
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11089  | https://doi.org/10.1038/s41598-020-67870-1

www.nature.com/scientificreports

Investigating the influence 
of mtDNA and nuclear encoded 
mitochondrial variants on high 
intensity interval training 
outcomes
N. R. Harvey 1,2, S. Voisin 3, R. A. Lea2, X. Yan 3, M. C. Benton 2, I. D. Papadimitriou 3, 
M. Jacques3, L. M. Haupt 2, K. J. Ashton 1, N. Eynon 3,4 & L. R. Griffiths 2,4*

Mitochondria supply intracellular energy requirements during exercise. Specific mitochondrial 
haplogroups and mitochondrial genetic variants have been associated with athletic performance, and 
exercise responses. However, these associations were discovered using underpowered, candidate 
gene approaches, and consequently have not been replicated. Here, we used whole-mitochondrial 
genome sequencing, in conjunction with high-throughput genotyping arrays, to discover novel 
genetic variants associated with exercise responses in the Gene SMART (Skeletal Muscle Adaptive 
Response to Training) cohort (n = 62 completed). We performed a Principal Component Analysis 
of cohort aerobic fitness measures to build composite traits and test for variants associated with 
exercise outcomes. None of the mitochondrial genetic variants but eight nuclear encoded variants in 
seven separate genes were found to be associated with exercise responses (FDR < 0.05) (rs11061368: 
DIABLO, rs113400963: FAM185A, rs6062129 and rs6121949: MTG2, rs7231304: AFG3L2, rs2041840: 
NDUFAF7, rs7085433: TIMM23, rs1063271: SPTLC2). Additionally, we outline potential mechanisms 
by which these variants may be contributing to exercise phenotypes. Our data suggest novel nuclear-
encoded SNPs and mitochondrial pathways associated with exercise response phenotypes. Future 
studies should focus on validating these variants across different cohorts and ethnicities.

Responses to exercise training depends on the type of exercise stimulus, and varies considerably between 
 individuals1–3. This variability is tissue-specific, and may be explained by a combination of genetic variants, 
epigenetic signatures, other molecular and lifestyle  factors4,5. Mitochondria are the key mediators of intracellular 
energy and are involved in many essential cell metabolism and homeostasis  processes6 with exercise training 
improving mitochondrial function and  content6–9.

The mitochondrial genome encodes 37 genes that are highly conserved but differ slightly amongst different 
regional isolates (haplogroups)10. Mitochondrial haplogroups and Single Nucleotide Polymorphisms (SNPs), in 
conjunction with SNPs in mitochondrial-related genes (nuclear encoded mitochondrial proteins: NEMPs) have 
previously been associated with athletic performance in highly trained populations and response to exercise 
training in the general  population11. While these studies have advanced our understanding, they have primarily 
utilised targeted genotyping technology such as candidate gene approaches, or Sanger sequencing to investigate 
specific mitochondrial coding regions and NEMPs, such as NRF2 and PGC1α12–15. Many of these studies also 
lacked robust technical measures on aerobic fitness  measures9. As such, many of the identified variants have not 
been replicated, and exercise-related genetic variants remain  unknown16. To date, studies assessing mitochondrial 
DNA (mtDNA) variants and NEMPs pertaining to exercise training have focused on protein-coding variants, 
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with no studies looking at the more subtle effects of synonymous and non-coding  changes11,17–20. Further, these 
studies have often based haplogroup analyses on sequencing or genotyping of the mitochondrial hypervariable 
region(s) (~ 500–1,000 bp), with no consideration for the remaining mitochondrial genome (~ 15,000 bp) and 
the specific haplogroup of exercise participants. For instance, 3`UTR (untranslated regions) variants that do not 
directly affect protein function may however affect translation, mRNA shuttling to specific organelles, or epige-
netic modification such as microRNA  silencing21. Intronic variants may also lead to splice site changes directly 
contributing altered protein structure and  function22. As Next Generation Sequencing has become more widely 
available and affordable, sequencing of the whole mitochondrial genome (16,569 bp) is now feasible to uncover 
genetic variants associated with physical fitness phenotypes. When used in combination with SNP genotyping 
arrays, it is possible to examine, not only the 37 mitochondrially-encoded genes, but variants within all nuclear 
NEMP genes simultaneously.

Genetics may influence exercise response in conjunction with environmental factors such as diet, repeated 
exercise bouts, and age. Whilst these are modifiable, it is difficult to gauge the contribution of these factors to 
exercise response within short term exercise studies. Further, the additive effects of genetic variants to exercise 
response are not well understood as only a few genetic variants have been consistently replicated in the field.

Therefore, the aim of the present study was to examine the association between genetic variants (i.e. mito-
chondrial variants and NEMPs), and aerobic fitness measures in the well-characterised Gene SMART cohort. We 
hypothesise that by utilising whole-mitochondrial sequencing, we will uncover novel genetic variants associated 
with exercise responses.

