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Abstract

We compute analytically the tree-level annihilation rates of a collection of non-
relativistic neutralino and chargino two-particle states in the general MSSM, in-
cluding the previously unknown off-diagonal rates. The results are prerequisites
to the calculation of the Sommerfeld enhancement in the MSSM, which will be
presented in subsequent work. They can also be used to obtain concise analytic
expressions for MSSM dark matter pair annihilation in the present Universe for a
large number of exclusive two-particle final states.
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1 Introduction

The presence of dark matter (DM) in the Universe is one of the few empirical evidences
that the current Standard Model of particle physics cannot be complete. The dark
matter density ΩDM = 0.111(6)/h2 (h = 0.710(25)) [1] is now determined very precisely
from various observations. While the particle nature and genesis of the dark matter relic
density remains unknown, it is intriguing that it can be explained naturally through
thermal production and freeze-out of a particle with electroweak interaction strengths
and mass of order of the TeV scale. In this simple scenario freeze-out occurs when
the Universe cools below the mass of the particle and the DM particles become non-
relativistic, with typical velocities of order v ∼ 0.2 c. The DM pair-annihilation cross
section, which determines the relic density, can then be expanded in a Taylor series in
v, and keeping only the first two terms is usually a very good approximation:

σann vrel ≈ a+ b v2rel . (1)

Here vrel = |~v1 − ~v2| denotes the relative velocity of the annihilating particles in their
center-of-mass frame. Furthermore, when dark matter particles pair-annihilate in the
present Universe, potentially revealing themselves in cosmic ray signatures, the typical
velocities are v ∼ 10−3c, and the annihilation occurs even deeper in the non-relativistic
regime.

Among the many models that contain weakly interacting dark matter candidates at
the TeV scale, the minimal supersymmetric standard model (MSSM) has been studied
most extensively, and for quite some time [2,3]. Several programs are available [4,5] which
compute the annihilation cross section of the lightest neutralino, together with possible
co-annihilation processes, in the MSSM numerically in the tree-level approximation. The
observed relic density then provides a valuable constraint on the parameter space of the
model, complementary to those from collider physics. Given the precision of ΩDM, it
seems desirable to compute the cross section parameters a, b at the one-loop level. This,
however, is a daunting task due to the complexity of complete one-loop calculations in the
MSSM, and the number of individual annihilation processes that add up to the total cross
section. Nevertheless, such calculations have been performed for certain scenarios where
QCD corrections are the most important ones [6–8], or in certain approximations [9,10].
The calculation of the full electroweak corrections has been started [11, 12].

There exist situations when quantum corrections become exceedingly large and can-
not be neglected. In non-relativistic scattering and annihilation of DM particles this
happens when the Coulomb (Yukawa) force generated by massless (massive) particle
exchange between the DM particles becomes strong at small relative velocities, a phe-
nomenon also known as “Sommerfeld effect”. In the MSSM this situation is naturally
realized when the lightest neutralino (LSP) has mass above one TeV, in which case the
neutralino is almost a pure gauge eigenstate, and degeneracies and co-annihilation effects
in the neutralino-chargino sector are generic. The Sommerfeld effect in the MSSM was
first studied in the wino- and Higgsino-limit by Hisano et al. [13,14], and subsequently in
“minimal dark matter models” [15] that resemble the MSSM in the above-mentioned lim-
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its. In these heavy dark matter scenarios the annihilation cross section can be enhanced
by more than an order of magnitude, since the typical distance of DM particles at small
velocity is within the long-range part of the Yukawa potential generated by exchange
of the electroweak W and Z gauge bosons. The suggestion [16] that the Sommerfeld
enhancement due to the exchange of a new, light particle may generate an excess in the
cosmic ray positron spectrum has generated a resurge of interest in this effect.

The present work aims at improving the calculation of the dark matter annihilation
cross section and relic abundance by including the Sommerfeld radiative corrections in
the general MSSM, beyond the previously considered wino- and Higgsino-limit. The idea
is that even when the Sommerfeld correction is not of order one, unlike in scenarios of
TeV scale LSPs, it may still constitute the dominant radiative correction in a significantly
larger portion of the MSSM parameter space. Related work has been undertaken recently
in [17–20]. Our approach differs from or extends these works in several aspects.

• We use the non-relativistic effective theory approach to separate the short-distance
annihilation process from the long-distance Sommerfeld effect, which is encoded in
the matrix elements of local four-fermion operators. The approach is very similar
to the NRQCD treatment of quarkonium annihilation [21], except that we deal with
scattering states of several species of particles interacting through the electroweak
Yukawa force.

• Since electroweak gauge boson exchange may change the two-particle state (for
instance, scatter a neutralino pair into a pair of oppositely charged charginos), the
annihilation process is described by a matrix in the space of two-particle states,
which is not diagonal. The off-diagonal terms cannot be obtained from the tree-
level cross sections computed by numerical programs, and have not been considered
previously, except in the simplified situation of the strict wino- and Higgsino-
limit [13–15, 20].

• We compute the expansion of the short-distance annihilation cross section ana-
lytically rather than numerically. The only systematic previous analytic calcula-
tion [22] refers to the annihilation of two LSPs, but does not include co-annihilation
channels and the above-mentioned off-diagonal annihilation matrix entries.

• The non-relativistic annihilation cross section can be organized in a partial wave
expansion. The leading-order term a in (1) contains the leading-order contributions
from S-wave annihilations, whereas the second term b encodes both S- and P -wave
annihilation contributions. The Sommerfeld correction factor is different for the
S- and P -wave contribution. Its consistent implementation therefore requires a
separation of b into its two components, which has not been done before, but can
be implemented relatively easily within our analytic framework.

The present paper is devoted to the analytic calculation of the dominant S-wave annihi-
lation coefficient a and to outlining the general framework. The subleading term b and

2



the calculation of the Sommerfeld effect in the MSSM with almost degenerate neutralinos
and charginos will be presented in [23] and [24], respectively.

The outline of this paper is as follows. In Sec. 2 we introduce the effective La-
grangian framework and the method of calculation. In the non-relativistic MSSM the
short-distance annihilation process is encoded in the Wilson coefficient of a four-fermion
operator. We introduce the required notation and discuss the expansion in the mass
differences of the nearly degenerate neutralino and chargino species. Sec. 3 discusses
various examples of annihilation cross sections obtained from our analytic calculation.
In this section we also perform checks by comparing some diagonal annihilation matrix
entries with numerical cross sections and with [22]. The complete analytic results are
rather lengthy. We provide them in appendix A together with the rules to construct the
MSSM coupling factors of the various diagrams. In Sec. 4 we explain why it is convenient
to employ Feynman gauge despite the fact that this requires the computation of many
unphysical final states. We also illustrate the importance of including the off-diagonal
annihilation matrix entries in the computation of the Sommerfeld-corrected cross section
on the example of a heavy wino-like MSSM parameter point. We summarize in Sec. 5.

2 Effective Lagrangian and method of calculation

2.1 The Lagrangian in the effective theory

We describe the kinematics and interactions of neutralinos and charginos moving at small
velocities within a non-relativistic effective theory (EFT), the non-relativistic MSSM
(NRMSSM), that contains only nearly on-shell non-relativistic chargino and neutralino
modes, while the effects from higher mass and virtual modes are encoded in the Wilson
coefficients of higher-dimensional operators. The neutralinos and charginos described in
the EFT approach are those whose masses are nearly degenerate with the mass mLSP of
the lightest neutralino. The corresponding effective Lagrangian is given by

LNRMSSM = Lkin + Lpot + δLann + higher order terms . (2)

The kinetic part of the Lagrangian for n0 ≤ 4 non-relativistic neutralino species and
n+ ≤ 2 non-relativistic chargino species is given by

Lkin =
n0∑

i=1

ξ†i

(
i∂t − (mi −mLSP) +

~∂ 2

2mLSP

)
ξi

+
∑

ψ=η,ζ

n+∑

j=1

ψ†
j

(
i∂t − (mj −mLSP) +

~∂ 2

2mLSP

)
ψj . (3)

The fields ξi and ψj = ηj , ζj represent the non-relativistic two-component spinor fields
of non-relativistic neutralinos (χ0

i ) and charginos (χ−
j and χ+

j ), respectively. This EFT
setup with one reference mass scale, mLSP, is suited for the description of (neutralino)
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dark matter annihilation processes in the present Universe as well as for the computation
of dark matter co-annihilation reactions with further nearly mass-degenerate neutralinos
and charginos in the context of the relic abundance calculation. The EFT framework
can easily be extended to the case where the non-relativistic particle species are (nearly)

mass-degenerate with respect to two distinct scales m
(1,2)
ref , with m

(1)
ref ≪ m

(2)
ref . In that

case, the mass differences (mk −mLSP) in (3) have to be replaced by mk −mref, k, where

each mref, k is given by one of the scales m
(1,2)
ref . In that way, an entirety of hydrogen-like

two-particle states can be described, within which a set of light, nearly mass-degenerate
and another set of heavy, nearly mass-degenerate particles exists. Our results for the
absorptive part of the Wilson coefficients, specified in Sec. 2.2 and given in the appendix,
cover both the cases of a set of particles nearly mass-degenerate with the neutralino LSP
and a set of non-relativistic hydrogen-like neutralino and chargino systems.

The term Lpot summarizes (instantaneous) Yukawa- and Coulomb potential inter-
actions that arise through the exchange of SM gauge bosons and Higgs particles. The
generic form of Lpot reads

Lpot = −
∫
d3~r Φ†

kl(x,~r ) Vijkl(r) Φij(x,~r ) (4)

where the fields Φij describe a two-body state of the form χ0
iχ

0
j , χ

∓
i χ

±
j , χ

0
iχ

±
j or χ±

i χ
±
j

and a sum over repeated indices is implicit. Vijkl(r) thus represents the potential inter-
actions among two-body states (ij) and (kl) in configuration space, with ~r the spatial
3-vector denoting the relative distance in the two-body system. The explicit form of the
potentials between neutralino and chargino species for a given MSSM point will be given
elsewhere [24].

2.2 Basis of the dimension-6 operators in δLann

Within the NRMSSM, we aim to describe neutralino and chargino pair-annihilation pro-
cesses into two-particle final states of Standard Model (SM) and (light) Higgs particles,
which are not non-relativistic. The theory will contain effects from virtual and higher-
mass Higgs and SUSY particle modes as well, encoded in the EFT operator-coefficients
and parameters. The specific case of resonant s-channel pair-annihilation reactions can
be covered by adding a resonance width in the analytic results that we give in the
appendix. Yet we exclude the case of accidental mass degeneracies of further SUSY
particles with the set of non-relativistic neutralinos and charginos.

The SM and light Higgs particle final states in the neutralino and chargino pair-
annihilation reactions are not described within the non-relativistic effective theory, as
they are characterized by velocities outside the non-relativistic regime. However, since
the hard inclusive pair-annihilation processes take place within distances of order 1/mLSP,
we can incorporate the short-distance annihilation rates of non-relativistic neutralinos
and charginos in the effective theory through the absorptive part of Wilson coefficients of
local four-fermion operators in δLann, following the approach of [21]. The full annihilation
rates in the non-relativistic effective theory are given by the absorptive part of the matrix
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σij |~vi − ~vj | =

∫
dPSAB

( ∑

e1, e2

i

j

e1

e2

XA

XB

) ( ∑

e3, e4

i

j

e4

e3

XA

XB

)
∗

= 2ℑ
( ∑

e1,..., e4

i

j

e1

e2

i

j

e4

e3

XA

XB

)

Figure 1: Diagrammatic picture for the relation among the annihilation amplitude and
the absorptive part of the corresponding forward scattering amplitude in presence of
long-range potential interactions.

elements of these four-fermion operators. While the matrix elements of the operators
themselves may encode long-distance effects, giving rise to Sommerfeld enhancements,
the contribution to the hard annihilation reaction factors out in the form of the Wilson
coefficient.

In contrast to the application of this formalism to quarkonium annihilation in QCD
[21], we are going to describe annihilations of scattering states instead of bound states
and allow for more than one non-relativistic particle species. The latter allows for the
possibility, that (long-range) potential interactions (indicated by the grey oval in Fig. 1)
lead to transitions from the initially incoming two-particle state χiχj to another two
nearly on-shell non-relativistic two-particle state χe1χe2 prior to the annihilation reaction.
Unitarity relates the phase space integrated product of annihilation amplitudes χiχj →
XAXB in the first line of Fig. 1 to the absorptive part of the forward scattering amplitude
χiχj → χiχj depicted in the second line, where XAXB generically denotes a pair of SM
and light Higgs particles. Note that due to the presence of the long-range potential
interactions, the hard annihilation reaction is determined by the absorptive part of the
χe1χe2 → χe4χe3 amplitude, as can be seen in the second line of Fig. 1. It is worth to
stress, that the χe1χe2 particle pair is not necessarily equal to the χe4χe3 pair, such that
apart from true forward scattering reactions χe1χe2 → χe1χe2, we encounter off-diagonal
χe1χe2 → χe4χe3 reactions as well.

In this paper we are concerned with the calculation of the absorptive part of χe1χe2 →
XAXB → χe4χe3 1-loop reactions, encoding the hard tree-level χe1χe2 and χe4χe3 anni-
hilation processes. The full annihilation rates, including the long-range effects shall be
studied elsewhere [24]. To determine the absorptive part of the Wilson coefficients, we
evaluate the absorptive part of the hard χe1χe2 → χe4χe3 1-loop scattering amplitude
within the MSSM and match the result with the tree-level matrix element of four-fermion
operators contained in δLann in the effective theory. At tree-level the annihilation rates
can be given separately for every final state XAXB, since the tree-level processes are
free from infrared divergences. In higher-orders the formalism applies to the inclusive
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neutral reactions single-charged reactions double-charged reactions

χ0χ0 → χ0χ0 χ0χ+ → χ0χ+ χ+χ+ → χ+χ+

χ0χ0 → χ−χ+ χ−χ0 → χ−χ0 χ−χ− → χ−χ−

χ−χ+ → χ0χ0

χ−χ+ → χ−χ+

Table 1: Collection of all χe1χe2 → χe4χe3 scattering reactions. The labels ei on the
fields χei are suppressed in the above table. If χei represents a field χ0

ei
, the label ei can

range over ei = 1, . . . , n0, whereas ei = 1, . . . , n+ for the case of a χ±
ei
field.

annihilation cross section [21], or to suitably defined infrared-safe final states.
The leading-order contributions in δLann are given by dimension-6 four-fermion opera-

tors. For instance, the specific dimension-6 four-fermion operator that encodes scattering
of a non-relativistic incoming neutralino pair χ0

1χ
0
1 in a 1S0 partial-wave state into an

outgoing χ0
1χ

0
1 state in the same 1S0 partial-wave configuration is given by

δLd=6
ann ⊃ 1

4
fχ

0χ0→χ0χ0

{11}{11} (1S0) ξ†1 ξ
c
1 ξc†1 ξ1 , (5)

where the spinor ξc is the charge conjugate of ξ, ξc = −iσ2 ξ∗, and σ2 specifies the
second Pauli matrix. Note that ξc†1 ξ1 represents the Lorentz invariant bilinear built from
the non-relativistic particle field ξ1, which destroys the incoming state of two identical
χ0
1 particles. The factor 1/4 denotes a normalization factor which compensates the

symmetry factors arising from the number of identical contractions in the tree-level

χ0
1χ

0
1 → χ0

1χ
0
1 matrix element. The symbol fχ

0χ0→χ0χ0

{11}{11} (1S0) denotes the Wilson coefficient
corresponding to the dimension-6 operator. We can generalize the above expression to
include all possible spin-0 and spin-1 S -wave four-fermion operators at leading order in
the non-relativistic expansion. Written in a compact form, the contribution of dimension-
6 operators in δLann reads

δLd=6
ann =

∑

χχ→χχ

∑

s=0,1

1

4
fχχ→χχ

{e1e2}{e4e3}
(
2s+1SJ

)
Oχχ→χχ

{e4e3}{e2e1}
(
2s+1SJ

)
, (6)

where J = s for the case of S-wave operators considered here. The first sum, taken over
all non-relativistic 2 → 2 neutralino and chargino scattering processes χχ→ χχ, implies
the consideration of neutral scattering reactions as well as single-charged and double-
charged processes. The χχ→ χχ reactions that we take into account are summarized in
Tab. 1. The spin of the incoming and outgoing two-particle states can be either s = 0 or
s = 1, such that the terms in the above Lagrangian δLd=6

ann describe 1S0 and 3S1 partial-
wave scattering reactions. The fχχ→χχ

{e1e2}{e4e3} (
2s+1SJ) denote the Wilson coefficients, that

correspond to the four-fermion operators Oχχ→χχ

{e4e3}{e2e1} (
2s+1SJ). The indices e1 and e2 (e3

and e4) refer to the neutralino or chargino species of the incoming (outgoing) particles,
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χe1χe2 → χe4χe3 Oχχ→χχ

