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340 ABSTRACT 
 

341 Pterygium is a pathological condition of the ocular surface of the eye, characterized 
 

342 by a highly vascularized and fibrovascular tissue formation arising from the limbus 
 

343 and invading the central cornea. Despite the controversy about pterygium patho- 
 

344 mechanism, UV exposure represents the main trigger for this uncontrolled 
 

345 overgrowth, mainly due to the high incidence of the disease around the equatorial 
 

346 areas. However, in certain families a much higher susceptibility to developing 
 

347 pterygium has been observed, suggesting a genetic etiologic component. 
 

348 In this study, a Northern Irish family affected in three generations by pterygium and 
 

349 yet rarely exposed to direct UV light was identified. Whole Exome Sequencing and 
 

350 subsequent   bioinformatic   analysis, literature review and expression analysis 
 

351 prioritised a novel missense variant (p.H412P) in CRIM1 gene, encoding for a type I 
 

352 transmembrane protein, which co-segregates with the disease within the family. 
 

353 A higher CRIM1 expression was shown in pterygium tissues with respect to the 
 

354 conjunctival controls in the North European (low UV-exposure) population and 
 

355 another missense mutation in CRIM1, R745C, was identified in an individual 
 

356 pterygium patient from Bolivia. 
 

357 In vitro functional analysis showed an antiproliferative and proapoptotic role for 
 

358 CRIM1 overexpression, which is able to modulate the extracellular signal– 
 

359 regulated kinases (ERK) phosphorylation induced by UV light. 
 

360 For the first time CRIM1 expression revealed an pivotal role in UV mediated 
 

361 intracellular ERK pathway and apoptosis; pathway which was already documented in 
 

362 pterygium and which resulted in an impaired function when introducing H412P 
 

363 mutation in CRIM1, reinforcing the significance of this mutation identified in the 
 

364 Northern Irish pterygium family. 
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371 1.1 The eye 
 

372 Eyes are the organs of vision, responsible for the perception of light stimuli 
 

3733
7
3 

 
3743

7
4 

coming from the external world. 

 
 

375 1.1.1 Eye evolution and anatomy 
 

376 The eye has developed in many different ways to allow the various organisms to 
 

377 adapt to the surrounding environment and in particular to detect and respond to 
 

378 the sunlight. It has been estimated that the eye evolved independently around 50- 
 

379 100 times (Land and Nilsson, 2002). 
 

380 The simplest photoreceptive organelle, found even in unicellular organisms, is 
 

381 formed by photoreceptor transmembrane proteins (opsins) containing a 
 

382 chromophore (retinal) which is able to catch light photons and distinguish them 
 

383 from  the  darkness.  This  light  sensitivity  is  important  for  direction  during 
 

384 movement and the circadian rhythm, but is not strong enough to distinguish one 
 

385 object from another (Land and Fernald, 1992). 
 

386 More advanced eye structures have evolved for 96% of the animal species and in 
 

387 particular during the Cambrian explosion, an extraordinary evolution event began 
 

388 around 500million years ago. 
 

389 Humans possess an almost spherical eye, where the light enters from the anterior 
 

390 cornea  (responsible  for  two  thirds  of  the  refractive  power)  and  crosses  the 
 

391 aqueous  humour,  a transparent  viscous fluid-like substance with  a  low  protein 
 

392 concentration (Cole, 1977). 
 

393 The light amount entering through the pupil is regulated by the iris, a diaphragm 
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394 which determines people’s eye colour, and is further refracted by crystalline lens. 
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395 Passing through the jelly vitreous humour, the light finally reaches the 
 

396 photoreceptors (cones and rods) located in the posterior retina from where is 
 

3973
9
7 

 
3983

9
8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3993
9
9 

transmitted to the brain via the optic nerve (Figure 1.1). 
 
 
 
 

 
400 Figure 1.1 Structure of the human eye 

401 The picture represents a longitudinal cross section of the human eye, 

402 showing its multiple functional components. The red squares highlight 

403 the cornea and the conjunctiva, which are the subject of this thesis 

404 work. 

405  

 
406 

 
1.1.2 The anterior eye 

407 The cornea is the avascular lens located in the anterior part of the eye and 

408 represents our window towards the external world. It is composed of five 
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409 overlapping layers; the corneal endothelium, Descemet’s membrane, stroma, 

410 Bowman’s membrane and corneal epithelium, the latter covered by the tear film. 
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411 Maintaining corneal transparency is fundamental in eliciting optimal vision. This 
 

412 is obtained by the correct functioning of all the layers composing the cornea: from 
 

413 the homeostasis of the inner endothelial pump, passing through the well organised 
 

414 collagen fibrils into the stroma to the external barrier of corneal epithelial cells. 
 

415 The inner endothelium is a monostratified layer of flat epithelial cells, which 
 

416 are polygonal in shape and non-proliferating, they are important to regulate the 
 

417 relative dehydration of the cornea (deturgescence) through the action of its active 
 

418 fluid pumps (Joyce, 2012). 
 

419 A thin acellular layer called Descemet’s membrane, composed of collagen IV 
 

420 and VIII, laminin and fibronectin, divides the endothelium from the stroma. 
 

421 Separating the Descemet’s membrane with endothelial cells from the rest of the 
 

422 cornea, a novel acellular layer mostly composed of collagen I has been recently 
 

423 described: the Dua’s layer (Dua et al., 2013). 
 

424 The stroma, representing 90% of the entire corneal thickness, is composed of 
 

425 fibroblastic cells (keratocytes) interspersed in an extracellular matrix (ECM) of 
 

426 collagen fibrils (type I and V), which are responsible for corneal transparency due 
 

427 to their organised parallel disposition. 
 

428 In continuity with the stroma, collagen I and III and proteoglycans constitute 
 

429 the Bowman’s layer, another acellular layer produced by the overlying corneal 
 

430 epithelium. 
 

431 The corneal epithelium is the outermost part of the cornea acting as a barrier 
 

432 to protect the eye from the external environment together with the overlying tear 
 

433 film. Lying on a basement membrane of collagen IV and laminin, the corneal 
 

434 epithelium is a stratified squamous epithelium, non-keratinised layer, composed 
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435 of 4-6 cell layers, from the internal portion: basal, wing and squamous cells 
 

436 (DelMonte and Kim, 2011). 
 

437 Deriving its name from the Latin “cornu” which means horn for its stiffness, the 
 

438 cornea is important for maintaining the structure of the eye bulb and continues to 
 

439 the posterior part of the eye with the sclera. The sclera, which is distinct from the 
 

440 cornea, appears white in colour because of the light, which is scattered by the 
 

441 randomly arranged collagen fibrils and the vessels, these make up the superior 
 

442 portion named the episclera. 
 

443 The anterior sclera together with the eyelids are covered by the conjunctiva, a 
 

444 stratified columnar epithelial layer interspersed by goblet cells secreting mucins 
 

445 into the tear film which overlies a vascularised connective tissue rich in elastin 
 

446 fibres (Copeland et al., 2013). 
 

447 There are six different types of conjunctiva based on their localization: marginal, 
 

448 tarsal, orbital, forniceal, bulbar and limbal, the latter in continuity with the corneal 
 

449 epithelium. 
 

450 It is exactly at the junction between cornea, conjunctiva and sclera, at the basal 
 

451 epithelial cell level, that the niche of corneal epithelial stem cells has been 
 

4524
5
2 
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identified: the limbus (Figure 1.2). 
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454454 
 

455 Figure 1.2 Structure of the anterior eye 

456 The five overlapping corneal layers are listed in the left part of the 

457 image, from the external to the internal side: Epithelium, Bowman’s 

458 membrane, Stroma, Descemet’s membrane and Endothelium. 

459 The transition area between the cornea and the conjunctiva (top part of 

460 the image) is delimited by the limbus, located in the Palisade of Vogt 

461 Source of the image: (Dawson et al., 2009) 

462  

 
463 1.2 Diseases affecting the anterior eye 

464 Diseases affecting the anterior part of the eye are numerous. We can distinguish 

465 between them in the following ways: infectious diseases affecting the cornea and 

466 the conjunctiva (bacterial, viral or fungal keratitis and conjunctivitis respectively), 

467 immunologic diseases where the eye is a target of allergic reactions (seasonal 

468 conjunctivitis, the most common), metabolic disorders including diabetes 

469 mellitus, trauma (physical and chemical), corneal dystrophies and other ocular 

470 surface diseases. 



26  

471 Corneal dystrophies represent a group of bilateral rare genetic disorders causing 
 

472 the degeneration of corneal tissue. 
 

473 They can affect all the layers of the cornea and have been recently classified into 
 

474 four major groups: epithelial and subepithelial dystrophies, epithelial-stromal 
 

475 TGFBI dystrophies, stromal dystrophies and endothelial dystrophies (Weiss et al., 
 

476 2015). 
 

477 Other ocular surface diseases include dry eye syndrome caused by decreased tear 
 

478 production or increased evaporation, blepharitis caused by meibomian gland 
 

479 dysfunction, Keratoconus in which the cornea acquires a conical shape as well as 
 

480 several malignant neoplasia and pterygium. 
 

481 Pterygium, together with eyelid malignancies (basal cell carcinoma (BCC) and 
 

482 squamous cell carcinoma (SCC)) photokeratitis, climatic droplet keratopathy 
 

483 (CDK), and cortical cataract are strongly associated with UV damage to the eye 
 

484 surface. 
 

485 Limited evidence associates UV exposure with other eye diseases like pinguecula, 
 

486 nuclear and posterior subcapsular cataract, ocular surface squamous neoplasia 
 

487 (OSSN) and ocular melanoma (Yam and Kwok, 2014). 
 

488  

 
489 

 
1.2.1 What is Pterygium? 

490 Pterygium is a common eye surface disease, deriving its name from the Greek 

491 pterygos, wing, pathognomonic with its characteristic triangular shaped 

492 conjunctival tissue overgrowth invading the central cornea. 

493 The first description of pterygium dates back to the Egyptian papyri in 1600-1300 

494 B.C. (Chen et al., 2013) and to Susruta (India) who, before 1000 B.C., described 

495 in detail how to surgically remove pterygium in his Samhita (Rosenthal, 1953). 
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496 Lengthwise pterygium can be distinguished in three parts: a cap, flat fibroblastic 
 

497 tissue invading the cornea through Bowman’s membrane disruption, a highly 
 

498 vascularised head, firmly attached to the cornea and a tail, covering the bulbar 
 

499 conjunctiva (Torres et al., 2011) (Figure 1.3A). 
 

500 When analysing the morphology of pterygium tissue, two different types of tissue 
 

501 can be distinguished. Externally it is composed of a squamous metaplastic 
 

502 epithelia interspaced with hyperplastic goblet cells, glandular epithelial cells 
 

503 secreting mucins and internally presents an extracellular matrix interspersed with 
 

504 fibroblastic cells, vessels, collagen I and IV and fragmented elastin fibres 
 

505 (Detorakis and Spandidos, 2009b). 
 

506 Although  sometimes bilateral,  pterygium  is  normally asymmetric  with  one eye 
 

507 more severely affected than the other and normally arises from the nasal or more 
 

508 rarely from the temporal conjunctiva (Detorakis and Spandidos, 2009b). 
 

509 The development of this fibrovascular eye lesion has been associated with several 
 

510 etiologic and pathogenic factors, later described in more detail. However, the 
 

511 information collected to date on this condition has not been exhaustive enough to 
 

512 explain the complex mechanism behind the formation of pterygium. 
 

513  

 
514 

 
1.2.2 What is Pinguecula? 

515 Pinguecula, deriving its name from the latin “pinguiculus” which means fatty, is 

516 histologically similar to pterygium, presenting as a collagenic degradation with 

517 abnormal elastin deposition in the inflamed and vascularised stroma beneath a 

518 dysplasic epithelial layer (Lemercier et al., 1978). 
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519 Furthemore, similarly to pterygium, pinguecula prefers the nasal side of the 
 

520 limbus (Jakobiec et al., 2014) and there is a strong correlation in terms of age, sex 
 

521 and habits between the two diseases (Hill and Maske, 1989). 
 

522 The aetiology of pinguecula has been associated with ageing (97% of the 
 

523 population over 50 years presents with pinguecula), sun exposure, dust and wind 
 

524 (Kaji et al., 2006). 
 

525 However, pinguecula  differs from pterygium  because  it  is  visible as  a  smaller 
 

526 yellowish deposit  emanating from the  conjunctiva beside the limbus  and  it does 
 

527 not show a proliferative potential (Figure 1.3B). 
 

528 Despite several associations between the two pathologies, is still not clear if 
 

529 
 

530 

pinguecula is a pterygium precursor. 
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A. 
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532 

 
 

Figure 1.3 Pterygium and pinguecula 
 

533 Panel A. Pterygium invading the central cornea. From the left we can 
 

534 distinguish the vascularised tail, the advancing head attached to the 
 

535 cornea and the cap which reaches the pupil (Najafi et al., 2016) 
 

536 Panel B. Pinguecula visible at the limbus area (yellow arrow), between 
 

537 the cornea and conjunctiva of the III.5 member of the Northern Irish 
 

538 family affected by pterygium studied in this thesis (genealogic tree 
 

539 described in Chapter 2) 
 

540 The image was obtained courtesy of Prof. Johnny Moore. 
 

541  

 
542 1.3 Pterygium symptoms 

543 While pinguecula is asymptomatic and normally doesn’t require any surgical 

544 intervention, initial presentation of pterygium is asymptomatic, but, as the disease 

545 progresses, it has been associated with different symptoms like tearing, itching 

546 and burning similar to dry eye. More severe cases present with chronic 

547 inflammation and blurred vision inducing astigmatism as the lesion increases in 

548 size and interferes with the visual axis (Cardenas-Cantu et al., 2015). 

B. 
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549 The progression of the pathology is variable between individuals. A slower 
 

550 growth potential has been observed upon iron accumulation in the basal layer of 
 

551 the corneal epithelium close to the head of the pterygium (Stocker’s line) 
 

552 (Detorakis and Spandidos, 2009b). 
 

553 Iron is fundamental for many cellular activities like oxygen transport and the 
 

554 tricarboxylic acid cycle even if its accumulation leads to oxidative stress thus 
 

555 damaging the tissue (Ortak et al., 2012). 
 

556 Four iron lines have been described in the cornea: Stocker's Line, Hudson-Stahli 
 

557 Line,  Fleischer's  Ring  and  Ferry's  Line.  Several  theories  were  formulated  to 
 

558 explain iron lines formation including the tear-pooling hypothesis in which the 
 

559 iron present in tears is deposited in the closure lid epithelium (Gass, 1964) or a 
 

560 slower migration of the basal epithelial cells at the interpalpebral fissure where 
 

561 the oldest and most pigmented cells accumulates (Rose and Lavin, 1987). 
 

562 Another theory proposes that the iron accumulates in regions with a higher tear 
 

563 instability due to excessive tear evaporation or in cells with a slower turnover 
 

564 (Assil et al., 1993). Loh et al. propose instead that stress of epithelial basal cells 
 

565 causes an increase in transferrin or lactoferrin receptor expression which bind iron 
 

566 and result in its uptake (Loh et al., 2009). However, the reason for iron 
 

567 accumulation in Stocker’s line in pterygium is still unknown and possibly due to 
 

568 the excessive physical stress on the tissue. 
 

569  

 
570 1.4 Pterygium treatment options 

571 The only effective treatment of an advanced pterygium obstructing the visual axis 

572 is the surgical excision of all the overgrown collagenous tissue followed by 

573 multiple adjuvant therapies. 
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574 1.4.1 Surgical techniques 
 

575 The surgical treatment for pterygium consists in excision of the overgrown tissue 
 

576 with different additional strategies to prevent pterygium recurrence. 
 

577 The bare sclera technique consists of the surgical removal of the whole 
 

578 pterygium and suturing the remaining conjunctiva to the bare sclera, which will 
 

579 re-epithelialize the excised area. Because of a high recurrence rate (up to 70%), 
 

580 this procedure incorporates a graft replacing the excised pterygium tissue. 
 

581 Two  kinds  of  graft  are  normally  used:  a  conjunctival  autograft  or  amniotic 
 

582 membrane graft, reducing the recurrence rate to 10% in some cases (Chen et al., 
 

583 2013). 
 

584 The conjunctival autograft consists of the transposition of a conjunctival flap, 
 

585 normally obtained from the superotemporal bulbar conjunctiva, into the area 
 

586 where the pterygium has been excised. To stabilize the graft sutures, which are 
 

587 more uncomfortable and prone to chronic inflammation, a more expensive fibrin 
 

588 glue can be used (Cardenas-Cantu et al., 2015). A simple sutureless and glue free 
 

589 technique of conjunctival autograft revealed to be particularly efficient with no 
 

590 complications registered pre- and post-surgical intervention in any of the 15 eyes 
 

591 in which pterygium was excised (de Wit et al., 2010). 
 

592 An  alternative  technique  is  the  application  of  amniotic  membrane,  which 
 

593 helps the re-epithelialization of the conjunctiva, possessing anti-inflammatory and 
 

594 anti-fibrotic properties. It is positioned over the bare sclera that comes in contact 
 

595 with the stroma of the amniotic membrane while the basement membrane is 
 

596 facing up. Fibrin glue is generally used to help graft adhesion and accelerate 
 

5975
9
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599 1.4.2 Adjuvant therapies 
 

600 Adjuvant   therapies   are   used   after   pterygium   surgical   removal   to prevent 
 

601 recurrence, which can be even more aggressive than the primary pterygium. 
 

602 Mitomycin C (MMC) is an antibiotic and antitumor agent able to alkylate 
 

603 DNA double helix and used to block keratocyte and fibroblast proliferation in the 
 

604 case of pterygium. MMC is normally applied intraoperatively direct to the sclera 
 

605 bed but also postoperatively at different intervals. Patients treated with MMC are 
 

606 normally carefully selected because it can cause severe complications such as 
 

607 corneal perforation and scleral calcification (Cardenas-Cantu et al., 2015). 
 

