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Abstract 

A repeatable separation of polystyrenes according to MW, from 1920 to 520000 

u.m.a, has been obtained under adsorption conditions using a method that 

comprises the use of Lichrospher HPTLC plates, and a controlled, isocratic 

elution with a 78:22 (v/v) mixture of cyclohexane (Cy)-tetrahydrofuran (THF). 

Likewise, UV-densitometric quantification of polystyrenes in mixtures can be 

achieved, by an intra-plate or an inter-plate procedure, using the corresponding 

polystyrene calibration curve. In the case or overlapped, unresolved peaks, an 

average curve of the corresponding polystyrenes can be used. 

Migration of polystyrenes strongly varies with slight variations in the relative 

proportion of Cy and THF in the mobile phase. This allows different ranges of 

MW to be separated as a function of mobile phase composition. Other factors 

influencing repeatability have been identified.  

Some reasons have been advanced to explain the current lack of activity in the 

research on polymer characterization by HPTLC. Old literature results 

concerning polystyrene separation have also been discussed in the light of 

modern HPTLC instrumentation.  

Developed method provides similar information on Molecular Weight 

Distribution (MWD) to that obtained using Gel Permeation Chromatography 

(GPC). Advantages and limitations of HPTLC for obtaining polymer MWD have 

also been discussed. 
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1. Introduction 

Polymers have been characterized for a long time using Size-Exclusion 

Chromatography (SEC) which is referred as to Gel Permeation 

Chromatography (GPC) when is carried out using organic eluants [1,2]. This 

liquid chromatography-based technique provides Molecular Weight Distributions 

(MWD) of polymers and polymer mixtures. In GPC, polymers are mostly 

separated by molecular exclusion, in order of decreasing MW: the first to be 

eluted is the highest MW. 

The variety of stationary phases, the different pore size distributions, and their 

possible combinations makes this technique has been firmly implanted in the 

analysis of polymers, despite its low resolution and reproducibility [3]. For 

complex polymer mixtures, GPC provides curves of molecular size distribution 

rather than discrete, separated peaks. However, obtaining accurate information 

from these curves is sometimes complicated. Table 1 shows a summary of 

advantages and drawbacks of GPC. 

In its present state of development, High-Performance Thin-Layer 

Chromatography (HPTLC) is a mature technique particularly well suited to the 

analysis of low volatile, complex mixtures [4]. Despite this, application of HPTLC 

to the analysis of plastics and polymers, as with petroleum, has been scarce [5].  

In the field of polymers, developed HPTLC applications involve the detection, 

isolation and identification of additives. In contrast, very few methods have been 

developed or applied in the last years related to the characterization of 

polymers themselves [5]. We face a paradox: whilst a reliable HPTLC 

technology is currently available but there is almost no research activity in 

polymer characterization, a number of theoretical and experimental applications 
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were proposed in the 70-90s [6-18], when TLC technology had not yet reached 

an adequate stage of development. 

Separations of different polymers according to MW were obtained under 

conditions of adsorption and Size-Exclusion TLC in silica gel. This was due to 

the pioneering work of Belenkii et al. [9-14], and other groups [6-9,15-19]. 

Research also involved the development of a theoretical frame to relate polymer 

migration to different physico-chemical parameters of the analytical silica gel 

system, including determination of an exclusion-adsorption critical transition 

point [9,10].  

From a practical approach, results were probably constrained by technology at 

the time. Existing sample application, development systems, and plate 

manufacturing and control technologies provided lower repeatabilities, and 

larger and less well formed peaks than those obtained using current technology. 

Another factor that contributed decisively to a no further use of the results was 

the lack of availability of scanning densitometers which have allowed detection 

of separated peaks, and subsequent quantification to be carried out.  

Therefore it seemed interesting to examine this issue, revisiting and re-

evaluating the potential of current HPTLC technology to characterize polymers. 