{e4e3}{e2e1} (
1S0) Oχχ→χχ

{e4e3}{e2e1} (
3S1)

χ0 χ0 → χ0 χ0 ξ†e4 ξ
c
e3

ξc†e2 ξe1 ξ†e4~σξ
c
e3

ξc†e2~σ ξe1
χ0 χ0 → χ−χ+ η†e4 ζ

c
e3

ξc†e2 ξe1 η†e4~σζ
c
e3

ξc†e2~σ ξe1
χ−χ+ → χ0 χ0 ξ†e4 ξ

c
e3

ζc†e2 ηe1 ξ†e4~σξ
c
e3

ζc†e2~σ ηe1
χ−χ+ → χ−χ+ η†e4 ζ

c
e3

ζc†e2 ηe1 η†e4~σζ
c
e3

ζc†e2~σ ηe1

χ0χ+ → χ0χ+ ξ†e4 ζ
c
e3

ζc†e2 ξe1 ξ†e4~σζ
c
e3

ζc†e2~σ ξe1
χ−χ0 → χ−χ0 η†e4 ξ

c
e3

ξc†e2 ηe1 η†e4~σξ
c
e3

ξc†e2~σ ηe1

χ+χ+ → χ+χ+ ζ†e4 ζ
c
e3

ζc†e2 ζe1 ζ†e4~σζ
c
e3

ζc†e2~σ ζe1
χ−χ− → χ−χ− η†e4 η

c
e3

ηc†e2 ηe1 η†e4~ση
c
e3

ηc†e2~σ ηe1

Table 2: Four-fermion operators for leading-order S-wave χe1χe2 → χe4χe3 transitions.
The indices ei, i = 1, . . . , 4 on the χ-fields are suppressed in the first column. In addition
to the specified operators there are redundant ones, which are obtained by interchanging
the field-operator symbols ξ, η or ζ (but not the labels) at the first and second and/or the
third and fourth position in the operator Oχχ→χχ. For example, for 1S0 χ

0χ+ → χ0χ+

operators one of the three classes of field-interchanged operators is given by the 1S0

χ+χ0 → χ+χ0 operators ζ†e4 ξ
c
e3
ξc†e2 ζe1.

and take the values 1 to n0 for neutralino species and 1 to n+ for chargino species.
Note that the order of the labels ei on the Wilson coefficients and the operators is not
accidental in (6). The labels on the operators are given in the order, in which the
field operators with label ei occur in the operator. In case of the corresponding Wilson
coefficients, the indices refer to the actual scattering reaction χe1χe2 → χe4χe3 , that is
described by the operators. For the basis of the operators see Tab. 2. The χ in the labels
χχ → χχ of the operators and Wilson coefficients in (6) should indicate the particular
particle species χ0 and χ±, whose χe1χe2 → χe4χe3 scattering reaction is described, see
Tab. 1. A summation over the indices ei is implicit in (6). The normalization factor
1/4 in (6) ensures that the tree-level transition matrix element for 1S0-wave scattering
is given by

〈χlχk|
∫
d4x

∑

χχ→χχ

1

4
fχχ→χχ

{e1e2}{e4e3}(
1S0) Oχχ→χχ

{e4e3}{e2e1}(
1S0)(x) |χiχj〉|tree

= (2π)4δ(4)(pin − pout) 2 f
χχ→χχ

{ij}{lk}(
1S0) (7)

for all χiχj → χlχk reactions at leading order in the non-relativistic effective theory. In
(7) we have assumed that the incoming and outgoing two-particle states χiχj and χlχk
both reside in a 1S0-wave configuration with normalised spin state 1√

2
(| ↑↓ 〉 − | ↓↑ 〉). A
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similar relation for the tree-level transition matrix element of 3S1-wave scattering in the
effective theory holds for all χiχj → χlχk reactions. Note that in order to derive (7) one
has to take into account relations among Wilson coefficients of different operators, which
will be deduced in the next paragraph.

There are redundancies in δLd=6
ann , (6), as several operators can describe one specific

scattering reaction with a χe1 and a χe2 (χe4 and χe3) particle in the initial (final) state.
This redundancy is associated with operators that arise from interchanging the single-
particle field operators at the first and second and/or third and fourth position in a
given Oχχ→χχ. The corresponding Wilson coefficients are related to each other, as they
encode the same information on a given specific scattering reaction. Consequently, the
redundancy manifests itself in symmetry relations among the Wilson coefficients under
exchange of the labels e1 ↔ e2 and/or e4 ↔ e3. These relations read

f
χe2

χe1
→χe4

χe3

{e2e1}{e4e3}
(
2s+1SJ

)
= ηs f

χe1
χe2

→χe4
χe3

{e1e2}{e4e3}
(
2s+1SJ

)
,

f
χe1

χe2
→χe3

χe4

{e1e2}{e3e4}
(
2s+1SJ

)
= ηs f

χe1
χe2

→χe4
χe3

{e1e2}{e4e3}
(
2s+1SJ

)
, (8)

with

ηs =

{
1 for s = 0

−1 for s = 1
. (9)

To exemplify the origin of the first relation in (8), let us consider the terms in δLd=6
ann that

account for S -wave χ0χ0 → χχ reactions at leading order in the non-relativistic velocity
expansion:

∑

e1,...,e4

1

4
fχ

0χ0→χχ

{e1e2}{e4e3}
(
2s+1SJ

)
O(s)χχ

{e4e3} ξ
c†
e2

Γ(s) ξe1 , (10)

where the operator O(s)χχ
{e4e3} stands for the two-field operator that creates the outgoing

state, and Γ(s) is given by Γ(s=0) = 12×2 and Γ(s=1) = ~σ in case of 1S0 and
3S1 operators,

respectively. Using the definition of the spinor ξc we can write

ξc†e2 Γ(s) ξe1 = ξc†e1 σ
2Γ(s)⊤σ2 ξe2 = ηs ξ

c†
e1

Γ(s) ξe2 , (11)

with ηs defined as in (9). After renaming the labels e1 and e2, the terms in (10) can be
written as

∑

e1,...,e4

1

4
ηs f

χ0χ0→χχ

{e2e1}{e4e3}
(
2s+1SJ

)
O(s)χχ

{e4e3} ξ
c†
e2

Γ(s) ξe1 .

Comparing to the original expression in (10), we arrive at the relation

fχ
0χ0→χχ

{e2e1}{e4e3}
(
2s+1SJ

)
= ηs f

χ0χ0→χχ

{e1e2}{e4e3}
(
2s+1SJ

)
. (12)

This equation as well as the more comprehensive relations in (8) imply that the Wilson
coefficients of 1S0 operators have to be symmetric under the exchange e1 ↔ e2, whereas
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Wilson coefficients of 3S1 operators are antisymmetric under e1 ↔ e2. The same state-
ment applies to the exchange e3 ↔ e4 in case of outgoing states. In processes with
identical incoming or outgoing particles, the above relations in (8) imply the vanishing
of the 3S1 Wilson coefficients. This rephrases the well-known fact that a pair of identical
spin-1/2 particles cannot build a 3S1 state.

Finally, a further property of theWilson coefficients under the exchange of the particle
labels is directly inherited from the hermiticity of the non-relativistic Lagrangian:

fχχ→χχ

{e1e2}{e4e3}
(
2s+1SJ

)
=
[
fχχ→χχ

{e4e3}{e1e2}
(
2s+1SJ

)]∗
. (13)

2.3 Matching condition

The Wilson coefficients of the four-fermion operators in δLann are determined by the
matching condition

A(χiχj → χlχk) |MSSM, perturbative =
∑ 1

4
fχχ→χχ

{e1e2}{e4e3}(
2s+1LJ )

× 〈χlχk| Oχχ→χχ

{e4e3}{e2e1}(
2s+1LJ) |χiχj〉 |NRMSSM, perturbative . (14)

For this equation to hold, we have to use the same (non-relativistic) normalization of the
incoming and outgoing states in both the full theory and the NRMSSM. Here we will
determine the contributions to the Wilson coefficients that describe the tree-level anni-
hilation reactions into exclusive SM and light Higgs two-body final states XAXB, which
we shall denote as f̂χχ→XAXB→χχ(2s+1LJ). The unitarity of the S-matrix at the diagram-
matic level establishes a relation among the tree-level annihilation rate for χiχj → XAXB

and the imaginary part of the 1-loop forward-scattering reaction χiχj → XAXB → χiχj:

∫
[dPSAB] |A(χiχj → XAXB)|2 = 2 ℑ [A(χiχj → XAXB → χiχj)] (15)

= 2
∑ 1

4
ℑ
[
fχχ→XAXB→χχ

{e1e2}{e4e3} (2s+1LJ )
]
〈χiχj |Oχχ→χχ

{e4e3}{e2e1}(
2s+1LJ)|χiχj〉 .

We generalize this and define the absorptive part of amplitude A(χiχj → XAXB → χlχk)
as well as the absorptive part of the Wilson coefficients in the following way:

∫
[dPSAB] A(χiχj → XAXB)×A(χlχk → XAXB)

∗

= 2 [A(χiχj → XAXB → χlχk)] |absorptive

= 2
∑ 1

4
f̂ χχ→XAXB→χχ

{e1e2}{e4e3} (2s+1LJ) 〈χlχk|Oχχ→χχ

{e4e3}{e2e1}(
2s+1LJ )|χiχj〉 , (16)

where we have introduced the notation

f̂χχ→XAXB→χχ

{ij}{lk} (2s+1LJ) = f χχ→XAXB→χχ

{ij}{lk} (2s+1LJ) |absorptive . (17)

9



With this definition, the absorptive part of a Wilson coefficient that encodes a χiχj →
χiχj forward-scattering reaction coincides with its imaginary part.

We make use of the defining relations to determine the absorptive part of the Wil-
son coefficients f̂χχ→XAXB→χχ from the product of the full-theory tree-level annihilation
amplitudes integrated over the final state particles’ phase-space, as given in the first
line of (16). Technically this is achieved by considering all 1-loop scattering amplitudes
χiχj → XAXB → χlχk with a specific SM or Higgs particle-pair XAXB in the interme-
diate state and by applying the Cutkosky rules to the XA and XB propagators. The
resulting expression coincides with the first line of (16). To determine the absorptive
part of the Wilson coefficients, the expression has to be expanded in the non-relativistic
momenta of the external particles as well as in their mass differences and an appropriate
spin-projection has to be performed.

2.4 Expansion in mass differences in δLann

To simplify the notation, we shall replace the indices (e1, e2, e3, e4) by (1,2,3,4) through-
out this section. Further, we shall adopt the convention that particles 1 and 4 in the
reaction χ1χ2 → χ4χ3 share the same reference mass scale m, while particles 2 and 3
have masses closer to the reference scale m. Introducing two distinct mass scales for
the particle species allows us to consider pair annihilations of two particles with sim-
ilar mass (m ∼ m), but also pair annihilation of a hydrogen-like two-particle system
where one of the particles is much lighter (though still heavy enough to be considered
as non-relativistic). According to these assignments, we define

m1 = m− δm , m2 = m− δm ,

m4 = m+ δm , m3 = m+ δm , (18)

with

m =
m1 +m4

2
, m =

m2 +m3

2
, (19)

such that the mass differences read

δm =
m4 −m1

2
, δm =

m3 −m2

2
. (20)

The results for the Wilson coefficients presented in the appendix adopt the definitions
(18–20). If for a given process χiχj → χlχk it turns out that the reverse condition,
mi ∼ mk ∼ m and mj ∼ ml ∼ m, is more meaningful given the actual values of the
masses, one can make use of the symmetry properties (8) to relate the Wilson coefficients
for χiχj → χlχk to those of χiχj → χkχl, which would then conform to the prescription
above, i.e. m would be equal to the average of the mass of the particle associated with
field 1 and the mass of the particle associated with field 4, m = (mi +mk)/2. Note that
the mass differences δm and δm in (20) obviously vanish in case of diagonal scattering
reactions χ1χ2 → χ1χ2, such that m = m1 and m = m2 in that case.

10



The absorptive parts of the Wilson coefficients are obtained by matching amplitudes
for the process χ1χ2 → χ4χ3 with on-shell external states. This implies that the energy-
conservation relation in the center-of-mass system,

√
s = E1(~p

2) + E2(~p
2) = E4(~p

′2) + E3(~p
′2) , (21)

with Ei(~p
2) =

√
m2
i + ~p 2 and ~p (~p ′) the incoming (outgoing) particles’ momentum in

the center-of-mass system, is fulfilled. Using (18–20) and M ≡ m+m, the expansion of
the energy-conservation relation (21) for non-relativistic momenta ~p 2 and ~p ′2 reads

√
s =M − δm− δm+

~p 2

2µ
+ . . . =M + δm+ δm+

~p ′2

2µ
+ . . . , (22)

where µ = mm/M and terms of order ~p 4/µ3 and (δm/M × ~p 2/µ) have been dropped.
This can be rewritten as

~p ′2

2µ
=

~p 2

2µ
− 2δm− 2δm+ . . . . (23)

From (23) we see that a consistent expansion which treats both ~p 2 and ~p ′2 as small
quantities of the same order requires that the mass differences δm, δm are also formally
considered of order ~p 2/µ in the expansion of the amplitudes. Note that an expansion
in mass differences is only required for the off-diagonal scattering reactions where the
incoming and outgoing χχ states are different, as δm = δm = 0 for χ1χ2 → χ1χ2

reactions.
The amplitude for a generic process χ1χ2 → XAXB → χ4χ3 then depends on the

hard scales (m, m) and on the small scales (~p 2/µ, ~p ′ 2/µ, ~p · ~p ′/µ, δm, δm) ∼ O(µv2),
where v stands for the relative velocity in the two-particle system. In the following we
enumerate the steps to obtain the absorptive part of the Wilson coefficients from the
process χ1χ2 → XAXB → χ4χ3, including the subleading O(v2) terms, which will be
presented in [23].

1. The absorptive part of the 1-loop scattering amplitude χ1χ2 → XAXB → χ4χ3

with a SM or Higgs final state XAXB is computed by applying the Cutkosky rules
to the XA and XB propagators. The result is written in terms of the mass scales
introduced above, and expanded in the small scales retaining terms up to O(v2).

2. To O(v2) the result contains scalar products with at most two powers of ~p and ~p ′.
For the spin-1 configuration, the scalar products also involve the spin-polarization
vectors ~n and ~n ′ of the incoming (χ1χ2) and outgoing (χ4χ3) states, respectively.
The generic form of the result for spin-1 incoming and outgoing states reads

{
c0(

3S1) + c1(
3S1) δm+ c2(

3S1) δm+ c3(
3S1) ~p

2 + c4(
3S1) ~p

′ 2 } ~n · ~n ′

+ c5(
3P0) (~p · ~n) (~p ′ · ~n ′) + c6(

3P1) [p, n]
k [p′, n′]k + c7(

3P2) p
{i nj} p ′{i n′j}

+ c8(
3S1,

3P1)n
k [p′, n′]k + c9(

3P1,
3S1) [p, n]

kn′ k

11



+ c10(
3S1,

3D1) p
′{i p′j} ni n′j + c11(

3D1,
3S1) p

{i pj} ni n′j , (24)

where we have introduced the notation [a, b]k ≡ εijkaibj and a{i bj} ≡ aibj + ajbi −
2~a ·~b δij/3, corresponding to J = 1 and J = 2 Cartesian tensors, respectively. The
spin-polarization vector ~n is introduced by replacing the spinor matrix [ξξc†]ij of an
incoming two-neutralino state by 1√

2
~n ·~σij. Similar replacements apply to outgoing

two-particle states and states involving charginos. The coefficients ci are functions
of m and m. The first term, c0, gives the leading-order contribution, where all the
others count as O(v2). We have further specified the quantum numbers 3LJ of each
term, which matches the angular-momentum configuration of the incoming state,
equal to that of the outgoing state except for the c8−11 terms (the first quantum
number between parentheses refers then to the incoming state, the second to the
outgoing one). For spin-0 incoming and outgoing states, the result simplifies to

c0(
1S0) + c1(

1S0) δm+ c2(
1S0) δm+ c3(

1S0) ~p
2 + c4(

1S0) ~p
′ 2 + c5(

1P1) ~p · ~p ′ .
(25)

We have not considered the possibility of spin-0 to spin-1 transitions between in-
coming and outgoing states in the hard annihilation process, though the transitions
3S1 → 1P1 and 3P0,1 → 1S0,

1P1 are also allowed at O(v) by angular-momentum
conservation. Such spin-changing transitions in the hard annihilation part of the
full forward scattering amplitude (see Fig. 1) will also require spin-changing poten-
tial interactions in the long-range part, in order to bring the spin of the two-particle
state after annihilation back to the spin of the (left-most) incoming state. Since
the non-relativistic spin-changing potentials carry an additional v-suppression, such
transitions are only relevant for the calculation of the annihilation rates at O(g2v2).
At present we ignore O(v2) effects that arise from subleading non-Coulomb (non-
Yukawa) potentials and consider only those from the short-distance annihilation.
Likewise, the terms c8−11 included in (24) imply a change of the orbital angular
momentum which must be compensated by a potential interaction which is also
v-suppressed in the non-relativistic limit, and can be ignored for our purposes.