608 Beta-irradiation has the purpose of focally reducing fibroblast cell population. 
 

609 This treatment, however, can be responsible for serious side effects, including 
 

610 sclera necrosis and endopthalmitis (Detorakis and Spandidos, 2009b). 
 

611 5-fluoracil (5-FU) is a chemotherapeutic pyrimidine analogue which, inhibits the 
 

612 thymidylate synthetase, blocks DNA synthesis and causes cell death in 
 

613 proliferating cells (Chui et al., 2008). 
 

614 Anti-VEGF (Vascular Endothelial Growth Factor) monoclonal antibodies like 
 

615 bevacizumab inhibit angiogenesis but only temporarily and are associated with 
 

616 several side effects including cardiovascular toxicity (Detorakis and Spandidos, 
 

617 2009b). 
 

618 Doxycycline, a wide spectrum antibiotic, it is used to treat different 
 

619 mechanisms observed in pterygium for example inflammation, angiogenesis and 
 

620 apoptosis (Rúa et al., 2012). 
 

621 Ethanol treatment, which destabilizes epithelial cell junctions, is normally 
 

622 performed directly during the operation. 
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623 Other less common adjuvant methods are all targeted against pterygium fibroblast 

624 proliferation like thioepa, an alkylating agent, Tropomyosin receptor kinase A 

625 (TrkA) inhibitor, curcumin and tetrandrine, an alkaloid (Cardenas-Cantu et al., 

626 2015). 

627 Despite the surgical outcome improvement given by adjuvant therapies, 

628 pterygium still presents a 10% recurrence rate (Ono et al., 2016). The lack of both 

629 a complete successful treatment and a clear pterygium pathogenic mechanism, 

630 drives researchers to investigate the molecular bases of pterygium development in 

631 order to find a more specific and effective therapeutic approach. 

632  

 
633 1.5 Development of pterygium 

 
634 

 
1.5.1 Limbal origin of epithelial pterygium 

635 The outermost corneal epithelium is maintained functional and completely 

636 renewed every 9-12 months (Wagoner, 1997) by limbal epithelial stem cells 

637 (LESC) residing at the limbal Palisade of Vogt, located all around the border 

638 between the cornea and the conjunctiva (Das et al., 2015). 

639 Altered limbal stem cells with abnormal gray dots (Cardenas-Cantu et al., 2015) 

640 have been observed in proximity to where the pterygium initially arises, before 

641 they stretch centripetally towards the cornea. Conjunctival epithelial cells and 

642 stromal fibroblasts follow the limbal cells centripetal movement towards the 

643 cornea progressively acquiring the characteristic triangular shape (Chui et al., 

644 2008, Cardenas-Cantu et al., 2015, Das et al., 2015). 

645 The limbal origin of pterygium formation has long been debated but seems to find 

646 confirmation in the latest works. An alteration of the limbal epithelial stem cells 
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647 microenvironment  was described in the initial phases of pterygium  development 
 

648 (Das  et  al.,  2015). Moreover,  a similar  expression of VEGF and   VEGFR  was 
 

649 observed in limbal as well as in pterygium samples, but those levels of expression 
 

650 were lower in normal conjunctival samples (Gebhardt et al., 2005). Finally, an 
 

651 invasion of vimentin-positive limbal stem cells  was  identified  in  pterygium  

652 (Dushku and Reid, 1994), together with a cluster of small p63α-positive cells in 

653 the basal epithelial cells of pterygium (Chui et al., 2011). 
 

654 This cluster of cells was firstly identified in 1892 by Ernest Fuchs as flecks at the 
 

655 advancing  head  of  the  pterygia  (Fuchs,  1892),  thus  resulting  in  them  being 
 

656 defined as “Fuchs flecks” and commonly visualised nowadays under slit-lamp 
 

657 examinations as diagnostic sign of pterygium. 
 

658 Moreover, based on its limbal origin elucidated above, but also on 
 

659 histopathological studies and clinical observations, pterygium has been described 
 

660 as a localised limbal stem cell deficiency (LSCD) (Anguria et al., 2014, Das et al., 
 

661 2015). LSCD is a serious corneal epithelial condition in which the occurrence of 
 

662 damage in limbal stem cells results in a loss in their capacity to regenerate the 
 

663 epithelium, thus leading to a complete conjunctivalization of the cornea, 
 

664 neovascularisation and chronic inflammation finally eliciting blindness (Pellegrini 
 

665 et al., 2014). 
 

666 Pterygium  formation  resembles  the  scarring  and  conjunctivalization  seen  in 
 

667 LSCD even if it is localised in a small portion of the corneal-conjunctival barrier, 
 

668 probably due to focused damage to a small portion of limbal stem cells. 
 
 

669 1.5.2 Pterygium fibroblasts 
 

670 Surrounded by conjunctival epithelium, the internal fibroblasts forming 
 

671 pterygium are thought to be responsible for the accumulation of elastoid material 
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672 beneath the bulbar conjunctiva, resulting in degenerated type I and type IV 
 

673 collagen, abnormal elastin fibres and eosinophil-granular material (Detorakis and 
 

674 Spandidos, 2009b, Austin et al., 1983, Hill and Maske, 1989). 
 

675 Even the origin of pterygium fibroblasts is still unclear: different hypotheses 
 

676 suggest they can originate from resident stromal cells, myofibroblasts coming 
 

677 from periorbital fibroadipose tissue, bone-marrow derived progenitor cells or 
 

678 limbal epithelial cells undergoing epithelial mesenchymal transition (EMT) (Chui 
 

679 et al., 2008, Kim et al., 2016). 
 
 

680 1.5.3 Epithelial mesenchymal transition (EMT) 
 

681 EMT is a common process observed during cell development, wound healing or 
 

682 carcinogenesis in which epithelial cells lose their morphology and expression 
 

683 markers to acquire the mesenchymal cells features (Kalluri and Weinberg, 2009, 
 

684 Lamouille et al., 2014). 
 

685 During the EMT process cells acquire new structural features like cytoskeleton 
 

686 reorganization,  cell  polarity  and  functional  properties  including  an   increased 
 

687 motility  and   invasiveness,   higher   resistance   to   apoptosis   and   secretion of 
 

688 extracellular matrix components (Kalluri and Weinberg, 2009). 
 

689 Gene expression reprogramming which occurs during  EMT  is  initiated  and  

690 controlled mainly by TGFβ family signalling; including  among  others  three  

691 TGFβs, two activins and several Bone Morphogenetic Proteins (BMPs). TGFβ 

692 promotes EMT through activation of SMAD but also ERK, c-Jun N- 
 

693 terminal kinases (JNK) and p38 Mitogen Activated Protein Kinases (MAPK) 
 

694 intracellular pathways. (Lamouille et al., 2014). 
 

695 Given the epithelial tissue plasticity, EMT results in a reversible process, and this 
 

696 was revealed by the occurrence of mesenchymal epithelial transition (MET), the 
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697 opposing process in which the mesenchymal cells acquire epithelial 
 

698 characteristics. 
 

699 Many molecular markers are used to identify this process: E-cadherin switches 
 

700 into N-cadherin, cells loose markers like ZO-1, mucin1 (MUC1) and miR200 and 

701 acquire typical mesenchymal markers like α-SMA, vimentin and β-cadherin 

702 (Zeisberg and Neilson, 2009). 
 

703 Typical features of EMT were observed in pterygium: actively proliferating 
 

704 fibroblast-like cells were dissociating to basal epithelial cells expressing lower 

705 levels of E-chaderin, increased levels of α-SMA and vimentin and accumulating 

706 β-catenin intranuclearly (Kato et al., 2007). 

707 Downregulation of microRNA (miR-200 family) in pterygium tissue compared to 

708 normal conjunctiva represents another proof of TGF-β induced EMT involvement 

709 in pterygium pathogenesis  (Engelsvold et al., 2013); given the importance of   

710 miR-200 downregulation in TGF-β mediated EMT (Gregory et al., 2008). 

711 Moreover, TGF-βR1 was found to be highly expressed alongside the epithelial 
 

712 surface of pterygium (Das et al., 2015), suggesting again an important role for 

713 TGF-β signalling in EMT and pterygium development. 

714  

 
715 

 
1.5.4 Cell proliferation 

716 Initially described as degenerative and hyperplastic degeneration, recent evidence 

717 suggests pterygium more as a proliferating process in response to external 

718 injuries. Pterygium is considered to be a proliferating condition of the eye 

719 because it begins with limbal epithelial cells overgrowing centripetally towards 
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720 the cornea and continues with a continuous proliferation of conjunctival epithelial 
 

721 cells and inner fibroblasts (Dushku et al., 2001). 
 

722 Cell proliferation is supported by a vast array of growth factors like heparin- 
 

723 binding epidermal growth factor (HB-EGF), basic fibroblast growth factor 
 

724 (bFGF), platelet derived growth factor (PDGF), transforming growth factor-b 
 

725 (TGFb) and insulin like growth factor binding protein-2 (IGFBP-2), all found to 
 

726 be overexpressed in pterygium (Bradley et al., 2010, Cardenas-Cantu et al., 
 

727 2015). 
 

728 An increased pterygium fibroblast proliferation has also been associated with an 
 

729 altered cholesterol metabolism, with increased levels of hydroxyl-methylglutaryl- 
 

730 coenzyme A reductase and low density lipoprotein receptor if compared to 
 

731 pingueculae and normal conjunctiva (Peiretti et al., 2004). 
 

732 In order to facilitate the passage of the cells in active proliferation process, 
 

733 metalloproteinases (MMPs) are necessary to degrade the proteins to disperse them 
 

734 into the extracellular matrix. MMP-1 (collagenase), MMP-2 (gelatinase-A), 
 

735 MMP-3 (stromelysin 1), MMP-7 (matrilysin) and MMP-9 (gelatinase-B) have 
 

736 been found elevated in the advancing head of pterygium; with MMP-8 (neutrophil 
 

737 collagenase), MMP-13 (collagenase), MMP-14 and MMP-15 (membrane  MMPs) 
 

738 reported in the overgrowing pterygium tissue (Bradley et al., 2010). 
 

739 A successive study contradicts this observation, showing inhibition of MMPs   

740 mediated   by   TGFβ activation   in   pterygium,   responsible   for   a   reduced 

741 collagenolysis and thus an accumulation of collagen typical of pterygium 
 

742 morphology (Anguria et al., 2014). 
 

743 Actively overproliferating fibroblasts are in fact immersed in an abnormal 
 

744 collagenic extracellular matrix that they itself produce, determining an excessive 
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745 and deregulated connective tissue deposition which interferes with the normal eye 
 

746 function. This mechanism resembles the fibrosis scarring repair normally due to 
 

747 severe and deep damage to the epithelium but also to the inner stroma (Anguria et 
 

748 al., 2014, Kato et al., 2007). 
 
 

749 1.5.5 Inflammation and angiogenesis 
 

750 Besides cell overproliferation, both inflammatory and angiogenic processes take 
 

751 place, similarly to what happens during injury repair by fibrosis scarring. 
 

752 Fibrosis is the process occurring during damage repair as an alternative to the 
 

753 regeneration  of   the  native  cells,  in   which  the  defect   is   filled  with   newly 
 

754 synthetized  connective  tissue.  Closely  associated  with  this  repair  process, the 
 

755 inflammation and angiogenetic processes aim to neutralise the injurious agent 
 

756 allowing the repair to be completed (Kumar et al., 2014). 
 

757 In pterygium, the angiogenic mechanism occurs together with fibrosis to promote 
 

758 a chronic inflammation mediated pathogenetic process (Anguria et al., 2014, Hill 
 

759 and Maske, 1989, Coroneo et al., 1999a). Chronic inflammation occurs whenever 
 

760 the injury is persistent or there is prolonged exposure to a damaging agent which 
 

761 determines  a  continuous  inflammatory response,  substantial  tissue remodelling 
 

762 and permanent scar formation, leading in some cases to complete organ failure 
 

763 (Wynn, 2007). 
 

764 During  pterygium  development,  many pro-inflammatory mediators  were shown 
 

765 to be overexpressed including different interleukins (IL-1, IL-6,  IL-8),  tumor 

766 necrosis  factor-α  (TNF-α),  able  to  activate  cycloxygenase-2,  which  was also 

767 found to be up-regulated in pterygium, and which, in turn, is able to promote 
 

768 prostaglandin synthesis in the inflammatory cascade (Bradley et al., 2010). 
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769 The inflammatory response in pterygium is in fact mediated by a tissue 
 

770 infiltration of inflammatory cells like T lymphocytes, mast, plasma and dendritic 
 

771 cells  (Beden  et  al.,  2003)  and  by phospholipase-D  up-regulation  (Tong  et al., 
 

772 2008). 
 

773 Infiltration and proliferation of inflammatory cells are supported by angiogenesis, 
 

774 the physiological process of new blood vessel formation from pre-existing ones, 
 

775 ensuring all the necessary nutrients are supplied. 
 

776 VEGF, the most potent and specific angiogenic factor, and substance P were 
 

777 found to  be elevated in  pterygium  (Bianchi  et  al.,  2012,  Bradley et  al.,  2010) 
 

778 while  thrombospondin-1  (THBS-1),  an  antiangiogenetic  adhesive glycoprotein 
 

779 was downregualted in pterygium (Aspiotis et al., 2007). Angiogenic factors 
 

780 induce vascular endothelial cells to activate nitric oxide synthase (NOS), which 
 

781 synthesise and release nitric oxide (NO), both found to be increased in pterygium 
 

782 (Lee et al., 2001). NO has an important role in promoting vasodilatation and 
 

783 endothelial cell proliferation, migration and interaction with extracellular matrix. 
 

784 Interestingly, if the cornea is subjected to a small focal lesion, blood vessels start 
 

785 growing from the limbal area nearest to the injury and assume a triangular form 
 

786 resembling pterygium and reinforcing the hypothesis of pterygium as a focused 
 

7877
8
7 

 
7887

8
8 

LSCD (Campbell and Michaelson, 1949). 

 

789 An active process of fibroblast proliferation, chronic inflammatory cellular 
 

790 infiltration and angiogenesis play therefore a central role in the inner connective 
 

791 tissue remodelling and pterygium progression. 
 

792 But which is the agent responsible to trigger all those events in the eye surface 
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793 when pterygium occurs? 
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794 1.6 Pathogenesis 

795 Pterygium is often considered as an ophthalmic enigma (Coster, 1995) because, 

796 despite numerous studies trying to delineate its nature, the pathogenesis still 

797 remains unclear. 

798  

 
799 1.6.1 UV 

800 The main cause of pterygium, as previously mentioned, has long been attributed 

801 to UV radiation (Moran and Hollows, 1984, Taylor et al., 1989, McCarty et al., 

802 2000). 

803 This hypothesis has been supported by multiple etiologic studies registering a 

804 22% average prevalence in areas within 40° from the equator, compared to 2% 

805 outside this area (Detorakis and Spandidos, 2009b). Pterygium in fact is also 

806 known as surfer’s eye because it affects many Australian surfers and generally 

807 those people spending a lot of time outdoors. 

808 The morphology of the human eye is unique and can be distinguished by the one 

809 of the other species by a characteristic wide exposed white sclera elongated 

810 horizontally (Kobayashi and Kohshima, 1997). Although this guarantees humans 

811 a larger visual field, it lacks protection from UV light, especially on the nasal and 

812 temporal sides, exactly where pterygium generally arises, with a predilection for 

813 the nasal limbus. 

814 The human nasal limbus in fact, compared to the temporal limbus, receives higher 

815 incidental light coming from the inner corneal surface following the alternative 

816 transcameral route (Coroneo, 1993). Moreover, possibly because of their peculiar 
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817 eye anatomy, pterygium only affects humans and has not been documented in any 
 

818 other animal (Chui et al., 2008). 
 

819 In early reports elucidating pterygium pathogenesis, UV light exposure was often 
 

820 associated to repeat exposure to dust and sand, triggering chronic inflammation as 
 

821 well as to wind and eye surface desiccation, which would explain the tear 
 

822 abnormalities seen in pterygium (Coroneo, 1993). The tear film is crucial for 
 

823 corneal surface homeostasis and its role in protecting the epithelial cells from 
 

824 environmental agents and supplying them with oxygen and nutrients. Moreover, a 
 

825 decreased and unstable tear production correlates pterygium with dry eye 
 

826 syndrome; with the two ocular conditions often documented in concomitance with 
 

827 each other (Ishioka et al., 2001, Das et al., 2015). 
 
 

828 1.6.1.1 In vitro studies associating UV and pterygium 
 

829 In vitro studies attempt to correlate both UVA and UVB with pterygium on the 
 

830 basis of altered cellular mechanisms. 
 

831 An increase in IL-6, IL-8 and TNF-α in UVB treated pterygium cells represented 
 

832 a proof of the UV mediated immune response (Di Girolamo et al., 2002). A 
 

833 successive work of the same group showed that the UVB mediated IL-6 and IL-8 
 

834 increase was reduced when the ERK1/2 intracellular pathway was inhibited (Di 
 

835 Girolamo et al., 2006b). The same pathway was found to be altered when cells 
 

836 were treated with UVA radiation, together with increased levels of Urokinase- 
 

837 type plasminogen activator (uPA); a serine protease promoting cell migration and 
 

838 tissue remodelling (Chao et al., 2013). 
 

839 The study of cellular response to UV light helped to identify internal pathways 
 

840 involved in the pterygium activated response to solar radiation. 
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841 1.6.1.2 UV and oxidative stress 
 

842 Oxidative stress is a cellular process observed when there is an imbalance 
 

843 between formation of reactive oxygen species (ROS) and cellular mechanisms 
 

844 designated to remove them, including antioxidant enzymes. This imbalance in 
 

845 favour of ROS causes DNA, protein and lipid  damage together with disruption of 
 

846 the extracellular matrix, alteration in collagen and elastin synthesis; normally 
 

847 related to skin ageing (Martindale and Holbrook, 2002). 
 

848 Oxidative stress has been reported in different diseases including cancer and 
 

849 chronic inflammation and more specifically in ocular disease like glaucoma, 
 

850 macular degeneration, age-related cataract and keratoconus (Chui et al., 2008). 
 

