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Abstract

We solve the modified non-linear extension of the CCFM equation – KGBJS equation [1]
– numerically for certain initial conditions and compare the resulting gluon Green functions
with those obtained from solving the original CCFM equation and the BFKL and BK equations
for the same initial conditions. We improve the low transversal momentum behaviour of the
KGBJS equation by a small modification.

1 Introduction

The BFKL equation [3] seems to be the appropriate effective theory for describing high energy
initial state radiation in the kinematic region where the Mandelstam invariants t of the momen-
tum exchange and s of the total scattering momentum are strongly ordered: Λ2

QCD ≪ |t| ≪ s.
It is well known that the relevant phase space region is very important at the LHC, but signs
of its importance were already observed at the HERA [7, 8] and other colliders.

However, the BFKL equation predicts too strong rise of the cross section for decreasing
ratio of |t|/s violating the Froisart bound and thus the unitarity. To solve the problem of the
rise of the BFKL cross section different kinds of corrections, from careful consideration of the
kinematical constraint [9], inclusion of NLO terms [11] to inclusion of non-linear terms, were
suggested and studied. A non-linear extensions of the equation was proposed [13] to take into
account merging of over-populated gluons and thus damping the growth of the gluon density
and consequently the cross section. The BK equation [14] is one of such extensions of the BFKL
equation. The growth of the solution of the BK equation is suppressed compared to the solution
of the linear equation. Saturation of the gluon density function is observed [17, 18, 19, 20].

The BFKL and also the BK equations are only suitable to describe the inclusive cross section.
Inclusion of coherence effects was proposed to extend the validity of latter equations for exclusive
final states. An equation which includes the BFKL kernel plus the coherence effects and at the
same time it interpolates between the BFKL and the DGLAP [21] approximations is the CCFM
equation [25].

An interesting question raises: How does a corresponding non-linear equation, a non-linear
extension of the CCFM equation, look like and how does the coherence requirement interplay
with the saturation constraint?
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As we mentioned before, the CCFM equation allows for study of exclusive final states.
Small-x effects in exclusive observables has been studied using Monte Carlo programs such as
Cascade [29, 31]. By including saturation effects into the CCFM equation, it would therefore
possible to study effects of saturation on exclusive states like jet final states, jet multiplicities and
energy flows. Attempts were done to include saturation effects by a simple cut-off [32] and also by
a sophisticated dipole model [34]. In [35] a non-linear equation for a factorisable gluon density
was derived with a proposal of inclusion of coherence effects. A non-linear extension of the
CCFM equation in a simple from was suggested in [1]. The latter proposed non-linear equation
was not yet studied in the literature. We will start filling the emerged gap in this publication.
After that we will take a look on some of the above mentioned well known equations. Then we
will examine closely the new non-linear equation and find non-physical behaviour near the soft
cut-off. We will suggest an improvement of the equation and present numerical results.

2 Equations

In this section we will shortly introduce equations of our interest.

2.1 The BFKL and the BK equations in momentum space

Figure 1: Diagramatic representation of the BK equation in momentum space.

The BK equation in the momentum space, written for the gluon Green function, includes
the BFKL equation and a non-linear term with a minus sign in a form of convolution of two
gluon Green functions f(Y,k,q). The gluon Green function depends on the rapidity Y and
two transversal momenta k and q. The non-linear term can be diagramaticaly represented as a
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merging of the BFKL ladder diagrams (figure 1). The BK equation reads [18, 19, 20]

∂f(Y,k,q)

∂Y
=

ᾱS

π

∫

d2k′

(k− k′)2

{

f(Y,k′,q)

−1

2

[

k2

k′2 + (k− k′)2
+

(q− k)2

(q− k′)2 + (k− k′)2

]

f(Y,k,q)

}

− ᾱS

2π

∫

d2k′f(Y,k,k′)f(Y,k− k
′,q− k

′)

(1)

(ᾱS = NCαS/π). In the forward limit q → 0 and no impact parameter dependence approx-
imations, the BK equation takes the form:

∂f(Y,k)

∂Y
=

ᾱS

π

∫

d2k′

(k− k′)2

{

f(Y,k′)− k2

k′2 + (k− k′)2
f(Y,k)

}

− ᾱS

2π

∫

d2k′δ(2)(k′)f(Y,k)f(Y,k− k
′) .

(2)

If the Green function grows beyond certain limit, the non-linear term causes a suppression of
the growth, because of the negative sign and because of being effectively quadratic in the Green
function. This suppression of the cross section was successfully shown in many publications [18].