3. By virtue of the energy-conservation relation (22), we rewrite powers of ~p 2 and ~p ′ 2

as

~p 2 =
1

2
( ~p 2 + ~p ′ 2 ) +

2mm

M
( δm+ δm ) + . . . ,

~p ′ 2 =
1

2
( ~p 2 + ~p ′ 2 )− 2mm

M
( δm+ δm ) + . . . , (26)

such that the coefficients multiplying ~p 2 and ~p ′ 2 become equal. This convention
is adopted in order that the Wilson coefficients of the dimension-8 operators with
derivatives also have the symmetry property (13) under the exchange of the in-
coming and outgoing states.
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4. Finally, the Wilson coefficients are identified by comparing the expanded expression
for the absorptive part of the amplitude A(χ1χ2 → XAXB → χ4χ3) with the
amplitude for the same process computed with the dimension 6 and dimension 8
EFT operators in δLann.

The explicit expressions for the leading-order S-wave coefficients are provided in the
appendix. While the Wilson coefficients refer to the inclusive annihilation rates, summed
over all accessible final states, the calculation is performed for individual final states,
which are therefore also given separately. Such final-state separated results should be of
interest to the calculation of primary decay spectra of dark matter annihilation in the
present Universe.

3 Results

We have performed a number of dedicated numeric and analytic checks of our results
for the absorptive parts of the Wilson coefficients. As these expressions also encode
the absorptive part of χe1χe2 → XAXB → χe1χe2 forward scattering reactions, which
are related to the tree-level annihilation cross section for χe1χe2 → XAXB processes
(see (15)), a comparison of the analytic non-relativistic approximation to the tree-level
annihilation cross section with results from a numeric code can be carried out for the
diagonal entries of the annihilation coefficients. We discuss this in Sec. 3.1.

In addition, we can relate our analytic expressions for partial-wave separated neu-
tralino LSP pair-annihilation cross sections to existing analytic results available in the
literature [13, 14, 22]. This will be briefly discussed in Sec. 3.2. No checks are available
in the general case for the off-diagonal entries of the annihilation coefficient matrix.

3.1 Numerical comparison with MadGraph

The expansion of the exclusive, spin-averaged center-of-mass frame χe1χe2 → XAXB

tree-level pair-annihilation cross section in the non-relativistic momentum ~p of the χei
particles is given by

σχe1
χe2

→XAXB vrel = f̂(1S0) + 3 f̂(3S1) (27)

+
~p 2

M2

(
f̂(1P1) +

1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2) + ĝ(1S0) + 3 ĝ(3S1)

)
+O(~p 4) .

Here vrel = |~ve1−~ve2| is the relative velocity of the χe1χe2 pair and ~vei denotes the velocity
of particle χei in the center-of-mass frame of the annihilation reaction. We have sup-

pressed the superscripts χe1χe2 → XAXB → χe1χe2 on the Wilson coefficients f̂ in (27),
where these expressions explicitly refer to the exclusive (tree-level) annihilation rates.
Further note that (27) contains not only the leading-order S-wave Wilson coefficients
f̂(2s+1SJ) with spin configuration s = 0, 1 of the incoming two-body system, but also
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includes P -wave and next-to-next-to-leading order S-wave coefficients (denoted with ĝ).
For analytic results on those coefficients we refer the reader to [23].

In the non-relativistic limit the relation between the relative velocity vrel and the
particle momentum ~p in the center-of-mass frame of the χe1χe2 annihilation reaction is
approximated by

vrel = |~ve1 − ~ve2 | = |~p |
(
me1 +me2

me1me2

+O(~p 2)

)
. (28)

Together with (27), this relation allows us to express the first two coefficients, a and b,
in the Taylor expansion of the χe1χe2 → XAXB center-of-mass frame annihilation cross
section with respect to the relative velocity,

σχe1
χe2

→XAXB vrel = a+ b v2rel + O(v4rel) , (29)

in terms of the partial-wave separated Wilson coefficients f̂χe1
χe2

→XAXB→χe1
χe2 (2s+1LJ)

and ĝχe1
χe2

→XAXB→χe1
χe2 (2s+1LJ). The coefficient a is given by (leading order) S-wave

Wilson coefficients only,

a = f̂(1S0) + 3 f̂(3S1) . (30)

The coefficient b receives both P -wave and next-to-next-to-leading order S-wave Wilson
coefficient contributions,

b =
m2
e1
m2
e2

M2 (me1 +me2)
2

(
f̂(1P1) +

1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2)

+ ĝ(1S0) + 3 ĝ(3S1)
)
. (31)

The parameters a and b in (29) can also be extracted numerically from computer codes
that determine the center-of-mass frame annihilation cross sections. This is done by
considering the cross section’s behaviour for small relative velocities of the annihilating
particle pair and performing a parabola fit to σχe1

χe2
→XAXB vrel, which provides the

corresponding coefficients a and b. Note, however, that a separation of the coefficient b
into its constituent P -wave and next-to-next-to-leading order S-wave contributions, as
given in (31), cannot be achieved with the sole knowledge of the cross section. Likewise,
the separation of the S-wave contributions for the spin singlet and triplet configurations,
as performed in (30) and (31), requires intervention at the amplitude level, which is not
straightforward for the publicly available computer codes.

In the absence of threshold effects, resonances or enhanced radiative corrections,
the knowledge of the coefficients a and b in χe1χe2 annihilation processes allows for
a rather accurate calculation of the present-day relic abundance. Yet the separation
of b into P - and S-wave contributions is required for a consistent treatment of the
Sommerfeld enhancement at O(v2) because the long-range interactions responsible for
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the Sommerfeld effect depend on the quantum numbers of the incoming state. Our
analytic approach allows us to perform this separation by construction.

We perform a numeric check of our results for the χe1χe2 → XAXB tree-level anni-
hilation cross sections as given in (27) for all initial state two-particle pairs in Tab. 1
into all accessible SM and Higgs two-particle final states. We consider several MSSM
spectra, which we compute using the spectrum calculator SuSpect [25] and its imple-
mentation of the phenomenological MSSM, a model with 27 free parameters. For each
spectrum, we obtain the coefficients a and b in (30) and (31) from our analytic calcula-
tion, and compare them with the corresponding coefficients extracted purely numerically
using MadGraph [26] to calculate the cross sections. Our results for the coefficient a
agree with the corresponding numeric expression extracted from MadGraph data at
permille level. Similarly, we find agreement of the coefficients b derived with (31) and
extracted from MadGraph data at 1% up to permille level, where the level of agree-
ment slightly varies depending on the initial- and final-state particles. In addition, the
level of agreement on the parameter b depends on the interval of the vrel variable used
for the parabola fit to the MadGraph data, which for the numbers quoted above is
taken as vrel/c = [0, 0.4]. We find that the non-relativistic approximation is reliable
for single-particle velocities up to vei/c ∼ 0.3. For such velocities the absolute error
of the non-relativistic approximation to σχe1

χe2
→XAXB vrel with respect to the unex-

panded σχe1
χe2

→XAXB vrel expression lies within the level of a few percent. Therefore the
non-relativistic approximation has an acceptable accuracy for calculations in the early
Universe during the time of χei-decoupling, as the mean velocity of the χei in that period
was around vei/c ∼ 0.2.

Selected results of our numeric check with MadGraph are presented in Fig. 2 and
Fig. 3, where the underlying SUSY spectrum contains a wino-like neutralino LSP with
mass mχ0

1
= 2748.92GeV and an almost mass-degenerate wino-like chargino with mχ+

1
=

2749.13GeV. Fig. 2 shows tree-level annihilation cross sections that are relevant in the
calculation of the neutralino LSP relic abundance including co-annihilations. The plot
on the left-hand side displays the annihilation cross section times the relative velocity for
the double-charged annihilation reaction χ+

1 χ
+
1 →W+W+. For vrel/c . 0.4 our analytic,

non-relativistic approximation nicely reproduces the numeric, unexpanded cross section
σχ

+

1
χ+

1
→W+W+

vrel. Furthermore, as the absolute curvature in this S-wave dominated
reaction is rather small compared to the coefficient a, even the absolute error that one
would make in using the non-relativistic approximation instead of the full cross section
is only of the order of 2% for vrel/c ∼ 0.6. The coefficient b for this reaction, calculated
using (31), is given by bc2 = 1.27 · 10−27 cm3 s−1. Its P - and S-wave contributions are
of the same order and read bP c

2 = 2.95 · 10−27 cm3 s−1 and bSc
2 = −1.68 · 10−27 cm3 s−1.

The plot on the right-hand side in Fig. 2 depicts the single-charged annihilation reaction
χ0
1χ

+
1 → tb with (massive) fermionic final states. As it receives significant leading order

S-wave contributions, this annihilation process is also relevant in the neutralino LSP relic
abundance calculation including co-annihilation processes. Here it turns out that the b
coefficient is S-wave dominated, as the contributions from P -waves are suppressed by five
orders of magnitude. Let us stress that our analytic results for the Wilson coefficients
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Figure 2: Numeric comparison of the non-relativistic approximation (solid lines) to the
tree-level annihilation cross-section times relative velocity, σ vrel, for χ

+
1 χ

+
1 → W+W+

(left) and χ0
1χ

+
1 → tb (right) reactions with the corresponding unexpanded annihilation

cross section produced with MadGraph. The numeric errors on the latter are taken
to be σ vrel/

√
N , where N = 105 gives the number of events used in the MadGraph

calculation of each cross section value. vrel is given by vrel = |~ve1 − ~ve2| for the χe1χe2 →
XAXB process. The underlying MSSM spectrum is a wino-like neutralino LSP scenario,
generated with the spectrum calculator SuSpect. The masses of the χ0

1 and χ
+
1 are given

by mχ0
1
= 2748.92GeV and mχ+

1
= 2749.13GeV.

include the full mass-dependence of the final state particles and can be applied to MSSM
scenarios with flavour off-diagonal sfermion generation mixing as well.

The plots in Fig. 3 show that our results can not only be used to describe pair
annihilations of nearly mass-degenerate incoming particles χe1χe2 → XAXB, but also
apply to annihilations of a non-relativistic “hydrogen-like” χe1χe2 two-particle system
of non-degenerate-in-mass constituents. The plot on the left hand side in Fig. 3 corre-
sponds to the pair annihilation of a hydrogen-like χ0

1χ
0
3 state into a W+H− final state,

with mχ0
3
= 3061.99GeV, which is again dominated by leading-order S-wave contri-

butions. The curvature is driven negative by the next-to-next-to-leading order S-wave
contributions to the coefficient b, given by bSc

2 = −5.29 · 10−28 cm3 s−1. The P -wave
contributions are, however, of the same order and read bP c

2 = 1.30 · 10−28 cm3 s−1. The
right plot in Fig. 3 again refers to a hydrogen-like incoming two-body system, χ+

1 χ
−
2 ,

where in this case the annihilation χ+
1 χ

−
2 → H+H− is P -wave dominated: the P -wave

contribution to the coefficient b is given by bP c
2 = 2.48 · 10−31 cm3 s−1. Both the leading

and next-to-next-to-leading order S-wave contributions are strongly suppressed and of
the order O(10−33 cm3 s−1), respectively. The mass of the second chargino is given by
mχ−

2
= 3073.31GeV.

Generically, if the coefficient a in the expansion (29) is suppressed with respect to
the coefficient b, the curvature and hence the corresponding non-relativistic annihilation
process is P -wave dominated. This property derives from the fact, that the leading-
order coefficient a is related to the product of the leading order S-wave contributions
to the tree-level annihilation amplitude with its complex conjugate. As the next-to-
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Figure 3: Numeric comparison of the non-relativistic approximation (solid line) to σ vrel
for the two neutral hydrogen-like two-body states χ0

1χ
0
3 → W+H−(left) and χ+

1 χ
−
2 →

H+H−(right) to data produced with MadGraph. Again, we take the errors on the
MadGraph data to be σ vrel/

√
N , where N = 105 gives the number of events used

in the MadGraph calculation of each cross section value. The process on the right-
hand side is dominated by P -wave annihilations. The underlying MSSM spectrum is
the same as in the plots in Fig. 2, where the masses of the χ0

3 and χ−
2 are given by

mχ0
3
= 3061.99GeV and mχ−

2
= 3073.31GeV. The mass of the Higgs particles H± takes

the value mH± = 167.29GeV.

next-to-leading order S-wave contributions to the coefficient b result from the product of
leading order with next-to-next-to-leading order S-wave contributions in the annihilation
amplitudes, a suppressed coefficient a indicates a small next-to-next-to-leading order S-
wave contribution to the coefficient b as well.

3.2 Analytic checks

In [22], the authors performed a calculation of the neutralino relic abundance in minimal
supergravity models. In the appendix, they give a complete summary of all partial-wave
separated tree-level helicity amplitudes in χ0

1χ
0
1 → XAXB pair annihilations. These

comprehensive results for tree-level neutralino LSP pair-annihilations are also referenced
and (partly) quoted in the (SUSY) particle dark matter reviews [2] and [3], and easily
extend to χ0

e1
χ0
e1

→ XAXB annihilations. Hence, these results allow for an explicit ana-
lytic check of our expressions for the different partial-wave contributions to a neutralino
χ0
e1
χ0
e1

→ XAXB annihilation cross section. The partial-wave coefficients that can be
cross-checked in that way correspond to 1S0-,

3P0-,
3P1- and

3P2-wave χ
0
e1
χ0
e1

→ XAXB

annihilation reactions, and the leading order and next-to-next-to-leading order 1S0-wave
contributions can be compared separately. As already inferred from (8) and noted at
the end of Sec. 2.2, there are no 3S1 and 1P1 partial-wave contributions for annihila-
tion reactions of identical incoming particles, which is the case covered by [22]. Our
expressions for the partial-wave separated χ0

e1
χ0
e1

→ XAXB annihilation cross sections
into all possible SM and Higgs final states, obtained from (27), agree with the corre-
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sponding terms derived from the helicity amplitudes in [22]1. We note that our results
for annihilations into a pair of fermions include the case of flavour-off-diagonal sfermion
mixing as well, which is covered in [2] and [3], but was not yet included in [22], wherein
only flavour-diagonal right-left sfermion mixing was taken into account, although it is
straightforward to extend these results to the general flavour-off-diagonal case.