851 In particular oxidative stress caused by UV mediated ROS production has been 
 

852 described in the ocular surface and pterygium (Kau et al., 2006). 
 

853 In pterygium in fact has been reported a decrease in antioxidant enzymes like 
 

854 superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) possibly 
 

855 responsible for ROS accumulation (Balci et al., 2011a). A decrease in SOD was 
 

856 further reported by another study together with reduced NO; in accordance with 
 

857 the ability of ROS to reduce bioactive NO (Ozdemir et al., 2005). However, this 
 

858 is in contrast to the previously reported work demonstrating an increase in NO 
 

859 and NOS in pterygium (Lee et al., 2001). 
 

860 Other oxidative stress markers have been reported to be up-regulated in pterygium 
 

861 like 8-Hydroxydeoxyguanosine (8-OHdG), a major product of DNA oxidative 
 

862 damage due to ROS activity (Kau et al., 2006) and its metabolising enzyme 
 

863 human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) (Tsai et al., 2005b). 
 

864 Ser326Cys homozygous substitution in hOGG1 gene was found more frequently 
 

865 in pterygium affected individuals, as following discussed (Kau et al., 2004). 
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866 Accumulation of a sufficient amount of ROS is also responsible for activation of 
 

867 the lipid peroxidation process, which might have a role in pterygium given the 
 

868 increased expression of Malone dialdehyde (MDA) and reactive aldehydes 4- 
 

869 hydroxyhexenal (4-HHE) and 4-hydroxynenal (4-HNE) in pterygium (Cardenas- 
 

870 Cantu  et  al.,  2015).  Also  up-regulation  of  bFGF  and  VEGF  is  due  to  ROS 
 

871 accumulation (Anguria et al., 2014), enabling fibroblast growth and the capillary 
 

872 formation described above. 
 
 

873 1.6.1.3 Pterygium: a premalignant condition? 
 

874 Although always diagnosed as a benign lesion, pterygium can be considered a 
 

875 premalignant condition because of its association with different malignant 
 

876 pathologies. 
 

877 Bilateral pterygium was found in 40% of individuals affected by Xeroderma 
 

878 pigmentosum (XP), a rare autosomal recessive genetic disorder resulting in a 
 

879 defective nuclear excision repair (NER) mechanism, which determines 
 

880 hypersensitivity to UV light radiation mediated DNA impairment. XP represents 
 

881 a precancerous condition because it is associated with 60% of malignant skin 
 

882 neoplasm (Goyal et al., 1994). Other studies have associated manifestation of 
 

883 pterygium with the presence of XP (El-Hefnawi and Mortada, 1965, Ramkumar 
 

884 et al., 2011). 
 

885 Moreover, pterygium has often been diagnosed in concomitance with OSSN, 
 

886 which includes a variety of pathologic conditions from epithelial dysplasia to 
 

887 carcinoma in situ and invasive squamous cell carcinoma (Chui et al., 2011). 
 

888 Similarly to pterygium, sunlight exposure is a known etiologic factor for OSSN, 
 

889 with its prevalence higher in the equatorial area, together with dust and dry 
 

890 environment causing corneal surface irritation. Infection with human papilloma 
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891 virus (HPV) and human immunodeficiency virus have been also shown to be 
 

892 essential in OSSN development (Mittal et al., 2013). 
 

893 The prevalence rate of coexistent OSSN and pterygium is reported to be 9.8% of 
 

894 all pterygium specimens analysed in an Australian study (Hirst et al., 2009), 1.7% 
 

895 of pterygium samples in Florida (Oellers et al., 2013) and 5% of pterygium in 
 

896 another study from Australia (Chui et al., 2011). 
 

897 Furthermore Chui et al. identified 2% of the participants with nevi (one with a 
 

898 history of skin melanoma and the other with epidermolysis bullosa) and 6% of the 
 

899 cases with primary acquired melanosis (PAM), both entailing atypical 
 

900 melanocytic lesions potentially leading to invasive melanoma (Chui et al., 2011). 
 

901 These results are similar to a previous study on the Ecuadorian population, which 
 

902 identified 8.75% of cases with PAM and 2.5% of cases with nevi, examining a 
 

903 total of 80 patients with pterygium (Perra et al., 2006). 
 

904 Another study describes how a progressive degeneration of solar keratosis and 
 

905 pterygium is responsible for squamous cellular carcinoma (SCC) in the tropics, 
 

906 where it presents with a higher incidence in comparison to temperate areas (Clear 
 

907 et al., 1979). 
 

908 Finally, proteins belonging to the S100 family, dimeric calcium-binding 
 

909 proteins, which modulate different biological processes, are normally used as 
 

910 markers to  identify melanoma  (Nonaka et  al.,  2008,  Blessing et  al.,  1998) and 
 

911 other tumors as well as inflammatory diseases. S100 proteins have been shown  to 
 

912 be overexpressed (S100A6, S100A8, S100A9, S100A11) in pterygium in 
 

913 comparison with normal conjunctiva (Riau et al., 2009). Upregulation of S100A8 
 

914 and S100A9 has been identified in the tear film of pterygium patients (Zhou et al., 
 

915 2009) and using microarrays comparing pterygium and healthy conjunctiva from 
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916 the same patient (Hou et al., 2014) confirms the previous data and associates once 
 

917 more pterygium to abnormal epithelial differentiation, melanoma and chronic 
 

918 inflammation. 
 

919 The importance of the role of solar radiation in pterygium is unquestionable as it 
 

920 is considered the most common ophthalmoheliosis (sun-related eye disease), 
 

921 however, UV damage is not sufficient to explain all occurrences of the pathology. 
 

922 In fact, several cases of pterygium are registered outside the equatorial zone, 
 

923 where UV exposure is not elevated; therefore suggesting other factors might be 
 

924 involved. 
 
 

925 1.6.2 Viral Infection 
 

926 Different oncogenic viruses have been found in pterygium cases including human 
 

927 papilloma virus (HPV), cytomegalovirus (CMV) and herpes simplex virus (HSV) 
 

928 (Cardenas-Cantu et al., 2015). 
 

929 Viral infection rate however demonstrates geographical variability, with the 
 

930 highest prevalence registered in Italy where all the samples were positive for HPV 
 

931 (Piras et al., 2003), 50% was documented in English patients and the lowest in the 
 

932 Turkish and Japanese populations where HPV infection reached 10% (Otlu et al., 
 

933 2009) and 4.8% (Takamura et al., 2008) of pterygium cases respectively. 
 

934 The reasons for this divergence in prevalence is not clear, it has been attributed to 
 

935 ethnical  variability  or  different  techniques  used  in  the  different  laboratories 
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940 1.6.3 Genetic predisposition and inheritance mechanism 
 

941 A higher susceptibility to developing pterygium has been observed in 
 

942 multigenerational families in comparison with the general population (Coroneo et 
 

943 al., 1999b). 
 

944 An autosomal dominant mechanism of inheritance with incomplete penetrance 
 

945 has been suggested by several studies (Detorakis and Spandidos, 2009b, Hill and 
 

946 Maske, 1989, Hilgers, 1960), not excluding, however, the possibility of 
 

947 multifactorial, polygenic or recessive genetic models (Anguria et al., 2014). 
 

948 Studies in families affected by pterygium include an interesting report analysing 
 

949 eleven cases in a rural three generation family in China in which all the offspring 
 

950 of an affected individual were affected (Zhang, 1987b). A recent work examined 
 

951 a Caucasian family from the UK with four affected members in two generations: 
 

952 three out of four offspring were affected (Romano et al., 2016) and an aggressive 
 

953 and recurrent pterygia with early onset (early 20s, 6, and 4 years of age) was 
 

954 studied in Saudi Arabia (Islam and Wagoner, 2001a). Even a rare congenital form 
 

955 of pterygium has been described in six members of a three generation family 
 

956 (Jacklin, 1964); in this case environmental factors were not influential in the 
 

957 disease development, therefore giving more importance to the genetic 
 

958 aetiopathogenesis. 
 

959 Moreover, reported cases of monozygous twins with pterygium reinforced the 
 

960 importance of the hereditable mutations influencing predisposition in 
 

961 development of pterygium. 
 

962 Monozygous twins affected by pterygium were found for example in a three 
 

963 generation family from Florida, USA with seven bilateral and one unilateral 
 

964 pterygia (Hecht and Shoptaugh, 1990), in another family from Turin, Italy, both 
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965 carrying a bilateral pterygium (Contrucci Faraldi and Gracis, 1976) and in one 
 

966 from New York, USA, with a particularly early onset (Bloom et al., 2005). 

967 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

968 

969 Table 1.1 Familial genetic studies on pterygium 
 

970 
 

971 1.6.3.1 Genes involved in pterygium 
 

972 Despite several families affected by pterygium, few studies have associated 
 

973 pterygium affected individuals to a single gene variation. 
 

974 An increased predisposition to developing pterygium has been observed in 
 

975 individuals carrying polymorphisms in genes related to carcinogenesis. p53 is a 
 

976 tumour suppressor gene better defined as the “guardian of the genome” because 
 

977 of its ability to detect the occurrence of DNA damage, induce cell cycle arrest and 
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978 repair the DNA or promote apoptosis if the DNA cannot be repaired. Mutations in 

979 the p53 gene have been detected in over 50% of all tumours (Levine et al., 1991). 

980 While changes in expression of p53 in pterygia specimens is still controversial 

981 because different immunohistochemical studies have shown conflicting results for 

982 the presence or absence of p53 in pterygia (Chui et al., 2008), however p53 

983 mutations have been detected in pterygium. 

984 Using fluorescent in situ hybridization (FISH), a monoallelic deletion in p53 has 

985 been detected in four out of nine pterygium specimens. A subsequent analysis 

986 both at mRNA and protein level showed reduced expression of p53 to non- 

987 detectable levels, suggesting a possible loss of heterozygosity for the remaining 

988 wild type allele (Reisman et al., 2004). 

989 DNA sequencing has been used to find mutations in the p53 gene by analysing 51 

990 patients affected by pterygium. Eight patients (15.7%) were reported with point 

991 mutations: six substitutions and two deletions. p53 protein expression was 

992 detected in the six cases with substitutions and was not found in the two deletion 

993 cases (Tsai et al., 2005a). 

994 Another gene of interest in the pathogenesis of pterygium is the Ku70 gene, 

995 which was analysed because of its importance in Non Homologous End Joining 

996 (NHEJ) repair upon UV radiation. A significant correlation between the T991C 

997 mutation in the Ku70 promoter and pterygium susceptibility was observed (Tsai 

998 et al., 2007). 

999 Additionally, proto-oncogenes (POD) like the ras gene were studied because of 

1000 their susceptibility to UV rays and are often mutated in skin tumours. RFLP 

1001 analysis was performed in codons 12 and 13 of Ki-ras, H-ras, and N-ras revealing 
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1002 a Gly-Val transition at codon 12 of Ki-ras in 10% of pterygia analysed (Detorakis 

1003 et al., 2005b). 

1004 The Human-8-oxoguanine glycosilase1 (hOGG1) gene, previously reported as 

1005 important for UV related cell oxidative stress, has also been analysed and a 

1006 Ser326Cys polymorphism was found to be more abundant in pterygium samples 

1007 than unaffected controls, the same polymorphism was found to be altered in many 

1008 different kinds of cancer (Kau et al., 2004). 

1009 The Glutathione S-transferase M1 (GSTM1) null genotype, associated with 

1010 cutaneous UV sensitivity for its ability to block GST antioxidant enzymatic 

1011 activity, was found to be highly frequent in only young patients affected by 

1012 pterygium (Tsai et al., 2004b). 

1013 Together with GSTM1, the previously described mutations in Ki-ras and hOGG1 

1014 genes were found to be prevalent in young participants, implying a particular 

1015 importance of genetic alteration in pterygium in early development. 

1016 A recent study showed an increased risk of developing pterygium if carrying a 

1017 deletion (DD genotype) in the Angiotensin Converting Enzyme (ACE) gene, a zinc 

1018 metalloproteinase able to convert angiotensin I to angiotensin II, a potent 

1019 vasoconstrictor (Demurtas et al., 2014). 

1020 Finally, the VEGFA 936 C>T variant (rs3025039) was associated with pterygium 

1021 onset because of a higher percentage of the T/T homozygous genotype in 

1022 pterygium (16.7%) compared to unaffected controls (2.5%) (Peng et al., 2014). 

1023  

1024 Based on the association of pterygia with neoplastic alteration, in which 

1025 inactivation of tumour suppression genes plays a central role, several primary 

1026 pterygia were analysed for loss of heterozygosity (LOH) and microsatellite 
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1027 instability (MI). The first study analysing 15 pterygia with 7 selected highly 

1028 polymorphic microsatellite markers showed 8 specimens (53%) presenting with 

1029 LOH and 2 (13%) with MI (Spandidos et al., 1997). In a later study, the same 

1030 group increased the number of pterygia to 50 and described LOH for chromosome 

1031 9p in 24 samples (48%) and for chromosome 17q in 21 samples (42%). Only 3 

1032 samples presented with MI (Detorakis et al., 1998). 

1033  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1034 

1035 

 

Table 1.2 List of genetic mutations found in pterygium specimens 

 

1036  

1037 1.6.3.2 Epigenetics and pterygium 

1038 Epigenetics, as the prefix epi- (Greek: επί-outside) suggests, distinguishes from 
 
1039 

 
conventional genetics because it focuses, not on DNA sequence changes, but on 

1040 DNA alteration mechanisms like DNA methylation or histone modifications due 

1041 to random or external influences which determine a stable alteration of the 

1042 genome (Jaenisch and Bird, 2003). 
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1043 Based on the similarity of pterygium with cancerous progression previously 

1044 described, epigenetic modifications, as critical in the development of many 

1045 different cancer types as genetic modifications, were studied in pterygium 

1046 (Cardenas-Cantu et al., 2015). 

1047 Pterygium samples, compared to normal conjunctiva from the same patient, 

1048 demonstrated a decreased methylation in MMP-2, a gene important for matrix 

1049 remodelling, and CD24, a cell adhesion molecule, together with an increased 

1050 methylation of transglutaminase 2 (TGM-2), important for ECM stability, wound 

1051 healing, cell proliferation and motility, all processes characterizing pterygium 

1052 formation (Riau et al., 2011). 

1053 Hypermethylation in the promoter of p16, an important regulator of the cell cycle 

1054 progression from G1 to S phase, was observed in 16.3% of 129 pterygia analysed. 

1055 Among the 21 pterygial samples with p16 promoter hypermethylation, almost all 

1056 (90.5%) were negative for p16 expression (Chen et al., 2006). Another study 

1057 however reported an increase in p16 expression, which was thus not silenced, in 

1058 all the 70 pterygium samples (primary and recurrent) analysed in comparison with 

1059 conjunctival controls (Ramalho et al., 2006). 

1060 Another hypermethylation status was observed in the E-cadherin gene promoter, 

1061 in 32 (26.7%) of the 120 pterygia studied, with 79 E-cadherin protein expressing 

1062 pterygia and 41 negative specimens. Hypermethylation and silencing of the E- 

1063 cadherin gene is a key step during EMT process, when the expression of E- 

1064 cadherin switches off and N-cadherin expression switches on (Young et al., 

1065 2010). 

 
1066 

 

1067  
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1068 1.6.4 Other causes 

1069 Many in vitro and ex vivo (pterygium tissue) studies correlated pterygium to 

1070 several possible causative pathogenic mechanisms: increased growth factors and 

1071 metalloproteinases (Dushku et al., 2001, Bianchi et al., 2012, Di Girolamo et al., 

1072 2004), EMT (Kato et al., 2007, Engelsvold et al., 2013), impaired immunologic 

1073 response (Beden et al., 2003), abnormal tumor p53 expression (Weinstein et al., 

1074 2002, Tan et al., 1997), altered lipid metabolism (Peiretti et al., 2006) and 

1075 apoptosis (Tan et al., 2000). However, all these pathways might represent only a 

1076 consequence of the pathologic process of pterygium rather than a causative 

1077 mechanism. 

1078  

1079 In general, the data collected to date does not suggest a single cause which 

1080 determines pterygium formation, but rather a multistep process, possibly 

1081 following the two hit hypothesis or Knudson’s theory (Detorakis and Spandidos, 

1082 2009b). A genetic variation in this case would become a first hereditable 

1083 predisposition factor which determines pterygium occurrence only in cases of a 

1084 secondary trigger like excessive sunlight exposure or viral infection (Anguria et 

1085 al., 2014). 

1086 A general scheme of pterygium pathogenesis is shown in Figure 1.4. 

1087 However, further studies on pterygium or in vitro models associated with UV 

1088 radiation become fundamental in order to shed light on the causative mechanism 

1089 determining pterygium development. 

1090  
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1091 

1092 

 
 

Figure 1.4 Proposed scheme of pterygium pathogenesis 
 

1093 Pterygium  is  a multifactorial disease:  UV light is considered the main 
 

1094 pathogenetic factor but a genetic predisposition documented in several 
 

1095 affected   families   as   well   as   viral   infection   or  dusty  and windy 
 

1096 environments have been shown to concur to its development. 
 

1097 During pterygium formation several molecular mechanisms have been 
 

1098 described through relative markers: inflammation, cellular proliferation 
 

1099 
 

1100 

and migration, EMT and angiogenesis. 

 
 

1101 1.7 Aim of the project 

1102 In this study, a large Northern Irish family with a documented low exposure to 

1103 sunlight but showing pterygium at a multigenerational level is assessed. In the 

1104 case of this family, a strong genetic predisposition plays a key role in the 

1105 development of the disease, which is then passed on through three successive 

1106 generations. 
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1107 The general aim of this project is to identify a causative mutation for pterygium 

1108 development within the Northern Irish family. A Whole Exome Sequencing 

1109 (WES) approach and downstream Ingenuity analysis, in silico study, Sanger 

1110 sequencing and expression analysis were used to initially screen and determine 

1111 the most plausible causative variant. A subsequent functional analysis, based on 

1112 pterygium known pathogenetic mechanisms like proliferation and UV irradiation 

1113 as well as pterygium associated intracellular pathways like ERK activation and 

1114 apoptosis, was performed. The series of functional experiments allowed a deeper 

1115 understanding of the pathomechanism of pterygium, in which the selected 

1116 candidate gene was found to play a pivotal role. This not only strengthened the 

1117 possibility of the selected variant as the responsible for pterygium development in 

1118 the Northern Irish family but is fundamental for future improvements in 

1119 pterygium diagnosis and treatment. 