The authors of [1] have shown how to resum the virtual corrections, included in the second
term on the right hand side of the equation (2), and obtain this form of the BK equation

f(x,k2) = f̃0(k
2) +

ᾱS

π

1
∫

x

dz

z
∆R(z,k

2, µ)

[
∫

d2q

πq2
θ(q2 − µ2)f(x/z, |k+ q|2)

−f2(x/z,k2)

]

,

(3)

where this time x is the momentum fraction of the proton carried by the parton, k is the
partons transversal momentum. The function f̃0(k

2) is the initial condition of the equation.
The integration q can be interpreted as the transversal momentum of the emitted parton and
z can be interpreted as the momentum fraction of the mother parton carried by the recoiling
parton. The Regge form factor ∆R(z,k

2, µ) = exp
(

− ᾱS ln(1/z) ln(k2/µ2)
)

includes now the
resummed virtual corrections. A soft cut-off µ is introduced.

2.2 The CCFM equation

The CCFM equation reads

F(x,k, p) = F0(k) + ᾱS

∫

d2q̄′

q̄′2

1− Q0

|q̄′|
∫

x

dz

z
F(x/z,k′, |q̄′|)

× θ(p− z|q̄′|)P(z,k,q)∆S(p, z|q̄′|, Q0) ,

(4)

with similar meaning of variables x, k, q and z as in the previous subsection 2.1 and F0(k)
being now the initial condition. In addition the variable q̄ = q/(1− z) = (k′ − k)/(1− z) and
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a new scale p characterising the hard scale or the maximum emission angle in the evolution are
introduced. The Sudakov form factor ∆S(p, (zq̄)

2) reads

∆S(p, z|q̄|, Q0) = exp

(

−
p2
∫

(zq̄)2

d2q′

πq′2

1− Q0

|q′|
∫

0

dz′
ᾱS

1− z′

)

(5)

and the Non-Sudakov form factor ∆NS(k
2, (zq̄)2) is defined as

∆NS(z,k
2, |q|) = exp

(

−
k2

∫

(zq̄)2

dq2

πq2

1
∫

z

dz′
ᾱS

z′

)

. (6)

The function P(z,k,q) is the gluon splitting function and in the original formulation and
most of the literature [25, 29, 32] it takes this form

P(z,k,q) =
∆NS(z,k

2, |q′|)
z

+
1

1− z
. (7)

Note that the finite terms, those without of a pole in z = 0 or z = 1, from the full gluon
splitting function are neglected. To study the small-x asymptotic usually the term 1/(1 − z) is
neglected [32]

P(z,k,q) =
∆NS(z,k

2, |q′|)
z

. (8)

It turns out, that together with including the 1/(1− z) term, it is important and interesting
to include the finite terms. We will include the −2 term and split it between the 1/z and
1/(1− z) term equaly as it was suggested in [36, 37]

P(z,k,q) = ∆NS(z,k
2, |q′|)1− z

z
+

z

1− z
. (9)

2.3 The KGBJS equation

We will follow the line of authors of [1] who suggested a non-linear extension of the CCFM
equation (4) in this form

F̃(x,k, p) = F̃0(k)

+ ᾱS

∫

d2q̄′

q̄′2

1− Q0

|q̄′|
∫

x

dz

z

(

F̃(x/z,k′, |q̄′|)− δ(q̄′2 − k
2)(q̄′2)F̃2(x/z, q̄′, |q̄′|)

)

× θ(p− z|q̄′|)P(z,k,q)∆S(p, z|q̄′|, Q0) .

(10)

An important comment is required about the upper limit in the z and z′ integrals in (4)
and (5). This upper limit regulates integrals with a pole in z, z′ = 1. It is easy to see, that it
also generates a limit on the value of the variable |q′| > Q0/(1 − z) and also on the variable
|q̄| > Q0/(1 − z). The latter limit is going to affect transversal momentum dependence of the
solution of the KGBJS equation (10) near the soft scale |k| ∼ Q0. In case when Q0 < |k| <
Q0/(1−z) the non-linear term in the (10) will be equal to 0 rendering the solutions of the linear
and the non-linear equations equal. For |k| = Q0 we thus have

F̃(x,Q0, p) = F(x,Q0, p) . (11)
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This is not what we would intuitively expect from a gluon Green function with growth tamed
by a non-linear correction. We are going to study properties of the solutions of the non-linear
equation (10), but we suggest a modification which can give a more natural behaviour of its
solution. We modify the argument of the delta function in the non-linear term