We present in this paper an HPTLC method based on adsorption which 

provides information on MWD in mixtures of polystyrenes (PS), in a similar way 

to that obtained using GPC. A special emphasis has been stressed in 

repeatability of separation and quantitation by densitometry. Instead of trying to 

understand how the variables that influence the system work with regard to a 

mechanistic approach, we have preferred to directly use those variables as 

allowed by current technology, and look for repeatable and quantitative 

conditions that allow us to carry out a separation. 
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In a first attempt, the study of PS has several advantages. As their separation 

by GPC has been well studied under different conditions, we have been able to 

compare the effect of the technology used here, under similar or equivalent 

experimental conditions to those used in the past. Likewise, PS are easily 

soluble, are of narrow MWD and have been used for calibrating GPC 

chromatograms of other polymers which have broader distributions and 

solubility problems.  

Finally, comparative pros and cons of GPC and HPTLC for MWD are also 

discussed. 

2. Experimental 

2.1. Standards and samples 

Polystyrene standards (PSs) of different molecular weights from Fluka 

Analytical (Buchs, Switzerland), Agilent Tecnologies (Palo Alto, California), and 

Waters (Milford, Massachusetts) were used in this work (Table 2). They are of 

narrow MWD, with Mw / Mn < 1.09 where Mw is the weight-average molecular 

weight, and Mn the number-average molecular weight. 

Mixtures of these standards  were used to evaluate separation (Table 3) and 

quantitativity (Tables 4 and 5) of the method.  

2.2. Solvents 

HPLC-grade cyclohexane (Cy, 99.7 %), from Scharlab (Barcelona, Spain), and 

stabilisant-free tetrahydrofuran (THF, 99.9 %), from Panreac (Barcelona, Spain) 

were used. Prior to use in HPTLC runs, THF was eluted through an activated 

carbon-filled LC column (dimensions), using an iron (II) sulfate indicator, to 

avoid formation of peroxydes. THF was further kept under nitrogen. 

2.3. Planar Chromatography experiments.  
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2.3.1. Plates.  

High-performance silica gel HPTLC plates and Lichrospher plates, on glass, 10 

x 20 cm; 3-10 µm particle size; 60 Å pore size; 0.2 mm thick layer, F254), from 

Merck (Darmstadt, Germany) were used.  

Before sample application, plates were developed (90 mm) with THF using a 

conventional, vertical tank, and subsequently activated 30 min at 105 ºC using 

the Camag TLC Plate Heater III (Camag, Müttenz, Switzerland). 

2.3.2. Sample application.  

Samples were freshly prepared before each HPTLC run. They were dissolved in 

a 1:1 v/v mixture of Cy and THF. They were applied onto the plate using the 

Automatic TLC Sampler 4 (ATS4) from Camag, as 4 mm bands. Typically, up to 

31 samples were applied on the same plate with a distance of 2 mm between 

tracks. Two tracks were always kept free of sample application: a solvent blank 

run, and a blank run. 

The first application position was 10 mm (x coordinate), and the distance from 

lower edge of plate was 10 mm (y coordinate)   

Typical sample load and application volumes were between 0.1-1.2 μg and 0.1-

1.2 μL, respectively. 

2.3.3. Chromatographic development. 

An Automatic Multiple Development (AMD2) system (Camag, Müttenz, 

Switzerland) was used for chromatographic development using a one-step, 

isocratic elution with Cy:THF (78:22, v:v). The total migration distance (m.d.) 

was 80 mm. 

The mobile phase was prepared and the plate introduced into a vacuum-tight 

chamber. Chromatography was monitored, and the run stopped when the 
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selected developing distance was reached. The remaining solvent was 

withdrawn from the chamber by vacuum, and the plate was completely dried.  

Repeatability of AMD2 was ± 0.45 mm. 

Retention properties of polystyrenes are given as m.d., in mm, or Rf 

(polystyrene migration distance / solvent front migration distance). 

2.3.4. UV Scanning densitometry.  

A TLC Scanner 3 (Camag, Müttenz, Switzerland) was used in UV mode (190 

nm). Camag WinCats software was used for controlling ATS4, AMD2 and TLC 

Scanner 3, and also for data acquisition and treatment. 