1120  
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1135 2.1 INTRODUCTION 

1136 The occurrence of variations in the DNA sequence of biological organisms, 

1137 resulting from genetic mutations, DNA rearrangements or chromosome 

1138 recombination, is what makes each individual unique and allows species 

1139 evolution. 

1140 Human DNA has been estimated to have an average mutation rate of 1.3 x 10-8 
 
1141 bp-1 generation-1 using Next Generation Sequencing (NGS) techniques, (Scally 
 
1142 and Durbin, 2012). Considering the human genome size is 3.2 x 109 bp, this 

1143 estimation results in around 40 new base substitution mutations each generation 

1144 per gamete which, added to other events like duplication, insertions and deletion 

1145 would result in an average of 50-100 new mutations in a diploid newborn (Lynch, 

1146 2010). This number is in accordance with another study which estimates 74 novel 

1147 Single Nucleotide Variants (SNVs) per diploid genome per generation (Veltman 

1148 and Brunner, 2012). However, only a small fraction of those mutations, 

1149 numbering 0.9 to 4.5 per diploid genome per generation (Lynch, 2010), is 

1150 deleterious with the ability to cause the development of a genetic disease which is 

1151 transmitted to the next generation. 

1152 Another common and naturally occurring way to promote diversity between 

1153 individuals and create new phenotypes is genetic material recombination. 

1154 Recombination frequency in gametes averages 10-5 crossover events kb-1 meiosis-1 

1155 (Lynch, 2010) which corresponds to around 30 crossovers per meiosis. Our 

1156 chromosomes are therefore inherited as a patch of genetic material from either of 

1157 the two homologous chromosomes and whether two genes which are located the 

1158 farthest apart from each other are inherited together or not depends on an even or 

1159 odd number of recombination events, respectively. The farther apart two genes 
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1160 are located on a chromosome, the higher the probability that they will be 

1161 separated by a crossing over and in this way the recombination frequency 

1162 becomes a measure of the distance between two loci and the base of linkage 

1163 analysis and genetic mapping. 

1164  

 
1165 

 
2.1.1 Linkage analysis and GWAS 

1166 An important tool in studying the inheritance of genetic disease in humans is the 

1167 analysis of a family pedigree, a pictorial representation of the transmission of a 

1168 particular trait through the generations. 

1169 Genetic mapping is based on pedigree analysis of the recombination fraction 

1170 between pairs of loci as mentioned above. To map a certain human trait, the 

1171 disease character under examination needs another informative genetic marker co- 

1172 segregating with it to evaluate the recombinant fraction within a family pedigree. 

1173 Once it is determined that the disease and the marker are co-segregating is still 

1174 not always obvious to understand if this is due to chance or because of a linkage 

1175 between the two, especially if the case studied is not a large multigenerational 

1176 family. The probability that there is linkage between two loci is given by the LOD 

1177 (logarithm of the odds) score, symbolised as a Z and calculated as log10 of the 

1178 ratio between the probability of a newborn sequence with a certain linkage value 

1179 and the one without any linkage (Strachan and Andrew, 1999). 

1180 The first studies able to connect the Mendelian trait of a disease to a variation in 

1181 the DNA were carried on in 1980 through the linkage analysis of familial 

1182 inheritance using Restriction Fragment Length Polymorphism (RFLP) as a 

1183 genetic marker (Botstein et al., 1980). 
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1184 RFLP distinguishes variations in the DNA sequence that can be detected by a 

1185 restriction digest. RFLP analysis consists of screening all the fragments produced 

1186 by a certain restriction enzyme and comparing the fragment pattern obtained. The 

1187 restriction enzyme is chosen for its ability to discriminate between the altered 

1188 sequence and the normal one. In this way is possible to modify the fragment 

1189 pattern resulting from the enzyme digestion, which is visualised through agarose 

1190 gel fragments resolution and radiolabeled or fluorescent probes hybridization. 

1191 A subsequent positional cloning is then necessary to narrow down the minimal 

1192 critical region for the disease and obtain a more accurate disease locus map. This 

1193 can be determined by following haplotypes through generations and looking for 

1194 recombination events that limit the boundary of the critical region. The last step is 

1195 to sequence the genes in the critical interval in order to finally identify the 

1196 mutation which causes the disease (Collins, 1992). The main limitation of this 

1197 approach is the fact that the resolution depends on the number of meiosis and the 

1198 progeny generated in humans are normally quite small. In addition to this, several 

1199 pathologies are not fully penetrant therefore the genotype does not always 

1200 correspond to the observed phenotype. In the past this was limited further by the 

1201 lack of the whole human genome sequence to even know which genes lay within 

1202 the critical interval. 

1203 Linkage analysis using RFLP and subsequent positional cloning were successful 

1204 in finding disorders caused by a single gene, the first of many was the linkage of 

1205 CFTR with cystic fibrosis (Riordan et al., 1989). 

1206 In pterygium, several studies involving Polymerase Chain Reaction (PCR) and 

1207 subsequent RFLP analysis were able to associate pterygium with genetic 
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1208 alterations in genes like Ku70 (Tsai et al., 2007), K-ras (Detorakis et al., 2005b) 

1209 and hOGG1 (Kau et al., 2004). 

1210 Each RFLP can be distinguished by only two alleles: one containing the 

1211 restriction site and the other without it. Simple sequence length polymorphisms 

1212 (SSLPs) are much more informative then RFLPs because they consist of repeat 

1213 sequence arrays with variable length and are therefore multiallelic. SSLPS can be 

1214 distinguished in minisatellites or variable number of tandem repeats (VNTRs) and 

1215 microsatellites or single tandem repeats (STRs). While minisatellites are 

1216 composed of repeated DNA motifs of 10-50bp in length, microsatellites are 

1217 characterized by 2-5bp repeats (Brown, 2006). 

1218 Genetic analysis of seven highly polymorphic microsatellite markers in pterygium 

1219 DNA allowed the identification of a region in chromosome 17q with a high 

1220 frequency of LOH and a considerable incidence of MI (Spandidos et al., 1997). A 

1221 common LOH event in recurrent pterygium was described subsequently also at 

1222 chromosome 9q, correlated with young age and high altitude residence (Detorakis 

1223 et al., 1998). However, disease characterized by complex traits cannot be studied 

1224 by linkage analysis. 

1225  

 
 
1226 

 

2.1.2 The human genome era 

1227 The completion of the human genome sequence in 2001 allowed annotation of 

1228 millions of common Single Nucleotide Polymorphisms (SNPs), single base pair 

1229 variations between individuals, occurring on average every 1000-2000 bases 

1230 (Sachidanandam et al., 2001). 
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1231 All the common SNPs, those present in at least the 1% of the population, were 

1232 catalogued by an international collaboration which began in 2002, the HapMap 

1233 project. 

1234 The HapMap consortium had the scope to characterize the variants, describe 

1235 where they occur in the DNA and determine their frequency in populations 

1236 coming from different parts of the world: European, African, Asian and 

1237 American. DNA variants includes SNPs and mutations and are respectively 

1238 defined as present in >1% or <1% of the population (Karki et al., 2015). 

1239 The HapMap project and the availability of commercial SNP platforms 

1240 determined the development of another type of approach to genetic diseases: the 

1241 Genome Wide Association Study (GWAS). GWAS allowed comparison of 

1242 millions of common SNPs between two populations: affected and unaffected and 

1243 then associate the differential variants to the disease phenotype. 

1244 The description of haplotype blocks, or human genomic regions conserved in 

1245 different populations alongside historical evidence of recombination in which are 

1246 present only a few haplotypes, facilitated the association studies (Gabriel et al., 

1247 2002). This allowed selection of a single tag SNP between all the SNPs located 

1248 within a haplotype block, reducing economic and time costs to genotype areas 

1249 associated with the disease. 

1250 One of the first successful GWAS, published in 2005, was performed on an eye- 

1251 related disease: age-related macular degeneration (AMD). Two polymorphisms in 

1252 an intron of the complement factor H (CFH) gene were found to be strongly 

1253 associated with AMD. Since the two SNPs were found in an intron, they are non 

1254 coding and not responsible for any sequence alteration; however, they were found 

1255 located in a region with high linkage disequilibrium, within a haplotype block of 
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1256 41kb entirely contained in CFH gene. A subsequent resequencing of the exonic 

1257 DNA including the intron-exon boundaries in the 96 cases of AMD participating 

1258 to the previous GWAS revealed a Tyrosine to Histidine variation at amino acid 

1259 402 of CFH (Klein et al., 2005). 

1260 Several GWAS followed and multiple other ocular conditions were examined, 

1261 including the elucidation of nitric oxide synthase and TGFb pathway in primary 

1262 open angle glaucoma (POAG) pathogenesis and numerous SNPs in Transcription 

1263 Factor 4 (TCF4) were found to be independently associated with Fuchs’ corneal 

1264 endothelial dystrophy (Chandra et al., 2014). However, the GWAS approach 

1265 requires careful population selection and can only be performed for common 

1266 diseases because it requires a large number of individuals carrying the trait of 

1267 interest. The genotyping coverage of 70-90% requires extensive data quality 

1268 control and can be statistically challenging when distinguishing the true from the 

1269 false associations. 

1270 Moreover, despite the advantages of using haplotype block information which 

1271 allows analysing not all the SNPs located in the same region but only a 

1272 representative SNP tag, it is possible to lose the private SNP, or the SNP 

1273 responsible for the disease development. 

 
1274 

 

1275 2.1.3 Next generation sequencing era 

1276 A revolutionary new era of genomic analysis started in 2005 when Next 

1277 Generation sequencing (NGS) technologies became widely available because the 

1278 cost of sequencing decreased over four orders of magnitude compared to Sanger 

1279 sequencing (Bamshad et al., 2011). 
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1280 From the first human genome published in 2001 which required US$3billion and 

1281 13 years of work between 23 laboratories (Sastre, 2014) it is now possible to 

1282 sequence a human genome for approximately US$1000. The human genome is 

1283 composed of over 3 x 109 base pairs of which only 3 x 107 (1%) are coding 

1284 sequences, the exome. 

1285 NGS technologies can be applied to the entire genome (Whole Genome 

1286 Sequencing, WGS) or limited to its coding portion (Whole Exome Sequencing, 

1287 WES). WES represents a powerful approach in identifying novel mutations in 

1288 genetic diseases and has advantages in over the use of WGS: firstly, less than 

1289 10% of the human genome sequence is well characterized and the majority (85%) 

1290 of disease-causing mutations occur in the exonic portion of the genome (Rabbani 

1291 et al., 2014). Moreover, exonic variants that alter protein-coding sequences have a 

1292 direct functional impact on the proteins, while for mutations in the intronic region 

1293 the phenotypic effect is more difficult to demonstrate. Secondly, given the 

1294 remarkable size difference between the genome and the exome, WES guarantees 

1295 a more affordable price and a lighter sub-sequential computational analysis. 

1296 Finally, a terabase (Tb) of data, more than five human genomes, are normally 

1297 captured by NGS techniques in a single sequencing run, allowing a greater depth 

1298 of coverage with WES than with WGS. 

1299 Beside the advantages, which make WES a powerful tool for the discovery of 

1300 gene association with a disease, there are some disadvantages in using WES 

1301 approach like the fact that some variations in non protein-coding regions (eg. 

1302 regulatory sequences or 5’ or 3’ UTR site) are not detected. Another technical 

1303 limitation is the fact that during the purification process 5-10% of exons are 

1304 poorly covered or missed (Bamshad et al., 2011). 
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1305 2.1.4 Aims of Chapter 2 

1306 The research outlined in this chapter investigated the appearance of pterygium in 

1307 a large Northern Irish family, an important clinical case to study the genetics 

1308 behind pterygium formation. 

1309 Although pterygium was identified in three subsequent generations within this 

1310 family, it resulted in too small a sample size to perform linkage analysis. Similar 

1311 sized families have been used by WES to find the causative gene, for instance 

1312 fibrillin2 (FBN2) in autosomal dominant macular degeneration (Ratnapriya et al., 

1313 2014) and STAT-1 in chronic mucocutaneous candidiasis (Dhalla et al., 2016). 

1314 Moreover, according to our questionnaire, no history of particular sun exposure 

1315 for each member of this family was registered, revealing an even more interesting 

1316 case for a possible genetic cause in the development of the pathology, minimally 

1317 influenced by what is considered the major cause of pterygium: UV light. 

1318 It is hypothesised therefore that genetic predisposition plays a fundamental 

1319 role in the etiologic process of pterygium development in the family presenting in 

1320 Northern Ireland. 

1321 For all those reasons and for the fact that 85% of the mutations occur in the 

1322 exome (Rabbani et al., 2014) and that WES guarantees a more affordable price 

1323 other than a greater depth of coverage than WGS, the WES approach was chosen 

1324 in an attempt to identify the causative variant within this family. Because the 

1325 inheritance mechanism in this pedigree is most easily explained as autosomal 

1326 dominant, as reported for previous pterygium family cases (Detorakis and 

1327 Spandidos, 2009b), the variant was expected to be a rare heterozygous mutation 

1328 differing between affected and unaffected individuals within the family. 
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1329 The large amount of variants obtained by WES was rationalized using analytical 

1330 software like Ingenuity Variant Analysis, helping to prioritize a smaller number 

1331 of candidate genes through a cascade of filters. 

1332 The candidate genes obtained were further analyzed for their tissue specific 

1333 expression pattern (TiGER), the impact that the variation would have in the 

1334 structure and function of the protein (Polyphen, SIFT), the conservation of the 

1335 amino acid residue between species, the heterozygosity within family members 

1336 (IGV) and the diseases previously associated with that gene. 

1337 Only one gene that fulfilled all these criteria was finally selected for a complete 

1338 functional analysis to assess if the gene was associated to the pterygium 

1339 pathomechanism. 

1340  
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1341 2.2 METHODS 

 
1342 

 
2.2.1 Patient clinic examination and genealogical family analysis 

1343 Clinical examinations of a Caucasian Northern Irish family affected by pterygium 

1344 were performed at the Cathedral Eye Clinic, Belfast, UK. A total of 24 patients 

1345 from three subsequent generations (6 affected and 18 unaffected) were 

1346 investigated: three with pterygium, two with pinguecula and one unaffected 

1347 family member participated to the WES study. 

1348 Following informed consent, collection of blood and a completed questionnaire 

1349 was obtained from each participating family member under ethical approval from 

1350 ORECNI Northern Ireland, UK. 

1351 The questionnaire given to the participating patients provided the following 

1352 information: date of birth, sex, date of pterygium first diagnosis, therapies time 

1353 spent abroad and in sunny climates and whether eye protection is worn. 

1354  

 
1355 

 
2.2.2 Whole Exome Sequencing 

1356 Genomic DNA from five affected family members and one unaffected sibling was 

1357 extracted from venous blood leukocytes using QIAamp DNA Blood mini kit 

1358 (QIAGEN, Manchester, UK). The high sensitivity Qubit system (Thermo Fisher 

1359 Scientific, Loughborough, UK) was used to quantify genomic DNA and integrity 

1360 of the DNA was confirmed by running samples on a 1% agarose gel in 1xTBE 

1361 (UltraPure Agarose, Thermo Fisher Scientific, Loughborough, UK). 

1362 The SureSelect Human All Exon v2 kit was used for Whole Exome capture 
 

1363 according to the manufacturer’s instructions (Agilent Technologies UK, 
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1364 Wokingham, Berkshire, UK). Briefly, DNA libraries were prepared: 3 µg of 

1365 genomic DNA was fragmented using the Covaris S2 ultrasonication system, 

1366 extended adding an “A” base at the 3’ end, ligated with adaptor primers and PCR 

1367 amplified (four cycles). 

1368 Libraries of exome enriched sequences were selected by hybridization with 

1369 biotinylated RNA probes (~120bp) and captured by streptavidin coated magnetic 

1370 beads. After washing the beads and digesting the RNA probes, a final library of 

1371 exonic DNA was further amplified (11 cycles). 

1372 Sure Select n.2100 Bioanalyser (Agilent Technologies) allowed an assessment of 

1373 the quality of the library and quantitative PCR was used for quantitative analysis. 

1374 Massive parallel sequencing was then performed by Illumina GAIIx using 150bp- 

1375 paired-end reads. Generated reads were aligned to the Human 37 reference 

1376 genome with a short read mapper (Stampy) generating data in BAM format. 

1377 Coverage of the target region was verified to be in excess of 70% (greater than 10 

1378 reads). Platypus, an in-house variant caller able to detect SNVs and short (<50bp) 

1379 insertion/deletions (INDEL), was used to detect variant sites and alleles. Once the 

1380 false positive rate was reduced, the resulting variants were stored as Variant Call 

1381 Format (VCF) files. 

1382  

 
1383 2.2.3 Ingenuity Variant Analysis 

1384 Ingenuity Variant analysis was used to filter and select a smaller number of 

1385 candidate genes; assuming autosomal dominant mechanism of inheritance. 

1386 Further selections were made on the basis of cross-species conservation, known 

1387 expression in tissues (Tissue-specific Gene Expression and Regulation database) 

1388 and disease association through a literature review. Aligned reads were viewed 
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1389 with the Integrative Genomic Viewer (IGV) platform, a open source software 

1390 enabling visualization and analysis of large data sets. 

1391  

 
 
1392 

 

2.2.4 Sanger Sequencing 

1393 Sanger sequencing was performed on genomic DNA extracted from the blood 

1394 leukocytes of pterygium family members; to confirm the presence of the mutation 

1395 in each candidate gene. 

