850, with air temperatures projected to increase
31	globally, possibly by as much as 4°C (IPCC, 2013). Forests could partially mitigate the
32	effects of anthropogenic increasing C_a and the related planetary warming through net
33	carbon uptake if growth rates increase. However, warmer temperatures can induce
34	drought stress, leading to slowed radial growth rates in areas with water deficit despite
35	rising C_a (Granier <i>et al.</i> , 2007). The interplay between C_a and climate warming could
36	explain why some forests show growth saturation signals, particularly in drought-prone
37	areas (Nabuurs et al., 2013).
38	Rising C_a level may affect tree photosynthesis and growth by improving the
39	intrinsic water-use efficiency (iWUE, i.e. the carbon fixed per unit of water transpired),
40	which could reduce water loss through partial closure of stomata, particularly in areas
41	with water deficit (Huang et al., 2007). However, improved iWUE and increasing forest
42	growth are not usually related in temperate and boreal forests (Silva et al., 2010; Linares
43	& Camarero, 2012; Lévesque et al., 2014). In addition, rising temperature associated
44	with the current rise in C_a could also affect how trees react to climate by lengthening the
45	growing season (Reyes-Fox et al., 2014), or by changing soil water availability
46	(Zavaleta <i>et al.</i> , 2003). Rising C_a could also selectively modify the growth of certain

47 tree species (Streit *et al.*, 2014) and specific stands such as those located in dry sites and

48 undergoing greater iWUE increase (Silva & Anand, 2013).

49	Forest responses to rising C_a could depend on tree species and site conditions.
50	Tree species show site specific patterns and trends in their growth responses to climate
51	warming as has been observed in European silver fir forests (e.g. Gazol et al., 2015).
52	These responses could influence how each species reacts to rising C_a at climatically
53	contrasting sites. For example, conifer forests subjected to continental Mediterranean
54	conditions would show enhanced growth and earlywood formation at high elevations in
55	response to warmer winters, whereas warmer summers would reduce growth and
56	latewood production at low elevation sites due to increased evapotranspiration rates
57	(Sánchez-Salguero et al., 2015). Therefore, the dominant response to climate of each
58	species in each site could alter the balance between earlywood and latewood formation
59	and thus how growth responds to rising C_a .
60	To address these issues reliable and long-term growth data are needed. Tree-ring
61	data allows testing if radial growth and carbon uptake are impacted by covarying C_a and
62	climate (Babst et al., 2014). Nevertheless, radial growth could respond nonlinearly to
63	rising C_a (Norby <i>et al.</i> , 2010) but also to warmer temperatures (Way & Oren, 2010; De
64	Grandpré et al., 2011). In addition, to detect potential influences of those drivers on
65	growth we must remove long-term growth trends due to size or age (Brienen et al.,
66	2012) and tree ontogeny (Voelker et al., 2006). Tree-ring data have shown contradictory
67	results supporting either a positive fertilization effect of rising C_a on tree growth
68	(Voelker et al., 2006; Soulé & Knapps, 2014) or negative to neutral responses (Gedalof
69	& Berg, 2010; Girardin et al., 2011). Contrastingly, tree ring isotopic C composition
70	and eddy covariance flux measurements indicate increasing iWUE in response to rising
71	$C_{\rm a}$ (Peñuelas <i>et al.</i> , 2011; Keenan <i>et al.</i> , 2013). Such conflicting findings could be
72	caused by distinct growth responses of co-occurring tree species to C_a and climate. For
73	instance, the increase in the amount of carbon uptaken per unit of water lost could

mitigate the carbon losses due to water shortage in some species or sites but not in
others which are more sensitive to drought stress (Linares & Camarero, 2012; Brzostek *et al.*, 2014).

77 Iberian pine forests provide a template to answer those questions as they are 78 dominated by several tree species coexisting along elevational gradients characterized 79 by changing climatic conditions and vegetation types (Tapias et al., 2004). 80 Consequently, we aim to evaluate the long-term growth responses of coexisting Iberian 81 pine species to C_a and climate at the site and tree levels. To reach this objective we 82 sampled 557 trees pertaining to five pine species distributed in 33 populations in eastern 83 Spain. To mitigate the effects of sampling biases on growth estimations we sampled 84 trees of different sizes and ages and used nonlinear statistical models of growth. Our 85 specific objectives were: (i) to characterize the growth trends and responses to climatic 86 drivers in five pine species across a wide ecological gradient; and (ii) to test if those 87 trends and responses were linked to rising C_a . We hypothesize that a CO₂-fertilization 88 effect due to rising C_a should enhance growth in drought-prone sites because of iWUE 89 improvement (cf. Fig. 1a). Alternatively, if growth is mainly constrained by water 90 deficit we expect to detect growth enhancement only in mesic sites. 91

- 92 Materials and methods
- 93 Study area and pine species
- 94 The study area was located in the southern Iberian Range, eastern Spain (Teruel,
- Aragón) and includes 33 pine populations distributed among 29 sites located in the
- 96 Gúdar (23 sites), Javalambre (4 sites) and Albarracín (2 sites) ranges (Fig. 2, Table 1).
- 97 Most stands (*n* =12) were dominated by *Pinus nigra* Arn. subsp. *salzmannii* (Dunal)
- 98 Franco, followed by *Pinus sylvestris* L. (n = 7), *Pinus pinaster* Ait. (n = 3), *P*.

99	<i>halepensis</i> Mill. $(n = 2)$, and <i>Pinus uncinata</i> Ram. $(n = 1)$. The most intensively
100	sampled species was P. nigra (235 trees, 42% of total) followed by P. sylvestris (173
101	trees, 31%), P. pinaster (82 trees, 15%), P. uncinata (34 trees, 6%) and P. halepensis
102	(33, 6%). We also sampled eight mixed stands dominated by <i>P. uncinata-P. sylvestris</i> (1
103	site), P. nigra-P. sylvestris (2 sites) and P. nigra-P. pinaster (1 site). The P. uncinata
104	population constitutes the southernmost limit of distribution of the species in Europe.
105	The study sites were distributed along an elevational gradient ranging from 1055 to
106	2020 m a.s.l. Two species dominated the cold high-elevation (1800-2020 m a.s.l.) sites
107	(P. uncinata, P. sylvestris), whereas two species (P. pinaster, P. pinaster) dominated the
108	low-elevation (1055-1350 m a.s.l.) warmt and dry sites most subjected to prolonged
109	summer droughts (Table 1, Fig. 2). In sub-Mediterranean transitional areas P. nigra
110	occurs along the widest range of elevations (1090-1700 m a.s.l.). Soils in the study area
111	are basic and clayey or loamy with a mean C:N ratio of 18.2, except in Albarracín
112	where acidic soils abound. Relatively undisturbed sites (no indications of recent
113	logging, fire or grazing) were selected (Table 1). Human impacts in the the study area
114	(logging, grazing) greatly diminished after the 1950s at a time when massive migration
115	to cities triggered local depopulation. Nowadays, this region is among the less densely
116	populated areas in Europe
117	(http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_r_d3dens⟨=en,
118	accessed June 18, 2015). It is also recording low nitrogen deposition rates with for
119	instance, mean NH ₄ througfall deposition in a <i>P. nigra</i> forest (site VC1, Fig. 2) being
120	1.82 kg ha ⁻¹ yr ⁻¹ during the 1997-2010 period. This value corresponded to the lowest
121	decile in European data (Waldner et al. 2014).
122	

Field sampling and dendrochronological methods 123

124 Field sampling was conducted in late summer 2006. We randomly selected on average 125 17 dominant trees per site and species in 0.5-1 ha sampling areas. The basal area at each 126 site was estimated from two representative prism points using the Bitterlich (1984) 127 method. Specifically, we aimed to sample mature trees reaching the phase when their 128 radial growth rates tend to stabilize. We also measured diameter at breast height (dbh; 129 1.3m) and total height of each tree. Sampled trees showed wide dbh (16.6-86.0 cm) and 130 height (2.5-20.0 m) ranges. Two increment cores were taken at 1.3 m from each tree 131 using a Pressler increment borer. Wood samples were air-dried, sanded and visually 132 cross-dated. Tree-ring widths were measured under a binocular scope at a precision of 133 0.001 mm using a Velmex measuring system. Earlywood (EW) and latewood (LW) 134 widths were separately measured in one site per species to detect seasonal influences of 135 climate on growth. Visual cross-dating and tree-ring measurements were validated using 136 the program COFECHA (Holmes, 1983). Tree age at 1.3 m varied from a minimum of 137 35 years (P. halepensis) to a maximum of 445 years (P. nigra).