The comparison with analytic results for inclusive leading-order 1S0- and
3S1-wave

pair-annihilation reactions of a pure wino-like neutralino χ0
1 and its mass-degenerate

chargino partners χ±
1 into all possible SM and Higgs final states considered in Ref. [14]

provides another useful check of our results for the absorptive part of the Wilson coef-
ficients. The results in [14] comprise all possible neutral, as well as single and double
charged inclusive pair-annihilation reactions. The masses of the SM and Higgs particle
final states are set to zero, such that the corresponding results can be understood as the
leading-order term in an expansion inmSM/mχ0

1
andmHiggs/mχ0

1
. Furthermore, all super-

symmetric particle states heavier than χ0
1 and χ±

1 are treated as completely decoupled.
We agree with all results for the inclusive annihilation reactions given in [14]. In partic-
ular we agree with the results in [14] that refer to leading-order 1S0-wave χ

0
1χ

0
1 → χ−

1 χ
+
1

as well as χ−
1 χ

+
1 → χ0

1χ
0
1 reactions, which can be related to the Wilson coefficients

f̂χ
0
1
χ0
1
→χ−

1
χ+

1 (1S0) and f̂
χ−

1
χ+

1
→χ0

1
χ0
1(1S0), therewith permitting an explicit check of some of

our Wilson coefficients encoding off-diagonal scattering reactions.2

4 Discussion

4.1 Unitary vs Feynman gauge

The computation of the absorptive parts of the Wilson coefficients for forward-scattering
reactions, χe1χe2 → XAXB → χe1χe2 , has been performed using both the unitary and
Feynman gauge. The results agree numerically, which provides a further check of our
calculation. For the off-diagonal reactions, where the incoming and outgoing states are
different, the use of unitary gauge for final states with two massive vector bosons in
the final state introduces enhanced 1/M4

V and 1/M2
V terms proportional to the mass

differences between the incoming and outgoing particle species, which must cancel in
the final result. Similarly, a cancellation of 1/M2

V enhanced terms in off-diagonal rates

1 The only minor discrepancies that we find are related to P -wave contributions: our results for
3P1-wave χ0

e1
χ0
e1

→ H+H− annihilations correspond to a factor 2 instead of a factor 4 in the second

term of Eq. (A27b) in [22]. In the case of 3P0-wave χ
0
e1
χ0
e1

→ ff reactions, our results correspond to a

factor
√
2/3 instead of a factor

√
6 in the second term in the first line of Eq. (A29b) in [22].

2 The authors of Ref. [14] also provided analytic results for exclusive leading-order 1S0-wave anni-
hilation reactions for both the cases of a wino-like and a Higgsino-like neutralino LSP scenario in a
previous work [13]. We agree with the results for all diagonal χe1χe2 → χe1χe2 reactions. A typo in the
off-diagonal terms in Eq. (28) of [13] was fixed in [14], and the latter agrees with our findings. In the
Higgsino-like scenario, we get differing expressions for off-diagonal χ0

iχ
0
i → χ−

1 χ
+

1 and χ−

1 χ
+

1 → χ0
iχ

0
i

reactions in the case of W+W− and ZZ final states for both i = 1, 2: our results are a factor 4 and a
factor 2 larger, respectively, than the corresponding expressions presented in [13].

18



with one massive vector boson in the final state has to take place. However, for these
cancellations to occur, one has to also expand the SUSY mixing matrices systematically
in the gauge boson masses MV . In the same way, the mass differences between the
incoming and outgoing particles have to be expanded in MV and in the differences of
soft SUSY breaking parameters M1, M2, µ, if these differences are small. The latter
expansions must be done differently depending on how many neutralinos and charginos
are (nearly) mass-degenerate. The presentation of the results computed with unitary
gauge then has to distinguish among many cases and also consider diagonal and off-
diagonal terms separately, since for the diagonal terms it is desirable to keep the full mass
dependence as well as unexpanded mixing matrices. We thus find it more convenient
to use Feynman gauge for the calculation of the off-diagonal reactions, which allows to
keep the coupling matrices unexpanded and a more concise presentation of the results.
The price for this is that one must compute a large number of unphysical final states
containing pseudo-Goldstone Higgs and ghost particles, see Tab. 3.

4.2 Off-diagonal terms

Our framework aims to describe the annihilation of a pair of non-relativistic charginos
or neutralinos (χiχj) into SM and light Higgs particles pairs (XAXB) including potential
interactions between all nearly mass-degenerate χχ states, that can produce a Sommer-
feld enhancement of the rates. A contribution to these enhanced annihilation rates is
given by the imaginary part of the amplitude for a process of the type,

χiχj → . . .→ χe1χe2 → XAXB → χe4χe3 → . . .→ χiχj , (32)

where the intermediate states involved in the short-distance annihilation, χe1χe2 and
χe4χe3, can be different (off-diagonal annihilation terms), compare to Fig. 1 for a figu-
rative illustration. In a recent work [18], a general formalism which also aims to com-
pute the Sommerfeld-enhanced annihilation rates for a coupled system of neutralino and
chargino pairs, has been presented which, however, does not implement the possibility
of off-diagonal transitions in the hard part of the annihilation process. We show in this
section that the off-diagonal terms can indeed be relevant, and should be accounted for
in the calculation of the Sommerfeld enhanced rates.

Naively, if the final state XAXB is allowed for both χe1χe2 and χe4χe3 , given one par-
ticular partial-wave configuration of the two-body systems, the off-diagonal absorptive
amplitude can be of the same size as the diagonal absorptive amplitude, i.e.

∫
[dPSAB] A(χe1χe2 → XAXB)×A(χe4χe3 → XAXB)

∗

∼
∫

[dPSAB] |A(χe1χe2 → XAXB)|2 , (33)

since the phase-space integration involves very similar kinematics. An example of the
latter is given by the annihilation rates of wino-like neutralino dark matter, where the
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wino-like neutralino (χ0
1) is highly degenerate with its charged SU(2)L partners (χ±

1 ).
In such scenario the spin-0 χ0

1χ
0
1 system mixes with the χ−

1 χ
+
1 state through W -boson

exchange. The inclusive annihilation rates that have to be fed into the calculation of the
enhanced rates for the spin-0 χ0

1χ
0
1 channel in the wino limit read

[A(χ0
1χ

0
1 → χ0

1χ
0
1) (

1S0)]|abs = 2 f 00→00
{11}{11} (1S0) =

4πα2
2

m2
χ0

, (34)

[A(χ−
1 χ

+
1 → χ−

1 χ
+
1 ) (

1S0)]|abs = 2 f−+→−+
{11}{11} (1S0) =

3πα2
2

m2
χ0

, (35)

[A(χ0
1χ

0
1 → χ−

1 χ
+
1 ) (

1S0)]|abs = 2 f 00→−+
{11}{11} (1S0) =

2πα2
2

m2
χ0

, (36)

where α2 = g22/4π, g2 denotes the SU(2)L gauge coupling, and all gauge boson and
Higgs-particle masses are treated as massless. We see explicitly that the off-diagonal
term (36) is of the same order as the diagonal reactions (34–35).

In order to stress the importance of the off-diagonal annihilation terms, we have
computed the thermally averaged effective annihilation cross section, 〈σeffv〉, which en-
ters the Boltzmann equation for the calculation of the dark matter yield, for the same
wino-like scenario used for the checks with MadGraph presented in Sec. 3.1, and com-
pared to the results obtained when the off-diagonal terms are switched off by hand.
For the necessary formulas to compute 〈σeffv〉, including co-annihilation effects, we re-
fer the reader to [27, 28]. The annihilation rates have been calculated using (27) with
Wilson coefficients multiplied by the appropriate Sommerfeld factors computed solving
the coupled-channel Schrödinger equation for each partial-wave. The details about the
calculation of the Sommerfeld enhancement factors from the long-range interactions will
be given in a future publication [24].

We observe from Fig. 4 that removing the off-diagonal annihilation terms decreases
the thermally averaged cross section by a factor larger than 1.5 at small temperatures.
The corresponding thermal relic abundance of the dark matter in the present Universe,
ΩDMh

2, obtained by numerical integration of the Boltzmann equation, gets then increased
by approximately 20%, if the off-diagonal reactions are neglected. The latter represents
thus a sizeable effect which has to be accounted for in such a scenario.

5 Summary

The calculation of the thermal relic abundance of the lightest neutralino as a promising
dark matter candidate within the MSSM places strong bounds on the MSSM parameter
space, assuming that the observed cosmic dark matter has particle nature and is com-
posed solely of the neutralino LSP. Given the expected future experimental accuracy of
the measurement of the cosmic dark matter abundance observed today, radiative cor-
rections to the pure tree-level annihilation cross section, entering the relic abundance
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Figure 4: Thermally averaged effective annihilation cross section as a function of x =
mχ/T with fixed mχ = 2748.92 GeV, including the Sommerfeld effect (solid blue line).
The same quantity computed with the off-diagonal perturbative annihilation rates set to
zero is depicted by the dashed red line. The perturbative result is also shown as a dotted
line for comparison. The decrease of 〈σeffv〉 towards x ∼ 1 is due to large negative O(~p 2)
terms in the χχ annihilation rates, which are unphysical because the non-relativistic
expansion (27) for the annihilation rate becomes unreliable for large temperatures.

calculation as a central ingredient, should eventually be taken into account. The in-
clusion of 1-loop corrections to the annihilation cross section as well as the systematic
treatment of Sommerfeld enhancements, has recently been a field of elaborate studies
in the literature. Similarly, in the context of dark matter annihilation processes in the
present Universe relevant in indirect detection, the above types of radiative corrections
to the neutralino pair-annihilation cross section have been studied extensively.

In this paper we take advantage of the non-relativistic nature of the annihilating
neutralinos in the present Universe as well as during thermal dark matter decoupling
in the early Universe, which introduces a clear separation of energy scales in all anni-
hilation processes of interest. The latter property allows us to set up an effective field
theory (the NRMSSM) of non-relativistic neutralinos and charginos, that provides an
appropriate setup for a systematic investigation of radiative corrections to neutralino
LSP pair annihilation processes both in the present and the early Universe, taking co-
annihilations with nearly mass-degenerate neutralinos and charginos into account. As
a first step in the explicit construction of the NRMSSM we have derived fully analytic
formulas for the absorptive part of the Wilson coefficients of four-fermion operators in
the effective theory pertaining to S-wave annihilation, that encode the hard annihilation
rates of χe1χe2 → XAXB processes (see (6) and Tab. 2). Our results separately include
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leading-order 1S0- and
3S1-wave as well as all P -wave and next-to-next-to-leading order

S-wave Wilson coefficients and apply to general neutralino and chargino states in the
MSSM. Flavour off-diagonal sfermion generation mixing can be covered, and we keep the
full mass dependence of all SM and Higgs particles. Analytic results for the absorptive
part of leading order S-wave Wilson coefficients are presented in the appendix. Results
for P -wave and next-to-next-to-leading order S-wave coefficients will be given in a fu-
ture publication [23]. By taking into account charge-neutral annihilation processes of
a chargino pair as well as singly charged and doubly charged annihilation reactions of
non-relativistic neutralinos and charginos, we extend the analytic results for partial wave
decomposed neutralino LSP pair-annihilation cross sections given in the literature [22].

We have shown that the non-relativistic expansion to O(v2) produces accurate results
up to vrel ∼ 0.6, which is sufficient for relic density computations, and certainly for
dark matter annihilation in the present Universe. Our analytic results may therefore
substitute for time-consuming numerical computations.

Our aim is to apply the effective field theory formalism to the calculation of Sommer-
feld-enhanced (co-)annihilation cross sections in the neutralino relic abundance calcu-
lation. As scattering prior to the annihilation process can lead to transitions from an
incoming particle pair to another nearly mass-degenerate neutralino or chargino two-
particle state, a proper treatment of the Sommerfeld effect requires the knowledge of the
absorptive part of off-diagonal annihilation rates, χe1χe2 → XAXB → χe4χe3, for all pos-
sible SM and Higgs two-particle states XAXB (see Fig. 1). To the best of our knowledge
we present for the first time analytic results that allow for a systematic treatment of all
these off-diagonal rates in Sommerfeld-enhanced (co-)annihilation reactions for general
masses and composition of the χei particles. The implications of these results for MSSM
relic density calculations will be studied in a forth-coming publication [24].

Note added

The present arXiv version replaces an incorrect version of Figure 4 and fixes some typos
which are also present in the journal publication. For an explicit list of errata see the
JHEP erratum [34].
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XA

selfenergy (ss)

XBχe1

χe4

χe3

χe2

Figure 5: Generic selfenergy-diagram in χχ → XAXB → χχ reactions. Particles XA

and XB represent any two-body final state of SM and Higgs particles, which can be
produced on-shell in χχ→ XAXB annihilations.

A Absorptive parts of Wilson coefficients of dim-

ension-6 operators in δLann

We present the leading order contributions to the absorptive part, f̂ χχ→χχ(2s+1LJ ), of the
Wilson coefficients that correspond to the local four-fermion operators given in Tab. 2.
The f̂ χe1

χe2
→χe4

χe3 (2s+1LJ) encode the absorptive part of hard 2 → 2 scattering reactions
of an incoming particle pair χe1χe2 of non-relativistic charginos or neutralinos in a given
2s+1LJ partial-wave state into an outgoing non-relativistic χe4χe3-pair in the same partial-
wave configuration. They allow to reproduce the inclusive tree-level center-of-mass frame
annihilation cross sections of a non-relativistic χiχj-pair

3 into SM and light Higgs two-
body final states XAXB, expanded in the relative velocity of the annihilating particle
pair. The general case includes off-diagonal processes χe1χe2 → XAXB → χe4χe3 with
χe1χe2 6= χe4χe3 , for all pairs of non-relativistic neutralinos and charginos. Since the
f̂χχ→χχ(2s+1LJ) are infrared-safe at leading order, we are able to give analytic results for
the individual contributions f̂χχ→XAXB→χχ(2s+1LJ) pertaining to an exclusive final state
XAXB.

A.1 Notation and definitions

Recall that the calculation is performed in Feynman gauge. Hence the two-particle final
states XAXB that we account for can be classified to be of vector-vector (V V ), vector-
scalar (V S), scalar-scalar (SS), fermion-antifermion (ff) or ghost-anti-ghost (ηη̄) type.
They are listed in Tab. 3. The determination of the absorptive part of the Wilson
coefficients for the processes χe1χe2 → XAXB → χe4χe3 requires the calculation of a
large number of Feynman diagrams. To be able to present the results in an efficient
manner it is convenient to make use of the classification in V V -, V S-, SS-, ff - and ηη̄-
type XAXB particle states and to further subdivide the contributing diagrams according
to their topology. In each of the classes under consideration there arise generic 1-loop
amplitudes with selfenergy-, triangle- and box-topology shown in Figs. 5–8. The
generic selfenergy-diagram as well as the four generic triangle- and box-diagrams cover

3The covered χiχj-states have been collected in Tab. 1.
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χχ→ χχ V V V S SS ff ηη̄

χ0χ0 → χ0χ0

χ−χ+ → χ−χ+

χ0χ0 → χ−χ+

χ−χ+ → χ0χ0

W+W−,

ZZ,

γγ, Zγ

Zh0, ZH0,

γh0, γH0,

ZG0, ZA0,

γG0, γA0,

W+G−,W+H−,

W−G+,W−H+

h0h0, h0H0, H0H0,

G0h0, A0h0

G0H0, A0H0,

G0G0, G0A0, A0A0

G+G−, G+H−,

H+G−, H+H−,

uJ ūI ,

dJ d̄I ,

eJ ēI ,

νJ ν̄I

η+η̄+,

η−η̄−,

ηZ η̄Z

χ0χ+ → χ0χ+
W+Z,

W+γ

ZG+, γG+,

ZH+, γH+,

W+h0,W+H0,

W+G0,W+A0

G+h0, G+H0,

H+h0, H+H0,

G+G0, G+A0,

H+G0, H+A0

uJ d̄I ,

νJ ēI

η+η̄Z ,

ηZ η̄−,

η+η̄F ,

ηF η̄−

χ+χ+ → χ+χ+ W+W+
W+G+,

W+H+

G+G+,

G+H+,

H+H+

Table 3: Particle pairs XAXB in χχ → XAXB → χχ scattering reactions (abbrevi-
ated as χχ → χχ), that we account for in the calculation of the absorptive part of the
Wilson coefficients, classified according to their type: V V, V S, SS, ff and ηη̄. Nega-
tively charged processes, corresponding to the charge-conjugates of the singly or doubly
positively charged reactions above are not explicitly written.

all possible kinematic configurations4 that can arise in a χe1χe2 → XAXB → χe4χe3
1-loop amplitude. Note that we have assigned specific directions for the fermion flow in

4The case of four different triangle- and four different box-diagrams in Fig. 6 and Fig. 7 applies to
non-identical particles XA 6= XB. For identical particles XA = XB, triangle (box) 1 and 3 as well
as triangle (box) 2 and 4 coincide. In this case only one of the identical diagrams must be taken into

account to compute the corresponding f̂χχ→XAXA→χχ coefficients. This rule incorporates the symmetry
factor of 1/2 in the cross-section for identical final-state particles, that one would take into account in
the conventional calculation of the tree-level χe1χe2 → XAXA annihilation rate.