1396 Genomic primers specific for each gene were designed using Primer3: 

1397 SRCAP_F 5’GCGTACCCAATGTTTAGCTCC 3’, 

1398 SRCAP_R 5’CAGAAGCCCATCCCAGTACC 3’, 

1399 WDR12_F 5’CACACCCAGTCATCGTCATC 3’, 

1400 WDR12_R 5’ACCAGGGATTCAAACTGAGC 3’, 

1401 HNMT_F 5’ CTGCTGGTCTTATCCTGTCCC 3’, 

1402 HNMT_R 5’ GGTCTTTTAAAATGTATCAGAAGCCG 3’, 

1403 CRIM1_F 5’ CTTCTTTTGCATGCACCCCC 3’, 

1404 CRIM1_R 5’ TCACATGTGCAACCTTTCCTC 3’, 

1405 KIF21B_F 5’ TGATTTCCCCAGAGTGTGGC 3’, 

1406 KIF21B_R 5’ ACCCCTTTTGAGTGTCCCAC 3’ 

1407 BigDye Terminator v3.1 Cycle Sequencing Kit (Life Technologies) and ABI 

1408 3730 automated capillary sequencer (Applied Biosystems) were used to determine 

1409 DNA sequences of the PCR products. 

1410 To determine the polymorphism frequency of our selected variants compared to a 

1411 Northern European population, the NHLBI – ESP (National Heart, Lung, and 

1412 Blood Institute – Exome Sequencing Project) server was used. 

1413  
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1414 2.2.5 HCE-S (Human Corneal Epithelial cells) culture 

1415 Human Corneal Epithelial cells (HCE-S), a spontaneously generated corneal cell 

1416 line (Notara and Daniels, 2010) (a kind gift from Prof. Julie Daniels), were 

1417 cultured (37°C, 5% CO2) in Dulbecco’s modified Eagle’s medium (DMEM) 

1418 containing 4 g/L glucose (Thermo Fisher Scientific, UK), and supplemented with 

1419 10% fetal bovine serum (Thermo Fisher Scientific, UK). 

 
1420 

 

1421 2.2.6 Semi-quantitative PCR 

1422 A semi quantitative PCR was performed in cDNA obtained from HCE-S cells at 

1423 20, 25, 30 and 35 cycles in order to determine the expression levels in cornea of 

1424 the five genes selected by WES data analysis. 

1425 Exonic primers used for the semi quantitative PCR were: 

1426 SRCAP_ F 5’ AAATTGCAGAACAGGCCAAG 3’, 

1427 SRCAP_R 5’ GATCACCATGCGCACCAC 3’, 

1428 WDR12_F 5’ TCCAAACACGCTTCTACACTG 3’, 

1429 WDR12_R 5’ TCCACGTATTCTATTTCCACAAC 3’, 

1430 HNMT _F 5’ TGCAGGAATTCATGGACAAG 3’, 

1431 HNMT _R 5’ CTCGAGGTTCGATGTCTTGG 3’, 

1432 CRIM1_F 5’CTCCCTCACCGAGTACGAAG 3’, 

1433 CRIM1_R 5’ GGCCTTGGAGCAATCTGG 3’, 

1434 KIF21B_F 5’TGCTTCGAGGGCTATAATGC 3’, 

1435 KIF21B_R 5’GGTCAAGGATCTCCTCGTTG 3’ 

1436 Products were run on a 1% agarose gel (UltraPure Agarose, Thermo Fisher 

1437 Scientific) in 0.5x TBE buffer (Tris base, Acetic acid and EDTA) alongside the 

1438 molecular size marker Hyperladder (Bioline, London, UK). 
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1439 2.3 RESULTS 

 
1440 

 
2.3.1 A multigenerational Northern Irish family pedigree analysis 

1441 A multigenerational Northern Irish family composed of twenty-four members was 

1442 investigated (Figure 2.1). Six members of the family from two different 

1443 generations were affected by pterygium or pinguecula while 18 were unaffected. 

1444  
 
 

1445 

1446 
 

1447 Figure 2.1 Northern Irish family affected by pterygium 
 

1448 Pedigree  of  a  Northern  Irish  family  affected  with  pterygium. Open 
 

1449 symbols  denote  unaffected  individuals;  filled  black  symbols  denote 
 

1450 pterygium  affected  individuals  and  filled  black  symbols  with  open 
 

1451 circles inside denote pinguecula affected individuals. Squares represent 
 

1452 male and circles represent female individuals. Question marks are for 
 

1453 individuals not participating in the study and slashed symbols denote 
 

1454 
 

1455 

deceased family members. 

 

1456 Pterygium affected both males and females and the onset age was on average 48 
 

1457 years old. From the questionnaire, there was no history of unusual sun exposure 
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1458 for all family members; only holidays in sunny climates for a couple of weeks 

1459 every year with most using sunglasses (Table 2.1). 

1460 A familial predisposition for development of pterygium was apparent within the 

1461 family. 

1462  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1463 

1464 

 
 

Table 2.1 Northern Irish pterygium family questionnaire results 
 

1465 
 

1466 

List of participant family members with relative information 

 
 

1467 2.3.2 Whole Exome Sequencing 
 

1468 In order to identify the gene responsible for pterygium onset in this family, Whole 
 

1469 exome sequencing (WES) analysis was performed in DNA extracted from three 
 

1470 family members with pterygium: II.2, II.4 and II.14 (72, 70 and 65 years old 
 

1471 respectively)   two   with  pinguecula:   III.5   and   III.6   (48   and  46   years  old 
 

1472 respectively) and one unaffected relative: II.9 (58 years old) (Figure 2.1 and Table 
 

1473 2.1). 
 

1474 
 

1475 
 

1476 

WES resulted in the identification of 451,153 variants in 18,858 different genes. 
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1477 2.3.3 Ingenuity Variant Analysis 

1478 Ingenuity Variant Analysis was used to prioritize some of these variants: the first 

1479 filter, Confidence, allowed selection of 30,000 variants based on the call quality 

1480 and read depth, therefore ensuring a higher quality of the subsequent analysis. 

1481 The previous number was further reduced to 25,000 using the second filter, 

1482 Common Variants, able to exclude the variants more frequently observed in the 

1483 population, setting a Minor Allele Frequency (MAF) < 0.005. 

1484 The third filter picked out 11,000 variants predicted to be deleterious through two 

1485 algorithms based on the evolutionary conservation of an amino acid within a 

1486 certain protein family: PolyPhen (Polymorphism Phenotyping) and SIFT (Sorting 

1487 Intolerant From Tolerant). 

1488 Polyphen2 (Adzhubei et al., 2010) is a predictive software which aligns the 

1489 sequence containing the mutation to multiple homologous sequences. The 

1490 research is then refined by a series of algorithms implementing the quality and 

1491 gathering together specific clusters of sequences. 

1492 Eight sequence-based and three structure-based features are used to classify the 

1493 alignments including the probability of different amino-acids to occupy the 

1494 affected position in the aligned sequences (PSIC score), how distant the mutation 

1495 is from the normal allele and if it generates a hypermutable CpG nucleotide. 

1496 The reliability of the prediction is tested with two different datasets: HumDiv, 

1497 consisting in all damaging variations causing human Mendelian diseases and 

1498 HumVar detecting milder deleterious variants without any disease association 

1499 (Knecht and Krawczak, 2014). 

1500 SIFT (Ng and Henikoff, 2001) is another prediction program using sequence 

1501 homology to discriminate between neutral and damaging variants. Based on the 
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1502 assumption that amino-acids are conserved within protein families among 

1503 different species, SIFT uses a multiple alignment of homologous sequences 

1504 generated by SwissProt and then calculates the probability of any amino-acid 

1505 substitutions in the affected position, taking onto consideration both the position 

1506 and the type of amino acid. These results are then normalised by the most 

1507 probable substitution and given a score ranging from 0 to 1, setting a threshold at 

1508 0.5: the variant will be damaging if SIFT score is ≤ 0.5 and tolerated if it will be ≥ 

1509 0.5. 

1510 A measure of confidence of the prediction in this case is given by the median 

1511 value ranging from 0 when at that specific position all the 20 different amino 

1512 acids are observed to 4.32 (log2 20) when only that amino-acid is observed and 

1513 the position is conserved (Kumar et al., 2009). 

1514 A final genetic screening enabled selection of 67 relevant variants assuming a 

1515 dominant inheritance pattern, thus heterozygous in the affected and homozygous 

1516 wild type in the unaffected relative control. 

1517 Genes carrying mutations previously associated with pterygium like Ku70, K-ras, 

1518 hOGG1 (Tsai et al., 2007, Detorakis et al., 2005b, Kau et al., 2004) were not 

1519 selected from the Ingenuity Variant filters. 

1520 Each of the variants obtained with Ingenuity was then manually analysed to 

1521 discriminate the ones most relevant for an involvement in pterygium 

1522 pathogenesis. 

1523 BLAST and Clustal Omega alignments were used to check the conservation of 

1524 the mutated amino acid among the species. The possible impact of the mutation 

1525 on the structure and function of the protein was studied, together with the diseases 
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1526 normally associated with that gene mutation and the tissue-specific gene 

1527 expression pattern for each gene.  

1528 Considering and comparing all those more stringent criteria, we selected five 

1529 candidate variants for a subsequent in vitro analysis (Table 2.2)  

1530   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1531 

1532 
 

1533 

 
 

Table 2.2 WES variant screening 

 
 

1534 2.3.4 Selection of five candidate genes 
 

1535 The five candidate variants selected were found in genes coding for proteins all 
 

1536 expressed in the eye and the amino acidic residues in which they were located 
 

1537 
 

1538 

were all highly conserved through the species (Table 2.3). 
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1539 

1540 
 

1541 

 
 

Table 2.3 Five selected candidate genes 

 

1542 
 

1543 

The candidate genes are described below in more detail. 

 
 

1544 2.3.4.1 CRIM1 (H412P) 
 

1545 CRIM1 (cysteine-rich motor neuron 1 protein) gene encodes for a single pass 
 

1546 transmembrane protein (type I), oriented with the C-terminal into cell cytoplasm 
 

1547 and the N-terminal facing the extracellular portion of the cell. 
 

1548 Although its molecular function has not yet been fully elucidated, CRIM1 has 
 

1549 
 

1550 

been revealed to be important for cell adhesion through interaction with N- 

cadherin and β-catenin (Ponferrada et al., 2012). Its role in mediating cell 

1551 adhesion has been also confirmed by the accumulation of CRIM1 at cell-cell 
 

1552 junctions upon stimulation of endothelial cells (Glienke et al., 2002). 
 

1553 As well as forming complexes with cell adhesion proteins, CRIM1 is able to  bind 
 

1554 growth factors including Bone Morphogenetic Proteins (BMPs) (Wilkinson et al., 
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1555 2003) and VEGFA (Wilkinson et al., 2007b) through its Von Willebrand factor 

1556 domains where our H412P variant is located. 

1557 CRIM1 expression has been documented in different types of tissue, especially 

1558 during their development, including the vertebrate CNS (Kolle et al., 2000a, 

1559 Pennisi et al., 2007), vascular system (Glienke et al., 2002, Pennisi et al., 2007, 

1560 Wilkinson et al., 2007b), urogenital tract (Georgas et al., 2000), kidney 

1561 (Wilkinson et al., 2007b) and eyes (Lovicu et al., 2000, Beleggia et al., 2015) 

1562 Regarding the eye, even if low expression levels were documented during the lens 

1563 placode formation, CRIM1 has been shown to be upregulated during embryonic 

1564 and foetal development. It is expressed in several ocular tissues like lens 

1565 epithelium and lens fibres, conjunctival epithelium, corneal endothelium, retinal 

1566 pigmented epithelium, ciliary and iridial retinae and ganglion cells. (Lovicu et al., 

1567 2000). 

1568 Confirmation of CRIM1 importance in the embryonic development comes from 

1569 the generation of mice homozygous for a gene trap mutant allele 
 
1570 (CRIM1KST264/KST264) or germline mutants (CRIM1∆flox/∆flox), which showed 
 
1571 

 
perinatal lethality and dysfunction in multiple organs including digit syndactyly, 

1572 hemorrhagic necrosis, eye and kidney abnormalities (Wilkinson et al., 2007b, 

1573 Chiu et al., 2012). 

1574  

 
1575 2.3.4.2 SRCAP (R968H) 

1576 SRCAP (Snf2-related CREBBP activator protein) gene encodes for a member of 

1577 the SNF2 family of proteins participating in different kinds of transcriptional 

1578 regulation, including chromatin remodelling, DNA repair and regulation of gene 

1579 transcription (Monroy et al., 2001). 
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1580 SRCAP was identified by its ATPase activity as transcription factor and its ability 

1581 to interact with c-AMP Responsive Binding Protein (CREB)-binding protein 

1582 (CBP), enhancing their transcriptional activation (Johnston et al., 1999) 

1583 By exploring the mechanism by which SRCAP regulates transcription it emerged 

1584 that SRCAP is a coactivator of Protein Kinase A (PKA) activated factors 

1585 including CREB (Monroy et al., 2001), steroid receptors (Monroy et al., 2003) 

1586 and Notch mediated transcription (Eissenberg et al., 2005). 

1587 Using the WES approach, heterozygous truncating mutations were identified in 

1588 SRCAP in five unrelated individuals affected by Floating-Harbor syndrome 

1589 (FHS), a rare disease characterised by delayed speech development, short stature 

1590 and distinctive facial abnormalities. Sanger sequencing allowed identifying 

1591 mutations in eight more affected individuals confirming an important role for 

1592 SRCAP in the disease (Hood et al., 2012). All the mutations were found in a 

1593 small region of the final exon (codons 2435-2517), while R968H variant selected 

1594 in this study doesn’t lie in any defined functional domain. 

1595  

 
1596 2.3.4.3 KIF21B (T105M) 

1597 KIF21B (kinesin family member 21B) gene encodes for an ATP-dependent motor 

1598 protein capable of movement along microtubules, thus responsible for 

1599 intracellular transport of membranous organelles. 

1600 Alternative splicing transcript variants encode for four different isoforms of 

1601 KIF21B: T105 residue is located within the kinesin motor domain which is 

1602 conserved in all the splice variants and was predicted to be phosphorylated by 

1603 NetPhos 2.0, an online server producing an artificial neural network predictions 
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1604 for phosphorylation sites in serine, threonine and tyrosine residues of eukaryotic 

1605 proteins (Blom et al., 1999). 

1606 Kinesin motor domains have been found to be mutated in diseases affecting the 

1607 neuromuscular system: autosomal recessive mutations in KIF1A (Erlich et al., 

1608 2011) and KIF1C (Dor et al., 2014) causes hereditary spastic paraparesis. 

1609 Autosomal dominant mutations in KIF5A are responsible for spastic paraplegia 

1610 type10 and axonal Charcot-Marie-Tooth (CMT) type2 disease (Crimella et al., 
 
1611 

 
2012) while autosomal dominant mutations in KIF22 cause 

 
1612 

 
spondyloepimetaphyseal dysplasia with joint laxity (Boyden et al., 2011, Min et 

1613 al., 2011). 

1614 Mutations in KIF21B gene have been documented in rheumatic diseases like 

1615 inflammatory bowel disease (IBD), multiple sclerosis (Goris et al., 2010) and 

1616 ankylosing spondylitis (Liu et al., 2013b). 

1617  

 
1618 2.3.4.4 WDR12 (L169S) 

1619 WDR12 (WD repeat domain 12) belongs to the WD-repeat protein family found 

1620 prevalently in eukaryotic cells, characterised by a peculiar amino acid sequence 

1621 motif (WD40 unit) present in several copies (4-16). Those WD40 units are 

1622 organised into a “β-propeller-like” structures given by repetition of successive 

1623 four-stranded antiparallel β sheet (Nal et al., 2002). 

1624 The peculiar WDR12 structure has been revealed to be important in regulating 

1625 different protein-protein interactions, including the Notch signalling pathway (Nal 

1626 et al., 2002), ribosome assembly and cell proliferation processes through the 

1627 formation of the PeBoW complex (complex between Pes1, Bop1 and WDR12) 

1628 (Holzel et al., 2005). 
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1629 Moreover, WDR12 has been considered responsible for cardiac function 

1630 deterioration since it is found to be up-regulated in heart failure (Moilanen et al., 

1631 2015). 

1632 Human WDR12 protein, like Wdr12 in mouse, is composed by 423 amino acids 

1633 and seven WD units; L169 residue, where the pterygium associated variant was 

1634 found, lies in the second WD unit, not associated with any post-translational 

1635 modification (Nal et al., 2002). 

1636  

 
1637 2.3.4.5 HNMT (3’UTR miR-186 binding site) 

1638 HNMT (histamine N-methyltransferase) is a ubiquitously expressed enzyme able 

1639 to N-methylate and inactivate histamine, an organic compound important in the 

1640 inflammatory response increasing capillary permeability and as neurotransmitter. 

1641 Functionally active histamine and H1 histamine receptor expression have been 

1642 described in pterygium (Maini et al., 2002). 

1643 Histamine is produced and eventually released by mast cells, granulocyte type 

1644 cells that have been found increased in pterygium tissues compared to the control 

1645 conjunctival tissues in several studies (Ratnakar et al., 1976, Butrus et al., 1995, 

1646 Nakagami et al., 1999). In our case a sequence change in the 3’UTR of HNMT 

1647 gene disrupted the miR-186 binding site. Disruption of a miRNA binding site 

1648 implies the target gene overexpression: a HNMT overexpression in this case 

1649 would determine a decrease in histamine concentration. Histamine plays a central 

1650 role in the pathogenesis of allergic diseases like asthma, rhinitis or anaphylaxis 

1651 (Garcia-Martin et al., 2007) and decreased histamine levels have been associated 

1652 with schizophrenia (Nakai et al., 1991). 

1653  
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1654 2.3.5 Five candidate genes analysis 

1655 Integrative genomic viewer (IGV) allowed confirmation of the coverage and the 

1656 percentages of hetero/homozygosity in each family member for the five selected 

1657 genes. The presence of heterozygosity in the affected members and homozygosity 

1658 of the wild-type allele in the unaffected control confirmed that the allele was 

1659 inherited in a dominant manner (Figure 2.2 A). 