138To minimize the impact of defoliations by the pine processionary moth139(*Thaumetopoea pityocampa* Dennis and Schiff.) on short-term growth trends we140discarded recently defoliated *P. nigra* trees; this species being most susceptible to the141insect defoliation (Sangüesa-Barreda *et al.*, 2014). We avoided sampling in areas with142recent outbreaks and we discarded those tree-ring series whose characteristics reflected143past defoliation episodes (e.g., presence of several consecutive narrow and/or missing144rings).

145To quantify the growth-climate associations we developed both tree and site146chronologies and tree-ring width (RW), EW and LW indices were calculated using the147ARSTAN (ver. 4.4; Cook & Krusic, 2005), which uses specific methods to correct for148the age/size trends. Tree-ring widths were transformed into growth indices with both

149 stable mean and variance by dividing observed values by expected values estimated 150 using a cubic-smoothing spline curve of 100 years with a fixed 50% cut off frequency 151 of 75% of each series length. Autoregressive modelling was also performed to remove 152 temporal autocorrelation and to generate residual indices at the individual tree level. 153 Lastly, a biweight robust mean was used to compute mean residual site chronologies for 154 each species. Among the developed chronologies, we considered only those covering 155 the period 1950-2006 which corresponded to the period of most reliable climatic data in 156 the study area. Finally, to assess the strength of the chronologies routine descriptive 157 statistics used in dendrochronology were calculated for the common period 1950-2006 158 by using the ARSTAN program.

159

160 *Climate and atmospheric CO*₂ *data*

161 To obtain regional climatic series characterizing the entire study area, mean temperature 162 and total precipitation data from ten meteorological stations located within the study 163 area were combined into a regional mean of seasonal and monthly data (see more details 164 in Sangüesa-Barreda et al., 2014). To take into account the elevation difference among sampling sites, we corrected the regional mean temperature calculated from the 10 165 166 meteorological stations to generate site specific corrected temperature data using a Digital Terrain Model (Pasho et al., 2011) and considering a mean lapse rate of -7.8 °C 167 168 km⁻¹. We also calculated the monthly water balance at each site as the difference 169 between precipitation and potential evapotranspiration (PET) following the method of 170 Hargreaves and Samani (1982). The regional climate data indicated no significant 171 warming trend in seasonal temperature since 1950 (results not presented) but drought 172 years were frequently observed (Fig. 1d).

173

174	As a quality control, the site-derived climate data were also compared with the gridded
175	(0.5° grids) homogenised and high-quality spatial climate estimates for the period 1950-
176	2006 obtained from the the CRU TS 3.1 database (Harris et al., 2014). To estimate the
177	drought intensity at each site we also used the gridded (0.5° grid) multi-scalar
178	Standardised Precipitation-Evapotranspiration Index (SPEI). This drought index shows
179	the cumulative water stress for several months on different time scales with negative
180	and positive values corresponding respectively to dry and wet periods (Vicente-Serrano
181	et al., 2010). The SPEI values for the period 1950-2006 were obtained from the SPEI
182	webpage http://sac.csic.es/spei/index.html, accessed April 20, 2015).
183	At last, annual C_a values were computed from monthly values taken from the
184	Mauna Loa (Hawaii) with data available from 1959 onwards (these data are available at
185	http://www.esrl.noaa.gov/gmd/ccgg/trends, accessed April 22, 2015). Both the mean
186	and the annual increment of C_a were obtained because increments represent a global
187	average of the CO ₂ added to, and removed from, the atmosphere (see
188	http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo_data, accessed April 22, 2015).
189	
190	Growth-climate associations
191	To determine which were the main climatic drivers of year-to-year variability in tree
192	growth monthly mean temperature and water balance (total monthly precipitation
193	yielded similar results to that of water balance and will thus not be presented) were
194	correlated to RW, EW and LW chronologies developed at the the tree/species and
195	site/species levels. We also performed these analyses using both local or CRU climatic
196	data and compared their performances based on the Pearson correlations obtained for
197	the common period 1950-2006. The temporal window of growth-climate comparisons
198	included from the previous up to the current September (13 months).

199

200 Modelling the effect of C_a on tree growth

201 To model the impact of rising C_a on tree growth, basal area increment (hereafter

202 abbreviated as BAI) was calculated as:

203
$$BAI = \pi (r_t^2 - r_{t-1}^2)$$
(1)

where r_t and r_{t-1} are the squared stem radial increments at the end and the beginning of a given annual ring increment corresponding to rings formed in years *t* and *t*-1, respectively.

We considered that BAI may respond nonlinearly to C_a and climatic constraints and we assumed that these reponses depend on species-, site- and tree-related attributes. Therefore, we modeled separately the BAI series of each site and species as a function of tree attributes (dbh, height and age) and calendar year during the timespan of each tree series (see Table 2). We used Generalized Additive Mixed Models (GAMM; Wood, 2006) to model BAI for each study site and species as:

213
$$log (BAI_i+1) = s(dbh_i) + s(height_i) + s(age_i) + s (calendar year_i) + Z_iB_i + v_i$$
 (2)

where the BAI of a tree *i* is modelled as smooth functions (*s*) of tree variables (dbh, height, age) and calendar year, and trees (Z_iB_i) are regarded as random effects. The smooth terms were represented using thin plate splines (Wood, 2006). Since BAI of year *t* depends on the previous-year (*t*-1) BAI, we also included in the model an error term (v_i) with an AR1 (p=1, q=0) correlation structure. We tested that analyzed variables fulfilled the statistical criteria required to apply GAMMs such as normality,

- 220 heterogeneity and independence (results not presented).
- According to our theoretical framework, the BAI values predicted by GAMMs represent long-term growth trends without the influence of year-to-year climatic
- variations, while BAI residuals characterize the year-to-year growth variation (Fig. 1).

224	Therefore, firstly BAI was modeled with the aforementioned GAMMs (Fig. 1b). We
225	also quantified the BAI trends during the period 1950-2006 since positive growth trends
226	could indicate a fertilization effect by rising C_a (Fig. 1c). Since the detection of growth
227	trends may be influenced by the data at hand, we compared three approaches based on
228	mean site series: BAI, RW indices obtained from the ARSTAN program (as described
229	before), and RW indices obtained after regional curve standardization which uses an
230	average curve describing age/size trends of tree growth (Peters et al., 2015).
231	Secondly, we related the standardized BAI residuals, representing the short-term
232	growth variability, with the annual C_a increment and monthly climate variables most
233	strongly related to RW chronologies (e.g. water balance) (Fig. 1d). To determine if the
234	associations between climatic factors and BAI residuals were unstable during the period
235	1950-2006 we also calculated running correlations considering 20-year long intervals.
236	The mgcv package was used to calculate the GAMMs (Wood, 2006). All statistical
237	analyses were done using the R software (R Development Core Team, 2014).
•••	

238

239 Results

240 *Structure and growth*

241 The sampled sites form relatively open stands showing diverse values of basal area and 242 tree diameter with a mean tree age of 125 years (Table 2). Basal area increased with site 243 elevation (r = 0.47, P < 0.01), which suggests better growing conditions as temperatures 244 decrease and the water balance improves with elevation. Regarding RW, both its year-245 to-year variability (MSx, r = -0.76, P < 0.001) and the coherence among trees (r_{bt} , r = -246 0.83; PC1, r = -0.80; P < 0.001) decreased with elevation with the opposite trend 247 observed with the persistence in growth (AC1, r = 0.78, P < 0.001). For instance, P. 248 *uncinata* and *P. sylvestris* sites had significantly higher AC1 values (mean = 0.80) than

- 249 *P. pinaster* and *P. halepensis* sites (mean = 0.66), while the reverse was observed for
- 250 the RW coherence (mean $r_{bt} = 0.62 vs. 0.81$; Tukey HSD test, *P*<0.05).
- 251