3. Results 

3.1. Separation of polystyrenes according to their MW 

A repeatable separation of polystyrenes from 1920 to 520000 u.m.a has been 

obtained by the described HPTLC method using Lichrospher plates, elution with 

Cy:THF 78:22 v/v, and other conditions described in Experimental. Figure 1A 

shows superposed HPTLC chromatograms of studied PS, injected as individual 

standards under the above conditions.  

Migration of polystyrenes strongly varies with slight variations in the relative 

proportion of cyclohexane and THF in the mobile phase. This allows different 

ranges of MW to be separated as a function of mobile phase composition. 

Therefore, PS from 1920 to 17300 have been separated by elution with Cy:THF 

90:10 v/v; and from 1920 to 52100 using Cy:THF 85:15 v/v. A further increase 

of relative proportion of THF to 30% favoured PS standard migration but did not 

improve separation. When THF reached 50 %, PS standards were eluted with 

the solvent front. 

Figure 1B shows the corresponding log Mw vs Rf curve which relates elution 

properties of a given polymer with its MW for the different mobile phases used. 
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This curve gives similar information that those obtained from GPC in HPLC 

mode. 

3.2. Repeatability of separation 

Repeatability has been studied for the elution conditions that gave the wide 

range of separation for PS standards:  Cy:THF 78:22 v/v.  

Rf and m.d. values for each PS, individually injected using the procedure 

described in Experimental, are given in Table 2 together with repeatability 

parameters. Standard deviation (σstd), variability of Rf and of migration distance 

(± mm) for a given confidence interval, C.I. (95%) are also given in this Table, 

where 

C.I. = Xm ± t σstd n
-0.5 

where Xm is the migration distance average, t is the Student distribution, and n 

is the number of measurements. They have been obtained by applicating three 

replicates in different plates and different days. Results show that the procedure 

has an adequate repeatability.  

The lower the MW, the higher the Rf (or the longer the polymer m.d. with regard 

to the application point, Rf=0). Therefore, separation is governed by adsorption. 

In order to evaluate whether a matrix effect may exist, Rf of each polymer in 

mixtures was compared to those obtained as individual pure standard. As 

shown in Table 3, Variations in Rf (ΔRf) are within the experimental interval of 

variability for C.I. 95%. Therefore, matrix effects can be excluded. In this 

context, Figures 2 and 3 shows the HPTLC chromatograms corresponding to 

the separation of polystyrenes in the studied mixtures using Cy:THF 78:22 v/v 

elution system.  
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Repeatability has been tested for a time after the study by random analyses of 

mixtures of PS. The results obtained are found mostly within the variability 

interval provided by the given confidence interval. 

3.3. Detection, calibration and quantitative analysis 

UV signal provided at 190 nm is adequate for PS detection. In general, 

responses (expressed as Area counts per mass unit) decrease as MW 

increases. Thus, for example, response for PS 524000 is half that of PS 1920.  

The possibility of doing quantitative analyses was assessed by using samples 

that include mixtures of two to five polystyrenes, which have known 

compositions (Table 4). Proposed mixtures include polystyrenes in different MW 

ranges. HPTLC chromatograms of mixtures in which PS are baseline-resolved 

(Figure 2) or unresolved (Figure 3) are shown. Their quantitative results are 

given in Tables 4 and 5, respectively. 

Different calibration procedures have been tested for each polymer:  

- intra-plate calibration : the corresponding polystyrene standards (n=5 per 

polymer) have been applied on the same plate that the corresponding problem 

mixtures 

- inter-plate calibration: points from intra-plate calibration have been 

accumulated for each polymer to additional 5 points obtained from different 

plates. In total, n=10 per polymer 

Therefore two calibration curves per polymer have been obtained, and 

polystyrenes have been analyzed in the mixtures using their corresponding 

curves.  