F̃D(x,k, p) = F̃0(k)+ᾱS

∫

d2q̄′

q̄′2

1− Q0

|q̄′|
∫

x

dz

z

(

F̃D(x/z,k′, |q̄′|)

−δ
(

q̄
′2 − k

2/(1− z)2
)

(q̄′2)F̃2
D(x/z, q̄′, |q̄′|)

)

× θ(p− z|q̄′|)P(z,k,q)∆S(p, z|q̄′|, Q0)

(12)

to shift its ’pole’ outside of the interval
(

Q0, Q0/(1− z)
)

.

3 The CCFM – BFKL correspondence

A thorough analysis of the relation between the CCFM and the BFKL equations was studied
in [32]. Here we are going to point out a very simple way from the CCFM to the BFKL equation.

Let us calculate the expressions for equations (5) and (6) in a case of constant ᾱS . After
performing the integrals one arrives to these formulae (for z|q̄| > Q0/(1− z)):

∆S(p, z|q̄|, Q0) = exp
(

− ᾱS ln
p

z|q̄| ln
z|q̄| p
Q2

0

)

(13)

and

∆NS(z,k
2, |q|) = exp

(

− ᾱS ln
1

z
ln

k2

zq2

)

. (14)

It would be useful now to see how these form factors are related to the Regge form factor
which is the result of ressumation in the BFKL equation. The answer on the question gives a
lot of insight into the different properties and ways of working of the CCFM and the BFKL
equations.

The relation between the CCFM and the BFKL equations is not a simple small-x limit,
but, understandably, includes it. The CCFM equation includes an extra scale p which sets the
hard scale of the process – the maximal emission angle in the evolution. There is no such scale
in the BFKL case – every emission sets a semihard scale. Intuition tells us to perform limits
x → 0 =⇒ z → 0 =⇒ q̄ → q and set p → |q|. As a result we get

∆S(p, (z|q̄|, Q0)∆NS(z,k
2, |q|) z→0−−−−→

p→|q|
∆R(z,k

2, Q0) . (15)

In addition θ(p−zq̄)
z→0−−−−→
p→|q|

1. By removing the 1/(1−z) term and dropping the q dependence

in the Green function, we obtain exactly the BFKL equation (the linear part of (3)) with µ = Q0.
One of advantages of the knowledge of the relation between the equations is, for example, a

possibility to cross check their solutions against each other.
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4 Numerical solutions of the equations: Discussion of

the results

We solve the equations (4), (3), the BFKL equation and equations (10) and (12) by iteration
on a lattice under certain additional conditions:

• We set the ᾱS = 0.2. The running αS case will be discussed in future studies.

• We will study the CCFM equation with and without the 1/(1−z) to estimate its importance
and importance of the finite terms. We will choose different forms of the gluon splitting
function listed in the section 2 (equations (7), (8) and (9)).

• We have written the CCFM equation with a form of the Non-Sudakov form factor (6) which
requires a kinematical constraint to satisfy unitarity. We will thus require |q| < |k|/√z
[32] in the CCFM kernel.

• We will also impose the kinematical constraint on the BFKL and BK equations and com-
pare the results with unconstrained ones.

• We set the parameters µ = Q0 = 1 GeV .

• To mimic energy-momentum conservation we apply an upper limit on the q̄, q <
√
stot

integration. In this publication we choose
√
stot ≃ (1GeV/xmin). Where xmin is the

minimal momentum fraction x for which we parametrise the solution of a given equation.

• We take the initial condition to be

f̃0(k2) =
Cin

|k| (16)

with Cin being a constant parameter. We set Cin = 0.1 for the BFKL and the BK
equations and Cin = 0.5 for the CCFM and the KGBJS equations (in F0(k

2) and F̃0(k
2)).

In next we are going to discuss the results of the numerical calculations.

4.1 The BFKL, BK and BFKL with kinematical constraint

In the figure 2 we plot a solution of the BFKL equation compared with a solution of the BK
equation for the same initial condition (in the beginning of the section 4). In the BK case we
can see slowing down of the 1/xλ growth of the BFKL Green function (on the left in the 2).

Note that the transversal momentum distribution (on the right in the 2) does not follow a
simple power behaviour, but falls fast near the limit for the q integration

√
stot = 104 GeV .