252 Climatic drivers of growth

253	A positive water balance from May to July was the main positive driver of RW,
254	particularly at low-elevation P. nigra and P. pinaster sites (Fig. 3). The relationships
255	between RW and climate shifted along the elevation gradient indicating species-specific
256	phenological differences. For instance, a positive July water balance and cool August
257	conditions enhanced P. uncinata RW, whereas in other species wet May and cool June
258	conditions dominated (Fig. 3). Warm but dry conditions in the previous October also
259	enhanced RW of high-elevation P. uncinata and P. sylvestris sites. The EW presented
260	similar responses to climate as RW whereas LW was favoured by cool and wet
261	conditions from July to September, particularly in the case of P. nigra and P. pinaster
262	sites. Similar results were observed when using gridded CRU climate data but the
263	correlations were stronger using local site climate data (results not presented).
264	The species most responsive to drought were P. nigra and P. pinaster followed
265	by P. halepensis with RW responding to May to August SPEI at 7-15 months long
266	scales (Fig. 4). In the case of EW, P. pinaster was the most drought-sensitive species,
267	showing a similar behaviour to RW, whilst its LW responded positively to short-term
268	(2-8 months long scales) wet conditions in late summer (see Appendix S1 in Supporting
269	Information). In general, the elevation gradient separated temperature- (e.g. P. uncinata)
270	and drought-responding species (e.g. P. pinaster) and this division was detected at both
271	the tree and site levels.
272	Regarding the climate-BAI residuals associations, all species and sites showed

273 positive and significant BAI responses to the growing season water balance, with the

exception of the *P. sylvestris* SJ site (Table 3). A negative and significant effect of a warmer growing season (May to July) on BAI was observed in low-elevation droughtprone sites (e.g., *P. pinaster* MI site) and also to a lesser extent in some high-elevation sites (e.g., *P. uncinata* sites) (Table 3). Nevertheless, BAI responded less to the summer water balance as elevation increased (r = -0.52, P < 0.01).

279

280 Relationships between growth and C_a

281 We detected significant negative (10 sites) or positive (7 sites) associations between

BAI and C_a (Table 3). The strongest positive BAI- C_a associations were found in the *P*.

283 sylvestris-SJ and the P. pinaster-MI sites (see BAI patterns of all sites in the Appendix

284 S2 of Supporting Information). These findings are consistent with site-specific BAI

responses to climate and C_a , which were similar among coexisting species (results not presented).

At the site level, changes in growth along the elevation gradient were associated with how BAI and C_a were related (Fig. 5). Indeed, the association between BAI and C_a decreased as basal area (r = -0.50, P = 0.004) or mean tree height (r = -0.46, P = 0.01) increased considering all species (results not presented). Elevation and the BAI- C_a *t*-

statistics were negatively related at the site level if the *P. sylvestris*-SJ site was excluded (r = -0.41, P = 0.023).

At the tree level no BAI enhancement was detected in the low-elevation driest sites (Fig. 6). Finally, some tree attributes modified the BAI-climate climate associations but not the BAI- C_a - associations. For instance, in *P. nigra* trees the response of BAI residuals to the growing season water balance increased as trees aged (results not presented).

298

299 Growth, climate and C_a trends

300 Summer water balance decreased slightly (r = -0.23, P = 0.12, n = 48) for the period 301 1959-2006, whereas the annual increment in CO_2 increased significantly (r = 0.47, 302 P < 0.001). Only 5 sites presented a higher percentage of trees showing significant 303 positive BAI trends than trees presenting negatived trends (Table 3). The site with the 304 highest percentage of trees (71%) showing significant and positive BAI trends was the 305 P. sylvestris-SJ site. Furthermore, the positive trends detected in this site were similarly 306 observed using conservative growth-detection methods based on spline- or regional 307 curve standardization detrendings (results not presented). As expected, sites with older 308 trees tend to present more significant and negative BAI trends (r = 0.44, P = 0.019). Sites whose trees showed larger diameters (r = -0.47, P = 0.010) and were older (r = -309 310 0.45, P = 0.009) presented significant positive trends in the running correlations 311 calculated between BAI residuals and summer water balance (results not presented). 312 Thus, the importance of summer water balance for the year-to-year BAI variability is 313 increasing in sites with larger and usually older trees, particularly in the case of P. nigra 314 which showed a significant association between tree age and the BAI residuals (r =315 0.32, *P* < 0.05).

316

317 Discussion

318 CO₂ fertilization effect in Iberian pine forests

We found little evidence of a CO_2 -fertilization effect on radial growth in five Iberian pine species distributed across wide climatic and ecological gradients. The results provided little indication that rising C_a has stimulated radial growth even in droughtprone sites where iWUE would have been most improved. In contrast, the water balance during the growing season, as well as previous-fall and current-spring temperatures in

324	the case of high-elevation <i>P. uncinata</i> sites (see Tardif <i>et al.</i> , 2003), were the major
325	drivers of growth; potentially overriding any effects of increasing C_a . The results further
326	indicated that BAI trends were only consistent with C_a -related growth stimulation in
327	mesic sites such as the P. sylvestris-SJ stand, where the negative effects of drought on
328	growth were less apparent. However, we can not discard that increasing C_a could lessen
329	the negative impact of drought on growth in the driest sites, i.e. the negative BAI trends
330	could have been more pronounced if C_a remained stable. The comparison of observed
331	and simulated growth data based on process-based models could help to answer this last
332	question (Girardin et al., 2011).

333

334 Water balance as major driver of growth across Iberian pine forests

335 The growth-climate associations corroborated that growth of Iberian pine species, and 336 particularly EW formation, would be enhanced by warm conditions during the previous 337 winter up to the summer. This implies that warmer winters will stimulate EW formation 338 in Mediterranean populations of widely distributed conifers as P. sylvestris, whilst 339 warmer and drier summers will constrain EW and also LW development in those stands 340 and in Mediterranean tree species (e.g., P. nigra, P. pinaster). Some of these results 341 echo those of previous authors (Andreu et al., 2007). Growth of the southernmost P. 342 uncinata stand also responded positively to wet summer conditions. This was rarely 343 observed in P. uncinata stands located in the core of the species distribution area with 344 the exception of rocky and steep sites where soil water retention is low (Tardif et al., 345 2003; Galván et al., 2014). This exceptional behaviour in a typically subalpine tree 346 species adapted to cold conditions suggests local adaptation to cope with seasonal but 347 episodic summer water shortage occurring at that southernmost stand. Such 348 biogeographical differences suggest that warming trends should be jointly analysed with

349	data on precipitation variability to fully characterize the major climatic drivers of
350	Mediterranean forest growth (Andreu et al., 2007). Furthermore, those analyses should
351	explicitly consider climate and growth seasonality coupled with carbon isotopes since
352	EW formation mostly corresponds to carbohydrates synthesized before the growing
353	season starts, whereas LW formation mainly depends on carbon fixed during the
354	growing season and how it is allocated to growing tissues (Babst et al., 2014).
355	The forest responses to drought change as a function of tree species, site
356	conditions (e.g. competition, disturbances) and tree attributes (size, age). For instance,
357	in this study the most drought-responsive species were P. pinaster and P. nigra, i.e. the
358	dominant species growing at dry low-elevation sites with P. halepensis. These
359	responses also changed as a function of climate variables and species attributes since P.
360	pinaster responded more strongly to changes in spring water availability, whereas P.
361	nigra was more sensitive to changes in early-summer temperature (Candel-Pérez et al.,
362	2012). The different responses to climate could modulate how each species responds to
363	rising C_a since strong warming trends are forecasted for the Circum-Mediterranean area
364	but future precipitation trends are more uncertain (IPCC, 2013). This research showed
365	that mid- (P. nigra) and high-elevation (P. sylvestris, P. uncinata) species would be the
366	most affected species by warmer growing-season temperatures, with negative and
367	positive effects, respectively. On the other hand, growth of low-elevation P. pinaster
368	stands may decline if drought stress steeply increases. These results contribute
369	information on the potential growth responses of Mediterranean pine forests to climate
370	warming and drying. However, these findings do not fully agree with conclusions based
371	on forest inventory data predicting that high-elevation P. sylvestris will show negative
372	responses to warmer conditions across Spain (Coll et al., 2013). Inventory data

373 compared to tree-ring data cover most frequently a short time period and often assume374 space-for-time substitutions in evaluating future growth trends.