Results
Exercise responses and principal component analysis (PCA). Participant characteristics and 
response to exercise for all phenotypes are detailed in Table 1. P-values shown for delta variables are respective 
of one tail of a paired samples t-test.

Weeks of HIIT elicited small yet significant improvements in Wpeak, LT, VO2max, and TT (PP: 18.96 ± 16.49 
Watts, P = 2.28e−13; LT: 15.69 ± 16.24 Watts, P = 7.47e−11; VO2max: 1.12 ± 3.84 mL/min·kg, P = 0.012; TT: 
− 101.86 ± 144.64 s, P = 2.81e−6).

From our mtDNA sequencing, we obtained an average depth coverage of 615X over the mitochondrial 
genome. Following sample annotation with Mitomaster, we found that there were 60 distinct haplogroups within 
the Gene SMART completed cohort of 62 participants. As such, there were no statistically significant associations 
between the mitochondrial haplogroups with exercise response traits. A summary table of the mitochondrial 
haplogroups found within the Gene SMART participants is shown in Table 2. The confidence scores (0–1) 
represent the number of mtDNA variants found in each participant that belong to their respective haplogroup.

Following PCA on the response traits, we found that the first 4 principal components (PC1: 35.49%, PC2: 
28.46%, PC3: 16.51%, PC4: 12.74%) cumulatively explained 92.3% of the total variance between individuals; 
therefore we included only these first 4 PCs in subsequent analyses.

Association between genetic variants (mitochondrial encoded and nuclear encoded) and exer-
cise phenotypes. Following quality control, 170 mitochondrial and 4,124 NEMP genetic variants were 
included in association testing. A cumulative total of 4,325 NEMP variants and 28 mitochondrial variants passed 
the nominal threshold of significance  (Punadjusted < 0.05) for all tests. A solar plot showing the clustering of mito-

Table 1.  Participant characteristics before and after four weeks of high-intensity interval training in the Gene 
SMART study. Δ: delta change, Min minimum value, Max maximum value, SD standard deviation, VO2max 
maximal oxygen respiration metric, Shading represents statistically significant delta changes.

Phenotype (units) Time point Mean SD P-value

BMI (kg/m2)

PRE 25.06  ± 3.20

POST 25.12  ± 3.27

Δ 0.04  ± 0.37 0.114

Peak power (W)

PRE 296.88  ± 70.57

POST 315.84  ± 67.77

Δ 18.96  ± 16.49 2.28e−13

Lactate threshold (W)

PRE 209.22  ± 59.70

POST 224.91  ± 60.68

Δ 15.69  ± 16.24 7.47e−11

VO2max (mL/min kg)

PRE 46.34  ± 7.36

POST 47.46  ± 7.04

Δ 1.12  ± 3.84 0.012

Time trial (s)

PRE 2,295.99  ± 292.95

POST 2,194.13  ± 246.91

Δ − 101.86  ± 144.64 2.81e−6
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chondrial genomic variants for each trait is shown in Fig. 1 23. The exonic variants passing the nominal threshold 
from the mitochondrial association results are summarised in Table 3.

28 variants passed the nominal significance threshold of  Punadjusted < 0.05 in various delta traits and principal 
components. Of these, 8 were located within the hypervariable control region and therefore discounted from fur-
ther analyses. A further 2 genetic variants were located within a mitochondrial rRNA gene, 1 within the tRNALeu 
gene, 1 within the mitochondrially encoded ATP synthase membrane subunit 6 (ATP6) gene, 2 within the mito-
chondrially encoded NADH: ubiquinone oxidoreductase core subunit 4 (ND4), 2 in mitochondrially encoded NADH: 
ubiquinone oxidoreductase core subunit 5 (ND5) and 1 in mitochondrially encoded cytochrome B (CYB). None 
of the mitochondrial genomic variants were associated with composite response traits or individual response 
traits at FDR < 0.05. A manhattan plot of the NEMP variants is shown in Fig. 2. A summary of the association 
statistics for the variants passing a nominal threshold of  Punadjusted < 1e−4 in both the NEMP associations are 
shown in Table 4.

A full list of variants reaching the nominal P-value threshold (< 0.05) may be found in (Supplementary 
Table SI). 6 SNPs in 5 distinct genes were associated with ΔTT and 2 SNPs in 2 distinct genes were associated 
with PC2. The most significant variant was rs2041840 associated with PC2 and located within NDUFAF7; we 

Table 2.  Summary of mitochondrial Haplogroups within the Gene SMART study. *Sample SG168 contained 
sequence identical to the rCRS reference genome and therefore stratification into mtDNA haplogroup was not 
based on genetic variation but sequence homology to the reference.