1660 Sanger sequencing was then performed around the five mutated regions to 

1661 confirm the presence of the variants identified by WES and eliminate any possible 

1662 artefact coming from the NGS technique; all five mutations in the selected genes 

1663 were confirmed by Sanger Sequencing (Figure 2.2 B). 

1664 Subsequently, the expression of the candidate genes in the cornea was evaluated. 

1665 Three online available gene expression databases were interrogated: TiGER 

1666 (Tissue-specific Gene Expression and Regulation), mainly relying on EST 

1667 (Expressed Sequence Tag) information, Expression Atlas from EMBL including 

1668 microarray and RNAseq data and Human Protein Atlas, based on the human 

1669 proteome obtained through antibody and transcriptome analysis. All these 

1670 databases showed expression of each of the genes limited to the whole eye, 

1671 without distinguishing the specific parts within it: the cornea, conjunctiva and 

1672 retina. 

1673 To corroborate expression data on the whole eye found in online available 

1674 databases, a semi-quantitative RT-PCR was performed on RNA extracted from 

1675 HCE-S corneal epithelial cells using newly designed intron-spanning primers. All 

1676 five genes analyzed were expressed in HCE-S, but at different expression levels. 

1677 The two most highly expressed genes, detectable even with 20 PCR cycles, were 

1678 CRIM1 and SRCAP (Figure 2.2 C). 
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1679  

A. C. 
 
 
 
 
 
 
 
 
 
 

B. 
 
 
 
 
 
 

1680 

1681 

  

1682 Figure 2.2 Candidate genes analysis 

1683 Panel A. Example of a pterygium family members sequence data from 

1684 WES and visualised using IGV. The percentage of heterozygosity 

1685 obtained is shown: A 42% and C 58%, with coverage of 19 counts 

1686 Panel B. Sanger sequencing performed in the family members 

1687 confirmed the Adenine > Cytosine SNP is Heterozygosis in the affected 

1688 individuals and is homozygous Adenine in the unaffected control. 

1689 Panel C. Semi-quantitative PCR at 20-25-30-35 cycles in HCE-S cells 

1690 evaluating expression levels of the five candidate genes: SRCAP, 

1691 WDR12, HNMT, CRIM1 and KIF21B. 

1692  

1693 Recent studies elucidated the importance of CRIM1 expression in eye 

1694 development: CRIM1 was found to be upregulated in developing corneal and 

1695 conjunctival epithelia (Lovicu et al., 2000) and a mouse CRIM1KST264/KST264 line, 
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1696 producing a shortened isoform of CRIM1 protein, presenting with perinatal 

1697 lethality, syndactyly as well as eye and kidney abnormalities (Pennisi et al., 

1698 2007). A whole exome sequencing approach identified a deletion in CRIM1 in 

1699 Colobomatous macrophthalmia with microcornea syndrome (MACOM), an 

1700 autosomal dominant malformation of the eye (Beleggia et al., 2015) and 

1701 experiments on mouse mutant Crim1 alleles showed a role for CRIM1 in 

1702 regulating the levels of active β1 integrin in Lens Epithelial (LE) cells, 

1703 phosphorylating FAK and ERK (Zhang et al., 2015). 

1704 Finally a GWA study demonstrated CRIM1 association with eye tumours in 

1705 cattle: CRIM1, together with eleven other genes, was identified as a Quantitative 

1706 Trait Loci (QTL) underlying ambilateral circumocular pigmentation (ACOP), a 

1707 peculiar pigmentation surrounding the Fleckvieh cattle eyes which confer them 

1708 with reduced susceptibility in development of bovine ocular squamous cell 

1709 carcinoma (BOSCC) the most common eye cancer (Pausch et al., 2012). 

1710 Therefore, based on expression data and on the role of CRIM1 in the eye revealed 

1711 by an extensive literature review, we decided to prioritise the analysis of CRIM1 

1712 as our top candidate gene. 

1713  

 
 
1714 

 

2.3.6 CRIM1: domains, interactors and sequence analysis 

1715 CRIM1, the gene we selected for further analysis, is a large transmembrane 

1716 protein (1002 amino acids, plus 34 amino acids of the signal peptide) in which, as 

1717 previously described, there are 11 different protein domains annotated (Figure 

1718 2.3A): 6 Von Willebrand factor C, 4 antistasin-like and 1 Insulin-like Growth 

1719 Factor-binding Protein (IGFBP) at the N-terminal, all of them are extra-cellular, 

1720 while only two small C-terminal portions of the protein are predicted to be 
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1721 transmembrane (21 amino acids) and cytoplasmic (76 amino acids) (Kolle et al., 
 

1722 2000b). The mutation H412P is positioned in the second von Willebrand factor  C 
 

1723 (ref SNP: rs113372122). Analysing the alignments with various orthologues of 
 

1724 CRIM1 we observed that the residue H412 is conserved through human (Homo 
 

1725 sapiens), cattle (Bos Taurus), mouse (Mus musculus), rat (Rattus norvegicus), 
 

1726 
 

1727 
 

1728 

frog (Xenopous laevis), zebrafish (Danio rerio) (Figure 2.3B). 
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1729 

1730 

  

1731 Figure 2.3 CRIM1 (cysteine-rich motor neuron 1 protein) 

1732 Panel A. A schematic ideogram shows the Human CRIM1 

1733 transmembrane protein. In the CRIM1 plasmid used for in vitro 
 
1734 

 
experiments, at residue 412, the wild type Histidine was substituted 

1735 with a Proline. 

1736 Panel B. Clustal X2.1 alignment of CRIM1 between Human, Cattle, 

1737 Mouse, Rat, Zebrafish indicates that H412P missense mutation occur in 

1738 a highly conserved residue. Alignment with the homologous Crm1 

1739 protein in C. elegans shows the presence of an Arg (R), an acidic 

1740 residue similar to His (H). Results were visualized with EsPript 3.0. 

1741 Legend: Red box, white character: strict identity; Red character: 

1742 similarity in a group; Blue frame: Similarity across groups. 

1743  

1744 Von Willebrand factor type C (VWC) domains, known also as Cysteine-rich 

1745 repeats (CRRs), are characterised by a conserved consensus sequence composed 

B. 

A. 
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1746 by ten cysteines (CXnWX4CX2CXCX6CX4CX4–6CX9–11CCPXC) for a total of 60- 

1747 80 amino acids (Wilkinson et al., 2003). 

1748 The histidine residue (H412 in CRIM1) is also conserved in the Von Willebrand 

1749 Factor C (VWFC)-2 of the human chordin and in VWFC-2 and 3 of human 

1750 neuralin expressed in neural plate and axial skeleton (O'Leary et al., 2004a) as 

1751 well as in the amnionless (Amn) transmembrane protein of the visceral endoderm 

1752 (Abreu et al., 2002), all proteins playing a major role during embryo 

1753 development. 

1754 Chordin and Neuralin in particular are secreted proteins which antagonize BMP 

1755 signalling pathway by direct BMP binding and consequent receptor inhibition 

1756 (Wilkinson et al., 2003). BMPs are members of the transforming growth factor- β 

1757 (TGF-β) family and play a role in tissues and organs development as well as in 

1758 patterning of mammalian embryo (O'Leary et al., 2004a). 

1759 BMPs 4 and 7 have been shown to interact with CRIM1 through the VWF 

1760 domains (Wilkinson et al., 2003) (Kinna et al., 2006). However the VWF2 of 

1761 chordin, similar to VWF2 of CRIM1 (% identity), was proved not to bind to 

1762 BMP-7, which preferentially binds instead to VWF1 and 4 of chordin (Zhang et 

1763 al., 2007). 

1764 CRIM1 has been also shown to interact with VEGFA, TGF-βs and PDGF through 

1765 its VWF domains: if the latter are deleted, the interaction with the TGF-β 

1766 superfamily members is disrupted (Wilkinson et al., 2007b). The role of the 

1767 interaction with VEGFA has been further validated and found to be involved in 

1768 the regulation of angiogenesis (Fan et al., 2014). 

1769  
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1770 2.4 DISCUSSION 

1771 This project began with the identification of a multigenerational Northern Irish 

1772 family affected by pterygium. This family presented as an interesting case 

1773 because they were affected by a sun-related disease in three different generations, 

1774 without high levels of sunlight exposure. The family members live in Northern 

1775 Ireland, with some having spent thirteen years in Canada, but aside from this 

1776 having only spent one or two weeks per year in sunny climates. It was proposed 

1777 that within this family, genetic predisposition plays a fundamental role in the 

1778 etiologic process of pterygium development. 

1779 Ingenuity and the subsequent in silico analysis allowed the screening of the 

1780 variants found in common between the affected family members and to finally 

1781 select five candidate genes: SRCAP, KIF21B, WDR12, HNMT and CRIM1. 

1782 In KIF21B, our T105M variant is located within the kinesin motor domain 

1783 where other mutations were found associated with diseases affecting the 

1784 neuromuscular system, including the extraocular muscles type I of the eye 

1785 (Yamada et al., 2003) and neuronal transmission, including mammalian 

1786 photoreceptors in retina (Marszalek et al., 2000). 

1787 Despite the above mentioned involvement of kinesin with eye function, there are 

1788 no evident correlations between KIF21B and anterior cornea diseases. 

1789 WDR12, as previously reported, interacts with several proteins, including 

1790 Notch. Notch, a key molecule in promoting myofibroblast differentiation during 

1791 EMT, was found to be upregulated in pterygium (Engelsvold et al., 2013) and 

1792 also retaining an important role in regulating migration in corneal epithelial 

1793 wound healing through vitamin A and retinol binding protein1 (CRBP1) 

1794 (Vauclair et al., 2007). Notch1 results in fact inhibited at the leading edge of the 
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1795 healing corneal epithelial cells promoting their migration (Movahedan et al., 

1796 2012), similarly to what could happen in pterygium cell overproliferation and 

1797 migration through an altered interaction between the mutated WDR12 and Notch. 

1798 No other relevant associations between WDR12 and eye diseases or sun-related 

1799 effects have been reported. 

1800 HNMT, fundamental for histamine inactivation, if mutated could interfere 

1801 with mast cell histamine release observed in pterygium. The disruption of a 

1802 miRNA binding site normally causes an overexpression of the gene which is not 

1803 properly silenced: in this case an overexpression of HNMT would cause an 

1804 increased histamine inactivation and therefore downregulating the mast cells 

1805 activity which is supposed instead to increase in pterygium. However, no HNMT 

1806 mutations have been yet associated to any eye or UV related disease. 

1807 An expression analysis specific for the tissue under examination, the cornea in our 

1808 case, helped at this point to understand how much the gene is expressed and 

1809 therefore how much a missense mutation would interfere with its expression and 

1810 function, affecting the tissue homeostasis. 

1811 From the in vitro analysis the two most expressed genes resulted to be SRCAP 

1812 and CRIM1. 

1813 SRCAP, as previously mentioned in the results, plays a role in the regulation 

1814 of CREB, steroids and Notch gene expression. Interestingly, CREB was found to 

1815 be overexpressed in pterygium under UVB radiation (Nubile et al., 2013) and 

1816 Notch, as we know from WDR12, is involved in EMT and regulation of cell 

1817 migration in cornea. Therefore, mutations in SRCAP can alter those pathways 

1818 involved in pterygium development. 
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1819 However, in the identified variant R968H, a positively charged residue, Arginine 

1820 (R) is substituted with another positively charged one, Histidine (H): even if the 

1821 side chain differs for the imidazole in the H, the charge remains the same, thus not 

1822 changing massively the residue properties. 

1823 Moreover no eye related diseases has yet been directly associated to SRCAP 

1824 alteration. 

1825 CRIM1 presents as a credible candidate for playing a role in pterygium 

1826 pathomechansim for several reasons. 

1827 Firstly, its association with UV associated eye tumors in cattle in a GWA study 

1828 (Pausch et al., 2012). In this study CRIM1 was identified as a quantitative trait 

1829 locus (QTL) in the ambilateral circomocular pigmentation (ACOP) cattle when 

1830 compared to normal Fleckvieh (FV) cattle. The ACOP cattle, a minority of the 

1831 FV animals, present a peculiar pigmentation surrounding the eye which is 

1832 associated to a reduced susceptibility in developing the common bovine ocular 

1833 squamous cell carcinoma (BOSCC), normally caused by an elevated UV 

1834 exposure. 

1835 Secondly, CRIM1 has recently been proven to be crucial in eye organogenesis 

1836 (Beleggia et al., 2015) (Zhang et al., 2015). A germline mutation in CRIM1 can 

1837 cause an abnormal eye development, leading to a major vulnerability of the eye 

1838 surface to other environmental factors like the UV radiation or viral infections. 

1839 Thirdly, an elegant experiment proved the interaction between CRIM1 and 

1840 VEGFA through the von Willebrand factors domains, where the mutation we 

1841 detected in this family is located (Wilkinson et al., 2007b). VEGFA, the most 

1842 important angiogenic factor, has an important role in new vessels formation in 
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1843 pterygium (Bianchi et al., 2012, Detorakis et al., 2010) and in pterygium 

1844 pathogenesis when mutated (Peng et al., 2014). 

1845 Fourthly, the substitution of a positively charged histidine (H) with an apolar 

1846 proline (P), as found in this family, can strongly change the physico-chemical 

1847 properties of the amino acid residue, thus interfering with the CRIM1 

1848 conformation and function. 

1849 All the family members affected by pterygium participated to the present study 

1850 and were compared with an unaffected sibling during the WES analysis. 

1851 Unfortunately, data from other family members were not available. Analysing the 

1852 presence of the selected variants in additional family members would have helped 

1853 during the selection process. However, given the reduced penetrance of pterygium 

1854 (Islam and Wagoner, 2001b, Bradley et al., 2010), finding one variant in an 

1855 unaffected family member would not necessary invalidate that candidate gene. On 

1856 the contrary, not finding the selected variant in an affected member would have 

1857 been more invalidating. 

1858  

1859  
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1878 3.1 INTRODUCTION 

1879 CRIM1, as discussed in Chapter 2, is a type I transmembrane protein, 

1880 characterised by an IGF-binding protein domain and six cysteine-rich repeats 

1881 (Kolle et al., 2000a) which has been revealed to have an important role during eye 

1882 development (Lovicu et al., 2000, Beleggia et al., 2015). 

1883 CRIM1 is able to stabilize cell-cell junctions through interaction with β-catenin, 

1884 cadherins (Ponferrada et al., 2012) and β1 integrins, modulating cell adhesion, 

1885 polarity and proliferation during murine lens formation (Zhang et al., 2016). 

1886 Another role attributed to CRIM1 is its involvement in blood vessel formation 

1887 (Glienke et al., 2002, Kinna et al., 2006), enhancing the autocrine signalling of 

1888 VEGFA in retinal vascular endothelial cells (VECs)(Fan et al., 2014). CRIM1 

1889 was also shown to be upregulated in the presence of VEGFA in HUVECs, with 

1890 ERK signalling possibly involved in this process (Nakashima and Takahashi, 

1891 2014). 

1892 A direct interaction between CRIM1 and VEGFA has been proven using a series 

1893 of CRIM1 deletion constructs in co-immunoprecipitation reactions with VEGFA: 

1894 the presence of all CRIM1 cysteine-rich repeat (CRR) domains was revealed to be 

1895 essential for VEGFA binding, since no binding was displayed if those domains 

1896 were deleted (Wilkinson et al., 2007b). 

1897 CRR (otherwise known as VWC) domains have been identified in more than 200 

1898 extracellular matrix proteins including chordin, von Willebrand factor, 

1899 thrombospondins, connective tissue growth factor, and procollagen type IIA 

1900 (ColIIA), which act on binding and modulating members of the TGF- 

1901 β superfamily and regulate growth factor signalling (O'Leary et al., 2004b). 
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1902 BMPs, for example are secreted growth factors of the TGF-β superfamily playing 

1903 an important role during embryonic development or tissue repair in adults. 

1904 Chordin or VWFC containing proteins act as antagonists to BMP signalling and 

1905 their inhibitory potential resides in the CRR domains (Garcia Abreu et al., 2002). 

1906 In CRIM1, the six CRR domains are located in the extracellular portion and are 

1907 able to bind BMP4 and BMP7 when they are co-expressed within the Golgi, 

1908 leading to a reduction in the processing and secretion of the BMP (Wilkinson et 

1909 al., 2003). 

1910 Mutations occurring in one of those domains (like the H412P in VWF2 detected 

1911 in this study) could impair the interaction of CRIM1 with other proteins like 

1912 VEGFA or BMPs. Alternatively, because these domains are rich in cysteine 

1913 which are essential to form disulphide bonds and loops that stabilise the tertiary 

1914 structure of the protein (Vitt et al., 2001), a mutation in this domain could cause 

1915 protein misfolding and consequently its dysfunction. 

1916 Because of the direct involvement of VWFs in protein-protein interaction and 

1917 signal transduction sequencing was performed for all the CRIM1 VWFs in 

1918 individual patients with pterygium from Northern Ireland and Bolivia. 

1919 The rationale for this is that other ocular diseases can be caused by different 

1920 mutations in the same gene: three different COL8A2 mutations were identified in 

1921 early onset Fuchs’ endothelial dystrophy (Elhalis et al., 2010) and over 60 

1922 mutations in the TGFBI gene, in four different corneal dystrophies: Lattice 

1923 corneal dystrophy (LCD), Granular corneal dystrophy (GCD), Reis-Bücklers 

1924 corneal dystrophy (RBCD), Thiel-Behnke corneal dystrophy (TBCD) (Munier et 

1925 al., 2002). 
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1926 Screening for TGFBI mutations revealed the presence of two hotspots (Arginine 

1927 at positions 124 and 555) where mutations with consequent amino acid 

1928 substitutions occur more frequently in various populations. These mutations are 

1929 the most representative of two extracellular fascilin domains (Fas1 and 4, 

1930 respectively), where also almost all the other amino acid substitutions have been 

1931 identified. (Kannabiran and Klintworth, 2006). 