375

376 *Iberian pine growth responses to CO*₂ *are overriden by drought influences* 377 Soil water availability in Mediterranean forests decreases during the growing season 378 when drought becomes the major constraint of radial growth, especially in mid- and 379 low-elevation stands. During that period maximum growth rates usually occur and 380 wood formation and productivity are coupled (Babst et al., 2014). This indicates again 381 the prominent role played by drought as driver of carbon sequestration in the study 382 stands. Therefore, we would also expect to detect weaker running correlations of growth 383 with the growing-season water balance as iWUE is improved by rising C_a , but this was 384 not observed. In addition, the responsiveness of growth to water balance increases as P. 385 nigra trees age and become more drought-stressed. Therefore, conservation of forests 386 dominated by old trees, as some *P. nigra* sites, is a priority given that they act as long-387 term carbon sinks (Luyssaert et al., 2008) and show different sensitivity to water deficit 388 than young trees (Linares et al., 2013). 389 At the site level, the strength of the association between BAI and C_a decreased as 390 basal area or tree height increased. This suggests that an effect of competition on the 391 BAI-C_a association cannot fully be discarded (see Madrigal-González & Zavala, 2014). 392 In our study, relatively open stands were sampled with the assumption that competition 393 for light played a minor role as a driver of growth compared with drought tolerance. 394 Interestingly, trees showed growth patterns consistent with a CO_2 -fertilization effect in 395 the mesic *P. sylvestris*-SJ site, at an elevation where growth started to depend more on 396 temperature than on water balance. Disturbances could also modify growth- C_a

relationships in this site (Etzold *et al.*, 2014), which was affected by a *Lymantria monacha* outbreak in the 1950s.

399 In the case of high-elevation P. uncinata stands, elevated CO₂ concentrations 400 have been shown at the Swiss alpine treeline to increase the photosynthetic rate but this 401 enhanced carbon uptake did not translate in enhanced growth (Streit et al., 2014). Such 402 findings again confirm the existence of species-specific growth responses to climate and 403 $C_{\rm a}$, or more precisely site-dependent responses given that coexisting pine species show 404 similar BAI responses to climatic constraints and also to C_{a} . 405 Climate warming can improve forest carbon uptake through an enhanced 406 allometric partitioning to wood (Way & Oren, 2010). However, warming-induced 407 drought stress may reverse that positive effect if a higher evapotranspiration demand 408 leads to water deficit below a critical threshold which triggers abrupt drops in growth 409 and carbon fixation (Granier et al., 2007). Finally, severe nutrient limitation of growth 410 seems not to be plausible in the study area, where nitrogen deposition rates and soil data 411 do not support that idea. Additional coupled tree-ring / isotopic studies should test if 412 severe drought leads to growth decline and mediates the lack of CO₂-stimulation by 413 impairing the use or availability of nutrients as nitrogen.

414 In conclusion, no strong indication of a CO2-fertilization effect was observed in 415 Iberian pine forests except in a mesic P. sylvestris site. Results showed that growth of 416 five pine species was mainly controlled by the growing season water balance. Elevated 417 $C_{\rm a}$ could increase productivity in forests where all major climatic constraints of radial 418 growth (drought, cold temperatures) do not operate. While we cannot discard the 419 possibility that growth decline in the driest sites may be lessen with rising $C_{\rm a}$ this 420 question should be addressed by comparing process-based models of growth with tree-421 ring data. The presented statistical models allowed quantifying how long-term growth

422 data related to rising C_a and climate. This is a first and necessary step to explicitly

423 incorporate these parameters into mechanistic models simulating how tree species

- 424 distributions will change according to CO₂-climate-driven scenarios.
- 425

426 Acknowledgements

- 427 We are particularly indebted to all the support provided by the people from the
- 428 "Laboratorio de Sanidad Forestal" (Mora de Rubielos, Aragón Government),
- 429 particularly Rodolfo Hernández, Juan Manuel Gil, Miguel Ros, Víctor Pérez Fortea and
- 430 Araceli Órtiz. We also thank Melissa Hoffer and Justin Waito for their help with
- 431 laboratory work. This study was supported by projects CGL2011-26654 (Spanish
- 432 Ministry of Economy and Competitiveness), 387/2011 and 1032S/2013 (Spanish
- 433 Ministry of Agriculture and Environment, OAPN, Spain). The research was also partly
- 434 funded by the Canada Research Chair program and a NSERC discovery grant to J.C.
- 435 Tardif. We are also indebted to all people who helped us sampling in the field. We
- 436 thank AEMET, CRU and ESRL-NOAA for providing climatic and CO₂ data.

437 References

- 438 Andreu, L., Gutiérrez, E., Macias, M., Ribas, M., Bosch, O. & Camarero, J.J. (2007)
- 439 Climate increases regional tree-growth variability in Iberian pine forests. *Global*
- 440 *Change Biology*, **13**, 1–12.
- 441 Babst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I.A., Nikinmaa, E., Ibrom, A.,
- 442 Wu, J., Bernhofer, C., Köstner, B., Grünwald, T., Seufert, G., Ciais, P. & Frank,
- 443 D. (2014) Above-ground woody carbon sequestration measured from tree rings is
- 444 coherent with net ecosystem productivity at five eddy-covariance sites. *New*
- 445 *Phytologist*, **201**, 1289–1303.
- 446 Bitterlich, W. (1984). The Relascope idea: relative measurements in forestry.
- 447 Commonwealth Agricultural Bureaux. Slough, UK.
- Bonan, G.B. (2008) Forests and climate change: forcings, feedbacks, and the climate
 benefits of forests. *Science*, **320**, 1444–1449.
- 450 Brienen, R.J.W., Gloor, E. & Zuidema, P.A. (2012) Detecting evidence for CO₂
- 451 fertilization from tree ring studies: The potential role of sampling biases. *Global*
- 452 *Biogeochemical Cycles*, **26**, GB1025.
- 453 Brzostek, E.R., Dragoni, D., Schmid, H.P., Rahman, A.F., Sims, D., Wayson, C.A.,
- 454 Johnson, D.J. & Phillips, R.P. (2014) Chronic water stress reduces tree growth and
- the carbon sink of deciduous hardwood forests. *Global Change Biology*, **20**, 2531–
- 456 2539.
- 457 Burnham, K.P. & Anderson, D.R. (2002) *Model Selection and Multimodel Inference*.
- 458 Springer, New York.
- 459 Candel-Pérez, D., Linares, J.C., Viñegla, B. & Lucas-Borja, M.E. (2012) Assessing
- 460 climate–growth relationships under contrasting stands of co-occurring Iberian pines
- 461 along an altitudinal gradient. *Forest Ecology and Management*, **274**, 48–57.

- 462 Coll, M., Peñuelas, J., Ninyerola, M., Pons, X. & Carnicer, J. (2013) Multivariate effect
- 463 gradients driving forest demographic responses in the Iberian Peninsula. *Forest*
- 464 *Ecology and Management*, **303**, 195–209.
- 465 Cook, E.R. & Krusic, P.J. (2005) Program ARSTAN, a tree-ring standardization
- 466 program based on detrending and autoregressive time series modeling, with
- 467 *interactive graphics*. Columbia University, Palisades, USA.
- 468 Etzold, S., Waldner, P., Thimonier, A., Schmitt, M. & Dobbertin, M. (2014) Tree
- 469 growth in Swiss forests between 1995 and 2010 in relation to climate and stand
- 470 conditions: Recent disturbances matter. *Forest Ecology and Management*, **311**,
- 471 41–55.
- 472 Galván, D., Camarero, J.J. & Gutiérrez, E. (2014) Seeing the trees for the forest: drivers
- 473 of individual growth responses to climate in *Pinus uncinata* mountain forests.
- 474 *Journal of Ecology*, **102**, 1244–1257.
- 475 Gazol, A., Camarero, J. J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., Nola,
- 476 P., Ribas, M., Sangüesa-Barreda, G., Urbinati, C. & Carrer, M. (2015) Distinct
- 477 effects of climate warming on populations of silver fir (*Abies alba*) across Europe.
- 478 *Journal of Biogeography*, **42**, 1150–1162.
- Gedalof, Z. & Berg, A.A. (2010) Tree ring evidence for limited direct CO₂ fertilization
 of forests over the 20th century. *Global Biochemical Cycles*, 24, GB3027.
- 481 Girardin, M.P., Bernier, P.Y., Raulier, F., Tardif, J.C., Conciatori, F. & Guo, X.J.
- 482 (2011) Testing for a CO₂ fertilization effect on growth of Canadian boreal forests.
- 483 *Journal of Geophysical Research*, **116**, G01012.
- 484 De Grandpré, L., Tardif, J.C., Hessl, A., Pederson, N., Conciatori, F., Green, T.R.,
- 485 Oyunsanaa, B. & Baatarbileg, N. (2011) Seasonal shift in the climate responses of