Participant ID MtDNA Haplogroup Confidence Participant ID MtDNA Haplogroup Confidence

SG100 H1c2a 0.9505 SG140 H1c7 0.9581

SG102 C1b10 0.9305 SG141 H2a2b3 0.9386

SG103 K1a1b2b 0.9648 SG142 H + 152 0.8534

SG104 H6a1b2 0.9438 SG143 U4a1a 1

SG105 H3g 0.9353 SG144 T2b4 + 152 0.9535

SG106 H94 0.8164 SG145 H24a 1

SG107 K1a1b1a 0.968 SG146 U5b3e 0.9818

SG108 J1c3g 0.9366 SG147 U5a1a1 1

SG109 W3a1c 0.9804 SG148 I1a1e 0.9762

SG110 H1e1a3 0.9486 SG149 H6a1a3 0.9958

SG111 H1t 0.9336 SG150 HV 0.7231

SG112 K1a4f1 0.9641 SG151 U5a2b4 0.9481

SG113 T2b + 152 0.9795 SG152 J1c2f 0.9805

SG114 U5b1b1 + @16,192 0.9924 SG153 K1a4a1 0.9783

SG115 T2b13a 0.9827 SG154 U2e1a1 0.94

SG116 J1c3g 0.9639 SG155 H1a1 0.9505

SG117 H10 0.9356 SG156 H1a 0.9898

SG118 H16b 1 SG157 H3u1 0.8918

SG119 U3a1c1 0.9499 SG158 H1e1a2 0.9243

SG120 T2b1 0.9904 SG159 U4b1a2 0.9924

SG121 H15a1a1 0.9175 SG160 U8a1a 0.9319

SG122 K1a 0.9508 SG161 K1a 0.9204

SG123 K1a4a1a + 195 0.9941 SG162 U4b1a2 0.9924

SG124 H3 0.9852 SG163 H4a1a2a 0.9818

SG125 L0d2a1a 0.9839 SG164 H2a2b4 0.9037

SG126 H5a1 1 SG165 T2f1a1 0.9306

SG127 H2b 0.8848 SG166 H1a1 1

SG128 H1 0.8676 SG167 U5a1b1d + 16,093 0.9791

SG129 H24a2 0.9202 SG168* H2a2a1 0.5

SG130 J2a1a1 0.9726 SG169 T2b 0.9918

SG131 U8b1a1 0.9258 SG170 J1b1a1a 0.9857

SG132 V10a 0.9673 SG171 H6a1b3 0.985

SG133 HV1a1a 0.9296 SG172 I2 0.9222

SG134 J1c7a 0.9841 SG173 I2c 0.9577

SG135 R1a1a2 0.9875 SG174 M1a 0.905

SG136 HV6a 0.951 SG175 W5 0.9513

SG137 H2a1e1a 0.9591 SG176 T2f1a1 0.8887

SG138 H1b1 + 16,362 1 SG177 K1a16 0.9932

SG139 J2b1a2a 0.9655
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found that the rs12712528 variant also within NDUFAF7 had a moderate correlation with rs2041840  (R2 = 0.5) 
Fig. 3e. This variant was also trending towards significance in the Δ-Weight and Δ-VO2max response phenotypes 
(Table 4). The T allele at rs2041840 was associated with a better response to exercise. The Locus Zoom plot 
(Fig. 3d) surrounding the MTG2 gene was also gene-rich with 11 proximal genes. The two associated variants 
(rs6062129 and rs6121949) were moderately correlated  (R2 = 0.5), however there were no SNPs found within the 
proximal genes. The locus zoom plot for the variants found within the AFG3L2 gene (Fig. 3f) was proximal to 
6 genes within 200 Kb. There was also a proximal SNP within the SLMO1 gene however this was not in linkage 
with the variants identified within the AFG3L2 gene.

Discussion
In this study, we utilised state-of-the-art mitochondrial sequencing, along with high-throughput targeted geno-
typing of mitochondrial-related variants encoded by the nucleus (NEMPs) to discover novel genetic variants 
associated with responses to exercise. A total of 28 mitochondrial and 4,325 nuclear encoded mitochondrial 
associated variants passed the nominal significance thresholds for the various candidate gene association tests. 

Figure 1.  Solar plot showing significant hits from mitochondrial association testing. Each dot represents a 
detected variant. The inner ring of the plot represents the mitochondrial genome and is coloured based on 
genomic region as summarised in the plot legend. The X-axis represents the mitochondrial base pair location. 
The Y-axis represents the significance level [− log10 (P-value)] in the Gene SMART population over multiple 
traits. The significance threshold was set at P < 0.05 and is represented by the circular blue line. The concentric 
white rings surrounding the genome represent the P-value thresholds − log10 (0.01) and − log10 (0.001) 
respectively.

Table 3.  Exonic mitochondrial SNPs associated with phenotypic traits and PCs. CHR chromosome #, SNP 
single nucleotide polymorphism, MAF minor allele frequency, SE standard error, CI confidence interval, FDR 
false discovery rate, Δ delta change, ADD additive model *P-value adjusted for age.