Some of the proposed mixtures show polystyrenes with close MW values, which 

show unresolved peaks (Figure 3). As in the case of GPC-chromatograms, 

HPTLC chromatograms of complex polystyrene mixtures and mixtures 
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containing polymers with close MW do not usually show discrete peaks but 

rather curves of MW-distribution, with peaks which are not resolved to baseline. 

In these cases, two procedures of quantification have been tried here: 

- resolving the overlapped peaks by a valley-to-baseline integration (dashed 

lines in Figure 3), using for quantitative analysis the corresponding calibration 

curve of each polymer (○ in curves in Figure 3) 

- integrating the whole area of the overlapped peaks, and using an average 

calibration curve (continuous line in curves of Figure 3) which come from the 

accumulation of the points corresponding to the curves of each polymer.  

A similar approach was also used in the case of mixture 7 (Figure 2). Although 

in this case there are no overlapped peaks, the peak at 10 mm covers in fact 

two peaks corresponding to PS-215000 and PS-524000 which have been 

integrated as a single peak. Therefore an average calibration curve has been 

used with calibration points coming from both polymers. 

Tables 4 and 5 gives the normalized results of quantitative analyses using the 

above-mentioned calibration procedures compared to the known weight 

percentages of the polymers in each mixture. Results indicate that a 

quantitative approach is possible. Results show that both intra- (n=5) and inter-

plate (n=10) procedures can be used. This suggests that an accumulation of 

calibration points from different plates may even improve quantitative results. 

The calibration approach for unresolved peaks which uses an average 

calibration curve from a joint integration of the overlapped peaks (Table 5) 

provides percentages close to reference values although it shows a tendency to 

underestimate low-MW and overestimate high-MW polystyrenes. The higher 

deviation with regard to known weight percentages has been found in mixture 7 

which contains the higher-MW polystyrenes. 
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4. Discussion 

4.1. Issues related to the described method 

We have confirmed that little differences in the composition of mobile phase 

provide important differences in polystyrene migration. This was pointed out 

elsewhere [15]. In our opinion, this influence, although important, may have 

been overestimated in the literature. It was reported, for example, that a 

difference of 1 % in ketone, in a ternary Cy-benzene-acetone eluant, provided 

important changes in migration [10]. Some of results obtained in the past which 

concerns variations in elution conditions might be due to an inadequate 

repeatability of runs derived from existing technology rather than to small 

differences in composition. 

Both factors may have contributed to discredit results in the past. 

Anyway, with the current state of HPTLC technology it seems possible to 

control the different steps of chromatographic process and obtain repeatable 

methods. According to our results, experimental conditions must be strictly 

followed so that migration of the polymers are within the variability of the 

method. 

The key points to obtain a repeatable method have been: the use of 

Lichrosphere HPTLC-plates; the use of freshly-prepared samples; and the need 

of a controlled elution.  

The use of Lichrospher plates has been crucial for method repeatability. Their 

use provided better peaks, and had a clear impact on the inter-plate 

repeatability of the experiment probably due to the shape of particles, and pore 

and particle size distribution. Under the described conditions, Lichrospher plates 

provide separation by adsorption and not by exclusion.  
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We were unable to obtain a repeatable method for PS using conventional HPLC 

silica gel plates. In five runs, migration distances were out of the variability 

interval. Likewise, we noticed in some runs exclusion effects from a given 

polystyrene MW (Figure 4). Previous works showed that the adsorption 

mechanism is overlapped by the size-exclusion mechanism for PS [8,15].  

Samples must be freshly prepared and should not be stored in the freezer. 

Elution should be carefully controlled. Separation in conventional, vertical tank 

was studied before the use of AMD. Although some separation was obtained, 

peaks were wide and the baseline, deficient. It was also noticed that the 

saturation of the vertical tank had no effect on PS migration, unlike what was 

suggested elsewhere [19]. 

An adequate separation has been obtained using AMD. It provides a better 

baseline and narrower peaks than those obtained from a conventional tank. 