- 486 *Pinus sibirica, Pinus sylvestris, and Larix sibirica* trees from semi-arid, north-
- 487 central Mongolia. *Canadian Journal of Forest Research*, **41**, 1242–1255.
- 488 Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P., Grünwald, T.,
- 489 Aubinet, M., Berbigier, P., Bernhofer, C. et al. (2007) Evidence for soil water
- 490 control on carbon and water dynamics in European forests during the extremely
- 491 dry year: 2003. *Agricultural and Forest Meteorology*, **143**, 123–145.
- 492 Hargreaves, G.H. & Samani, Z.A. (1982) Estimating potential evapotranspiration.
- 493 *Journal of the Irrigation and Drainage Division*, **108**, 225–230.
- 494 Harris, I., Jones, P.D., Osborn, T.J. & Lister, D.H. (2014) Updated high-resolution grids
- 495 of monthly climatic observations. *International Journal of Climatology*, 34, 623–
 496 642.
- Holmes, R.L. (1983) Computer-assisted quality control in tree-ring dating and
 measurement. *Tree-Ring Bulletin*, 43, 69–78.
- 499 Huang, J.-G., Bergeron, Y., Denneler, B., Berninger, F. & Tardif, J. (2007) Response of
- forest trees to increased atmospheric CO₂. *Critical Reviews in Plant Sciences*, 26,
 265–283.
- 502 IPCC (2013). Summary for Policymakers. (eds Stocker, T.F., Qin, D., Plattner, G.-K.,
- 503 Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley,
- 504 P.M.) Climate Change 2013: The Physical Science Basis. Contribution of
- 505 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
- 506 *on Climate Change*, Cambridge University Press, Cambridge.
- 507 Keenan, T.F., Hollinger, D.Y., Bohrer, G., Dragoni, D., Munger, J.W., Schmid, H.P. &
- 508 Richardson, A.D. (2013) Increase in forest water-use efficiency as atmospheric
- 509 carbon dioxide concentrations rise. *Nature*, **499**, 324–327.

- 510 Le Quéré, C., Raupach, M.R., Canadell, J., Marland, G., Bopp, L., Ciais, P., Conway,
- 511 T.J., Doney, S.C., Feely, R.A., Foster, P. et al. (2009) Trends in the sources and
- 512 sinks of carbon dioxide. *Nature Geosciences*, **2**, 831–836.
- 513 Lévesque, M., Siegwolf, R., Saurer, M., Eilmann, B. & Rigling, A. (2014) Increased
- 514 water-use efficiency does not lead to enhanced tree growth under xeric and mesic
- 515 conditions. *New Phytologist*, **203**, 94–109.
- 516 Linares, J.C. & Camarero, J.J. (2012) From pattern to process: linking intrinsic water-
- 517 use efficiency to drought-induced forest decline. *Global Change Biology*, **18**,
- 518 1000-1015.
- 519 Linares, J.C., Taïqui, L., Sangüesa-Barreda, G., Seco, J.I. & Camarero, J.J. (2013) Age-
- 520 related drought sensitivity of Atlas cedar (*Cedrus atlantica*) in the Moroccan
- 521 Middle Atlas forests. *Dendrochronologia*, **31**, 88-96.
- 522 Luyssaert, S., Schulze, E.-D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E.,

523 Ciais, P. & Grace, J. (2008) Old-growth forests as global carbon sinks. *Nature*,

- **455**, 213–215.
- 525 Madrigal-González, J. & Zavala, M.A. (2014) Competition and tree age modulated last
- 526 century pine growth responses to high frequency of dry years in a water limited
- 527 forest ecosystem. *Agricultural and Forest Meteorology*, **192**, 18–26.
- 528 Nabuurs, G.-J., Lindner, M., Verkerk, P.J., Gunia, K., Deda, P., Michalak, R. & Grassi,
- 529 G. (2013) First signs of carbon sink saturation in European forest biomass. *Nature*530 *Climate Change*, **3**, 792–796.
- 531 Norby, R.J., Warren, J.M., Iversen, C.M., Medlyn, B.E. & McMurtrie, R.E. (2010) CO₂
- enhancement of forest productivity constrained by limited nitrogen availability.
- 533 Proceedings of the National Academy of Sciences of the USA, **107**, 19368–19373.

534	Pasho, E., Camarero, J.J., de Luis, M. & Vicente-Serrano, S.M. (2011) Impacts of
535	drought at different time scales on forest growth across a wide climatic gradient in
536	north-eastern Spain. Agricultural and Forest Meteorology, 151, 1800–1811.
537	Peñuelas, J., Canadell, J. & Ogaya, R. (2011) Increased water-use efficiency during the
538	20th century did not translate into enhanced tree growth. Global Ecology and
539	<i>Biogeography</i> , 20 , 597–608.
540	Peters, R.L., Groenendijk, P., Vlam, M. & Zuidema, P.A. (2015), Detecting long-term
541	growth trends using tree rings: a critical evaluation of methods. Global Change
542	<i>Biology</i> , 21 , 2040–2054.
543	R Development Core Team (2014) R: A Language and Environment for Statistical
544	Computing. R Foundation for Statistical Computing, Vienna.
545	Reyes-Fox, M., Steltzer, H., Trlica, M.J., McMaster, G.S., Andales, A.A., LeCain, D.R.
546	& Morgan, J.A. (2014) Elevated CO ₂ further lengthens growing season under
547	warming conditions. <i>Nature</i> , 510 , 259–262.
548	Sánchez-Salguero, R., Camarero, J.J., Hevia, A., Madrigal-González, J., Linares, J.C.,
549	Ballesteros-Canovas, J.A., Sánchez-Miranda, A., Alfaro-Sánchez, R., Sangüesa-
550	Barreda, G., Galván, J.D., Gutiérrez, E., Génova, M. & Rigling, R. (2015). What
551	drives growth of Scots pine in continental Mediterranean climates: Drought, low
552	temperatures or both? Agricultural and Forest Meteorology, 206, 151–162.
553	Sangüesa-Barreda, G., Camarero, J.J., García-Martín, A., Hernández, R. & de la Riva, J.
554	(2014) Remote-sensing and tree-ring based characterization of forest defoliation
555	and growth loss due to the Mediterranean pine processionary moth. Forest
556	Ecology and Management, 320 , 171–181.

- 557 Silva, L.C.R. & Anand, M. (2013) Probing for the influence of atmospheric CO₂ and
- climate change on forest ecosystems across biomes. *Global Ecology and*
- 559 *Biogeography*, **22**, 83–92.
- 560 Silva, L.C.R., Anand, M. & Leithead, M.D. (2010) Recent widespread tree growth
- 561 decline despite increasing atmospheric CO₂. *PLoS ONE*, **5**, e11543.
- 562 Soulé, P.T. & Knapp, P.A. (2014) Analyses of intrinsic water-use efficiency indicate
- 563 performance differences of ponderosa pine and Douglas-fir in response to CO₂
- 564 enrichment. *Journal of Biogeography*, **42**, 144–155.
- 565 Streit, K., Siegwolf, R.T.W., Hagedorn, F., Schaub, M. & Buchmann, N. (2014) Lack of
- 566 photosynthetic or stomatal regulation after 9 years of elevated [CO₂] and 4 years
- 567 of soil warming in two conifer species at the alpine treeline. *Plant, Cell and*
- 568 *Environment*, **37**, 315–326.
- 569 Tapias, R., Climent, J., Pardos, J.A. & Gil, L. (2004) Life histories of Mediterranean
- 570 pines. *Plant Ecology*, **171**, 53–68.
- 571 Tardif, J., Camarero, J.J., Ribas, M. & Gutiérrez, E. (2003) Spatiotemporal variability in
- 572 tree ring growth in the Central Pyrenees: climatic and site influences. *Ecological*
- 573 *Monographs*, **73**, 241–257.
- 574 Vicente-Serrano, S.M., Beguería, S. & López-Moreno, J.I. (2010) A Multiscalar
 575 Drought Index Sensitive to Global Warming: The Standardized Precipitation
- 576 Evapotranspiration Index. *Journal of Climate*, **23**, 1696–1718.
- 577 Voelker, S.L., Muzika, R.M., Guyette, R.P. & Stambaugh, M.C. (2006) Historical CO₂
- 578 growth enhancement declines with age in *Quercus* and *Pinus*. *Ecological*
- 579 *Monographs*, **76**, 549–564.