XA

triangle 1 (t1s)

XB

triangle 3 (t2s) triangle 4 (st2)triangle 2 (st1)

XAXBXB

XBXAXA
χe1

χe4

χe3

χe2

Figure 6: Generic triangle-diagrams in χχ→ XAXB → χχ reactions.
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XA

box 1 (t1t2)

XB XB XA XA

XA XB

box 3 (t2t1) box 4 (t2t2)box 2 (t1t1)

XB

χe1

χe2

χe3

χe4

Figure 7: Generic box-diagrams in χχ→ XAXB → χχ reactions.

each diagram in Figs. 5–8, indicated by the arrows, as it is convenient in the context
of calculations involving both Dirac and Majorana fermions, following the Feynman
rules for fermion-number violating interactions set out in [32]. The depicted fermion
flows establish our convention to arrange the external fermion states χei, i = 1, . . . , 4 in
descending order, see Tab. 2.

We calculate analytically the absorptive part of any of the contributing selfenergy-,
triangle- and box-amplitudes, subject to our convention for the fermion flows. Thereby
we consider generic external Majorana fermions, generic t- and u-channel exchanged Ma-
jorana fermions or sfermions, generic XAXB states of type V V, V S, SS, ff and ηη, and
hence use generic ‘place-holder’ coupling factors at each vertex. This allows us to deter-
mine the generic form of those terms in the contributions to the f̂χχ→XAXB→χχ(2s+1LJ),
that are associated with the kinematics of the χχ → XAXB → χχ reaction, where each
of these kinematic terms multiplies a certain combination of the place-holder coupling
factors. In particular, these kinematic contributions are generic in the sense that they
apply to both the cases of external and internal Majorana and Dirac fermions.

A specific diagram’s contribution to the absorptive part of a particular χe1χe2 →
XAXB → χe4χe3 MSSM 1-loop process is obtained by replacing the generic place-
holder coupling factors with their actual expressions in the above described generic
Majorana fermion 2 → 2 scattering reactions. Note that by choosing these coupling
factors properly, all χe1χe2 → XAXB → χe4χe3 processes with external and internal

XA

box 1 (t1t2)

XB XB XA XA

XA XB

box 3 (t2t1) box 4 (t2t2)box 2 (t1t1)

XB

χe1

χe2

χe3

χe4

Figure 8: Generic box-diagrams in χχ→ XAXB → χχ reactions, with XAXB a pair of
SM fermions.
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Majorana or Dirac fermions can be covered, although the kinematic contributions are
calculated referring to the generic Majorana fermion 2 → 2 scattering reaction. Hence,
the absorptive part of the Wilson coefficient, which encodes the absorptive part of a
χe1χe2 → XAXB → χe4χe3 scattering reaction, with the incoming and outgoing two-
particle states in a 2s+1LJ partial-wave configuration, can be written as

f̂
χe1

χe2
→XAXB→χe4

χe3

{e1e2}{e4e3} (2s+1LJ)

=
πα2

2

M2

(
∑

n

∑

i1,i2

b
χe1

χe2
→XAXB→χe4

χe3

n, i1i2
BXAXB

n, i1i2
(2s+1LJ)

+

4∑

α=1

∑

n

∑

i1,i2

c
(α)χe1

χe2
→XAXB→χe4

χe3

n, i1i2
C

(α)XAXB

n, i1i2
(2s+1LJ )

+

4∑

α=1

∑

n

∑

i1,i2

d
(α)χe1

χe2
→XAXB→χe4

χe3

n, i1i2
D

(α)XAXB

n, i1i2
(2s+1LJ)

)
. (37)

Here α2 = g22/4π, where g2 denotes the SU(2)L gauge coupling. The sums in the first
line on the right-hand side of (37) collect all contributions from selfenergy-amplitudes.
Similarly, the second (third) line gives the triangle- (box-) amplitudes’ contributions. We
use the index α to enumerate expressions related to the four different triangle- and box-
amplitudes,5 according to the labelling of the diagrams in Figs. 6–8. Further, we indicate
the kinematic factors of the generic 2 → 2 Majorana fermion scattering amplitudes
within a given class and topology with capital letters (Bn, i1i2

, C
(α)
n, i1i2

, D
(α)
n, i1i2

). These are
the quantities that include the kinematics of the process and hence encode the 2s+1LJ
partial-wave specific information. The process-specific coupling factors that multiply the
kinematic factors are denoted with lowercase letters (bn, i1i2, c

(α)
n, i1i2

, d
(α)
n, i1i2

). Depending
on the type of the particles XA and XB as well as the topology, there is a fixed number
of different coupling-factor expressions that can occur, together with the corresponding
kinematic factors. The different contributions are enumerated with the index n in (37)
above. Finally, in each of the processes there is a certain set of particle species that
can be exchanged in the s- or the t-channels of the contributing amplitudes. These are
labelled with the indices i1 and i2.

The generic structure of the Wilson coefficients in (37) suggests to give the coupling
factors and the kinematic factors separately. A recipe for the construction of the coupling
factors bn, i1i2, c

(α)
n, i1i2

, d
(α)
n, i1i2

in any of the covered reactions is given in Sec. A.2. Analytic

results for the kinematic factors Bn, i1i2
, C

(α)
n, i1i2

, D
(α)
n, i1i2

for the leading-order 1S0 and 3S1

partial-wave configurations can be found in Sec. A.3. These expressions depend on the
masses of the external and internal particles in a particular χe1χe2 → XAXB → χe4χe3
process. However, the kinematic factors are generic in the sense that their form is

5For identical particles XA = XB the index α has to be taken from 1 to 2 only, see footnote 4.
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the same for all possible external two-body states χe1χe2 and χe3χe4 of neutralinos or
charginos and all XAXB particles within one of the classes V V, V S, SS, ff or ηη.

The coupling and kinematic factors will depend on the supersymmetric particles’
mixing matrices and masses, respectively. We adopt the same notation as in [33] and
hence introduce the chargino and neutralino mixing matrices Z± and ZN defined via

ZT
− Mχ± Z+ =

(
mχ+

1

mχ+

2

)
, (38)

ZT
N Mχ0 ZN =




mχ0
1

mχ0
2

mχ0
3

mχ0
4




, (39)

where Mχ± and Mχ0 denote the chargino and neutralino mass matrices, respectively (for
details regarding the mass matrix expressions refer to [33]). mχ+

j
, j = 1, 2, and mχ0

i
, i =

1, . . . 4 indicate the masses in the mass eigenstate basis of charginos and neutralinos.
In order to properly apply the formulas for coupling and kinematic factors in Sec. A.2

and Sec. A.3 given a specific MSSM spectrum, it is important to note that the NRMSSM
and hence the analytic expressions for the Wilson coefficients explicitly rely on the posi-
tivity of all mass parameters. This derives from the fact that the NRMSSM Lagrangian
is obtained by extracting the high-energy fluctuations (of the order of the particle mass)
from the relativistic fields, which yields the non-relativistic kinetic term Lkin shown in
(3). For species other than the LSP, the procedure leads to the mass-difference terms
(mi −mLSP) in (3). If any of the mi in Lkin. is negative, then the corresponding mass
difference counts as O(mLSP), an indication that the parametrization used to relate the
relativistic and non-relativistic fields for that particle species is not the appropriate one.
The simplest way to obtain the NRMSSM Lagrangian in case that the mass mχei

of
one or several of the external χei particles happens to be negative for a given MSSM
spectrum, is to perform a field redefinition of the corresponding MSSM fields that yields
mass terms with positive mass parameters. Such a field redefinition affects the chargino
and neutralino mixing matrices, which are mapped in the following way:

Z± → Z̃± = Z± ·



√

sgn(mχ+

1
)
√

sgn(mχ+

2
)


 , (40)

ZN → Z̃N = ZN ·




√
sgn(mχ0

1
)
√

sgn(mχ0
2
)
√

sgn(mχ0
2
)
√

sgn(mχ0
2
)




. (41)
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Figure 9: Generic tree-level amplitudes in χχ → XAXB annihilations, referring to
V V, V S and SS-type final state particles XAXB. The generic form of s-channel exchange
diagrams for XAXB = ηη̄ final states agrees with the s-channel diagram above. The
vertex-factors V

ρ(d)
ei are defined as V

ρ(d)
ei = γρ(r

(d)
ei + q

(d)
ei γ5), if attached to a three-point

vertex with a gauge-boson (with Lorentz-index ρ), and V
ρ(d)
ei = (r

(d)
ei +q

(d)
ei γ5), if associated

with a vertex that involves a scalar particle XA, XB or Xi. Here the expression r
(d)
ei (q

(d)
ei )

either denotes a vector or scalar (an axial-vector or pseudo-scalar) type of coupling factor.
For the definition of cABXi

and the Lorentz structures LABXi
we refer to Tab. 4 below.

(We define
√
−1 = i.) The redefined mixing matrices Z̃± and Z̃N as well as the corre-

sponding positive mass parameters for all MSSM neutralino and chargino fields should
be used within the expressions given in Sec. A.2 and Sec. A.3.

A.2 Coupling factors

By construction, the absorptive part f̂ χe1
χe2

→XAXB→χe4
χe3 of an individual Wilson co-

efficient is associated with the product A(0)
χe1

χe2
→XAXB

× (A(0)
χe4

χe3
→XAXB

)∗ of Born-level

annihilation amplitudes A(0) related to χeiχej → XAXB reactions, integrated over the

XAXB two-particle phase space, see (16). Each of the tree-amplitudes A(0)
χχ→XAXB

re-
ceives contributions from diagrams with t-channel neutralino or chargino exchange as
well as from diagrams with s-channel Higgs-particle or gauge-boson exchange, such as
the generic diagrams shown in Fig. 9. In case of fermionic final states XAXB, instead
of neutralino or chargino t-channel exchange, t-channel sfermion-exchange occurs, as
depicted in Fig. 10. Note, that in Fig. 9 and Fig. 10 we again have established a spe-
cific fermion flow, which in particular coincides with the convention for the fermion flow
associated with the incoming two particles in the 1-loop amplitudes in Figs. 5–8.

A contribution to the amplitudeA(0)
χχ→XAXB

involves a product of two coupling factors,
coming from the two vertices in the tree-level diagrams. The generic form of these vertices
is indicated in Fig. 9 and Fig. 10. It is especially convenient to write all vertex factors in
any of the amplitudes contributing to the non-relativistic χχ→ XAXB → χχ scattering-
processes as a combination of (axial-) vector or (pseudo-) scalar coupling factors, instead
of using left- and right-handed couplings, as it is common in calculations related to the
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Figure 10: Generic tree-level amplitudes in χχ → XAXB annihilations, with XAXB =
f IfJ . For the definition of V

ρ(d)
ei see Fig. 9. The generic vertex factor V

(d)
Kei is defined

as V
(d)
Kei = r

(d)
Kei + q

(d)
Keiγ5, such that the r

(d)
Kei (q

(d)
Kei) denote coupling factors of scalar

(pseudo-scalar) type.

MSSM. The reason for that is, that in the non-relativistic limit, either the contributions
to the annihilation amplitudes involving the axial-vector (pseudo-scalar) coupling will be
suppressed with respect to the corresponding contributions related to the vector (scalar)
coupling, or vice versa, such that the use of (axial-) vector and (pseudo-) scalar couplings
allows for a clearer understanding of leading and suppressed contributions in the non-
relativistic scattering regime that we aim to study.

Each of the coupling factors bn, c
(α)
n and d

(α)
n that occur in (37) is given by a product

of two coupling factors, r or q, arising in an individual diagram in A(0)
χe1

χe2
→XAXB

, and
the complex conjugate of another such two-coupling factor product originating from
A(0)
χe4

χe3
→XAXB

. In the following, we give a recipe how to construct the coupling factors

in (37) for a specific χe1χe2 → XAXB → χe4χe3 reaction, such that taken together with
the kinematic factors in Sec. A.3, they allow to determine the absorptive part of the
Wilson coefficients f̂ :

1. Draw all tree-level diagrams that contribute to χe1χe2 → XAXB and χe4χe3 →
XAXB annihilation amplitudes, analogous to the generic diagrams sketched in
Fig. 9 or Fig. 10. In particular, assign the same fermion flow as indicated for the
generic diagrams.

2. Determine the process-specific (axial-) vector and/or (pseudo-) scalar coupling fac-

tors, that arise instead of the generic q
(d)
ei or r

(d)
ei place-holder expressions at the

generic amplitudes’ vertex factors. As the χχ→ XAXB processes may involve Ma-
jorana as well as Dirac fermions, and the latter involve a conserved fermion-number
flow, note the following rules:

a) If the direction of the fermion-number flow related to a Dirac particle coincides
with the direction of the fermion flow (fixed as in Fig. 9 and Fig. 10), the χχ→
XAXB process specific coupling factors at the vertices are directly deduced
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from the corresponding interaction terms in the underlying Lagrangian. These
coupling factors are given later in (44–50).

b) Otherwise, if the fermion-number flow is antiparallel to the indicated fermion
flow, vector coupling factors at vertices attached to a Dirac fermion line, are
given by a factor −1 times the expression for the vector coupling given in (44–
46). Axial-vector, scalar and pseudo-scalar coupling factors are unchanged
with respect to case a) above.

3. Build all possible two-coupling factor products, including possible signs related to
vector couplings, as far as the case in 2b) above applies, that can arise in each
single diagram.

4. Multiply each of the two-coupling factor products, that arise in the A(0)
χe1

χe2
→XAXB

amplitude, with the complex conjugate of each of the two-coupling factor products,
arising in A(0)

χe4
χe3

→XAXB
. As a result, all possible coupling factor combinations that

can occur in f̂ χe1
χe2

→XAXB→χe4
χe3 are obtained.

Rule 2b) arises in the following way for the case of diagram s in Figs. 9-10: according
to our convention for the fermion flow in Fig. 9, we obtain an expression −v(p1)Γu(p2)
for the incoming particles’ spinor chain if the case under 2b) applies, where Γ denotes
the involved Dirac-matrix structure. The minus sign accounts for our convention for the
order of the external fermion states. This expression can be rewritten as

−v(p1)Γu(p2) = v(p2)C ΓTC−1u(p1) , (42)

wherein C denotes the charge conjugation matrix. Using

C ΓTC−1 =

{
−Γ for Γ = γµ ,

Γ for Γ = 1, γ5, γµγ5 ,
(43)

the origin of the minus sign rules for vector couplings under 2b) above becomes obvious.
For diagrams with t-channel exchange, a similar derivation also confirms rule 2b).

Let us introduce the shorthand aã to indicate the diagrams a and ã in the χe1χe2 →
XAXB and χe4χe3 → XAXB processes, respectively, to which the coupling factors in a
specific coupling factor combination are related. Both a and ã can be given by s, t1 or t2,
see Figs. 9–10. Coupling factor combinations originating from ss lead to the b factors,
that correspond to the generic selfenergy-amplitude in Fig. 5.6 We label coupling factor
combinations, that originate from t1s, st1, t2s and st2 with the superscript α = 1, . . . , 4,
respectively. These coupling factor combinations, related to one t-channel and one s-
channel exchange diagram give rise to the c(α) expressions in (37). The α = 1, . . . , 4
label-convention for the specific coupling factor combinations allows to correctly allocate

6Note, that in case of identical particles XA = XB, all coupling factor expressions b have to be
multiplied with a symmetry factor 1/2, which incorporates the symmetry factor associated with the
selfenergy amplitudes in case of identical particles XA = XB in the loop.
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µ] (rij + qijγ5)

f I

ig2 (sIij + pIijγ5)

χiS̃j

Figure 11: Generic form of the vertex factors in three-point interactions of neutralinos
and charginos with SM and Higgs particles, upon which our definition of the (axial-)
vector and (pseudo-) scalar coupling factors given in the text is based.

the c(α) to their corresponding generic triangle-amplitude ‘triangle α’ in Fig. 6. Coupling
factor combinations originating from t1t2, t1t1, t2t1 and t2t2 are labelled with superscript
α = 1, . . . , 4, and give rise to the d(α) expressions. As in case of the c(α), this convention
correctly assigns d(α) expressions to their corresponding ‘box α’ amplitude in Fig. 7 or
Fig. 8.