The growth also slows down near the soft cut-off Q0 = 1 GeV .
In the figure 3 we compare the solutions of the BFKL equation without the kinematical

constraint and with the kinematical constraint |q| < |k|/√z. We can see that the slope of the x
distribution is now less steep and also the distribution starts to grow only at around x ∼ 10−1.
The latter is a consequence of reduction of the integration region over q for large z.

The k spectrum of the solution of the BFKL equation with the kinematical constraint follows
approximately a power distribution ∼ 1/|k|. For |k| = √

stot the integration region over q is the
same with and without the kinematical constraint. As a consequence the k distributions have
to match for |k| = √

stot as seen in the plot in figure 3. Latter explains the sudden drop of the
transversal momentum spectrum in the pure BFKL case, which, as we can now see, is a finite
momentum effect.

The comparison of the kinematically constrained BFKL x and k spectra with similar dis-
tributions obtained by applying kinematical constraint on the BK equation in figure 3, show
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the same pattern as for unconstrained BFKL and BK solutions. The suppression effect by the
non-linear term is smaller, because the magnitude of the Green function is also smaller. In
addition we can see, that the finite momentum effects are suppressed.

In next we are going to compare our results only with the solutions of the kinematically
constrained BFKL equation, since the BFKL without the kinematical constraint is not complete
and since the constraint is applied also in the CCFM equation.

4.2 Different versions of the CCFM equation

In plots in the figure 5 we compare solutions of the CCFM equations which differ by choice of
the splitting function.

It is important to study especially the behaviour of the solution of the CCFM with the
splitting function with only terms singular in z = 0 and z = 1 (7). The most interesting is the x
distribution. If we compare it with the x distribution of the solution of the CCFM equation with
splitting function (8), it seems that the inclusion of the 1/(1 − z) term causes an enhancement
in the small x region.

Let us do a careful analysis of what happens at z → 0 taking the splitting function (7). Let
us calculate the Sudakov form factor with fixed p = |k| = Q0 = 1 GeV to see, that for fixed |q̄|
it grows with z getting smaller:

∆S(1 GeV, z|q̄|, 1 GeV ) = exp
(

− ᾱS ln
1 GeV

z|q̄| ln
z|q̄|

1 GeV

)

= exp
(

ᾱS ln2 1 GeV

z|q̄|
)

. (17)

In the case of the 1/z term is the enhancement compensated by the Non-Sudakov form factor.
In the case of the second term in splitting function (7) 1/(1−z) → 1, but there is no suppression
by a Non-Sudakov form factor. Just by writing down an estimation of the contribution of the
1/(1− z) term by the q̄ integral

1/
√

z
∫

1

dq̄

q̄
exp

(

ᾱS ln2 1

z|q̄|
)

(18)

we can clearly see that the integral over |q̄| is going to grow fast for small z and thus enhance
the growth with x → 0.

From the above estimations we can conclude, that the finite terms in the gluon splitting
function, which were considered to give subleading contributions, have to play a key role in
cancelling the anomalous growth. Indeed, looking at the plots in figure 5, we can see that
there is no significant small x enhancement, if we consider the splitting function (9). The term
1/(1− z) turns into z/(1− z) vanishes in the limit z → 0 effectively suppressing the growth.

However, what we observe is a small counter intuitive enhancement for small x even after
including the finite term. For large x we see a suppression similar to the one observed for the
BFKL with the kinematical constraint (figures 3 and 4).

The k distributions of CCFM solutions with (8) and (9) splitting functions have a similar
slope. The slope is somehow steeper than the one of the kinematically constraint BFKL equation
(figure 3 and 4) since it behaves like a power ∼ 1/|k|1.5 till it reaches the magnitude of the initial
condition at around |k| ∼ 100 GeV .

The difference in the steepness of the slopes of the BFKL and the CCFM equations could be
the origin of differences between various observables obtained from their Green functions, such
as the diffusion pattern and angular correlations, studied in [39].
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The p dependence

In the figure 8 we plot the p dependence of the the solution of the CCFM equation with the
splitting function (9) for 3 different fixed values of x and k.

Each of the distributions in figure 8 peaks at p ≃ |k|. This is because when |k| ≃ p the
biggest contribution to the integral on the right hand side of the CCFM equation comes from
the region in which q̄ is small. One can explain the distributions using a simple physical picture.
If p represents the hard scale in a form of transversal momentum, then in the case when p ≃ |k|
the emitted transversal momentum |q| ≃ |q̄| is small and there is an enhancement by a factor
1/|q̄|.