- 580 Waldner, P., Marchetto, A., Thimonier, A., Schmitt, M., Rogora, M. et al. (2014)
- 581 Detection of temporal trends in atmospheric deposition of inorganic nitrogen and
- sulphate to forests in Europe. *Atmospheric Environment*, **95**, 363–374.
- 583 Way, D.A. & Oren, R. (2010) Differential responses to changes in growth temperature
- between trees from different functional groups and biomes: a review and synthesis
- 585 of data. *Tree Physiology*, **30**, 669–688.
- 586 Wood, S.N. (2006) *Generalized Additive Models: An Introduction with R.* CRC Press,
 587 Boca Raton.
- 588 Zavaleta, E.S., Thomas, B.D., Chiariello, N.R., Asner, G.P., Shaw, M.R. & Field, C.B.
- (2003) Plants reverse warming effect on ecosystem water balance. *Proceedings of the National Academy of Sciences USA*, 100, 9892–9893.
- 591

592 SUPPORTING INFORMATION

- 593 Additional Supporting Information may be found in the online version of this article:
- 594 Appendix S1 Correlations obtained by relating the SPEI drought index and the mean
- 595 earlywood and latewood width chronologies of the five study pine species.
- Appendix S2 Patterns in basal area increment during the 20th century for each studysite and pine species.
- Appendix S3 The mesic site SJ dominated by Scots pine shows an enhancement inbasal area increment.
- 600

601 **BIOSKETCHES**

Our research team aims to understand, from a multidisciplinary and global perspective,
the effects of global-change drivers (climate warming, shifting biogeochemical cycles,
land-use changes) on the growth and distribution of woody plant species, with a

605 particularly emphasis on trees.

606

- 607
- Author contributions: J.J.C., A.G. and J.C.T. conceived the ideas; J.J.C., F.C. and J.C.T.
- 609 collected and processed the data; A.G. and J.J.C. analysed the data; and J.J.C. led the
- 610 writing. All the authors read and approved the final draft.

611

612 Editor: Michael Patten

613

614

Range	Site	Code	Latitude (N)	Longitude (W)	Elevation (m)	Aspect	Substrate ¹	Main pine species	Woody species ²
Gúdar	Valbona-halepensis	VH	40° 16' 03''	0° 48' 02''	1055	S-SE	S	P. halepensis	Pp, Qi, Qc, Jo, Jp
Gúdar	Valbona	VL	40° 16' 00''	0° 48' 53''	1070	SE	S	P. pinaster	Qi, Av, Jo, Jp, Q
Gúdar	Alto de Cabra	AC	40° 19' 55''	0° 48' 26''	1090	Е	S	P. nigra, P. pinaster	Qf, Qi, Jo, Jp
Gúdar	Pino Halepensis	PH	40° 17' 17''	0° 48' 03''	1095	S-SW	L	P. halepensis	Pp, Gs, Jp, Qi
Javalambre	Fuente del Gavilán	FG	40° 02' 00''	0° 53' 30''	1140	Ν	L	P. nigra	Po, Ps
Gúdar	Valle de Cabra	VC1	40° 17' 46''	0° 47' 17''	1165	NE	S	P. nigra	Pp, Qf, Jo
Gúdar	Valle de Cabra	VC2	40° 17' 46''	0° 47' 17''	1165	Ν	S	P. pinaster	Pn, Qf, Jo
Gúdar	Mora-Los Campillos	ML	40° 18' 34''	0° 45' 59''	1200	W	S	P. nigra	Jo, Jp, Gs, Qi, Ll
Gúdar	Fuendenarices	FU	40° 18' 24''	0° 43' 30''	1230	W	L	P. nigra	Jp, Qi, Jo, Gs, Ea
Gúdar	Alto de Mora	AM	40° 17' 43''	0° 42' 51''	1330	SE-SW	L	P. nigra	Jp, Jc, Gs, Qi, Ll
Albarracín	Mina Amparo	MI	40° 13' 23''	1° 18' 58''	1345	NW-NE	S	P. pinaster	Jo, Jp, Qi, E, Cl
Gúdar	Alcalá (Cabra)	AL	40° 21' 02''	0° 45' 58''	1350	SE	L	P. nigra, P. sylvestris	Jo, Jp, Sd, Gs, Ll
Gúdar	Masía Peñarroya	MP	40° 18' 40''	0° 41' 37''	1435	S	L	P. nigra	Jp, Jo, Gs, Ll
Javalambre	Alto de la Fuensomera	AF	40° 00' 32''	0° 51' 33''	1445	W	L	P. nigra	Qi, Jo, Ll
Javalambre	Torrijas	PO	40° 00' 29''	0° 53' 26''	1455	NE	L	P. nigra	Ps, Jt, Js, Jc
Gúdar	Camino Olmedilla 1	CO1	40° 20' 05''	0° 43' 56''	1495	SW	L	P. nigra	Ps, Jc, Bv, Gs, Ll
Gúdar	Camino Olmedilla 2	CO2	40° 20' 10''	0° 43' 51''	1510	SE	L	P. sylvestris	Pn, Jc, Qi, Gs
Gúdar	Las Roquetas	RO	40° 18' 36''	0° 42' 58''	1550	W	L	P. nigra	Jc, Jt, Ao, Ea, Ll
Gúdar	Elevation gradient-middle	G2	40° 18' 13''	0° 40' 40''	1605	W	L	P. nigra	Jc, Js, Ea, Qf, Ra
Gúdar	Las Roquetas	LR	40° 19' 19''	0° 42' 08''	1615	SE	L	P. nigra, P. sylvestris	Jc, Jt, Bv, Qi, Ao
Gúdar	Elevation gradient-up	G1	40° 18' 32''	0° 40' 22''	1675	W	L	P. nigra	Ps, Jc, Js, Ea, Ao
Gúdar	Mora-El Chaparroso	MC	40° 19' 05''	0° 40' 28''	1770	SW	L	P. sylvestris	Jc, Cm, Sa
Gúdar	Peñarroya-low	PN3	40° 23' 00''	0° 39' 36''	1805	SE	L	P. sylvestris	Jc, Bv
Albarracín	Muela de San Juan	SJ	40° 25' 20''	1° 43' 13''	1860	NE	L	P. sylvestris	Jc, Bv
Javalambre	Javalambre	JA	40° 03' 23''	0° 59' 35''	1865	SW	L	P. sylvestris	Jc, Js, Bv, Sa
Gúdar	Valdelinares-middle	VA2	40° 22' 50''	0° 38' 03''	1950	SW	L	P. sylvestris	Jc, Js, Bv
Gúdar	Valdelinares-high	VA1	40° 22' 51''	0° 37' 60''	1955	SW	L	P. uncinata	Ps, Jc, Js
Gúdar	Peñarroya-middle	PN2	40° 23' 22''	0° 39' 38''	1990	SW	L	P. sylvestris	Pu, Jc
Gúdar	Peñarroya-high	PN1	40° 23' 30''	0° 39' 50''	2020	N-NE	L	P. uncinata, P. sylvestris	Jc, Js, Ra

Table 1. Geographical and topographical characteristics of the Iberian pine forests sampled in 33 sites. Sites are arranged from low to high elevation.

617 ¹Geological substrates: L, limestones, S, sandstones.