Trait CHR SNP Allele Gene Consequence Model GenBank MAF MAF SE (95% CI) P-value* FDR
Effect size 
(beta)

Δ-LT

MT rs2000975 G ATP6 Missense ADD 0.019 0.032 11.24 (− 48.2 to 
− 4.2) 0.023 0.39 − 26.19

MT rs2857284 C ND4 Synonymous ADD 0.021 0.032 11.24 (− 48.2 to 
− 4.2) 0.023 0.39 − 26.19

MT rs193302956 T ND5 Synonymous ADD 0.12 0.081 7.25 (− 29 to − 0.5) 0.046 0.49 − 14.75

MT rs193302985 A CYB Synonymous ADD 0.044 0.113 6.08 (− 29 to − 5.2) 0.0067 0.28 − 17.10

PC3
MT rs285728 C ND4 Synonymous ADD 0.021 0.032 0.72 (0.17 – 3.0) 0.032 0.54 1.57

MT rs2000975 G ATP6 Missense ADD 0.019 0.032 0.72 (0.17 – 3.0) 0.032 0.54 1.57

PC4

MT rs2853493 G ND4 Synonymous ADD 0.28 0.258 0.25 (− 1.0 to − 0.03) 0.041 0.69 − 0.53

MT rs2853498 G tRNALeu −  ADD 0.23 0.258 0.25 (− 1.0 to − 0.03) 0.041 0.69 − 0.53

MT rs2853499 A ND5 Synonymous ADD 0.28 0.258 0.25 (− 1.0 to − 0.03) 0.041 0.69 − 0.53
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We did not detect mitochondrial variants associated with exercise response, but we uncovered eight NEMPs 
in seven distinct genes associated with exercise response. It should be noted that we have attempted to control 
for the contribution of environmental stimuli on each exercise phenotype within our study. For instance, the 

Table 4.  Summary statistics for exonic variants in the nuclear encoded, mitochondria-related genes. CHR 
chromosome number, SNP single nucleotide polymorphism, MAF minor allele frequency, SE standard error, 
CI confidence interval, FDR false discovery rate, Δ delta change, DOM dominant model, REC recessive model, 
gnomAD MAF: publicly reported MAF values for the gnomAD-Genomes database (European). #  gnomAD 
MAF not reported, (1,000 genomes European value used). *P-value adjusted for age. All variants were assessed 
within the hg19/GRCh37 reference genome.

Trait CHR SNP
Response 
Allele Gene Consequence Model

gnomAD 
MAF MAF H2

Effect size 
(beta) SE (95% CI) P-value* FDR

Δ-LT 18 rs12964779 A RBFA Intronic DOM 0.48 0.49 0.136 −16.67 3.94 
(−24.4–8.9) 8.25E−05 0.288

Δ-TT

2 rs41272687 A CYP27A1 Missense DOM 0.019 0.008 0.244 587.7 127.2 
(338.5–837) 2.23E−05 0.052

12 rs73338162 A SHMT2 Missense DOM 0.007 0.008 0.244 587.7 127.2 
(338.5–837) 2.23E−05 0.052

7 rs113400963 G FAM185A Intronic REC 0.088 0.096 0.105 587.7 127.2 
(338.5–837) 2.23E−05 0.013

10 rs7085433 T TIMM23 Noncoding 
transcript REC 0.11 0.096 0.027 587.7 127.2 

(338.5–837) 2.23E−05 0.013

12 rs11061368 G DIABLO Intronic REC 0.049 0.088 0.161 587.7 127.2(338.5–
837) 2.23E−05 0.013

14 rs1063271 C SPTLC2 3`UTR REC 0.15 0.16 0.069 587.7 127.2(338.5–
837) 2.23E−05 0.013

20 rs6062129 C MTG2 Intronic REC 0.33 0.29 0.164 587.7 127.2 
(338.5–837) 2.23E−05 0.013

20 rs6121949 G MTG2 Intronic REC 0.17 0.14 0.076 587.7 127.2 
(338.5–837) 2.23E−05 0.013

Δ-VO2max

2 rs2041840 T NDUFAF7 Intronic DOM 0.36 0.48 0.147 4.257 0.965 
(−7.6–3.1) 4.52E−05 0.184

7 rs322820 T SND1 Intronic REC 0.37 0.36 0.086 −5.346 1.168 
(2.4–6.1) 2.54E−05 0.091

Δ-PP 2 rs2041840 T NDUFAF7 Intronic DOM 0.36 0.48 0.193 17.3 4.066 
(9.3–25.3) 7.56E−05 0.173

PC2

2 rs2041840 T NDUFAF7 Intronic DOM 0.36 0.48 0.211 1.737 0.309 
(1.1–2.3) 5.45E−07 0.002

9 rs4742213 T GLDC Intronic REC 0.46# 0.45 0.069 −1.471 0.3517 
(−0.9–-4.7) 9.73E−05 0.348

18 rs7231304 C AFG3L2 Intronic DOM 0.11 0.14 0.231 −1.564 0.3298 
(−0.8–-4.2) 1.38E−05 0.028

Figure 2.  Manhattan plot for all hits from all response phenotypes, biochemical measures, and PCs in the 
linear dominant and recessive association models. Suggestive significance was set at − log10(Punadjusted = 0.0001, 
blue line). As all traits were included clusters of variants represent association across multiple traits rather than 
one significant locus commonly associated with GWAS.
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arguably largest contributors to exercise response (diet, age, repeated bouts) were carefully scrutinised in order to 
ascertain the genetic contribution to each phenotypic trait. Further, we have ascertained which genetic variants 
contribute to multiple phenotypic traits using composite traits built with PCA data reduction.