Likewise, AMD allows a tighter control of the elution conditions, with controlled 

drying and vacuum steps. Probably, other automatic chambers, simpler and 

cheaper than AMD and not necessarily based on multiple development, may be 

used to obtain repeatable and well-formed peaks [4]. In principle, AMD was 

selected because of the possibility of using elution gradient. However, it was not 

possible to separate PS according to their molecular weight using a Cy-THF 

gradient.  

On the other hand, adsorption has been favoured against exclusion. Plate 

heating prior to chromatographic development was done to reduce moisture 

and increase the active groups in the adsorption of silica gel surface. 

The possibility of separating PS up to 500000 using Cy-containing binary 

mixtures was pointed out elsewhere using silica gel with pore diameter of 110 Å 
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or higher [19]. In this study we have used silica gel with 60 Å pore diameter 

which is the most common pore size in commercially available silica gel plates.  

Separations of polystyrenes up to 1800000 with Cy-toluene-methyl ethyl ketone 

mixtures were also reported elsewhere [12], using silica gel with 500 Å pore 

diameter. However, we were unable to reproduce this separation using a 60 Å 

sorbent. 

Results suggest that quantitative analysis of mixtures of polystyrenes by HPTLC 

is possible and open the door to a reliable polymer caracterization using 

HPTLC. Calibration can be done either in the same plate or by accumulation of 

calibration points from different plates. 

Polystyrene MWD derived from GPC chromatograms are usually interpreted in 

comparative or semiquantitative terms, for a comparative evaluation of 

production or operation parameters. This information can be also provided by 

HPTLC chromatograms.  

4.2. HPTLC as a potential technique for MWD of polymers 

In general, advantages of HPTLC are derived from the inherent ones of a planar 

technique with regard to those of HPLC (column technique) which can be 

summarized as follows [4]: 

- the whole sample is scanned. This provides a complete, quantitative analysis  

- rapid, flexible analysis with low solvent consumption 

- analysis in parallel; samples and standards can be run on the same plate 

under the same conditions 

- non-destructive analysis. The plate is an storage device that can be re-

scanned or re-developed under different conditions 

While these advantages are important, the main ones in our case are its rapidity 

(several minutes for sample application, 15 min elution, scanning in seconds) 
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and high sample throughput (30 samples per plate under the described 

conditions). Likewise, there is no need for detector stabilization, and the 

complete process is flexible and semi-automatized.  

Several labels have been unfairly branded to HPTLC. HPTLC has become, in 

its present state of development, a repeatable technique which provides 

adequate separation and quantitative analysis when calibration is properly 

performed. Likewise, the availability of a commercial TLC-MS interphase and 

the possibility of performing mass spectra on the plate surface (MALDI, DART, 

etc. [20]) can open the door to a further development of hyphenation with other 

techniques.  

However, HPTLC has limitations with regard to the obtention of polymers MWD. 

The potential use of silica gel by exclusion is limited because practically only 

one pore size distribution is commercialized.  

In the context of adsorption, results show that different ranges of MW can be 

separated by using different elution sequences. The application of the 

developed HPTLC method to polymers other than PS should be done by using 

other stationary phases. In the past, a study on PS separation using reversed-

phase HPTLC was reported [18]. However, we were unable to reproduce the 

described separation. Other works should be revisited using the modern HPTLC 

technology. Likewise, other recently developed stationary phases should also 

be tested. 

5. Conclusions  
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Captions for Figures 

Figure 1.- HPTLC-UV chromatograms (A) of PS, injected as pure standards: 

PS-1920 (a), PS-4330 (b), PS-5460 (c), PS-6890 (d), PS-10850 (e), PS-17300 

(f), PS-27500 (g), PS-52100 (h), PS-62300 (i), PS-96000 (k), PS-215000 (m), 

PS-524000 (n). (Lichrospher plates; 78:22 v/v Cy:THF as mobile phase; see 

other conditions in Experimental). 