We introduce the index n in order to label the different coupling factor combinations
for a given fixed aã. Each individual n is given by a character-string, where the ith
character gives the type (r or q) of the coupling factor which is related to the ith vertex
in the particular diagram aã in Figs. 5–8. The vertices of box-amplitudes are enumer-
ated according to the respective attached external particles χei , i = 1, . . . , 4. In case of
selfenergy- and triangle-diagrams with inner vertices our vertex-enumeration convention
is from top to bottom and left to right. Vertex factors of type cABXi

are not specified in
the corresponding string n, because the nature of the particles XA, XB andXi involved in
the diagram completely characterize that coupling. For triangles with XAXB = V V, V S
or SS, for example, the index n will range over strings rrr, qqr, ..., where the characters
r or q indicate the type of coupling of the external particles to the XAXB pair and to
the single s-channel exchanged particle species, see Fig. 6.

To further specify the coupling factor combinations for given aã and n, we use the
labels i1 and i2 to indicate the particle species that are internally exchanged in diagrams
a and ã. Therewith, the coupling factor combinations bn i1i2 , c

(α)
n i1i2

and d
(α)
n i1i2

that should
enter in (37), together with the generic kinematic factor expressions given in App. A.3,
can be unambiguously determined.

In order to completely fix our conventions, we summarize in the following the ex-
pressions for the (axial-) vector and (pseudo-) scalar coupling factors, that arise in the
three-point interactions of charginos and neutralinos with SM and Higgs particles. The
definitions of the coupling factors assume that we take χ+

i to be the particle and χ−
i its

anti-particle, such that the Dirac fermion number flow, indicated by the arrow on the
Dirac fermion line for a chargino, will always refer to the direction of χ+

i flow. The latter
convention agrees with that of Rosiek [33].

The generic form for the vertex factor, that describes the 3-point interaction of an
incoming neutralino χ0

j , an outgoing chargino χ+
i and either an incoming charged Higgs
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particle G+ or H+ or an incomingW+-boson is given in the left-most diagram in Fig. 11.
Note that the gamma matrix γµ in the vertex factor has to be omitted in case of inter-
actions with the charged Higgs particles. The specific scalar and pseudo-scalar or vector
and axial-vector coupling factors, that have to be replaced for the generic rij and qij
couplings therein read

sH
+
m

ij (pH
+
m

ij ) = − 1

2

[
Z2m
H

(
Z̃4j∗
N Z̃1i∗

+ +
1√
2
Z̃2i∗

+ (Z̃2j∗
N + tan θW Z̃

1j∗
N )

)

± Z1m
H

(
Z̃3j
N Z̃

1i
− − 1√

2
Z̃2i

− (Z̃
2j
N + tan θW Z̃

1j
N )

) ]
,

vWij =
1

2

(
Z̃2j∗
N Z̃1i

− + Z̃2j
N Z̃

1i∗
+ +

1√
2
Z̃3j∗
N Z̃2i

− − 1√
2
Z̃4j
N Z̃

2i∗
+

)
,

aWij =
1

2

(
Z̃2j∗
N Z̃1i

− − Z̃2j
N Z̃

1i∗
+ +

1√
2
Z̃3j∗
N Z̃2i

− +
1√
2
Z̃4j
N Z̃

2i∗
+

)
, (44)

where H+
1 ≡ H+ and H+

2 ≡ G+, and the mixing matrices are defined as in Ref. [33].
The generic form of the three point interaction of either two neutralinos or two charginos
with an electrically neutral gauge boson or Higgs particle is depicted in the second dia-
gram in Fig. 11. Again, the gamma-matrix γµ has to be omitted in the vertex factor if
the corresponding reaction refers to interactions with the neutral Higgs particles. In the
case of an incoming χ+

j and an outgoing χ+
i , the (axial-) vector and (pseudo-) scalar cou-

plings, that encode interactions with the neutral scalar and pseudo-scalar Higgs particles
(h0, H0, G0, A0), the Z-boson or the photon are given by the following expressions:

s
H0

m

ij (p
H0

m

ij ) = − 1

2
√
2

[
Z1m
R

(
Z̃2j∗

− Z̃1i∗
+ ± Z̃2i

− Z̃
1j
+

)
+ Z2m

R

(
Z̃1j∗

− Z̃2i∗
+ ± Z̃1i

− Z̃
2j
+

) ]
,

s
A0

m

ij (p
A0

m

ij ) = − i

2
√
2

[
Z1m
H

(
Z̃2j∗

− Z̃1i∗
+ ∓ Z̃2i

− Z̃
1j
+

)
+ Z2m

H

(
Z̃1j∗

− Z̃2i∗
+ ∓ Z̃1i

− Z̃
2j
+

) ]
,

vZij = − 1

4cW

(
Z̃1i

− Z̃
1j∗
− + Z̃1i∗

+ Z̃1j
+ + 2(c2W − s2W )δij

)
,

aZij =
1

4cW

(
Z̃1i∗

+ Z̃1j
+ − Z̃1i

− Z̃
1j∗
−

)
,

vγij = − sW δij ,

aγij = 0 , (45)

where H0
1 ≡ H0, H0

2 ≡ h0 and A0
1 ≡ A0, A0

2 ≡ G0. Finally, three-point interactions of an
incoming χ0

j and an outgoing χ0
i with a (pseudo-) scalar Higgs particle or the Z-boson

involve the following (axial-) vector or (pseudo-) scalar coupling factors

s
(0),H0

m

ij (p
(0),H0

m

ij ) =
1

4

[ (
Z2m
R Z̃4i∗

N − Z1m
R Z̃3i∗

N

)(
Z̃2j∗
N − tan θW Z̃1j∗

N

)
+ (i↔ j)

]
± c.c. ,
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s
(0),A0

m

ij (p
(0),A0

m

ij ) =
i

4

[ (
Z2m
H Z̃4i∗

N − Z1m
H Z̃3i∗

N

)(
Z̃2j∗
N − tan θW Z̃1j∗

N

)
+ (i↔ j)

]
± c.c. ,

v
(0),Z
ij (a

(0),Z
ij ) =

1

4cW

(
Z̃3i
N Z̃

3j∗
N − Z̃4i

N Z̃
4j∗
N ∓ (i↔ j)

)
. (46)

The (axial-) vector and (pseudo-) scalar coupling factors in (45) and (46), which are all
related to interactions with neutral SM and Higgs particles, satisfy

v∗ij = vji , a∗ij = aji ,

s∗ij = sji , p∗ij = −pji . (47)

as a consequence of the hermiticity of the underlying SUSY Lagrangian.
The generic form of the vertex factor for three-point interactions of a neutralino or

chargino with a SM fermion and a sfermion is given in the right-most diagram in Fig. 11.
In case of interactions of an incoming SM fermion f I with a sfermion S̃j and an outgoing
neutralino χ0

i , the specific (pseudo-) scalar couplings, that have to be replaced for the
generic sIij and pIij expressions in Fig. 11 read

suŨIij (p
uŨ
Iij) =

1√
2
qu tan θW Z̃

1i∗
N Z

(I+3)j∗
U − mI

u

2
√
2 sin βMW

(
Z̃4i∗
N ZIj∗

U ± Z̃4i
NZ

(I+3)j∗
U

)

∓ 1√
2

(
TuZ̃

2i
N + (qu − Tu)Z̃

1i
N tan θW

)
ZIj∗
U ,

sdD̃Iij (p
dD̃
Iij ) =

1√
2
qd tan θW Z̃

1i∗
N Z

(I+3)j
D − mI

d

2
√
2 cos βMW

(
Z̃3i∗
N ZIj

D ± Z̃3i
NZ

(I+3)j
D

)

∓ 1√
2

(
TdZ̃

2i
N + (qd − Td)Z̃

1i
N tan θW

)
ZIj
D ,

sνν̃Iij(p
νν̃
Iij) = ∓ 1

2
√
2

(
Z̃2i
N − Z̃1i

N tan θW

)
ZIj∗
ν ,

slL̃Iij(p
lL̃
Iij) =

1√
2
ql tan θW Z̃

1i∗
N Z

(I+3)j
L − mI

l

2
√
2 cos βMW

(
Z̃3i∗
N ZIj

L ± Z̃3i
NZ

(I+3)j
L

)

∓ 1√
2

(
TlZ̃

2i
N + (ql − Tl)Z̃

1i
N tan θW

)
ZIj
L . (48)

I = 1, 2, 3 denotes the generation index for the fermions, and j = 1, . . . , 6 labels the
sfermion states (j = 1, 2, 3 in case of sneutrinos ν̃j). Tf and qf are defined as

Tu = −Td = −Tl =
1

2
,

qu =
2

3
, qd = −1

3
, ql = −1 . (49)
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The superscripts, fS̃, on the couplings in (48), refer to the fermion (f)- and sfermion (S̃)-
type involved in the underlying interaction. In case of chargino-fermion-sfermion inter-
actions we find (a sum over repeated indices is implicit)

suD̃Iij (p
uD̃
Iij ) =

mI
u

2
√
2 sin βMW

KIJ∗Z̃2i∗
+ ZJj

D ± mJ
d

2
√
2 cos βMW

KIJ∗Z̃2i
−Z

(J+3)j
D

∓ 1

2
KIJ∗Z̃1i

−Z
Jj
D ,

sdŨIij(p
dŨ
Iij) =

mI
d

2
√
2 cos βMW

KJIZ̃2i∗
− ZJj∗

U ± mJ
u

2
√
2 sin βMW

KJIZ̃2i
+Z

(J+3)j∗
U

∓ 1

2
KJIZ̃1i

+Z
Jj∗
U ,

sνL̃Iij(p
νL̃
Iij) = ± mI

l

2
√
2 cos βMW

Z̃2i
−Z

(I+3)j
L ∓ 1

2
Z̃1i

−Z
Ij
L ,

slν̃Iij(p
lν̃
Iij) =

mI
l

2
√
2 cos βMW

Z̃2i∗
− ZJj∗

ν ∓ 1

2
Z̃1i

+Z
Ij∗
ν . (50)

The coupling factors with fS̃ = uD̃, νL̃ refer to the interaction of an incoming up-type
quark (uI) or neutralino (νI) with a D̃j- or L̃j-sfermion and an outgoing χ+

i . In case
of fS̃ = dŨ, lν̃, the coupling factors in (50) are related to interactions of an incoming
down-type quark (dI) or lepton (lI) with an Ũj- or ν̃j-sfermion and an outgoing χ+C

i

(denoting the charge-conjugate field of χ+
i , see [33]).

For the specific cABXi
factors that emerge at the three-point vertex of the XAXB

particle pair with the single s-channel exchanged particle Xi in Fig. 9, we refer to the
Feynman rules in [33]: a specific cABXi

is obtained as the factor that multiplies the
structure ig2LABXi

in the respective Feynman rule therein. The generic forms of the
Lorentz structures LABXi

are collected in Tab. 4. Finally, (axial-) vector and (pseudo-)
scalar coupling factors r and q of two SM fermions with a gauge- or Higgs-boson (see
Fig. 10) can be directly taken from the corresponding Feynman rules in [33].

In order to illustrate how the above rules should be applied, let us consider an exam-
ple. Suppose we wish to know the coupling factors c

(α)
n, i1V

, α = 1, . . . 4, of diagrams with
s-channel exchange of a Z-boson for the χ−

e1
χ+
e2
→ W+G− → χ0

e4
χ0
e3
processes. Following

the recipe above, we draw all tree-level diagrams for the χ−
e1
χ+
e2
→ W+G− as well as the

χ0
e4
χ0
e3
→W+G− process and assign the same fermion flow as given in the corresponding

generic diagrams, Fig. 9. Referring to that fixed fermion flow, we determine the follow-
ing vertex factors in the diagrams t1 and s, associated with tree-level χ−

e1
χ+
e2

→ W+G−

annihilations:

V
β(t1)
e1i1

= sGe1i1 + pGe1i1γ5 , V
α(t1)
e2i1

= γα
(
−vW∗

e2i1
+ aW∗

e2i1
γ5
)
,

V µ(s)
e1e2

= γµ
(
−vZe1e2 + aZe1e2γ5

)
, cWGZ = −s

2
W

c2W
. (51)
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XAXBXi LABXi

VαVβVµ gαβ(kA − kB)
µ + gµα(ki − kA)

β + gβµ(kB − ki)
α

VαVβ S MW gαβ

Vα S S (kB − ki)
α

S S Vµ (kB − kA)
µ

S S S MW

η η Vµ kµB
η η S MW

Table 4: The generic form of the Lorentz structures LABXi
, that are part of the Feynman

rule ig2cABXi
LABXi

for the XAXBXi three-point vertex in Fig 9. We assume all four-
momenta, kA, kB, ki, to be outgoing at the vertex. The case of XAXBXi = VαS Vµ is
trivially related to the case VαVβ S.

The coupling factors are those from (44) and (45). Note that there is no t-channel
exchange diagram t2 for the above process, as it is forbidden by charge conservation.
Further, note that the sign in front of the vector-coupling factor in V

α(t1)
e2i1

and V
µ(s)
e1e2

follows from rule 2b) above. In case of diagrams contributing to χ0
e4
χ0
e3

→ W+G− we
find

V
β(t1)
e4i1

= sGi1e4 + pGi1e4γ5 , V
α(t1)
e3i1

= γα
(
vW∗
i1e3

+ aW∗
i1e3

γ5
)
,

V
α(t2)
e4i1

= γα
(
−vW∗

i1e4
+ aW∗

i1e4
γ5
)
, V

β(t2)
e3i1

= sGi1e3 + pGi1e3γ5 ,

V µ(s)
e4e3

= γµ
(
v(0)Ze3e4

+ a(0)Ze3e4
γ5
)
, cWGZ = −s

2
W

c2W
. (52)

To obtain the building blocks for the non-vanishing c
(α)
n, i1V

with α = 1, one has to combine
the coupling factor expressions in the first row of (51) (the factors related to diagram t1
in χ−

e1
χ+
e2

→ W+G− annihilations) with the coupling factor expressions in the last row
of (52) (expressions originating from diagram s in χ0

e4
χ0
e3

→ W+G−), as α = 1 refers to
the t1s product of tree-level diagrams. Similarly, for α = 2 and 4, one has to build the
combinations of expressions referring to st1 and st2. Therefore, the building-blocks for
the non-vanishing c

(α)
n i1V

related to single s-channel V = Z exchange read:

α = 1 : {{sGe1i1, p
G
e1i1

} , {−vW∗
e2i1

, aW∗
e2i1

} , {v(0)Z∗e3e4
, a(0)Z∗e3e4

} , {−s
2
W

c2W
}} , (53)

α = 2 : {{−vZe1e2 , a
Z
e1e2

} , {vWi1e3, a
W
i1e3

} , {sG∗
i1e4

, pG∗
i1e4

} , {−s
2
W

c2W
}} , (54)

α = 4 : {{−vZe1e2 , a
Z
e1e2

} , {sG∗
i1e3

, pG∗
i1e3

} , {−vWi1e4 , a
W
i1e4

} , {−s
2
W

c2W
}} . (55)
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In selecting one element from each of the above given subsets and multiplying the selected
elements for fixed α with each other, the c

(α)
n, i1V

expressions in χ−
e1
χ+
e2
→W+G− → χ0

e4
χ0
e3

reactions are obtained. Proceeding in that way, we obtain eight different coupling factor
combinations for fixed α, that are labelled with index n. Following our convention for
this label, n ranges over n = rrr, rrq, rqr, qrr, rqq, qrq, qqr, qqq. The c

(2)
qqr, i1V

expression,
for example, reads

c
(2)
qqr, i1V

= −s
2
W

c2W
aZe1e2 a

W
i1e3

sG∗
i1e4

. (56)

A.3 Kinematic factors

The kinematic factor expressions that refer to a specific χe1χe2 → XAXB → χe4χe3
scattering reaction depend on the external particles’ mass scales m, m and M = m+m.
We remind the reader of our convention (see Sec. 2.4)

m =
me1 +me4

2
, m =

me2 +me3

2
,

δm =
me4 −me1

2
, δm =

me3 −me2

2
. (57)

Further recall that we expand the scattering amplitudes in δm, δm and count these
quantities as O(v2). Hence, for the leading-order S-wave results presented below, the
mass differences δm = δm = 0, such that there are only two mass scales, m and m,
left, which characterize the external chargino or neutralino states. The masses of the
particles XA and XB will be denoted with mA and mB. Let us introduce the general
notation m̂a for the rescaling of any mass ma in units of the mass scale M ,

m̂a =
ma

M
. (58)