Novel exercise loci. The most significant variant was associated with the composite exercise response phe-
notype and located within an intron of NDUFAF7 (rs2041840). The T allele was associated with better exercise 
response as shown by the positive beta values. NDUFAF7 encodes an arginine methyltransferase that is essential 
for mitochondrial complex I  assembly24. We have showed that this variant was in a gene rich region with 8 proxi-
mal genes (Fig. 3a), indicating possible effects for this variant in any of the proximal genes or indeed for genes 
that may be further away from the loci. Specifically, the interaction between this variant and the Glutaminyl-
Peptide Cyclotransferase (QPCT) and Protein Kinase D3 (PRKD3) genes has been previously described in a recent 
GWAS  study25. In a recent RNAseq profiling study of exercise training, it was demonstrated that the QPCT gene 
was upregulated following 12 weeks of  training26. As such, we expected the variant seen within the NDUFAF7 
gene to be associated with differing levels of the QPCT transcript following prolonged exercise training.

The two intronic variants within the MTG2 gene were found to be associated with the change in time trial 
measures and appeared to be moderately linked (Fig. 2b). The MTG2 gene resides in a gene rich locus with 11 
proximal genes. When assessed for functionality within the UCSC genome browser, we noted that both the 
MTG2 variants were located in a regulatory element (GH20J062181) that interacts with the MTG2 transcrip-
tion start site. Further, there was a large amount of layered H3K27 acetylation at the variant site, and the linked 
MTG2 promoter region. The MTG protein regulates the assembly and function of the mitochondrial ribo-
some. As such, dysregulation of the gene could result in the downregulation of mitochondrial translation, and 
therefore a lower response to exercise training. The variants also showed a 20% recombination rate with the 5` 

Figure 3.  Locus Zoom plots of significant intronic SNPs from the nuclear mitochondrial association testing. 
Each panel shows the locus surrounding (a) rs6969054 variant within the FAM185A gene, (b) rs11061368 
variant within the DIABLO gene, (c) rs1063271 variant within the SPTLC2 gene, (d) rs6062129 variant within 
the MTG2 gene, (e) rs2041840 variant within the NDUFAF7 gene, and (f) the rs7231304 variant within the 
AFG3L2 gene. All panels show the variant of interest ± 200 Kb. Left y-axis shows − log10(P-value) of association 
results for all traits and right y-axis shows recombination rate across the locus in relation to the variant of 
interest. X-axis shows genomic position across the respective chromosomal regions. All variants were plotted 
according to the hg19/GRCh37 reference build and recombination rate was calculated from the default 
parameters within the locus zoom software.
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region of the TAF4 gene. The TAF4 protein forms part of the transcription factor II D (TFIID) complex and has 
a central role in mediating promoter responses to transcriptional activators and repressors. Dysregulation of 
this gene could introduce global translational repression and therefore lack of response to HIIT training. This 
is supported by the positive effect size for the C and G alleles of the MTG2 variants rs6062129 and rs6121949 
respectively (β = 587.7 s).

An intronic variant within AFG3L2 was also shown to be associated with the composite exercise response 
phenotype (rs7231304), but this gene has not previously been associated with exercise response. However, muta-
tions in AFG3L2 have been shown to cause spinocerebellar ataxia through the development of mitochondrial 
 proteotoxicity27,28. As such, the intronic variation within this gene might inhibit exercise response through 
dysregulation of mitochondrial structure and function. Further, this variant is in a locus with 6 proximal genes 
(Fig. 3c), however no genes within this locus shared a recombination rate above 10%. There were two proximal 
SNPs with a moderate correlation to the SNP of interest also within the AFG3L2 genic region. When assessed for 
functionality through the UCSC genome browser, we noted that the SNP was within a DNAseI hypersensitivity 
region, and therefore may have effects on the mRNA half-life rather than protein functionality in response to 
training.

The T allele at the exonic rs7085433 variant in the TIMM23 gene was associated with the change in time 
trial phenotype (Δ-TT) causes a non-coding transcript of the TIMM23 gene. This gene is one of the targets of 
transcriptional activators NRF-1 and GA binding protein (GABP/NRF-2)29, in which we have previously shown 
genetic variants associated with athletic  performance30,31. TIMM23 is one of the mitochondrial transmembrane 
subunits that form the mitochondrial protein import (TIM23) complex. Therefore, this subunit is essential for 
the transport of peptide containing proteins across the inner mitochondrial membrane. The non-coding tran-
script resulting from the variant would render the complex non-functional and as such impaired transport of 
biomolecules across the inner mitochondrial membrane may impair exercise potential. The effect size of this 
variant was very highly positive (β = 587.7 s) and therefore, this non-coding transcript may result in a slower 
time to complete the time trial.

