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Santiago Lavı́n Ramón C. Soriguer Monica González-candela
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ABSTRACT 21 

The study of fluctuating asymmetry (FA) in living organisms has produced contradictory results over 22 

the past few decades of research. Though the protocol for measuring FA is firmly established, the 23 

sources of FA remain unclear in many cases. Our goal is to examine the relationship between FA 24 

and both the concentration of biomarkers of reactive oxygen species (ROS) and body condition in a 25 

medium-sized mammal, the European wild boar (Sus scrofa). Using a Partial Least Squares 26 

regression (PLSr), we found a positive significant relationship (Stone–Geisser test) between 27 

oxidative stress and FA but a negative relationship between oxidative stress and body condition. Our 28 

results suggest that FA can be used to assess the physiological costs associated with oxidative 29 

stress in mammals. 30 

Keywords: Ecological indicators; Developmental instability; Physiological stress; Sus scrofa. 31 

32 
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Introduction 33 

Developmental stability (DS), defined as the ability of a genotype to undergo stable development of a phenotype 34 

under given environmental conditions, has been proposed as a proxy for health status in a broad range of live 35 

organisms, including plants (Hagen et al., 2008), animals (Allenback, 2011) and human beings (Thornhill and 36 

Møller, 1997, DeLeon, 2007). Deviations from developmental stability (e.g., Developmental Instability, DI) arise 37 

from the effects of a wide range of environmental and genetic stresses and are usually measured in terms of 38 

fluctuating asymmetry (FA, see Graham et al., 2010). However, FA is not fully accepted by the scientific 39 

community for this purpose because it does not always respond to obvious stress (Floate and Coghlin, 2010). In 40 

fact, the concept of developmental stability is often elusive and low FA is not the unambiguous measure of well-41 

being or good genes that some have claimed it to be (Rasmuson, 2002). Unfortunately, all of the previous 42 

mentioned factors hamper the use of FA as an ecological indicator and thus further studies assessing the 43 

integration of not only FA, but also other health indicators, are needed for further progress. Despite this doubt, 44 

and probably due to the ease of calculating FA, the number of studies on the uses of this biomarker continues to 45 

grow (González et al., 2014).  46 

Another biomarker of both biotic and abiotic environmental stress is the oxidative status of organisms. The 47 

formation of reactive oxygen species (ROS, including O2- ,H2O2, and OH), is associated with the pathology of 48 

animal diseases, as well as the natural aging of individuals (Dalle-Donne et al., 2006). Organisms have developed 49 

enzymatic protection against ROS including catalase (CAT), superoxide dismutases (Mn- and CuZn-SOD), 50 

glutathione reductase (GR), selenium-dependent glutathione peroxidase (Se-GPX), and selenium-independent 51 

GPX, which maintain ROS and other toxic by-products of oxidative damage (e.g., aldehydes) at concentrations 52 

that are non-threatening to the cell (Ahmad, 1995, Held, 2012). Some work shows that decay in body condition 53 

produced by starvation is induced by the p roduction and accumulation of ROS triggering cell autophagy (Elazar 54 

et al., 2007). Other studies suggest that a wide array of compounds that act as environmental pollutants may 55 

propitiate health consequences for exposed mammals and fish by triggering an overproduction of ROS (Farmen 56 

et al., 2010). There is a clear connection between ROS concentrations in the organism and environmental stress, 57 
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and thus extreme starvation, high radiation exposure, environmental pollution, and traumatic and infectious 58 

diseases can increase ROS concentrations (Halliwell and Cross, 1995). Controversially, the relationship between 59 

ROS activity and FA has only been tested in humans (Gangestad et al., 2010).  60 

 In this work, we aim to study FA in the wild boar (Sus scrofa) as a study model. We explore the 61 

relationships between wild boar oxidative status and both FA and body condition in a medium-sized mammal 62 

using a Partial Least Squares regression (PLSr). One of the main advantages of measuring FA in large mammal 63 

populations is the time required by individuals to achieve their full size. This would provide sufficient time for 64 

symmetrical structures to express developmental instability in the case of stress, making it easy to measure FA. 65 

Typical structures for measuring FA in large mammals are jaws (Serrano et al., 2008) and tusks (Modi et al., 66 

1987). 67 

In wild boar, both the maxillary and the mandible's permanent canines are developed as tusks. There is a lifelong 68 

presence of formative tissues at the apical end of all dental pieces, and thus they are susceptible to 69 

developmental instability and consequently show fluctuating asymmetry (Palmer, 1994; Palmer and Strobeck, 70 