Log Mw vs Rf calibration curves (B) for the above polystyrenes under different 

elution conditions using Cy:THF proportions (v/v): 78:22 (), 85:15 (Δ), 90:10 (ж) 

Figure 2.- HPTLC-UV chromatograms of PS mixtures with baseline resolved 

peaks: mixture 1 (A), mixture 5 (B), mixture 7 (C), mixture 3 with detail of 

calibration curve for each peak, using  replicate samples (D). Composition of 

mixtures are given in Table 4. (Lichrospher plates; 78:22 v/v Cy:THF as mobile 

phase). Equations: inter-plate PS-17300 (∆): y= 17246 x + 766.4 (r2= 0.9667); 

PS-4330 (○): y= 23118.5 x + 762.3 (r2= 0.9971)  

Figure 3.- HPTLC-UV chromatograms of PS mixtures with details of averaged 

calibration curves for unresolved peaks: mixture 2 (A), mixture 4 (B), mixture 6 

(C). Composition of mixtures are given in Table 4. (Lichrospher plates; 78:22 v/v 

Cy:THF as mobile phase). Example of equations for (A): inter-plate PS-6890 

(ж): y= 21936 x + 995.8 (r2= 0.9799 ); PS-4330 (□): y= 23118.5 x + 762.3 (r2= 

0.9971). Average curve (-): y= 22527 x + 879.1 (r2= 0.9878) 

Figure 4.- HPTLC chromatograms showing mixed adsorption / exclusion effects 

on elution of PS, applied as pure standards: PS-1920 (a), PS-4330 (b), PS-

5460 (c), PS-6890 (d), PS-10850 (e), PS-17300 (f), PS-27500 (g), PS-52100 

(h), PS-62300 (i), PS-96000 (k), PS-215000 (m), PS-524000 (n), PS-1056000 

(o), PS-2522000 (p). Conditions: silica gel HPTLC plates; 76:24 v/v Cy:THF as 

mobile phase; see other conditions in Experimental  
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Table 1.- Advantages and drawbacks of GPC 
 
Advantages Drawbacks 

- Diversity of columns (phase, distributions 
of pore size, connections between columns) 

- Low resolution. Distribution curves rather 
than discrete peaks are obtained 

- Coupling to mass selective detectors 
(viscosity, LALLS, etc.) 

- Low inter-lab reproducibility 3 

- Application to a wide range of polymers - Difficulty in obtaining accurate data from 
chromatograms (artefacts in connections 
between columns and between detectors, 
problems associated to particular detectors 
such as differential refractometry, etc). 

- Possibility of working at temperature - Adsorption phenomena 

 
 
 

 

Table



Table 2.- Molecular Weight averages of standards, migration values (Rf, m.d.)a and repeatability 

parameters 

 

Polystyrene 
(PS) Mwb (g mol-1) Mnc (g mol-1) Mw/Mne Rf 

Rf 
variability 

() 

m.d. 
(mm) 

m.d. 
variability 

(mm) 

PS-1920 1920 1770 1.08 0.82 0.3 67.6 1.6 
PS-4330 4330 4160 1.04 0.63 0.6 54.1 4.1 
PS-5460 5460 5301 1.03 0.55 0.6 48.9 4.1 
PS-6890 6890 6720 1.03 0.49 0.5 44.5 3.6 
PS-10850 10850 10637 1.02 0.40 0.5 37.8 3.7 
PS-17300 17300 16900 1.03 0.30 0.6 31.2 3.7 
PS-27500 27500 26600 1.04 0.21 0.5 24.4 3.6 
PS-52100 52100 50750 1.03 0.11 0.4 17.6 2.7 
PS-62300 62300 60600 1.03 0.08 0.3 15.8 1.8 
PS-96000 96000 92000 1.04 0.06 0.2 13.9 1.4 
PS-215000 215000 203000 1.06 0.03 0.2 11.9 1.0 
PS-524000 524000 502000 1.04 0.01 0.1 10.9 0.5 
PS-1056000 1056000 (Mpd)  1.03 0.01 0.1 10.7 0.5 
PS-2522000 2522000 2437000 1.03 0.01 0.1 10.7 0.6 