The rs1063271 variant lies within the 3` Untranslated Region (UTR) of the SPTLC2 gene. UTR variants have 
been shown to influence transcript half-life; through the dysregulated binding of transcript shuttle proteins; 
or change the binding site of miRNAs resulting in epigenetic silencing of the  gene32. As many current miRNA 
binding site analysis tools require targeted sequences, we examined the interaction between specific miRNAs 
previously found within exercise training with the 3`UTR of the SPTLC2  gene33. We noted that all of the miR-
NAs included in our STarMir curation were able to bind to the 3`UTR of the SPTLC2 gene in both seed and 
seedless sites. As such, it was not possible to indicate a specific miRNA mechanism within the context of this 
study although we note that this genetic variant in SPTLC2 should be computationally explored in future stud-
ies. The SPTLC2 protein is involved in the de novo biosynthesis of sphingolipids by forming a complex with 
its counterpart;  SPTLC134. Overexpression of this protein has also been shown to cause elevated sphingolipid 
formation and therefore mitochondrial  autophagy35. Much like the TIMM23 rs7085433 variant, the effect size 
for time to completion in Time Trial (β = 587.7 s) indicated that carriers of T allele/genotype have slower TT and 
therefore poorer response to exercise when compared to carriers of the C allele/genotype. We hypothesise that 
the T allele for this variant may induce a novel miRNA binding site in the transcript resulting in the silencing 
of the SPTLC2 gene.

The rs11061368 variant lies within an intronic region of the DIABLO gene. The protein encoded by this 
gene functions to induce apoptotic processes through the activation of caspases in the Cytochrome C/Apaf-1/
caspase-9 pathway. When viewed in UCSC genome browser, it was evident that the SNP was not affiliated with 
any regulatory elements and therefore we were unable to determine the true functionality of this intronic vari-
ant. However, we postulate a molecular mechanism that should be explored in future exercise related studies. 
Although the associated variant does not show functionality within this gene, the dysregulation of the DIABLO 
gene could prevent adequate muscle remodelling resulting in the lack of response to training. Further, the vari-
ant also lies ~ 50 Kb away from the Interleukin 31 (IL31) gene, a pro-inflammatory cytokine associated with the 
activation of Signal Transducer and Activator of Transcription 3 (STAT3) pathways, which have already been 
extensively studied and implicated in exercise training responses.

The FAM185A gene has to date had limited previous research and as such we were unable to elucidate any 
specific molecular function within the context of exercise training. However, the gene has been previously asso-
ciated with plexus-forming angiogenesis within the context of foetal lung  tissue36. It is plausible that the gene is 
involved in angiogenic processes outside embryonic development. Further, the gene is proximal to 9 other genes 
within 200 Kb. There was no evidence of high recombination rates with any of the proximal genes, and there were 
no proximal SNPs correlated with the rs113400963 polymorphism. When we assessed the polymorphism using 
the UCSC Genome browser to determine functional consequence of this variant and found no link between the 
intronic variant with any regulatory or epigenetic regions.

Mitochondrial. None of the mitochondrial genetic variants identified in this study were associated with 
exercise response in the present study to a threshold of FDR < 0.05. Additionally, we lacked enough statistical 
power to associate mitochondrial haplogroup with exercise responses as the cohort was extremely heterogene-
ous. Although nominal significance was achieved, due to the hypervariable nature of the control region, we 
chose not to focus on the SNPs within this region.

The g.A8701G variant within the ATP6 gene causes a missense change within its respective protein 
(p.Thr59Ala) and has been well characterised in hypertensive  cases37. This variant was nominally significant in 
both the Δ-LT phenotype and the PC3 composite trait within the cohort. As the Δ-LT trait provided a smaller 
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contribution to PC3, the variant was assumed to be partially associated with a mixture of the Δ-TT and Δ-VO2max 
phenotypes. The effect size of this variant indicated a poor response to exercise training (β = − 26.19 LT).

Interestingly, all the variants associated with PC4 were related to the utilisation of the amino acid Leucine. 
Firstly, the g.A12308G variant within the mitochondrial coding region for the tRNA for Leucine. Whilst the effect 
of this variant was unclear, it appears to have influenced the composite phenotypes within PC4. Mutations within 
tRNA genes have previously been associated with reduction in organelle quantity and downregulation of protein 
 synthesis38. Secondly, both synonymous variants in the ND4 (g.A11467G) and ND5 (g.G12372A) genes result 
in a codon that is used far less frequently (CUA [276] > CUG [42]) in mitochondrial translation  processes39. As the 
biosynthesis of tRNAs is costly with respect to intracellular energy levels, it is possible that the combination of the 
dysregulation of the  tRNAleu and the codon usage frequency change in two subunits of the mitochondrial mem-
brane respiratory chain NADH dehydrogenase (complex I) may result in premature intracellular energy (ATP) 
deficiency and contribute to the poor response to exercise training associated with these traits. It should be noted 
that the stringent thresholds for association in the mitochondrial association tests could also have resulted in 
false negative results. Additionally, mitochondrial genetic variants rarely influence phenotypic traits in isolation.