2003). The use of a metric trait such as tusk width implies continuous variation that allows the detection of 71 

differences between sides, or departures from FA, only limited by measurement precision and accuracy (Palmer, 72 

1994). Metric trait measurements can be directly tested for dependence of the absolute differences between the 73 

right and left sides (|R-L|) on overall size for each trait and the contribution of measurement error relative to FA. 74 

ROS-induced damage to DNA or cell membranes may disrupt cell replication, presenting the possibility that 75 

individual differences in susceptibility to oxidative stress should be associated with FA (Gangestad et al., 2010). 76 

Hence, a negative relationship between body condition and oxidative status will be in line with previous research 77 

(Sorensen et al., 2006), whereas the positive relationship to FA would suggest a link between developmental 78 

instability and oxidative stress in mammals.  79 

The study area is located in the National Game Reserve “Ports de Tortosa i Beseit” (NGRPTB), north-eastern 80 

Spain (40º 48’ 28” N, 0º 19’ 17’’ E). The NGRPTB is a limestone mountain massif of about 28,000 ha 81 

characterized by a typical Mediterranean forest with dense scrublands.  82 

Taking advantage of the regular game activities carried out in the NGRPTB, 63 hunter-harvested wild boar (30 83 

females and 33 males) were collected between May 2009 and February 2013. The sex of animals was 84 
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determined by observation of their sexual organs. Jaws were then removed from the skull, labeled and stored in a 85 

cold box for transportation to our facilities at the University (UAB). Rump fat (RF), measured using a metal rule 86 

(nearest 0.5 mm), was used as a proxy for wild boar body condition. Boars were then dissected and 10 g of 87 

spleen was collected and stored in individual plastic bags and kept in a cold box (4ºC). Spleen samples were then 88 

frozen at -20°C for the ROS analysis within the following 5 hours. 89 

Using the jaws, age of boars was determined by the eruption of dentition pattern. For the calculation of the FA 90 

index soft tissues were removed from fresh jaws before they were boiled in a 1% potassium hydroxide (KOH) 91 

solution. Once cleaned and dry, basal width (medial view, Fig. 1) of the right and left tusks of each boar was 92 

measured twice with an electronic digital caliper (IP54, iGaging EZ®, accuracy: 0.02 mm). Measurements were 93 

taken by the same observer (ES) at different times in order to minimize inter-observer variability (Palmer, 1994). 94 

Measurements for one or both tusks were not possible in 23 individuals given that their dental pieces were 95 

damaged during transportation. Hence, these individuals were excluded from the analysis. 96 

Lipid peroxidation (TBARS), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and 97 

superoxide dismutase (SOD) concentrations were estimated from spleen samples following specific procedures 98 

for each indicator. In brief, laboratory procedures were the following: five grams of spleen tissue were frozen in 99 

liquid nitrogen and stored at -80ºC for almost 30 days. Tissues were then homogenized with an electrical 100 

homogenator (Miccra D-1 Art Moderne Labor Technik) in cool homogenization buffer (Tris-HCl 100 mM, EDTA 101 

0.1 mM, Triton X-100 0.1 %, pH 7.8) in a 1:4 proportion (1 g tissue: 4 ml buffer). The sample was centrifuged at 102 

14,000 rpm at 4ºC for 30 minutes and supernatant stored at -80ºC until enzymatic determination. The activity of 103 

oxidative enzymes was estimated following specific procedures. TBARS (mmol MDA/mg) was estimated 104 

measuring the malondialdehyde (MDA) of the sample and those generated from lipid hydroperoxides by the 105 

hydrolytic conditions of the reaction. MDA is a low-molecular-weight molecule formed via the decomposition of 106 

primary and secondary lipid peroxidation products. The aforementioned technique minimizes the additional 107 

oxidation of the sample matrix that would overestimate lipid peroxidation (Monaghan et al., 2009). SODs (U/mg) 108 

are enzymes that provide an important antioxidant defense in nearly all cells exposed to reactive oxygen species 109 

generated by a cellular immune response. SOD catalyzes the dismutation of superoxide into oxygen and 110 

hydrogen peroxide measured by the inhibition degree of cytochrome C by this enzyme. The method followed for 111 
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its estimation was that proposed by Cord and Fridovich (1969). The GPX (mU/mg) concentration, a selenium-112 

dependent protein that catalyzes the reaction of hydrogen peroxides into water and alcohol, was determined by 113 

estimating NADPH oxidation by the method proposed by Carmagnor and Sinet (1983). The enzymatic activity of 114 

the GR (mU/mg) was measured by the same mechanism following the method described by Cribb et al. (1989). 115 