Define the dimensionless quantities

∆AB = m̂2
A − m̂2

B ,

β =
√
1− 2 (m̂2

A + m̂2
B) + ∆2

AB , (59)

where in case that XA = XB, β is the leading-order term in the expansion of the velocity
of the XAXB particle pair in the non-relativistic momenta and mass differences. The
expansion of single s-channel (gauge or Higgs boson Xi) exchange propagators in δm,
δm and the non-relativistic 3-momenta leads to the following denominator-structure at
leading order:

P s
i = 1− m̂2

i . (60)
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Similarly, the leading-order expansion of t- and u-channel gaugino and sfermion prop-
agators in δm, δm and the non-relativistic 3-momenta gives rise to the denominator-
structures

Pi AB = m̂ m̂+ m̂2
i − m̂ m̂2

A − m̂ m̂2
B ,

Pi BA = Pi AB |A↔B . (61)

Using the above definitions, the kinematic factors for the leading order S-wave Wilson
coefficients related to the selfenergy-topology in Fig. 5 are conveniently written as

BXAXB

n, i1i2
(2s+1SJ) =

β

P s
i1
P s
i2

B̃XAXB

n, i1i2
(2s+1SJ) , (62)

where the labels i1 and i2 refer to the particle species that are exchanged in the left and
right s-channel propagator. As generically either gauge-boson (V ) or Higgs (S) s-channel
exchange occurs in the processes under consideration, the combination i1i2 is given by
i1i2 = V V, V S, SV, SS. Kinematic factors arising from the triangle-topologies shown in
Fig. 6 have the following generic form

C
(α)XAXB

n, i1X
(2s+1SJ) =

β

Pi1AB P
s
X

C̃
(α)XAXB

n, i1X
(2s+1SJ) α = 1, 2 ,

C
(α)XAXB

n, i1X
(2s+1SJ) =

β

Pi1BA P
s
X

C̃
(α)XAXB

n, i1X
(2s+1SJ) α = 3, 4 . (63)

The index i1 in the above expressions is related to the t- or u-channel exchanged par-
ticle species, whereas the subscript-index X indicates the type of the single s-channel
exchanged particle-species, X = V, S. Finally, kinematic factors associated with the
box-topologies of Fig. 7 and Fig. 8 generically read

D
(1)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1AB Pi2BA
D̃

(1)XAXB

n, i1i2
(2s+1SJ) ,

D
(2)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1AB Pi2AB
D̃

(2)XAXB

n, i1i2
(2s+1SJ) ,

D
(3)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1BA Pi2AB
D̃

(3)XAXB

n, i1i2
(2s+1SJ) ,

D
(4)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1BA Pi2BA
D̃

(4)XAXB

n, i1i2
(2s+1SJ) . (64)

Indices i1 and i2 in (64) refer to the exchanged particle species in the left and right t-
and u-channels of the 1-loop box-amplitudes, respectively.

Throughout this appendix, the labels A and B are related to the particles XA and
XB. Recall that these are the actual final-state particles in a χiχj → XAXB (tree-
level) annihilation reaction. The overall prefactors in (62–64) arise from the phase-
space integration (β) and from the leading-order expansion of s- or t- and u-channel
propagators in the non-relativistic limit.

37



Finally recall, that each individual index n in (62–64) is given by a character string,
whose elements indicate the type (r or q) of the corresponding generic coupling structures
at the vertices of the respective underlying 1-loop amplitude in Figs. 5–8. In the results
that we quote next we only write explicitly the kinematic factors for those n which are
non-vanishing.

A.3.1 Kinematic factors for XAXB = V V

The kinematic factors B̃V V
n, i1i2

in case of 1S0 partial wave reactions are given by

B̃V V
qq, V V (

1S0) = − β2

2
+ 3 ∆2

AB , (65)

B̃V V
qq, V S(

1S0) = B̃V V
qq, SV (

1S0) = 3 m̂W∆AB , (66)

B̃V V
qq, SS(

1S0) = 4 m̂2
W . (67)

In case of 3S1 partial-wave reactions we have

B̃V V
rr, V V (

3S1) = − 9

2
+

4

3
β2 − 1

2
∆2
AB . (68)

Only the kinematic factors B̃V V
n, i1i2

given explicitly in (65–68) with n = rr, qq are non-
vanishing. In case of XAXB = V V , the kinematic factors for the triangle- and box-
diagram topologies α = 3, 4 are related to the corresponding expressions for diagram-
topologies α = 1, 2 (see Figs. 6–7). The relations read

C̃
(3) V V
n, i1V

(2s+1SJ) = − C̃
(1) V V
n, i1V

(2s+1SJ) |A↔B ,

C̃
(4) V V
n, i1V

(2s+1SJ) = − C̃
(2) V V
n, i1V

(2s+1SJ) |A↔B ,

C̃
(3) V V
n, i1S

(2s+1SJ) = C̃
(1) V V
n, i1S

(2s+1SJ) |A↔B ,

C̃
(4) V V
n, i1S

(2s+1SJ) = C̃
(2) V V
n, i1S

(2s+1SJ) |A↔B ,

D̃
(3) V V
n, i1i2

(2s+1SJ) = D̃
(1) V V
n, i1i2

(2s+1SJ) |A↔B ,

D̃
(4) V V
n, i1i2

(2s+1SJ) = D̃
(2) V V
n, i1i2

(2s+1SJ) |A↔B . (69)

The minus sign in the relation for the triangle coefficients C̃
(α) V V
n, i1V

in (69) arises from
interchanging the two gauge-bosonsXA and XB at the internal three-gauge boson vertex.
The expressions C̃

(α) V V
n, i1V

for diagram-topologies α = 1, 2, that refer to leading-order 1S0

partial waves read

C̃
(1) V V
rqq, i1V

(1S0) =
β2

2
− 3

2
(m̂− m̂)∆AB − 3

2
∆2
AB + 3 m̂i1∆AB , (70)

C̃
(2) V V
qqr, i1V

(1S0) = C̃
(1) V V
rqq, i1V

(1S0) . (71)
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In case of C
(α)V V
n, i1V

expressions related to 3S1 partial waves and diagram-topologies α = 1, 2
we find

C̃
(α) V V
rrr, i1V

(3S1) = − 5

6
β2 + (m̂− m̂)

∆AB

2
+

∆2
AB

2
+ 3 m̂i1 . (72)

We deduce the following expressions for C̃
(α) V V
n, i1S

coefficients and diagram topologies α =
1, 2:

C̃
(1) V V
rqq, i1S

(1S0) = C̃
(2) V V
qqr, i1S

(1S0) = −m̂W (m̂− m̂+∆AB) + 4 m̂W m̂i1 . (73)

There are additional non-vanishing C
(α)V V
n, i1X

expressions for X = V, S in both the case of
1S0 and 3S1 partial wave reactions, which are related to the expressions in (70–73) in
the following way:

C̃
(1) V V
qqr, i1X

(2s+1SJ) = C̃
(2)V V
rqq, i1X

(2s+1SJ) = C̃
(1) V V
rrr, i1X

(2s+1SJ)|mi1
→−mi1

,

C̃
(1) V V
qrq, i1X

(2s+1SJ) = C̃
(2)V V
qrq, i1X

(2s+1SJ) = C̃
(1) V V
rqq, i1X

(2s+1SJ)|mi1
→−mi1

. (74)

Turning to terms related to box-diagrams, the non-vanishing expressions D̃
(α)V V
n, i1i2

for
α = 1, 2 are given by

D̃
(α) V V
rrrr, i1i2

(1S0) =
β2

2
, (75)

D̃
(1) V V
rqqr, i1i2

(1S0) =
β2

2
+ (m̂− m̂)2 −∆2

AB + 4 m̂i1m̂i2

− m̂i1(m̂− m̂−∆AB)− m̂i2(m̂− m̂+∆AB) , (76)

D̃
(2), V V
rqqr, i1i2

(1S0) = − β2

2
+
(
m̂− m̂+∆AB

)2
+ 4 m̂i1m̂i2

− (m̂i1 + m̂i2) (m̂− m̂+∆AB) , (77)

and

D̃
(1) V V
rrrr, i1i2

(3S1) = − 2

3
β2 − 1

2
(m̂− m̂)2 +

1

2
∆2
AB + 2 m̂i1m̂i2 , (78)

D̃
(2) V V
rrrr, i1i2

(3S1) =
2

3
β2 − 1

2

(
m̂− m̂+ ∆AB

)2
− 2 m̂i1m̂i2 , (79)

D̃
(1) V V
rqqr, i1i2

(3S1) = − 1

3
β2 − 1

2
(m̂− m̂)2 +

1

2
∆2
AB − 2 m̂i1m̂i2

+ m̂i1(m̂− m̂−∆AB) + m̂i2(m̂− m̂+∆AB) , (80)

D̃
(2) V V
rqqr, i1i2

(3S1) = − 1

3
β2 +

1

2

(
m−m+ ∆̂AB

)2
+ 2 m̂i1m̂i2
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− m̂i1(m̂− m̂+∆AB)− m̂i2(m̂− m̂+∆AB) . (81)

The remaining non-vanishing kinematic factors D̃V V
n, i1i2

for both spin-0 and spin-1 χχ
states are related to the expressions given above by

D̃
(α) V V
qqqq, i1i2

(2s+1SJ) = D̃
(α) V V
rrrr, i1i2

(2s+1SJ) ,

D̃
(α)V V
rrqq, i1i2

(2s+1SJ) = D̃
(α) V V
qqrr, i1i2

(2s+1SJ) = D̃
(α) V V
rrrr, i1i2

(2s+1SJ)| m̂ i1
m̂ i2

→ −m̂ i1
m̂ i2

,

D̃
(α)V V
qrrq, i1i2

(2s+1SJ) = D̃
(α) V V
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α)V V
rqrq, i1i2

(2s+1SJ) = D̃
(α) V V
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α)V V
qrqr, i1i2

(2s+1SJ) = D̃
(α) V V
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (82)

The notation in the second line of (82) means that the product m̂i1m̂i2 is replaced, but
all other appearances of either m̂i1 or m̂i2 are untouched.

A.3.2 Kinematic factors for XAXB = V S

We find the following expressions for B̃V S
n, i1i2

terms in 1S0 partial-wave reactions with
i1i2 = V V, V S, SV, SS:

B̃V S
qq, V V (

1S0) = − m̂2
W , (83)

B̃V S
qq, V S(

1S0) = B̃V S
qq, SV (

1S0) =
m̂W

2
(−3 + ∆AB) , (84)

B̃V S
qq, SS(

1S0) =
β2

4
− 9

4
+

3

2
∆AB − ∆2

AB

4
. (85)

In case of 3S1 partial-wave processes the corresponding B̃V S
n, i1i2

coefficients read

B̃V S
rr, V V (

3S1) = m̂2
W . (86)

Kinematic factors C̃
(α) V S
n, i1V

, that are related to the four generic triangle-topologies α with
gauge-boson (V ) exchange in the single s-channel (see Fig. 6) are given by

C̃
(1) V S
rqq, i1V

(1S0) = C̃
(2) V S
qqr, i1V

(1S0) = −m̂W

2
(m̂− m̂+∆AB)− m̂W m̂i1 , (87)

C̃
(3) V S
rqq, i1V

(1S0) = C̃
(4) V S
qqr, i1V

(1S0) =
m̂W

2
(m̂− m̂−∆AB) + m̂W m̂i1 , (88)

as well as

C̃
(1) V S
rrr, i1V

(3S1) = C̃
(2) V S
rrr, i1V

(3S1) = − C̃
(1) V S
rqq, i1V

(1S0) , (89)

C̃
(3) V S
rrr, i1V

(3S1) = C̃
(4) V S
rrr, i1V

(3S1) = − C̃
(3) V S
rqq, i1V

(1S0)|m̂i1
→−m̂i1

. (90)
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In case of C̃
(α) V S
n, i1S

expressions we find

C̃
(1) V S
rqq, i1S

(1S0) = − β2

4
− 3

4
(m̂− m̂) + (m̂− m̂− 3)

∆AB

4

+
∆2
AB

4
− m̂i1

2
(3−∆AB) , (91)

C̃
(2) V S
qqr, i1S

(1S0) = C̃
(1) V S
rqq, i1S

(1S0) , (92)

C̃
(3) V S
rqq, i1S

(1S0) = − β2

4
+

3

4
(m̂− m̂)− (m̂− m̂+ 3)

∆AB

4

+
∆2
AB

4
+
m̂i1

2
(3−∆AB) , (93)

C̃
(4) V S
qqr, i1S

(1S0) = C̃
(3) V S
rqq, i1S

(1S0) . (94)

There are additional non-vanishing kinematic factors for C̃
(α) V S
n, i1X

with X = V or S,
related to the corresponding expressions in (87–94) in the following way:

C̃
(1) V S
qqr, i1X

(2s+1SJ) = C̃
(2)V S
rqq, i1X

(2s+1SJ) = − C̃
(1) V S
rrr, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,

C̃
(3) V S
qqr, i1X

(2s+1SJ) = C̃
(4)V S
rqq, i1X

(2s+1SJ) = C̃
(3) V S
rrr, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,

C̃
(1) V S
qrq, i1X

(2s+1SJ) = C̃
(2)V S
qrq, i1X

(2s+1SJ) = − C̃
(1) V S
rqq, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,

C̃
(3) V S
qrq, i1X

(2s+1SJ) = C̃
(4)V S
qrq, i1X

(2s+1SJ) = C̃
(3) V S
rqq, i1X

(2s+1SJ)|m̂i1
→−m̂i1

. (95)

The non-vanishing kinematic factors for XAXB = V S and the four box-topologies α are
given by

D̃
(1)V S
rqqr, i1i2

(1S0) =
1

4
β2 +

1

4
(m̂− m̂)2 − 1

4
∆2
AB + m̂i1m̂i2

+
1

2
m̂i1(m̂− m̂−∆AB) +

1

2
m̂i2(m̂− m̂+∆AB) , (96)

D̃
(2)V S
rqqr, i1i2

(1S0) =
1

4
β2 − 1

4

(
m̂− m̂+∆AB

)2
− m̂i1m̂i2

− 1

2
(m̂i1 + m̂i2)(m̂− m̂+∆AB) , (97)

D̃
(3)V S
rqqr, i1i2

(1S0) = D̃
(1) V S
rqqr, i1i2

(1S0)|A↔B , (98)

D̃
(4)V S
rqqr, i1i2

(1S0) = D̃
(2) V S
rqqr, i1i2

(1S0)|A↔B . (99)

In case of 3S1 partial waves we have

D̃
(1)V S
rrrr, i1i2

(3S1) = − 1

12
β2 − 1

4
(m̂− m̂)2 +

1

4
∆2
AB + m̂i1m̂i2
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− 1

2
m̂i1(m̂− m̂−∆AB) +

1

2
m̂i2(m̂− m̂+∆AB) , (100)

D̃
(2)V S
rrrr, i1i2

(3S1) = − 1

12
β2 +

1

4

(
m̂− m̂+∆AB

)2
+ m̂i1m̂i2

+
1

2
(m̂i1 + m̂i1)(m̂− m̂+∆AB) , (101)

D̃
(3)V S
rrrr, i1i2

(3S1) = D̃
(1) V S
rrrr, i1i2

(3S1)|m̂↔m̂ , (102)

D̃
(4)V S
rrrr, i1i2

(3S1) = D̃
(2) V S
rrrr, i1i2

(3S1)|m̂↔m̂ , (103)

D̃
(α)V S
rqqr, i1i2

(3S1) =
(−1)α

6
β2 . (104)

Relations for the remaining kinematic factors for both 1S0 and
3S1 partial wave reactions

read in case of diagram-topologies α = 1, 2:

D̃
(α) V S
qqqq, i1i2

(2s+1SJ) = (−1)α D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rrqq, i1i2

(2s+1SJ) = (−1)α+1 D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α) V S
qqrr, i1i2

(2s+1SJ) = − D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

,

D̃
(α) V S
qrrq, i1i2

(2s+1SJ) = (−1)α D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rqrq, i1i2

(2s+1SJ) = (−1)α+1 D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α) V S
qrqr, i1i2

(2s+1SJ) = − D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (105)