We have identified novel nuclear-encoded, mitochondrial-related SNPs and loci associated with adaptations 
to High Intensity Interval Training. Additionally, we have postulated the mode of action for different molecular 
mechanisms that may be responsible for the variability in response to exercise intervention. It should be noted 
that performing mitochondrial sequencing on muscle tissue as opposed to blood may yield more informative 
results with heteroplasmic associations due to the high concentration of mitochondria. We note that while 
we have utilised comprehensive sequencing and high throughput arrays in combination with robust exercise 
phenotypes, the variants associated with responses in this study, need to be replicated in larger cohorts of both 
the general population and elite athletes. Further, the variants assessed within the current study were tag SNPs 
within the genotyping arrays and further information may be gained from the imputation of additional SNPs 
within the regions we have discovered. This could be achieved by leveraging on large multi-centre initiatives such 
as the Athlome  consortium40. Additionally, functional genomic analyses are required to determine the effect of 
these variants on the molecular pathways commonly involved in exercise response. Such studies could include 
transcriptomics, epigenetics and functional cell work in a multi-omics approach.

Methods
Participants. At the time of analysis, 77 participants had taken part in the study, 62 of whom success-
fully completed 4 weeks of High-Intensity Interval Training (HIIT) intervention protocol in the Gene SMART 
(Skeletal Muscle Adaptive Response to Training)  study41 at Victoria University, Australia. Ethical clearance for 
this study was provided by the Human Research Ethics Committee at Victoria University (Approval Number: 
HRE13-233), and the clearance was transferred to and also provided by the QUT Human Research Ethics Com-
mittee (Approval Number: 1600000342). All participants provided informed consent prior to the study and all 
methods were carried out in accordance with relevant guidelines and regulations. We analysed the 62 partici-
pants who did not drop out of the study and all had healthy BMI and were moderately trained with an age range 
of (31.33 ± 7.94 years).

The Gene SMART study design has been previously  reported41. Briefly, participants were required to provide 
medical clearance to satisfy the inclusion criteria. Following familiarisation, baseline exercise performance was 
determined on a cycle ergometer during a 20 km time trial (TT), and two graded exercise tests (GXTs); these 
tests were administered a few days apart and no more than two weeks apart to limit temporal variability in 
performance.

Molecular methods. Genomic DNA was extracted for 77 participants regardless of completion status from 
2.0 mL of whole blood using a QIAmp DNA blood midi kit (QIAGEN, Hilden, Germany). Briefly, the concentra-
tion and purity of genomic DNA (gDNA) from all samples was assessed via Nanodrop spectrophotometry and 
Qubit fluorometry. We used an in-house sequencing method recently developed by our group at the Genomics 
Research Centre, Queensland University of Technology, Australia to sequence the whole mitochondrial genome 
of each  participant42. Illumina Infinium Microarray was used on HumanCoreExome-24v1.1 bead chip to geno-
type all samples for ~ 550,000 loci. For all samples, 1 µg total gDNA was sent to the Australian Translational 
Genomics Centre, Queensland University of Technology Australia, for SNP genotyping on the arrays.

Data filtering. A bioinformatics pipeline (SAMtools, BCFtools) was utilised to generate variant call files 
(VCF) for all samples as described  previously42. VCF files were then aligned to the revised Cambridge Reference 
Sequence (rCRS) and all sequences were stringently left aligned back to this reference genome to account for 
the single end (SE) reads generated from Ion Torrent sequence information. FASTA files were generated for all 
samples and then merged VCF and FASTA files were produced for the entire data set. The merged FASTA files 
were annexed using MITOMASTER, a mitochondrial sequence database, to call haplogroups and obtain variant 
annotation information for all  samples43,44. The merged VCF file was converted to PLINK (v1.90p) format using 
the function ‘-make-bed’ for further association analysis. A detailed description of the analysis pipeline may 
be found in markdown format in the GRC computational genetics GitHub account (https ://githu b.com/GRC-
CompG en/mitoc hondr ial_seq_pipel ine), including all necessary files (NEMP locations BED file) and scripts 
(mitochondrial Solarplot R script) to replicate our analyses within other data sets.