²Species' codes: Ao, Amelanchier ovalis; Av, Arctostaphylos uva-ursi; Bv, Berberis vulgaris; Cl, Cistus laurifolius; Cm, Crataegus monogyna; Ea, Erinacea anthyllis; E, Erica spp.;Gs, Genista

- scorpius; Jc, Juniperus communis; Jo, J. oxycedrus; Jp, J. phoenicea; Js, J. sabina; Jt, J. thurifera; Ll, Lavandula latifolia; Ph, Pinus halepensis; Pn, P. nigra; Pp, P. pinaster; Ps, P. sylvestris; Pu, P. uncinata; Po, populus nigra; Qc, Quercus coccifera; Qf, Q. faginea; Qi, Q. ilex; Ra, Rhamnus alpine; Sa, Sorbus aria; Sd, S. domestica.

622	Table 2. Structural and dendrochronological characteristics of the Iberian pine trees sampled in 33 sites. See sites' codes in Table 1. The
623	underlined sites are those where earlywood and latewood widths were also measured. Sites are arranged from low- to high-elevation.
624	

Site	Basal area (m ² ha ⁻¹)	Dbh (cm)	Height (m)	Species	No trees	No cores	Age ¹ (years)	RW (mm)	AC1	MSx	r _{bt}	PC1 (%)	Timespan
VH	12.2	34.4 ± 1.4	10.6 ± 0.3	P. halepensis	17	34	58 ± 2	2.08 ± 0.20	0.70	0.34	0.80	73.80	1950-2006
VL	39.1	39.1 ± 0.9	12.0 ± 0.3	P. pinaster	25	50	105 ± 4	1.13 ± 0.10	0.64	0.46	0.85	75.80	1903-2006
AC	28.0	38.8 ± 2.7	10.1 ± 0.5	P. pinaster	16	32	91 ± 3	1.28 ± 0.15	0.74	0.42	0.81	73.20	1927-2006
AC	28.0	35.6 ± 1.4	10.0 ± 0.4	P. nigra	17	34	105 ± 8	1.11 ± 0.13	0.68	0.47	0.75	64.10	1890-2006
<u>PH</u>	8.2	40.0 ± 2.7	8.6 ± 0.8	P. halepensis	16	32	73 ± 4	1.75 ± 0.18	0.55	0.44	0.77	76.40	1934-2006
FG	39.0	56.8 ± 4.0	20.0 ± 1.1	P. nigra	3	6	_	_	_	_	_	-	-
VC1	24.0	32.3 ± 0.9	12.7 ± 0.6	P. nigra	15	30	105 ± 4	1.03 ± 0.15	0.66	0.55	0.84	76.50	1920-2006
VC2	26.3	32.2 ± 1.2	11.2 ± 0.4	P. pinaster	15	30	78 ± 3	1.28 ± 0.12	0.58	0.38	0.83	74.00	1937-2006
ML	4.2	33.8 ± 2.9	6.9 ± 0.3	P. nigra	21	42	85 ± 5	1.57 ± 0.17	0.65	0.53	0.72	67.90	1946-2006
FU	19.1	40.0 ± 1.6	9.9 ± 0.3	P. nigra	21	42	169 ± 7	0.84 ± 0.10	0.75	0.41	0.67	46.70	1867-2006
AM	14.1	33.3 ± 1.4	6.7 ± 0.3	P. nigra	15	30	125 ± 4	0.85 ± 0.12	0.67	0.58	0.76	68.60	1907-2006
MI	25.0	42.9 ± 2.1	9.2 ± 0.3	P. pinaster	26	52	126 ± 4	1.08 ± 0.09	0.74	0.36	0.77	61.50	1909-2006
AL	14.2	35.9 ± 1.4	11.6 ± 0.5	P. nigra	17	34	121 ± 4	1.07 ± 0.14	0.75	0.39	0.78	63.60	1901-2006
AL	14.2	33.9 ± 1.2	9.5 ± 0.4	P. sylvestris	22	44	108 ± 5	1.10 ± 0.12	0.77	0.39	0.71	55.80	1926-2006
MP	4.7	42.0 ± 0.9	7.6 ± 0.4	P. nigra	17	32	115 ± 2	1.30 ± 0.16	0.73	0.46	0.75	67.00	1915-2006
AF	28.0	50.1 ± 1.8	12.0 ± 0.6	P. nigra	15	28	176 ± 12	0.93 ± 0.15	0.71	0.56	0.68	68.30	1895-2006
PO	27.2	65.1 ± 0.2	10.0 ± 0.1	P. nigra	4	9	—	—	—	—	—	_	-
CO1	9.5	49.6 ± 1.5	12.1 ± 0.4	P. nigra	20	40	155 ± 4	1.11 ± 0.16	0.70	0.35	0.78	62.80	1879-2006
CO2	32.1	40.3 ± 1.6	12.8 ± 0.7	P. sylvestris	15	29	103 ± 6	1.37 ± 0.16	0.72	0.35	0.68	47.90	1938-2006
RO	14.8	36.6 ± 1.4	7.3 ± 0.5	P. nigra	26	52	238 ± 13	0.46 ± 0.04	0.71	0.39	0.71	56.30	1850-2006
G2	13.5	46.9 ± 2.9	11.8 ± 0.7	P. nigra	17	34	153 ± 3	1.09 ± 0.11	0.70	0.37	0.74	58.50	1875-2006
LR	38.0	46.6 ± 2.7	9.9 ± 0.5	P. nigra	10	20	137 ± 5	1.15 ± 0.16	0.73	0.36	0.71	58.60	1899-2006
LR	38.0	41.0 ± 2.0	10.5 ± 1.0	P. sylvestris	11	22	134 ± 13	1.13 ± 0.14	0.76	0.34	0.64	54.60	1828-2006
G1	29.0	37.9 ± 1.8	10.5 ± 0.7	P. nigra	17	34	187 ± 8	0.74 ± 0.09	0.72	0.41	0.78	62.90	1858-2006
MC	29.2	38.4 ± 0.7	13.2 ± 0.4	P. sylvestris	20	40	153 ± 5	0.92 ± 0.08	0.72	0.28	0.67	53.00	1878-2006
PN3	49.0	38.3 ± 1.6	14.0 ± 0.6	P. sylvestris	15	30	81 ± 3	1.64 ± 0.18	0.86	0.24	0.58	40.30	1939-2006
SJ	19.0	39.0 ± 1.4	7.8 ± 0.2	P. sylvestris	20	40	138 ± 6	0.92 ± 0.10	0.85	0.27	0.60	37.20	1901-2006
JA	31.0	55.9 ± 3.4	9.2 ± 0.5	P. sylvestris	16	32	126 ± 8	1.51 ± 0.16	0.76	0.34	0.66	62.20	1909-2006
VA2	29.7	51.8 ± 2.0	11.3 ± 0.4	P. sylvestris	14	28	80 ± 4	2.07 ± 0.18	0.78	0.22	0.58	42.60	1950-2006
VA1	34.6	59.4 ± 2.6	10.4 ± 0.4	P. uncinata	16	32	146 ± 12	1.45 ± 0.14	0.85	0.20	0.53	37.00	1900-2006
PN2	27.8	57.9 ± 3.7	9.2 ± 0.6	P. sylvestris	10	20	162 ± 10	1.28 ± 0.13	0.83	0.23	0.54	37.90	1875-2006
PN1	36.6	43.6 ± 2.0	9.3 ± 0.5	P. sylvestris	30	52	140 ± 11	1.18 ± 0.14	0.85	0.26	0.62	39.40	1910-2006

<u>PN1</u>	36.6	39.8 ± 1.7	10.4 ± 0.3	P. uncinata	18	33	102 ± 9	1.52 ± 0.15	0.83	0.22	0.64	55.50	1928-2006
------------	------	----------------	----------------	-------------	----	----	-------------	-----------------	------	------	------	-------	-----------

625 626 627 628 ¹Age at 1.3 m, number of annual rings of oldest core sampled at 1.3 m; RW, tree-ring width; AC1, mean of first-order autocorrelation of raw residual tree-ring width series; MSx, the mean sensitivity of residual tree-ring width series, which provides an indication of the year-to-year variability in width of consecutive tree rings; r_{bt} , the mean between-trees correlation which quantifies the similarity in growth among trees; PC1, percentage of variance explained by the first principal component which estimates the common variability in growth among all trees at each

site; time span, statistically reliable time span based on sample replication and the latter two statistics.