The corresponding relations for diagram-topologies α = 3, 4 are given by

D̃
(α) V S
qqqq, i1i2

(2s+1SJ) = (−1)α D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rrqq, i1i2

(2s+1SJ) = (−1)α D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α) V S
qqrr, i1i2

(2s+1SJ) = D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

,

D̃
(α) V S
qrrq, i1i2

(2s+1SJ) = (−1)α D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rqrq, i1i2

(2s+1SJ) = (−1)α D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α) V S
qrqr, i1i2

(2s+1SJ) = D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (106)

A.3.3 Kinematic factors for XAXB = SS

The non-vanishing B̃SS
n, i1i2

terms with i1i2 = V V, V S, SV, V V read

B̃SS
qq, V V (

1S0) = ∆2
AB , (107)
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B̃SS
qq, V S(

1S0) = B̃SS
qq, SV (

1S0) = − m̂W∆AB , (108)

B̃SS
qq, SS(

1S0) = m̂2
W , (109)

and in case of 3S1 reactions

B̃SS
rr, V V (

3S1) =
β2

3
. (110)

As in the case of XAXB = V V , the kinematic factors for XAXB = SS and diagram
topologies α = 3, 4 are related to the corresponding expressions that arise from diagram-
topologies α = 1, 2. This applies to both triangle- and box-topologies (see Fig. 6 and
Fig. 7):

C̃
(3)SS
n, i1V

(2s+1SJ) = − C̃
(1)SS
n, i1V

(2s+1SJ) |A↔B ,

C̃
(4)SS
n, i1V

(2s+1SJ) = − C̃
(2)SS
n, i1V

(2s+1SJ) |A↔B ,

C̃
(3)SS
n, i1S

(2s+1SJ) = C̃
(1)SS
n, i1S

(2s+1SJ) |A↔B ,

C̃
(4)SS
n, i1S

(2s+1SJ) = C̃
(2)SS
n, i1S

(2s+1SJ) |A↔B ,

D̃
(3)SS
n, i1i2

(2s+1SJ) = D̃
(1)SS
n, i1i2

(2s+1SJ) |A↔B ,

D̃
(4)SS
n, i1i2

(2s+1SJ) = D̃
(2)SS
n, i1i2

(2s+1SJ) |A↔B . (111)

In case of expressions C̃
(α)SS
n, i1V

for diagram-topologies α = 1, 2 we find

C̃
(1)SS
rqq, i1V

(1S0) = C̃
(2)SS
qqr, i1V

(1S0) =
∆AB

2
(m̂− m̂+∆AB) + m̂i1∆AB , (112)

C̃
(1)SS
rrr, i1V

(3S1) = C̃
(2)SS
rrr, i1V

(3S1) = − β2

6
. (113)

The C̃
(α)SS
n, i1S

expressions with α = 1, 2 are given by

C̃
(1)SS
rqq, i1S

(1S0) = C̃
(2)SS
qqr, i1S

(1S0) = −m̂W

2
(m̂− m̂+∆AB)− m̂W m̂i1 . (114)

All other non-vanishing expressions for C̃
(α)SS
n, i1X

with X = V, S and α = 1, 2 can be related
to the terms in (112–114) in the following way:

C̃
(1)SS
qqr, i1X

(2s+1SJ) = C̃
(2)SS
rqq, i1X

(2s+1SJ) = − C̃
(1)SS
rrr, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,

C̃
(1)SS
qrq, i1X

(2s+1SJ) = C̃
(2)SS
qrq, i1X

(2s+1SJ) = − C̃
(1)SS
rqq, i1X

(2s+1SJ)|m̂i1
→−m̂i1

. (115)

The expressions D̃
(α)SS
n, i1i2

for diagram-topologies α = 1, 2 and 1S0 partial waves read

D̃
(1)SS
rqqr, i1i2

(1S0) =
1

4
(m̂− m̂)2 − ∆2

AB

4
+ m̂i1m̂i2
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+
m̂i1

2
(m̂− m̂−∆AB) +

m̂i2

2
(m̂− m̂+∆AB) , (116)

D̃
(2)SS
rqqr, i1i2

(1S0) =
1

4

(
m̂− m̂+∆AB

)2
+ m̂i1m̂i2

+
1

2
(m̂i1 + m̂i2)(m̂− m̂+∆AB) . (117)

In case of a 3S1 partial wave configuration we find

D̃
(α)SS
rrrr, i1i2

(3S1) = (−1)α
β2

12
. (118)

The remaining non-vanishing kinematic factors related to both 1S0 and
3S1 partial-wave

reactions read

D̃
(α)SS
qqqq, i1i2

(2s+1SJ) = D̃
(α)SS
rrrr, i1i2

(2s+1SJ) ,

D̃
(α)SS
rrqq, i1i2

(2s+1SJ) = D̃
(α)SS
qqrr, i1i2

(2s+1SJ) = −D̃(α)SS
rrrr, i1i2

(2s+1SJ) ,

D̃
(α)SS
qrrq, i1i2

(2s+1SJ) = D̃
(α)SS
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α)SS
rqrq, i1i2

(2s+1SJ) = − D̃
(α)SS
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α)SS
qrqr, i1i2

(2s+1SJ) = − D̃
(α)SS
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (119)

A.3.4 Kinematic factors for XAXB = ff

The non-vanishing B̃ff
n, i1i2

terms with i1i2 = V V, V S, SV, SS are given by

B̃ff
qqqq, V V (

1S0) = 1− β2 + 4 m̂Am̂B −∆2
AB , (120)

B̃ff
qqqq, V S(

1S0) = B̃ff
qqqq, SV (

1S0) = 2
(
m̂A + m̂B − (m̂A − m̂B)∆AB

)
, (121)

B̃ff
qqqq, SS(

1S0) = 1 + β2 + 4 m̂Am̂B −∆2
AB , (122)

and in case of 3S1 partial-wave reactions

B̃ff
rrrr, V V (

3S1) = 1 +
β2

3
+ 4 m̂Am̂B −∆2

AB . (123)

There are additional non-vanishing terms B̃ff
n, i1i2

related to the expressions in (120–123).
In case of i1i2 = V V, SS, the corresponding relations read

B̃ff
rqqr, i1i2

(2s+1SJ) = B̃ff
rrrr, i1i2

(2s+1SJ)|m̂Am̂B→−m̂Am̂B
, (124)

B̃ff
qrrq, i1i2

(2s+1SJ) = B̃ff
qqqq, i1i2

(2s+1SJ)|m̂Am̂B→−m̂Am̂B
, (125)
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and our notation implies, that the product m̂Am̂B has to be replaced, but all other
occurrences of m̂A or m̂B are untouched. Similarly, in case of i1i2 = V S, SV , the
additional non-vanishing B̃ff

n, i1i2
terms are given by

B̃ff
rqqr, i1i2

(2s+1SJ) = − B̃ff
rrrr, i1i2

(2s+1SJ)|m̂A→−m̂A
, (126)

B̃ff
qrrq, i1i2

(2s+1SJ) = − B̃ff
qqqq, i1i2

(2s+1SJ)|m̂A→−m̂A
. (127)

The relations among kinematic factors for diagram topologies α = 3, 4 and diagram-
topologies α = 1, 2 in both the cases of box- and triangle-topologies are given by (X =
V, S)

C
(3) ff
n, i1X

(2s+1SJ) = C
(1) ff
n, i1X

(2s+1SJ) |A↔B , (128)

C
(4) ff
n, i1X

(2s+1SJ) = C
(2) ff
n, i1X

(2s+1SJ) |A↔B , (129)

D
(3) ff
n, i1i2

(2s+1SJ) = D
(1) ff
n, i1i2

(2s+1SJ) |A↔B , (130)

D
(4) ff
n, i1i2

(2s+1SJ) = D
(2) ff
n, i1i2

(2s+1SJ) |A↔B , (131)

compare to the generic diagrams in Fig. 6 and Fig. 8. The structures C̃
(α) ff
n, i1V

for topologies
α = 1, 2 are given by

C̃
(α) ff
qqqq, i1V

(1S0) =
β2

4
− 1

4
(1− 2 m̂A)(1− 2 m̂B)

− (m̂A − m̂B)
∆AB

2
− ∆2

AB

4
, (132)

and in case of 3S1 partial wave reactions the respective expressions read

C̃
(α) ff
rrrr, i1V

(3S1) = − β2

12
− 1

4
(1 + 2 m̂A)(1 + 2 m̂B)

+ (m̂A − m̂B)
∆AB

2
+

∆2
AB

4
. (133)

The relations of the additional non-vanishing C̃
(α) ff
n, i1V

expressions to the respective terms
in (132–133) read

C̃
(1) ff
qqrr, i1V

(2s+1SJ) = C̃
(2) ff
rrqq, i1V

(2s+1SJ) = − C̃
(1) ff
rrrr, i1V

(2s+1SJ)|mA,B→−mA,B
,

C̃
(α) ff
rqqr, i1V

(2s+1SJ) = C̃
(α) ff
rrrr, i1V

(2s+1SJ)|mA→−mA
,

C̃
(1) ff
qrqr, i1V

(2s+1SJ) = C̃
(2) ff
rqrq, i1V

(2s+1SJ) = − C̃
(1) ff
rrrr, i1V

(2s+1SJ)|mB→−mB
,

C̃
(1) ff
rqrq, i1V

(2s+1SJ) = C̃
(2) ff
qrqr, i1V

(2s+1SJ) = − C̃
(α) ff
qqqq, i1V

(2s+1SJ)|mB→−mB
,
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C̃
(α) ff
qrrq, i1V

(2s+1SJ) = C̃
(α) ff
qqqq, i1V

(2s+1SJ)|mA→−mA
,

C̃
(1) ff
rrqq, i1V

(2s+1SJ) = C̃
(2) ff
qqrr, i1V

(2s+1SJ) = − C̃
(α) ff
qqqq, i1V

(2s+1SJ)|mA,B→−mA,B
. (134)

The terms C̃
(α) ff
n, i1S

for α = 1, 2 read

C̃
(α) ff
qqqq, i1S

(1S0) =
β2

4
+

1

4
(1− 2 m̂A)(1− 2 m̂B)

+ (m̂A − m̂B)
∆AB

2
− ∆2

AB

4
, (135)

and all remaining non-vanishing C
(α) ff
n, i1S

terms are obtained from (135) in the following
way:

C̃
(1) ff
rqrq, i1S

(2s+1SJ) = C̃
(2) ff
qrqr, i1S

(2s+1SJ) = C̃
(α) ff
qqqq, i1S

(2s+1SJ)|mB→−mB
,

C̃
(α) ff
qrrq, i1S

(2s+1SJ) = C̃
(α) ff
qqqq, i1S

(2s+1SJ)|mA→−mA
,

C̃
(1) ff
rrqq, i1S

(2s+1SJ) = C̃
(2) ff
qqrr, i1S

(2s+1SJ) = C̃
(α) ff
qqqq, i1S

(2s+1SJ)|mA,B→−mA,B
. (136)

In case of box-diagram topologies α = 1, 2, we find the following D̃
(α) ff
n, i1i2

structures for
the 1S0 partial waves:

D̃
(α) ff
rrrr, i1i2

(1S0) =
1

8
(1 + 2 m̂B −∆AB)(1 + 2 m̂A +∆AB) , (137)

D̃
(α) ff
rrqq, i1i2

(1S0) =
β2

8
− 1

2
m̂Am̂B . (138)

For 3S1 partial-wave configurations we have

D̃
(α) ff
rrrr i1i2

(3S1) = (−1)α D̃
(α) ff
rrrr, i1i2

(1S0) , (139)

D̃
(α) ff
rrqq, i1i2

(3S1) = (−1)α+1

(
β2

24
+

1

2
m̂Am̂B

)
. (140)

Relations for the remaining non-vanishing kinematic factors related to both 1S0 and
3S1

partial-wave processes read in case of diagram topology α = 1

D̃
(1) ff
qqqq, i1i2

(2s+1SJ) = D̃
(1) ff
rrrr, i1i2

(2s+1SJ)| m̂A,B→ −m̂A,B
,

D̃
(1) ff
qqrr, i1i2

(2s+1SJ) = D̃
(1) ff
rrqq, i1i2

(2s+1SJ) ,

D̃
(1) ff
rqqr, i1i2

(2s+1SJ) = D̃
(1) ff
qrrq, i1i2

(2s+1SJ) = D̃
(1) ff
rrqq, i1i2

(2s+1SJ)| m̂Am̂B→ −m̂Am̂B
,

D̃
(1) ff
rqrq, i1i2

(2s+1SJ) = D̃
(1) ff
rrrr, i1i2

(2s+1SJ)| m̂A→ −m̂A
,

D̃
(1) ff
qrqr, i1i2

(2s+1SJ) = D̃
(1) ff
rrrr, i1i2

(2s+1SJ)| m̂B→ −m̂B
. (141)
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In case of diagram topology α = 2, the corresponding relations are given by

D̃
(2) ff
qqqq, i1i2

(2s+1SJ) = D̃
(2) ff
rrrr, i1i2

(2s+1SJ)| m̂A,B→ −m̂A,B
,

D̃
(2) ff
qqrr, i1i2

(2s+1SJ) = D̃
(2) ff
rrqq, i1i2

(2s+1SJ) ,

D̃
(2) ff
rqqr, i1i2

(2s+1SJ) = D̃
(2) ff
rrrr, i1i2

(2s+1SJ)| m̂A→ −m̂A
,

D̃
(2) ff
qrrq, i1i2

(2s+1SJ) = D̃
(2) ff
rrrr, i1i2

(2s+1SJ)| m̂B→ −m̂B
,

D̃
(2) ff
rqrq, i1i2

(2s+1SJ) = D̃
(2) ff
qrqr, i1i2

(2s+1SJ) = D̃
(2) ff
rrqq, i1i2

(2s+1SJ)| m̂Am̂B→ −m̂Am̂B
. (142)

A.3.5 Kinematic factors for XAXB = ηη

In case of XAXB = ηη one cannot directly construct the coupling factors bn i1i2 using
the recipe given in Sec. A.2, which is based on considering the χe1χe2 → XAXB and
χe4χe3 → XAXB tree-level annihilation amplitudes. In order to obtain the coupling
factor expressions bn i1i2, that correspond to the kinematic factors presented below, one
should proceed as follows: First extract the (axial-) vector and (pseudo-) scalar coupling
factors associated with the interaction of the χe1χe2 or χe4χe3 pair and the s-channel
exchanged particle species. This is done following the steps 1. and 2. in the recipe
given in Sec. A.2. Next, complex-conjugate the couplings related to the χe4χe3 particle
pair. In order to determine the couplings to the ghosts, consider the 1-loop amplitude
χe1χe2 → ηη → χe4χe3, similar to the selfenergy-amplitude in Fig. 5. Assign a ghost
flow to the lower line of the 1-loop amplitude (labelled with XA in Fig. 5), that flows
from left to right. Consequently there is a ghost flow from right to left on the upper
line, which is labelled with XB. Assume that the coupling factors at each of the two
ghost vertices are generically of the form ig2cABXi

LABXi
, where the Lorentz structures

LABXi
are defined in Tab. 4. Determine the expressions that replace the generic cABXi

factors for the specific process under consideration. Now build all possible combinations
of two-coupling factor products from the set of the neutralino/chargino couplings to the
s-channel exchanged particles (including factors of −1 in front of vector couplings) in
the χe1χe2 → ηη → χe4χe3 reaction, and multiply them by the cABXi1

and cABXi2
factors.

The convention for the naming of the resulting coupling factor expressions bn, i1i2 with
subscripts n = rr, qq is the same as in the cases XAXB = V V, V S, SS, see Sec. A.2.
The coupling factors bn, i1i2 derived in this way correspond to the kinematic factors given
below. Note that the mass parameter mA in the expressions below refers to the mass of
the ghost flowing in the lower line, and mB to the mass of the ghost in the upper line.

The non-vanishing B̃ηη
n, i1i2

terms with i1i2 = V V, V S, SV, SS read

B̃ηη
qq, V V (

1S0) =
1

4
(1−∆2

AB) , (143)

B̃ηη
qq, V S(

1S0) = − m̂W

2
(1 + ∆AB) , (144)
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B̃ηη
qq, SV (

1S0) =
m̂W

2
(1−∆AB) , (145)

B̃ηη
qq, SS(

1S0) = − m̂2
W . (146)

Similarly,

B̃ηη
rr, V V (

3S1) = − β2

12
. (147)
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