1932 However, while mutations in Fas4 affected the overall stability of TGFBI, 

1933 reducing the proteolytic degradation and leading to aggregate accumulation, 

1934 mutations in Fas1 do not alter the TGFBI stability (Runager et al., 2011, 

1935 Underhaug et al., 2013), implying that mutations in Fas1 act through a different 

1936 pathogenic mechanism; possibly impairing the interaction with other proteins. 

1937 CRIM1, as well as TGFBI, is characterised by several extracellular repeated 

1938 domains and therefore I wanted to investigate if, also in this case, it was possible 

1939 to identify mutations in those structural domains. 

1940  

1941 UV light is now considered the primary cause of pterygium pathogenesis; this 

1942 follows from several studies beginning in 1954, the first time pterygium was 

1943 related to geographical distribution of the population (Anderson, 1954). This 

1944 encouraged many researchers to collect data of pterygium prevalence and risk 

1945 factors in affected populations of different ethnicities: Barbados (Luthra et al., 

1946 2001), Iran (Rezvan et al., 2012, Fotouhi et al., 2009), China (Liang et al., 2010), 

1947 Spain (Viso et al., 2011) and India (Nangia et al., 2013). 

1948 A meta analysis study tried to pool together all the results obtained in twenty 

1949 population studies (Liu et al., 2013a), calculating a pooled pterygium prevalence 

1950 rate of 10.2% in the general population coming from 12 different countries. Low 
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1951 latitudes, outdoors activities and age were associated with the highest prevalence 

1952 while the gender association remained uncertain. 

1953 In Western Australia a comparison between sun exposure and pterygium 

1954 incidence confirmed the importance of ocular exposure to UV rays, positively 

1955 correlated to the risk of developing pterygium (Threlfall and English, 1999). 

1956 However, a study comparing sawmill workers from Canada, Northern India, 

1957 Thailand, and Taiwan showed that the environment inside the sawmills had a 

1958 greater effect than ethnicity in determining a higher prevalence of pterygium. 

1959 Working in the sawmills involves indoor work and this study underlines the fact 

1960 that pterygium is not solely caused by UV radiation, but often other kinds of eye 

1961 irritants such as the dust in sawmills (Detels and Dhir, 1967). 

1962 Surfing was also found to be significantly associated with pterygium prevalence 

1963 within the Hawaiian population, possibly explained by the wind, the UV 

1964 enhanced reflection by the sea and the difficulty of using protective eyewear 

1965 while surfing (Lin et al., 2016). 

1966  

 
1967 

 
3.1.1 Aims of Chapter 3 

1968 The aim of this chapter is finding more evidences that CRIM1 is involved in 

1969 pterygium pathogenesis. To pursue this purpose, other possible causative variants 

1970 within CRIM1 VWFs were investigated analysing the DNA coming from 

1971 additional pterygium affected individual patients either from Northern Ireland 

1972 (low UV exposure) and Bolivia (high UV exposure). Genomic primer design 

1973 around each CRIM1 VWF and direct Sanger sequencing were chosen as reliable 

1974 and affordable techniques for a limited number of samples. Finding another 

1975 missense mutation within the same gene in a different individual patient affected 
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1976 by pterygium would strengthen the hypothesis of CRIM1 as an important factor in 

1977 pterygium aetiopathogenesis. 

1978 CRIM1 expression levels were further determined by qRT-PCR (quantitative 

1979 RealTime-PCR) performed on RNA obtained from Impression cytologies samples 

1980 of Northern Irish and Bolivian affected and unaffected individuals. The two 

1981 populations differ significantly in climate exposure, altitude and latitude, the main 

1982 epidemiologic factor for pterygium development (Detorakis and Spandidos, 

1983 2009a) but also in culture and habits. 

1984  
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1985 3.2 METHODS 

 
1986 

 
3.2.1 Patient recruitment 

1987 Informed consent, completed questionnaires and a blood sample were obtained 

1988 from each individual examined. Ethical approval for the study was obtained from 

1989 ORECNI (Office for Research Ethics Committees Northern Ireland), UK and 

1990 Comité de Bioética de la Facultad de Medicina, Santa Cruz, Bolivia. 

1991 Clinical examinations were performed at Cathedral Eye Clinic, Belfast, UK and in 

1992 Facultad de Medicina, Santa Cruz, Bolivia. 

1993 Two additional unaffected family members of the Northern Irish family studied in 

1994 Chapter 2 were recruited together with 12 Northern Irish and 9 Bolivian 

1995 pterygium affected individuals for sequence analysis of CRIM1. 

1996  

 
1997 3.2.2 DNA extraction from Blood and CRIM1 VWF Sanger sequencing 

1998 Genomic DNA was extracted from blood leukocytes using QIAamp DNA Blood 

1999 mini kit (QIAGEN, Manchester UK) and quantified using a Nanodrop 1000 

2000 spectrophotometer (Thermo Fisher Scientific). 

2001 VWFs of CRIM1 were amplified using PCR optimised conditions as following: 

2002 initial denaturation at 95°C for 3 minutes, then 35 cycles of: denaturation at 95°C 

2003 for 30 seconds, annealing at 56°C for 30 seconds, elongation at 72°C for 1 minute 

2004 and final elongation at 72°C for 5 minutes. 

2005 Primer3 software was used to design the following genomic primers: 

2006 Exon6_F 5’ TTGAAAAACATCAAAGGACACAA 3’ (VWF1), 

2007 Exon6_R 5’ CCATGTATGCTCCTGTTAATCTG 3’ (VWF1), 

2008 Exon7_F 5’GATGACTAGAACCCAGGGAAAA 3’ (VWF2), 
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2009 Exon7_R 5’ AGCAGACATTATGCCCAAGG 3’ (VWF2), 

2010 Exon11_F 5’ GCCTGTTTCTCCTGTGCAGT 3’ (VWF3), 

2011 Exon11_R 5’ TGCAAGGCAGAAGTCATTTG 3’ (VWF3), 

2012 Exon12_F 5’ CCAGGCTTTCAAGAGTTGGA 3’ (VWF4), 

2013 Exon12_R 5’ GGGTCCCACAGAATGACAAC 3’ (VWF4), 

2014 Exon13_F 5’ CTGGCCAACAGCATCTTCTT 3’ (VWF5), 

2015 Exon13_R 5’ GACATGTCAAGCAGGGAAAAA 3’ (VWF5), 

2016 Exon14_F 5’ AAGATCGTGTGCGTTGTCAC 3’ (VWF6) 

2017 Exon14_R 5’ GTCGAGCTCTGCTTCGATTT 3’ (VWF6) 

2018 Once the PCR products were verified in a 1% agarose gel (UltraPure Agarose, 

2019 Thermo Fisher Scientific), they were sent to Department of Zoology at University 

2020 of Oxford to be purified and Sanger sequenced. 

2021 Sequences were then aligned to the CRIM1 consensus one and analysed using 

2022 DNA Dynamo software. 

2023  

 
2024 

 
3.2.3 Pterygium samples 

2025 Pterygium tissues samples were collected during the pterygium surgery and 

2026 immediately submerged in RNA later (Qiagen) at room temperature. 

2027  

 
2028 

 
3.2.4 Impression cytology samples 

2029 Conjunctival epithelial and pterygium cells from the superficial portion of the 

2030 patients eyes were harvested using 4 x 4 mm strips of sterile LCR biopore 

2031 membrane filter (pore size, 0.45 um; Millipore, Watford, UK) as previously 

2032 described (Moore et al., 2011). Briefly, the membrane filter was placed over the 
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2033 conjunctival epithelium; a light pressure was applied and the filter was then 

2034 removed so that epithelial cells remained attached to the filter which was then 

2035 stored in RNAlater (Qiagen) at room temperature. 

 
2036 

 

2037 3.2.5 RNA extraction and reverse transcription 

2038 Impression cytology samples were vortexed at maximum speed for 2 minutes to 

2039 promote conjunctival and pterygium cell detachment from the filter. 

2040 Pterygium tissue was disrupted by submerging the tissue in liquid nitrogen and 

2041 then homogenising it with mortar and pestle until a white powder was obtained. 

2042 RNA was then extracted using the RNeasy Plus Mini Kit (Qiagen, Manchester, 

2043 UK) following the manufacturer’s instructions. Briefly: tissue or cell lysates were 

2044 spun through the first column (gDNA Eliminator spin column) to eliminate the 

2045 genomic DNA and then a second column (RNeasy Mini spin columns) was used 

2046 to purify total RNA. 

2047 Total RNA was subsequently quantified using Nanodrop 1000 (Thermo Fisher 

2048 Scientific), run out on an agarose gel to assess quality and then 1 µg of total RNA 

2049 was reverse transcribed into cDNA using the High Capacity cDNA Reverse 

2050 Transcription Kit (Life Technologies, Paisley, UK) according to the 

2051 manufacturer's protocol. Briefly: the reaction mix includes 1µg of total RNA, 

2052 reverse transcriptase, random primers, mix of the four dNTPs (deoxynucleoside 

2053 triphospate) and reaction buffer. Random primers have been proven to efficiently 

2054 initiate cDNA synthesis with all RNA molecules present, including mRNA and 

2055 rRNA. cDNA relative quantification is possible given that the reverse 
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2056 transcriptase reaction generates products which are directly proportional to the 

2057 amount of initial RNA template 

2058  

 
2059 

 
3.2.6 qRT-PCR 

2060 The qRT-PCR assays were performed using a Lightcycler 480 II (Roche, West 

2061 Sussex UK) on cDNA obtained from the extracted RNA. 

2062 Real Time Ready Assays for CRIM1 (assay id. 112278), GAPDH (assay id. 

2063 141139) and hypoxanthine phosphoribosyltransferase (HPRT) (assay id. 102079) 

2064 were purchased from Roche (Burgess Hill, West Sussex, UK). The qRT-PCR 

2065 conditions used were: 45 cycles: 1) Denaturation at 95 °C for 10 seconds, 2) 

2066 Annealing at 60 °C for 30 seconds and 3) Extension at 72 °C for 1 second. 

2067  

2068 Data were normalised using HPRT and GAPDH as housekeeping controls for ΔCt 

2069 and ΔΔCt calculations (Schmittgen and Livak, 2008). HPRT and GAPDH were 

2070 chosen as they have been shown to the most stable corneal housekeeping genes 

2071 (Kulkarni et al., 2011). For each condition all complementary cDNA samples 

2072 were run in duplicate in two independent experiments. 

2073  

 
2074 

 
3.2.7 Statistical Analysis 

2075 All error bars represent the standard error of the mean (SEM) calculated between 

2076 sample replicates of the same biological group. Significance was estimated using 

2077 a Student's t-test from an Excel spreadsheet. 

2078 A Mann-Whitney U test was used in GraphPad Prism 5 software for comparison 

2079 of CRIM1 expression between two different populations in Figure 3.3. Data were 
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2080 illustrated using Box plot (or Box-and-Whisker plot) in Excel, including 2-∆Ct 
 

2081 median values (central horizontal line), the first and third quartile (upper and 
 

2082 lower box horizontal lines) and minimum and maximum values (whiskers). 
 

2083 p value ≤ 0.05 was deemed to be significant (*p value ≤ 0.05, **p value ≤ 0.01 
 

2084 
 

2085 
 

2086 

and ***p value ≤ 0.001). 
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2087 3.3 RESULTS 

 
2088 

 
3.3.1 Screening of mutations in CRIM1 

2089 The CRIM1 H412P mutation was analysed using Sanger sequencing in genomic 

2090 DNA from two family members, additional to those samples used for the WES 

2091 (III.2 and III.3, see Figure 2.1 in Chapter 2), 12 Northern Irish pterygium affected 

2092 individuals and 9 pterygium affected individuals from Bolivia. 

2093 The two additional family members (III.2, age 49 and III.3, age 34) were shown 

2094 to have the same H412P CRIM1 mutation found in the other affected family 

2095 members; despite having not developed any signs of pterygium yet (Figure 3.1). 

2096  
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2097 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2098 

2099 

 

Figure 3.1 Pterygium unaffected III.2 and III.3 family members 

 

2100 carry the H412P mutation 

2101 Sanger sequencing performed in exon7 of CRIM1 revealed the same 

2102 H412P (A>C) mutation in two members of the pterygium family who 

2103 are unaffected by pterygium (III.2 and III.3). Both Forward and 

2104 Reverse primers confirmed the presence of the H412P mutation in 

2105 CRIM1. 

2106 In the top part of the figure is the CRIM1 nucleotide sequence with the 

2107 corresponding amino acid sequence below in grey. The base changed is 

2108 highlighted in red; sequencing results were visualized using DNA 

2109 Dynamo DNA Sequence Analysis Software. 

2110  

2111 Table 3.1 includes information regarding pterygium affected individuals from 

2112 Northern Ireland together with a pterygium affected member belonging to a 

2113 British family: patient n.12, which corresponds to patient II.1 of a previous study 

2114 (Romano et al., 2016).  

https://www.google.co.uk/url?sa=t&rct=j&q&esrc=s&source=web&cd=1&ved=0ahUKEwi_s-OK85vPAhUsKcAKHXvZBl0QFggcMAA&url=http%3A%2F%2Fwww.bluetractorsoftware.co.uk%2F&usg=AFQjCNFrjK26Zp5Ti1kF7F1EQDX76Mqm_w&sig2=iauvDdyJ8fB-rkwD8PiY0g
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2115 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2116 

2117 
 

2118 Table 3.1 Pterygium individual patients from UK 
 

2119 List of pterygium affected individuals collected in UK and the relative 
 

2120 information obtained through the questionnaire. 
 

2121 Blank spaces indicate missing information and “–“ indicates no time 
 

2122 spent in sunny climates. 
 

2123 *Patient n.12 denotes the pterygium affected II.1 family member 
 

2124 previously studied by Romano et al. 2016 
 

2125 Blood was collected from each individual patient and genomic DNA 
 

2126 was extracted to analyse their CRIM1 VWFs sequences using Sanger 
 

2127 
 

2128 
 

2129 

sequencing. 
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2130 None of the pterygium affected individuals from the UK carried the same H412P 
 

2131 variant in CRIM1 and no other variants were identified either in the same protein 
 

2132 domain  (VWF2)  or  in  any  of  the  other  VWFs  domains  (see  Figure  2.3A in 
 

2133 
 

2134 

Chapter 2). 

 

2135 The same analysis was carried on in pterygium affected patients from Bolivia. 
 

2136 Nine genomic DNA samples were obtained from blood coming from Bolivia; the 
 

2137 
 

2138 
 
 
 
 
 
 
 
 
 
 
 
 

2139 

2140 

samples are listed in Table 3.2. 
 
 
 
 

 

Table 3.2 Bolivian pterygium individual patients 
 

2141 List of pterygium affected individuals collected in Bolivia and the 
 

2142 relative date of birth and gender. 
 

2143 Blood was collected from each individual patient and genomic DNA 
 

2144 was extracted to analyse their CRIM1 VWFs sequences using Sanger 
 

2145 
 

2146 
 

2147 

sequencing. 
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2148 Patient B1 presented another mutation in a different CRIM1 VWF: a substitution 

2149 of a C (cytosine) with a T (thymine) in the first position of the 745 codon 

2150 corresponding to an Arginine to Cysteine (R745C) amino acid change in exon 13 

2151 (between VWF4 and VWF5) as shown in Figure 3.2A. 

2152 Conservation analysis of R745 residue across the species using UCSC revealed 

2153 that the Arginine is conserved in human, rhesus and elephant while it is lost in 

2154 mouse, dog and chicken (Figure 3.2B). The R745 and the flanking amino acidic 

2155 residues are not highly conserved throughout the species. The sequence position 

2156 R745 was identified as rs145721446 according to dbSNP. 

2157 No additional mutations have been found in the other pterygium affected patients 

2158 from Bolivia. 

2159  
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A. 
 
 
 
 
 
 
 

B. 
 
 
 
 

2160 

2161 
 

2162 Figure 3.2 Novel CRIM1 R745C mutation in a pterygium affected 
 

2163 individual 
 

2164 Panel   A.   Sequencing   results   from   Patient   B1,   Bolivian  cohort, 
 

2165 visualized with DNA Dynamo are shown. Both forward (F) and reverse 
 

2166 primers (R) confirmed a C>T substitution in exon 13 of the CRIM1 
 

2167 gene corresponding to an Arg745Cys amino acid change. 
 

2168 The top part of the figure shows the CRIM1 nucleotide sequence with 
 

2169 the corresponding amino acid sequence below in grey; the base change 
 

2170 is highlighted in red. 
 

2171 Panel  B.  UCSC  browser  allows  visualization  of  the  R745  residue 
 

2172 conservation through the species performing a multiple alignment of 
 

2173 
 

2174 
 

2175 

100 vertebrates. 
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2176 3.3.2 Pterygium affected individuals have increased CRIM1 expression 

2177 CRIM1 expression was subsequently investigated using qRT-PCR and compared 

2178 a Northern European and a South American population (Figure 3.3). 

2179 RNA was obtained from impression cytology samples both from South America 

2180 and Northern Europe (17 Bolivian controls, 12 Bolivian pterygium, 4 Northern 

2181 Irish controls, 4 Northern Irish pterygium affected unrelated individuals and the 

2182 II.2 pterygium affected member of the Northern Irish family studied in Chapter 

2183 2). 

2184 13 additional excised pterygium tissues from the Bolivian population were also 

2185 included in this comparison. 

2186 Data obtained showed a slightly increased level of CRIM1 expression comparing 

2187 impression cytology samples of pterygium and unaffected conjunctival controls 

2188 from Bolivia (2-∆Ct mean values are respectively 1.22 ± 0.22 and 0.92 ± 0.12 

2189 while median values visible in the figures are 1.03 and 0.84, p value n.s.). 

2190 However, a significant difference in CRIM1 expression was observed in the 

2191 Northern Irish population, comparing the pterygium affected with the unaffected 

2192 controls (2-∆Ct mean values are respectively 4.22 ± 0.76 and 1.28 ± 0.122, while 

2193 median values visible in the figures are 3.4 and 1.3, p = 0.028). 