 

a using Cy:THF (78:22, v:v), other conditions in experimental, b 

i

i

i

i

W

Mw
M





,    

c
 

i

i

i

ii

W

Mn
W

M





 

d 
Mp is the molecular weight corresponding to that of the maximum of the GPC chromatographic peak 

(provided by the manufacturer), 
e
 polydispersity 
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Table 3.- Composition of studied PS mixtures and migration data of standards using the 

elution sequence Cy:THF  (78:22, v:v) 

 
  Rf  

Mixture 
Mw (g mol-1) In mixture 

As pure 
standard 

Rf 

Mixture 1 PS-5460 0.58 0.55 0.03 

PS-17300 0.35 0.30 0.05 

PS-52100 0.15 0.11 0.04 

Mixture 2 PS-4330 0.58 0.63 0.05 

PS-6890 0.35 0.49 0.14 

PS-27500 0.15 0.21 0.06 

Mixture 3 PS-4330 0.64 0.63 0.01 

PS-17300 0.38 0.30 0.08 

Mixture 4 PS-4330 0.59 0.63 0.04 

PS-6890 0.51 0.49 0.02 

PS-17300 0.35 0.30 0.05 

Mixture 5 PS-10850 0.42 0.40 0.02 

PS-27500 0.22 0.21 0.01 

PS-62300 0.09 0.08 0.01 

Mixture 6 PS-10850 0.37 0.40 0.03 

PS-27500 0.19 0.21 0.02 

PS-62300 0.08 0.08 0.00 

PS-96000 0.05 0.06 0.01 

Mixture 7 PS-1920 0.80 0.82 0.02 

PS-5460 0.55 0.55 0.00 

PS-52100 0.10 0.11 0.01 

PS-215000 
0.02 

0.03 0.01 

PS-524000 0.01 0.01 
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Table 4.- HPTLC-based quantitative analysis of baseline-resolved PS mixtures using intra-

plate and inter-plate calibration procedures 

 
   wt % by HPTLC method 

Mixture Mw (g mol-1) wt %  
Intra-plate 
calibrationa 

Inter-plate 
calibrationa 

Mixture 1 PS-5460 37.4  36.2 

PS-17300 32.8 n.m.b 35.4 

PS-52100 29.8  28.4 

Mixture 3 PS-4330 43.8 36.4 34.6 

PS-17300 56.2 63.6 65.4 

Mixture 5 PS-10850 28.6 24.8 23.3 

PS-27500 30.8 31.4 30.6 

PS-62300 40.6 43.8 46.1 

Mixture 7 PS-1920 21.2 15.2 16.2 

PS-5460 10.3 6.4 6.7 

PS-52100 28.0 26.1 24.8 

PS-215000 
40.5 52.3c 52.3c 

PS-524000 

 
a Normalized results 

b Not measured 

c Integration was performed as a single peak. Calibration using an average curve from both 

polymer’s points (see text) 

 

Table



Table 5.- HPTLC-based quantitative analysis of baseline-unresolved PS mixtures 
 

   wt % by HPTLC method 

Mixture Mw (g mol-1)  wt %  
Intra-plate 
calibrationa 

Inter-plate 
calibrationa 

Inter-plate 
calibration using 
average curveb 

Mixture 2 PS-4330 39.8  37.1 
81.8 

PS-6890 44.5 n.m. c 43.9 

PS-27500 15.7  19.0 18.2 

Mixture 4 PS-4330 26.3 24.9 23.8 
68.2 

PS-6890 44.0 43.1 43.6 

PS-17300 29.7 32.0 32.6 31.8 

Mixture 6 PS-10850 10.6 9.4 8.2 7.6 

PS-27500 38.2 39.1 37.8 35.1 

PS-62300 34.8 35.1 35.8 
57.3 

PS-96000 16.4 16.4 18.2 

 
a Normalized results 

b Whole integration of overlapped peaks was used. Calibration was performed using an 

average curve (see text) 

c Not measured 
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