On the other hand, CAT (U/mg) catalyzes the decomposition of hydrogen peroxide produced in damaged tissues 116 

to water and oxygen. CAT was estimated following a previously described method (Cohen and Somerson, 1969). 117 

Biochemical analyses were performed at the Laboratory of Ecophysiology of the Estación Biológica de Doñana, 118 

Spain (EBD-CSIC) in a multiplate reader Victor 3 Perkin Elmer, Massachusetts, USA. Concentrations of the 119 

abovementioned enzymes were used as a proxy for oxidative status of individuals. 120 

The index used in the measurement of fluctuating asymmetry (FA) was FA1 according to Palmer (1994), defined 121 

as:  122 

FA1 = mean |Right trait size – Left trait size| 123 

This index provides an absolute (unsigned) measure of the asymmetry. The FA1 index is easily and intuitively 124 

interpreted and gives a direct indication of the level of asymmetry present within the sample for the chosen trait. 125 

FA1 was chosen because it can be directly subjected to the ANOVA testing procedure, is adequate for moderate 126 

sample sizes and is not dependent on overall size. 127 

The analysis partially followed the step-by-step guide developed by Palmer and Strobeck (2003). The analysis 128 

of asymmetry variation was justified because the between-sides variance component was greater than zero, after 129 

removing the effect of measuring error (Sides * Individuals, F1, 79 = 15, P < 0.001, F1, 41 = 20.8, P < 0.001 and F1, 37 130 

= 12.5, P < 0.001 for the entire sample, females and males respectively). The between-sides variance component 131 

for females was 10.8% and 42.8% for males, both greater than the measurement error (lower than 4.5% in both 132 

males and females). A residual analysis confirmed the requirements of mixed models (e.g., linearity, 133 

homoscedasticity and normality). Finally, the potential size dependence of FA was discarded by a regression test 134 

between trait size [(R+L)/2] and FA (r = -0.011 and P = 0.778 for the entire sample, r = 0.019 and P = 0.184 for 135 

females and r = -0.027 and P = 0.970 for males).  136 

The relationship between oxidative stress, FA and body condition was evaluated by a Partial Least 137 

Squares regression (PLSr). This statistical tool is an extension of multiple regression analyses where associations 138 
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are established with factors, also called components or latent vectors (e.g., combinations of dependent variables 139 

extracted from predictor variables that maximize the explained variance in the dependent variable). It is 140 

particularly useful when we need to predict a set of dependent variables from a (very) large set of independent 141 

variables (i.e., predictors). PLSr copes with multicollinearity better than generalized linear models (Carrascal et 142 

al., 2009). In our case, the response variables were both the rump fat (RF) and the fluctuating asymmetry, and the 143 

explanatory variables were the concentration of each biomarker of oxidative stress (i.e., TBARS, SOD, GPX, GR 144 

and CAT). The use of this approach minimizes the limitations derived from the use of a single biomarker of 145 

oxidative stress for describing the reasons for poor body condition in individuals (high FA or low RF). The “plspm” 146 

library version 0.3.7 (Sánchez and Trinchera, 2007) of the R software version 3.1.2 (R Development Core Team, 147 

2015) was used for these analyses. 148 

 Only one individual expressing aberrant levels of asymmetry was removed from the data pool. Our mixed-149 

model ANOVA confirmed that R-L differences depended on the individuals validating the use of tusk width as a 150 

suitable trait for the calculation of the FA index. The same ANOVA test also confirmed the non-existence of 151 

Directional Asymmetry in our sample. Likewise, there was a lack of correlation between |R-L| and the average 152 

trait size. Normality of residuals was also achieved. 153 

The average FA1 index for the trait selected was 0.31 for the entire sample, with slight but not significant (t-154 

test1, 38 = 0.87, P = 0.43) differences between females (FA1 = 0.35) and males (FA1 = 0.27), representing a subtle 155 

1.7% difference in trait size. Other works have shown typical levels of FA around 1% of trait size (Lens et al., 156 

2002). In addition, these FA values were independent of the age of animals (r = 0.009 P = 0.35). 157 

The PLSr analysis provided a first factor based on the combination of the biomarkers of oxidative stress 158 

explaining 25.8% of the variance of FA and body condition of wild boar. CAT was the most important biomarker 159 

explaining 67.7% (square of the PLSr weight value, Table 1) of the PLSr component describing oxidative stress, 160 

followed by TBARS with 30.7%. GPX, SOD and GR showed a low contribution explaining less that 1% of the X’s 161 

component. The best correlations between biomarkers of oxidative stress and the PLS Y’s component (FA + Body 162 

condition) were reached by CAT (r = - 0.67) followed by TBARS (r= - 0.45). The rest of the biomarkers were 163 

poorly correlated (r = 0.074 for GPX, r = -0.068 for SOD and r = -0.009 for GR). 164 
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The PLSr analysis showed different score signs for the two response variables selected (body condition and 165 

fluctuating asymmetry), while two out of the five biomarkers of oxidative stress (TBARS, CAT) selected as 166 

explanatory variables contributed significantly to explaining the variance of the response variable group (loadings 167 

shown in Table 1). Weights of these two biomarkers presented the same sign as FA (lower oxidative stress in 168 

animals showing low FA) but the opposite sign of RF (low ROS values in animals showing good body condition, 169 