- 629 **Table 3.** Summary table of basal-area increment (BAI) trends of Iberian pine forests
- 630 and the main statistics (\mathbb{R}^2 , *t value*, *P*) obtained by relating BAI residuals to the annual
- 631 increment in CO₂ concentrations and to climatic variables (May to July mean
- temperature and water balance; see Fig. 1d). The BAI trends were obtained for the
- 633 period 1950-2006 and are expressed as the percentage of trees showing either positive
- 634 or negative significant trends (P < 0.05). The explained variance of BAI (\mathbb{R}^2) is based on
- 635 Generalized Additive Mixed Models fitted as a function of calendar year and tree
- 636 attributes (diameter at breast height, height and age). The *t*-statistics and their
- 637 corresponding significance levels (*P*, asterisks) are indicated for each explanatory
- 638 variable. The sites are arranged from low to high elevation.

Site	Species	BAI trends (%)		\mathbf{R}^2	year [§]	Annual	Temperature	Water
	-	Positive	Negative	-	-	increment	-	balance [§]
	D 1 1 1	0.0	41.7	0.40	10.05	in CO ₂	5 60 shalash	10.10
VH	P. halepensis	8.3	41.7	0.40	-10.25	1.62	-5.62***	10.12
VL	P. pinaster	44.0	4.0	0.36	17.84	0.34	-10.34***	15.62
AC	P. pinaster	14.3	42.9	0.60	-57.73	0.24	-9.45***	14.50
AC	P. nigra	0.0	58.3	0.55	-637.99	-2.10*	-7.08***	10.32
PH	P. halepensis	50.0	8.3	0.33	10.88	2.25*	-6.85***	12.96
VC1	P. nigra	13.3	20.0	0.22	350.34	-1.09	-5.15**	8.11
VC2	P. pinaster	46.1	7.7	0.33	166.69	0.15	-5.25***	9.24
ML	P. nigra	16.7	50.0	0.34	-89.65	2.64*	-2.54	4.15
FU	P. nigra	0.0	88.9	0.28	-132.80	-2.41**	-7.85**	7.28
AM	P. nigra	0.0	80.0	0.30	-111.46	3.61**	-3.55**	4.07
MI	P. pinaster	0.0	52.0	0.55	-453.25	3.78**	-10.94***	11.48
AL	P. nigra	18.7	12.5	0.31	-4.41	-0.97	-5.20***	7.31
AL	P. sylvestris	35.0	40.0	0.17	-8.07	-2.06*	-3.86***	5.95
MP	P. nigra	0.0	88.2	0.20	-215.48	1.56	-0.81	2.37
AF	P. nigra	0.0	92.9	0.21	-325.53	2.05*	-5.92***	4.49
CO1	P. nigra	10.5	42.1	0.31	-249.41	2.66*	-6.15***	10.22
CO2	P. sylvestris	6.7	60.0	0.37	-169.24	-1.84	-6.55***	8.66
RO	P. nigra	4.2	83.3	0.36	-200.84	0.85	-8.33***	9.65
G2	P. nigra	6.2	75.0	0.50	-368.75	-2.02*	-7.68***	10.71
LR	P. nigra	0.0	90.0	0.39	-242.19	0.08	-5.97***	6.66
LR	P. sylvestris	0.0	90.9	0.69	-131.10	-2.91*	-6.97***	8.12
G1	P. nigra	0.0	73.3	0.36	-157.17	-1.67	-6.23***	10.41
MC	P. sylvestris	35.0	35.0	0.36	-6.07	1.46	-6.22***	7.18
PN3	P. sylvestris	8.3	83.3	0.56	-131.40	-3.25**	-3.88***	5.19
$SJ^{\#}$	P. sylvestris	70.6	11.8	0.32	-185.60	4.14***	2.84**	-4.99
JA	P. sylvestris	35.7	35.7	0.27	-14.78	1.23	-1.34	3.98
VA2	P. sylvestris	0.0	80.0	0.16	-453.18	-2.85*	-3.41**	4.28
VA1	P. uncinata	7.1	71.4	0.34	-989.12	-3.01**	-2.54*	5.01
PN2	P. sylvestris	11.1	66.7	0.59	-120.54	-1.99*	-1.93	2.42
PN1	P. sylvestris	0.0	78.3	0.69	-107.95	-0.11	-1.94	4.01
PN1	P. uncinata	37.5	37.5	0.54	-288.94	-2.45*	-3.35**	6.49
1111	1. 111011111111	51.5	51.5	0.54	200.74	-2.73	-5.55	0.+7

Significance levels: **P* < 0.05, ***P* < 0.01, ****P* < 0.001

⁸In all cases P < 0.01. [#]This pine stand was affected in the 1950s by a *Lymantria monacha* outbreak causing a BAI increase afterwards in some trees (see Appendix S3 in Supporting Information). 644 645

Figure legends

Figure 1. Theoretical background assuming a more noticeable growth enhancement due to rising atmospheric CO₂ concentrations (C_a) and higher water-use efficiency under more severe dry conditions (a) and statistical procedures implemented to test that idea in the current study (b, c, d). In a first step, growth (assessed as basal area increment, BAI) of each tree (small symbols) in each site (black lines with symbols show the mean BAI value for that site) was modeled with Generalized Additive Mixed Models (smoothed lines show predicted means ± SD) as a function of calendar year and tree attributes (diameter at breast height, height and age) (b). In a second step, the GAMM residuals representing the year-to-year BAI variability were regressed against either the annual increment in C_a (c, bars) or climate drivers (e.g., water balance or difference between precipitation and potential evapotranspiration, P-ETP; blue line and associated negative trend in Fig. 1d). We also quantified the long-term BAI trends (Fig. 1c).

Figure 2. Location and topography of the pine forests studied in eastern Spain. The different symbols in the map of Spain indicate the three study regions (Albarracín, Gúdar and Javalambre) and the elevation profiles (lower figures with insets showing some views of study forest) and the most detailed map correspond to the most intensively sampled region (Gúdar range). The upper right maps shows the Gúdar study sites (see codes in Table 1) and the profile shows a simplified view of pine forests across the elevation gradient. The elevation profile was built using GPS visualizer (<u>http://www.gpsvisualizer.com/profile_input</u>, accessed April 22, 2015).

Figure 3. Growth-climate correlations (Pearson coefficients) calculated at the site (lines with filled symbols) and tree (lines with empty symbols) levels based on tree-ring width (left graph) indices or considering separately earlywood (EW, circles) and latewood (LW, triangles) width indices (right graph). Climatic variables are monthly mean

Código de campo cambiado

temperature and water balance (P-PET, difference between precipitation and potential evapotranspiration). Coefficients located outside the grey boxes are significant at the 0.05 level. Correlations were calculated from September of the year prior to growth (months abbreviated by lowercase letters) up to September of the year of tree-ring formation (months abbreviated by uppercase letters).

Figure 4. Correlations calculated between the SPEI drought index and the indexed treering width chronologies of the five study pine species. The SPEI is calculated at monthly scales ranging from 1 to 24 months (*x* axis). Values of the correlation coefficients higher and lower than 0.30 or -0.30, respectively, are significant (P<0.05). **Figure 5.** Negative relationship observed at the site level between the *t*-statistics describing the associations between the annual increment in atmospheric CO₂ concentrations and basal area increment (BAI) and site elevation (see also Table 3). The continuous and dashed lines represent the fitted linear regression and its 95% prediction intervals, respectively. Note that the Scots pine SJ site was located outside the prediction intervals of the linear regression (black arrow).

Figure 6. Relationships at the tree level observed between basal area increment (BAI) residuals of five pine species vs. the annual increment in atmospheric CO_2 concentrations (upper panel) and growing-season (May to July) water balance (P-PET; lower panel; correlation coefficients are displayed). Colors and symbols refer to the different pine species as shown in the inset, while the diagonal line in the lower panel shows a significant linear regression in the lower panel calculated for all trees. The red and blue areas illustrate temperature and water balance trends along the elevational gradient, respectively. Symbol size is proportional to tree age.

35