There is also phase space enhancement for the q̄ integration due to θ(p− z|q̄|) for p < |k| in
the CCFM kernel (4). Due to the kinematical constraint there is no phase space enhancement
for p > |k|, but only suppression by the Sudakov form factor which explains the fall of the Green
function.

4.3 The KGBJS equation and its modifications

Let us look now at figures 6 and 7. It is better to look first on the k distributions. We observe
the predicted matching of the CCFM and the KGBJS solution at |k| = Q0 = 1 GeV . For
|k| > Q0 = 1 GeV there is a suppression in a form of a dip. The dip ’lasts’ up to value
|k| ≃ 10 GeV .

In the point |k| = Q0 = 1 GeV there is almost no difference between the x distributions of
the CCFM and the KGBJS solutions. Different situation is in |k| = Q0 = 1.26 GeV where we
observe similar suppression of growth as for the BK equation, figures 2 and 4.

All the observed effects are similar for both choices of the splitting function (8) and (9)
(figures 6 and 7).

4.4 The modified KGBJS equation

In this subsection we are going to discuss the comparison of the solution of the CCFM equa-
tion (4) with our new modified KGBJS equation (12) both with the splitting function (9).

Let us take a look on the plots in the figure 9. We will first discuss the k distributions.
We can see that the modification really breaks the condition (11), so the solutions of the linear
equation and the non-linear equation are not equal at the soft cut-off Q0. We do not observe a
formation of the dip as for the original KGBJS equation (figures 6 and 7). The behaviour of the
suppression for small k is similar to the one generated by the BK equation (figures 2 and 4).

The natural behaviour of the solution of (12) is reflected also in the x distributions. The
difference between x distribution of the CCFM and the non-linear equation gets smaller for |k|
getting bigger.

We have also compared the p dependence of above mentioned solutions plotted in the figure 8.
Except of suppression for the non-linear equation, which is getting smaller with bigger |k| and
x, there is no significant difference in the p dependence of the solutions.

5 Summary and Conclusions

We have numerically solved the BFKL and the BK equations with and without the kinematical
constraint. We have obtained solutions of different versions of the CCFM equation. We have
also solved the KGBJS equation [1] and its different modifications.

We have studied the transversal momentum k and x distributions of the obtained solutions
analytically and also numerically.
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We confirm the previous suggestions to include finite terms into the gluon splitting function
used in the CCFM equation and find their inclusion very important.

We find that solutions of the CCFM and the KGBJS equations match at the soft cut-off
which implies no suppression in the point where the CCFM solution has the biggest magnitude.

We suggest a modification of the KGBJS equation which removes the non-physical behaviour
of the solutions of the original equation near the soft cut-off. We demonstrate the improvement
by a numerical solution of the modified equation.

The resulting suppression due to the non-linear term in the solution of the new equation (12)
is a result of complicated interplay between values of the Green function in the small x and also
large x phase space regions.

Although the investigation presented here shows, that it is not easy to find a natural model
for a non-linear extension of the CCFM equation, we recommend the improved equation (12)
to be a subject of more studies of inclusive and exclusive observables.
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Figure 2: The x and k distributions for BK – red dashed line and BFKL – blue solid line.
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Figure 3: The x and k distributions for BFKL – blue solid line and BFKL with the kinematical
constraint – red dashed line.
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Figure 4: The x and k distributions for BK – black dashed line and BFKL – red solid line with
the kinematical constraint.
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Figure 5: The x and k distributions of different versions of the CCFM equation. The lines corre-
spond to the CCFM equation with the splitting function: (7) – black dashed line, (8) – blue dotted
line and (9) – solid red line.
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Figure 6: The x and k distributions of different versions of the CCFM equation – the solid black
line compared with the KGBJS equation (10) – the blue dashed line. Both of them with the splitting
function (9).
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Figure 7: The x and k distributions of different versions of the CCFM equation – the solid black
line compared with the KGBJS equation (10) – the blue dashed line. Both of them with the splitting
function (8).
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Figure 8: The p dependence of the solution of the CCFM equation – the black solid line – compared
with the modified KGBJS equation (12) – the blue dashed line. For fixed x and k with the splitting
function (9).
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Figure 9: The x and k distributions of different versions of the CCFM equation – the solid black
line – compared with the modified KGBJS equation (12) – the blue dashed line. Both of them with
the splitting function (9).
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