The ped file generated from Illumina GenomeStudio v2.0 software was converted into binary format. We 
did not impute any genotypes to prevent false positive associations and a larger multiple testing burden. There 
were 551,839 typed SNPs; subsequent SNP and individual filtering and trimming was based on (1) SNPs 
with > 20% missing data (239 removed), (2) individuals with > 20% missing data (0 removed), (3) minor allele 

https://github.com/GRC-CompGen/mitochondrial_seq_pipeline
https://github.com/GRC-CompGen/mitochondrial_seq_pipeline
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frequency < 0.01 to remove rare variant associations (260,269 removed), (4) SNPs out of Hardy Weinberg equi-
librium for quantitative traits (58 removed due to P < 1e−6)45. All samples passed kinship and heterozygosity 
thresholds after the filtering outlined above, leaving 62 samples and 291,273 SNPs to analyse. A BED file con-
taining the genomic locations (GRCh37) of all known Nuclear Encoded Mitochondrial Protein genes (NEMPs) 
was obtained from the Broad Institute’s human MitoCarta2.0  website46–49. PLINK was used to extract the SNPs 
within the genomic locations from the Omni Express SNP chip data of the same participants. In total, 4,806 SNPs 
were within the NEMP genomic regions detailed by the Broad Institute MitoCarta2.0 bed file and considered 
to be mitochondrially related variants.

Exercise-response phenotypes. Participant stratification into high and low response groups lead to a 
loss of statistical power in association testing. As such, and to avoid classifying responders and non-responders 
via arbitrary thresholds, we chose to keep the phenotypes as continuous variables for association  testing50.

To ascertain variants that were associated with exercise response for key physiological traits, we utilised the 
delta (Δ) change (Post phenotype–Pre phenotype) quantitative trait data for; peak power output (ΔWpeak in 
Watts); power at lactate threshold (ΔLT in Watts); peak oxygen uptake (ΔVO2peak in mL/min/kg body weight); 
and time to completion measurement for a 20 km time trial (ΔTT in seconds). As the quantitative traits were 
all continuous and to keep maximal statistical power, we did not use arbitrary response thresholds. With mul-
tiple, correlated response phenotypes, we conducted a Principal Component Analysis (PCA) of the response 
phenotypes using the R package FactoMineR51. PCA is a dimensionality reduction method that computes linear 
combinations of the multiple response phenotypes into principal components (PCs) so that the variance between 
individuals is maximised. Every individual is then represented by one value for each PC, considered a composite 
trait of the different response phenotypes. A more detailed description of PCA for composite trait association 
testing is shown in Supplementary Fig. 1.

Missing phenotypic values were excluded from the phenotype table prior to PCA to prevent skewing of data 
and to maintain appropriate PCs. Following the PCA, these variables were set as “missing” for the association 
analysis. We also tested the individual response phenotypes and compared the significance levels of variants 
between the composite traits with those within each PC. This resulted in 4 PCs that cumulatively explained > 90% 
of the variance between participants.

Statistical analysis. Analysis of the response traits was performed in SPSS using a paired samples t-test. 
SPSS was also used to test associations between mitochondrial haplogroups and exercise response with a Wald 
test. Analyses for the mitochondrial SNPs and NEMP SNPs were kept separate for analysis using different asso-
ciation models. We used PLINK V1.90p to perform quantitative linear association tests (95% CI) with both 
dominant and recessive models. An additive model was also attempted but yielded the same results as our domi-
nant model. We adjusted all association results for age and effect sizes were determined using raw beta regres-
sion coefficient values (i.e. genotype X is associated with β [unit specific to trait of interest] changes in the 
phenotype). Variants that passed a nominal P-value threshold of P < 0.05 were considered for further analysis 
whereas variants that passed multiple testing adjustment using the Benjamini–Hochberg False Discovery Rate 
(FDR < 0.05) method were considered significant associations. We performed adjustment for multiple testing for 
each phenotype separately. Performance of an apriori power calculation for this study indicated that the linear 
modelling approach with additive genotypic effects for our sample size (n = 62) was sufficient for at least 80% 
power to detect SNP-based heritability of 13% or more at the relaxed alpha level of 0.05. SNP-based heritability 
estimates were approximated by genotype Vs outcome  R2 values from linear regressions. We also note that the 
Gene SMART cohort is a tightly controlled study with rigorous physiological measures, all performed in dupli-
cate, which by itself significantly increase the power of the detected apriori.

All variants from the association tests were plotted in R using the tidyverse, ggplot2, and qqman packages. 
The script for the mitochondrial solar plot depicted in Fig. 1 has been adapted from Stephen turner’s GitHub 
 account23. Locus zoom plots were generated with the online locus zoom software using a compilation of the 
dominant and recessive nominal results from our association  tests52. As the participants were all Caucasian, SNP 
linkage  r2 values were calculated with the HapMap CEU database. As intronic SNPs may affect genes far away, 
we termed genes within 200 Kb of the SNP of interest as “proximal” regardless of NEMP status.

We utilised the UCSC genome browser (hg19/GRCh37) to ascertain the genomic affect and therefore con-
sequence of all statistically significant variants. The GeneHancer track was utilised to determine the regulatory 
element affect for each  variant53. We chose to postulate molecular mechanisms for variants that were purely 
intronic and did not show affinity for epigenetic or transcription factor binding. However, these should be inter-
preted with caution and therefore we note that the variants in this category were found to be association based 
only and should be confirmed through replication analysis in larger exercise cohorts.
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