Fig. 2).  170 

 When ROS production exceeds a tolerable threshold, the organism experiences oxidative stress and 171 

oxidative damage. The production of antioxidants and repair processes may constitute important allocations to 172 

somatic effort, and may be particularly relevant for species with low extrinsic mortality (Dowling and Simmons, 173 

2009). Because ROS are intrinsic costs of energy production itself, oxidative stress is a constraint on other 174 

expenditures, leading to a lower individual body condition and induced damage to DNA. Lowered body condition 175 

and damaged DNA can break the fragile balance of developmental homeostasis that maintains the proper flow of 176 

development for the population. 177 

The PLSr statistical model confirmed a significant positive relationship between selected ROS biomarkers and 178 

FA index and a negative relationship between ROS biomarkers and body condition in boars. Considering the 179 

established relationship between body condition and ROS, this result makes way for the use of FA as an indicator 180 

of physiological stress for wild boar populations given the general acceptance of rump fat concentration as a 181 

measure of body condition for ungulate species. Nonetheless, further research is necessary to ensure a 182 

generalizable conclusion. 183 

As suggested by Gangestad et al., (2010), and derived from the results shown in this work, we believe that a 184 

sound relationship between ROS and FA can be established. If we take into account the continuous growth of the 185 

tusks, this trait becomes considerably susceptible to the effects of developmental noise caused by any kind of 186 

stress, and thus we can conclude that the expression of levels of FA detected by our analyses reinforces the 187 

suggested relationship between FA and biotic or abiotic environmental stress. 188 

Firstly, derived from our results, a sound relationship between ROS biomarkers and FA can be firmly 189 

established, and hence a relationship can also be established between oxidative stress and FA. Secondly, we can 190 
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confirm our selected trait as suitable for the evaluation of the levels of FA within populations of wild boar. Finally, 191 

FA can be used to rapidly examine the status of wild boar populations and act as an early warning signal for the 192 

management of the hosting environment of the species. 193 
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 260 

Table 1. Predictor loadings, weights and the variable importance for projection VIP of the Partial Least Squares 261 

regression (PLSr) between several biomarkers of oxidative stress (X’s component): catalase (CAT), lipid 262 

peroxidation (TBARS), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase 263 

(GR), and the Y’s component describing body condition (rump fat thickness) and fluctuating asymmetry (AF) in 264 

wild boars. Predictor weights represent the contribution of each explanatory variable to the PLSr model variance. 265 

The VIP is a measure of explanatory power of Y; those predictors with a VIP > 1 are considered the most relevant 266 

to the construction of the Y-component. 267 

 268 

Predictor variable Loadings Weight VIP 

PLS-R X’s component describing oxidative stress 

CAT -0.757 -0.822 1.839 

TBARS -0.654 -0.554 1.240 

GPX -0.052 0.091 0.204 

SOD -0.121 -0.084 0.189 

GR -0.065 0.012 0.027 

PLS-R Y’s component describing fluctuating asymmetry and body condition 

FA -0.555 -0.939 - 

Body condition 0.221 0.505 - 

 269 

 270 

 271 

 272 

273 
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 274 

FIGURE CAPTION 275 

Figure 1. For the calculation of fluctuating asymmetry in wild boar, basal width in medial view of the right and left 276 

definitive tusks (black arrow), was measured with a digital caliper (0.02 mm accuracy).  277 

Figure 2. Positive relationship between oxidative stress biomarkers and fluctuating asymmetry (FA) of tusks and 278 

negative correlation (opposed sign) between body condition (rump fat thickness) and specific ROS biomarkers 279 

(CAT: catalase and TBARS: lipid peroxidation). This plot represents the PLSr model shown in Table 1. Arrow 280 

direction indicates either an increase or a decrease in the component value, and arrow thickness directly indicates 281 

the weight of the component. ROS biomarkers explained <5% of the PLSr X component (e.g., SOD: superoxide 282 

dismutase, GPX: glutathione peroxidase and GR: glutathione reductase) and were therefore excluded from the 283 

plot. 284 

285 
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