2194 A direct comparison between the IC samples from the two populations shows a 

2195 significant increase of CRIM1 expression in pterygium affected participants from 

2196 Northern Ireland with respect to those from Bolivia (p < 0.01). 

2197 Analysing CRIM1 expression in the whole pterygium tissue of Bolivian patients, 

2198 I obtained a ~three times higher CRIM1 expression from pterygium tissue (2-∆Ct 

2199 mean value of 3.13 ± 0.34 and median value of 2.9) compared to the impression 

2200 cytology samples of the Bolivian affected individuals (p value < 0.001). 
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2201 The impression cytology of the individual pterygium affected family member II.2 

2202 showed a very low CRIM1 expression, lower than that of the unaffected controls 

2203 (2-∆Ct value of 0.32 compared to average 1.28 ± 0.12 of NI controls and 4.22 ± 

2204 0.76 of NI pterygium individuals). 

2205  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2206 

2207 
 

2208 Figure 3.3 CRIM1 expression varies comparing high and low UV 
 

2209 exposed populations 
 

2210 qRT-PCR  analysis  was  carried  out  in  cDNA  obtained  from  two 
 

2211 ethnically different populations originating from  Northern  Ireland and 
 

2212 Bolivia. 
 

2213 RNA  was  extracted  from  different  groups  of  samples:  impression 
 

2214 cytologies (IC) of conjunctival controls and pterygium individuals from 
 

2215 Bolivia  and  Northern  Ireland,  one  IC  of  the  Northern  Irish  family 
 

2216 member affected by pterygium (II.2) and whole pterygium tissues from 
 

2217 Bolivia. 
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2218 A Box plot (or Box-and-Whisker plot) was used to illustrate the data, 

2219 expressed as median of the 2-∆Ct value (central horizontal line) with the 

2220 first and third quartile as the upper and lower box horizontal lines and 

2221 whiskers delineating the minimum and maximum values. Significance 

2222 was obtained with Mann-Whitney U test using GraphPad Prism 5 

2223 software. n=2 with three technical replicates each. 
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2224 3.4 DISCUSSION 

2225 This chapter focuses on CRIM1 analysis both at its sequence level and at the 

2226 expression level across two different populations from UK and Bolivia. 

2227 Analysing genomic DNA of two members of the pterygium family described in 

2228 Chapter 2 but not included in the WES because they were not affected by 

2229 pterygium symptoms I observed that they present the same H412P mutation in 

2230 CRIM1 as well as the affected members (Figure 3.1). 

2231 First of all, even if not highlighted through the questionnaire, there might be other 

2232 environmental triggers that have caused pterygium in some family members 

2233 which have not been experienced by those two unaffected members. Moreover, 

2234 the two unaffected family members carrying H412P mutation are younger than 

2235 the other affected member of the family, especially patient III.3 who is only 34 

2236 years old and may not have developed pterygium yet, considering that the average 

2237 onset of the family is 48 years old. 

2238  

2239 Multiple endocrine neoplasia type 1 (MEN1) is determined by the combined 

2240 occurrence of tumours affecting three endocrine glands: parathyroid, pancreatic 

2241 islet and anterior pituitary gland. This syndrome is caused by mutations in the 

2242 MEN1 gene which encodes for the nuclear transcription factor menin. People 

2243 carrying a mutation in the MEN1 gene develop a particular endocrine tumour 

2244 more frequently as their age increases (Trump et al., 1996). 

2245 The MEN1 penetrance is highly heterogeneous, increasing gradually from the age 

2246 of five years old (before is nonpenetrant) and reaching 100% only at sixty years 

2247 of age (Machens et al., 2007, Bassett et al., 1998) and therefore some individuals 
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2248 may never develop a tumour during their lifetime even if diagnosed as a carrier of 

2249 a MEN1 mutation. 

2250  

2251  

2252 Similarly to the age-related penetrance described for the MEN-1 syndrome, it is 

2253 possible that family members carrying the same H412P mutation in CRIM1 may 

2254 never develop pterygium or will do very late during their lifetime. 

2255 A mechanism of incomplete penetrance, which implies that the person carrying a 

2256 certain genotype may or may not manifest a clinical phenotype (Zlotogora, 2003), 

2257 has been previously described in pterygium (Islam and Wagoner, 2001a, Chui et 

2258 al., 2008, Bradley et al., 2010, Chen et al., 2013). In certain families hereditary 

2259 factors play a pivotal role in pterygium development. However, the majority of 

2260 pterygium patients show no evidence of inheritance: this can be due to a 

2261 mechanism of incomplete penetrance where the external influence is just an 

2262 adjuvant or alternatively the environmental stimuli represents the main etiologic 

2263 factor where the genetic component is only a predisposing factor (Zhang, 1987a). 

2264 Other ocular diseases which present with incomplete penetrance include retinitis 

2265 pigmentosa (McGee et al., 1997) and glaucoma (Morissette et al., 1998) or 

2266 corneal diseases including keratoconus (Nowak and Gajecka, 2011) and Fuchs’ 

2267 dystrophy (Sundin et al., 2006) or UV related diseases like melanoma (Bale et al., 

2268 1986). 

2269 With all the evidence taken into consideration, individuals III.2 and III.3 of the 

2270 Northern Irish pterygium family should be monitored closely for development of 

2271 pterygium in the future. 

2272  



114  

2273 The CRIM1 H412P mutation was not found in other affected unrelated 

2274 individuals from Northern Ireland and Bolivia. This is consistent with the MAF 

2275 for the H412P variation in CRIM1 gene, found to be 0.0019 according to ExAC 

2276 (Exome Aggregation Consortium), an online available browser which attempts to 

2277 gather together data produced by large scale exome sequencing projects. 

2278 The H412P mutation could be restricted to this Northern Irish family. Its MAF is 

2279 so low (2 in 1000 individuals) that even compared to pterygium incidence in 

2280 Northern Ireland (around 1-2%), it would not be unusual to not find it in other 

2281 individuals. 

2282 Moreover, the 12 Northern Irish pterygium affected patients examined did not 

2283 show any other mutation in the six VWFs sequenced. 

2284 Pterygium prevalence outside the equatorial zone (40⁰ north and south of the 

2285 equator) barely reaches 2% compared to the 22% prevalence of the equatorial 

2286 area (Detorakis and Spandidos, 2009a), therefore mostly affecting people with an 

2287 increased exposure to UV light. Considering the fact that the samples were 

2288 collected in Northern Ireland, which is located at around 55⁰ north of latitude, it 

2289 was only possible to collect a limited number of samples for the study. 

2290 The UV index is a universal measurement of the amount of UV sunlight 

2291 responsible for erythema, being directly proportional to the intensity of sunburn 

2292 produced at the earth surface (Allaart et al., 2004). This standard indicator is used 

2293 worldwide for weather reports, forecasts and to warn the population to wear 

2294 protection against the damaging effects of UV by many international institutions 

2295 including the World Health Organization (WHO) (Vanicek et al., 2000). 
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2296 WHO information  and UV index  values at  different  geographical  latitudes  are 
 

2297 available at the following link: 
 

2298 http://www.who.int/uv/intersunprogramme/activities/uv_index/en/. 

2299 Considering the latitude of Northern Ireland being 55°N and of Bolivia being 

2300 16°S we can see in Table 3.3 how the mean UV index changes between the 

2301 latitudes. The UV index of Bolivia would be close to that of Darwin (13°S) and 

2302 therefore it does not go below 7 even in the coldest months. This can be compared 

2303 to the UV index of Northern Ireland which, being 55°N latitude, is between the 

2304 one in Berlin and St Petersburg, meaning that it would not reach 7 even in the 

2305 warmest months of the year. 

2306  
 
 

2307 
 

2308 Table 3.3 UV index at different geographical latitudes and months 
 

2309 of the year The table is part of a more complete list of worldwide cities 
 

2310 available at: 
 

2311 http://www.who.int/uv/intersunprogramme/activities/uv_index/en/inde 
 

2312 
 

2313 

x3.html 

 

2314 Another important factor influencing pterygium prevalence is the altitude (Roy, 
 

2315 2004). A study conducted in Nepal showed a stronger pterygium prevalence in 

http://www.who.int/uv/intersunprogramme/activities/uv_index/en/
http://www.who.int/uv/intersunprogramme/activities/uv_index/en/index3.html
http://www.who.int/uv/intersunprogramme/activities/uv_index/en/index3.html
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2316 the Tibetan and Thakali population living in the high altitude of Mustang when 

2317 compared to the ones living in the Kathmandu valley (Shrestha and Shrestha, 

2318 2014). The Southern Harbin population, living at low altitude in a cold climate, 

2319 registered instead a lower prevalence than other regions in the world (Li and Cui, 

2320 2013) . 

2321  

2322 Even if a mutation was not found in CRIM1 VWFs for the Northern Irish 

2323 pterygium samples in this study, this does not exclude the occurrence of a 

2324 mutation within another CRIM1 functional domain like the IGFBP or one of the 

2325 four antistasin domains. Another possibility is that the interaction of the VWFs 

2326 domains is impaired not because of a mutation in one of the VWF itself but rather 

2327 in one of the CRIM1 interactors like VEGFA or BMPs. 

2328 The Northern Irish family may represent a rare case of a CRIM1 germline 

2329 mutation leading to pterygium. 

2330 In 1990 germline mutations in p53 tumor suppressor gene were found to be 

2331 responsible for the autosomal dominant Li-Fraumeni syndrome (LFS) (Malkin et 

2332 al., 1990) which predisposes to early-onset familial syndrome of breast cancer, 

2333 soft-tissue sarcomas and other neoplasms (Li and Fraumeni, 1969). Following this 

2334 discovery many cancer studies looked for p53 inherited mutations, the majority of 

2335 which were found in breast carcinoma (24%), bone sarcomas (12.6%), brain 

2336 tumors (12%) and soft tissue sarcomas (11.6%); with half of the families 

2337 diagnosed with LFS (Kleihues et al., 1997). 

2338 Somatic mutations in the same p53 gene were found in more than half of all 

2339 cancer genomes (Kandoth et al., 2013). Those somatic mutations in p53, despite 

2340 showing heterogenous frequency in comparison to germline mutations of the 
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2341 same tissue, present a similar distribution within the p53 gene in highly conserved 

2342 regions of exon 5 to 8 (Kleihues et al., 1997). 

2343  

2344 The average age of onset of pterygium in the Northern Irish individuals affected 

2345 by pterygium is 57 years old, higher in comparison to the 48 onset average of the 

2346 Northern Irish family studied in Chapter 2 suggesting that the genetic component 

2347 shared by the affected family members lowers the onset age and increases the 

2348 predisposition of the individuals in developing pterygium. 

2349 Other cases of familial early onset were previously studied: a Saudi Arabian 

2350 family was found with three members affected by an aggressive and early onset 

2351 form of pterygium at age four, six and early 20s although no genetic study has 

2352 been conducted in these patients (Islam and Wagoner, 2001a). 

2353 A study conducted using genomic DNA from 127 pterygium patients and 109 

2354 controls highlighted how younger patients enrolled in the analysis presented with 

2355 a significantly higher frequency of the GSTM1 null genotype (Tsai et al., 2004a). 

2356 Another group showed that in the hOGG1 gene involved in oxidative stress, the 

2357 homozygous mutant Cys/Cys genotype substituting Ser326 was significantly 

2358 more prevalent in pterygium patients than controls and in pterygium patients the 

2359 mean age of individuals carrying the Cys/Cys genotype was younger than those 

2360 with Ser/Ser or Ser/Cys genotypes. Finally, analysis of 50 pterygium affected 

2361 genomic DNA samples revealed germline mutations in Ki-ras in 10% of the 

2362 samples and this occurrence was positively correlated with young age of the 

2363 patients (Detorakis et al., 2005a). The WES data obtained in this study did not 

2364 show any mutation in these genes and therefore they were excluded from further 

2365 investigation. 
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2366  

2367 Analysis of VWFs in patients from Bolivia identified one patient (B1) carrying 

2368 another missense mutation in exon13, R745C, identified as rs145721446 (Figure 

2369 3.2A). 

2370 According to ExAC, the MAF of R745C mutation is 0.000008237, even lower 

2371 than H412P and quite rare in the general population. Moreover this mutation was 

2372 considered possibly damaging by PolyPhen and deleterious by SIFT software, all 

2373 information suggesting that this amino acid change may have an important role in 

2374 the protein function. 

2375 The R745 residue is conserved only in human, rhesus and elephant (Figure 3.2B). 

2376 Arginine amino acid substitution with Histidine, carrying similar cationic 

2377 properties was found in mouse and dog. In chicken and X. tropicalis (western 

2378 frog) the Arginine changes instead in Serine, a more different amino acid. 

2379 However, because the eye structure in those animals is also particularly diverse 

2380 from the human one, this can explain the higher amino acid variability within this 

2381 CRIM1 region. 

2382 Other mutations were not found in any of the other Bolivian individual patients 

2383 analysed. 

2384  

2385 CRIM1 expression level was also analysed and compared between samples 

2386 coming from low and high sun exposure: Northern Ireland and Bolivia, 

2387 respectively. 

2388 IC samples for the Bolivian cohort were analysed for expression of CRIM1: a 

2389 difference between expression levels in the pterygium and conjunctival controls 

2390 was not detected. However, a clear increase in CRIM1 expression was observed 
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2391 in pterygium patients from Northern Ireland compared with the relevant 

2392 conjunctival controls. 

2393 According to direct clinical experience, in South America people are naturally 

2394 exposed to higher doses of UV rays and culturally but also economically less used 

2395 to wearing sunglasses to protect their eyes. 

2396 Moreover, in Northern Europe pterygium generally is diagnosed earlier and often 

2397 treated for aesthetic reasons before vision impairment occurs while in South 

2398 America the tissue is removed only once it impairs vision by which time it is 

2399 completely fibrotic and highly vascularised. 

2400 The fact that pterygium is diagnosed earlier in Northern Irish population, where 

2401 we observed an higher CRIM1 expression, suggests that CRIM1 may act as an 

2402 early effector of a defensive mechanism to UV light: CRIM1 expression might 

2403 increase as part of the eye’s attempt to counteract the damaging effects of UV 

2404 radiation. This mechanism could then be lost at a later stage of the UV mediated 

2405 corneal damage, when pterygium is already grown towards the central cornea, as 

2406 observed in the Bolivian population. 

2407 A similar protective role has been described for transglutaminase 2 (TG2), which 

2408 is overexpressed up to 15-fold in the early stages of liver fibrosis to counteract the 

2409 inflammatory response and decreases in the advanced stages of the disease 

2410 (Nardacci et al., 2003). 

2411 A low CRIM1 expression level in the family member analysed reinforces the idea 

2412 of CRIM1 overexpression as a defensive mechanism, which is impaired in the 

2413 case of the H412P mutation and therefore of the II.2 family member analysed. 

2414 The increased CRIM1 expression observed in the whole pterygium tissues 

2415 compared with the IC samples from Bolivia can be explained by the different 
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2416 sampling procedures: ICs are taken from the superficial conjunctival epithelium, 

2417 thus not including internal vessels around which CRIM1 is highly expressed 

2418 (Figure 4.1 shown in the following Chapter 4). 

2419  

2420 A deeper analysis of CRIM1 as described in this chapter provides the first 

2421 evidence of CRIM1 as a good candidate for pterygium development in the 

2422 affected Northern Irish family. 

2423 The missense mutation identified in CRIM1 in a pterygium affected individual 

2424 from Bolivia might be relevant for pathogenesis of pterygium. 

2425 Moreover, the increased CRIM1 expression observed, especially in Northern Irish 

2426 pterygium patients, reveal its active function in the disease and suggests that it 

2427 may act as an early response to a triggering agent of the pterygium. 

2428  
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2430 Investigation into the effect of the H412P mutation on 
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2443 4.1 INTRODUCTION 

2444 WES approaches have emerged as a powerful new tool to associate genes to a 

2445 specific disease. Many WES studies were successful in identifying mutations in 

2446 genetic disorders, achieving a molecular diagnostic rate of 25% (success rate) 

2447 (Yang et al., 2013, Taylor et al., 2015), higher than all the previously used 

2448 methods to determine an association between a gene variation and the 

2449 corresponding phenotype. 

2450 However, the data obtained from WES and the subsequent in silico analysis are 

2451 not always sufficient to interpret the disease relevance of single variants in 

2452 different genes. Many of the identified genes and the corresponding proteins are 

2453 in fact usually not completely characterised in their structure, function and disease 

2454 association. 

2455 As previously discussed in Chapter 2, traditional candidate gene identification 

2456 relies on large multigenerational families in which, by linkage and recombination 

2457 analysis, the candidate region including a small number of genes is defined. 

2458 Sequencing each gene within that region in turn should identify a mutation in 

2459 only one of them. 

2460  

2461 While Linkage Analysis is generally performed in large families and is therefore 

2462 quite solid in stating the region in which the altered gene is located, the outcome 

2463 of WES is a list of multiple genes dispersed in all the chromosomes. Therefore, 

2464 even though it is always necessary to demonstrate that the identified mutation has 

2465 a functional effect, this usually becomes even more important with WES than 

2466 with the traditional approach to give more strength to the association between the 

2467 gene and the pathology. 
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2468 It is also possible to use a combined approach of WES after 
 

2469 linkage/recombination analysis if the number of genes is still too large to easily 

2470 sequence them all. This has been done for a few genetic eye diseases such as the 

2471 autosomal dominant late-onset corneal endothelial dystrophy (FCD2), associated 

2472 with a missense mutation in the LOXHD1 gene (Riazuddin et al., 2012) and the 

2473 autosomal recessive retinitis pigmentosa where a mutation in the USH1C gene 

2474 has been detected (Khateb et al., 2012). 

2475 In the first case, three large families affected by FCD2 were initially investigated 

2476 and mapped in chromosome 18q. WES was then performed in one affected and 

2477 one unaffected member of each family and allowed identification of a missense 

2478 mutation in the LOXHD1 gene in one family. Expression of LOXHD1 in corneal 

2479 endothelium, together with the discovery of other missense mutations in 7.5% of 

2480 sporadic cases analysed and the observation of cytoplasmic aggregates in 

2481 concomitance with some identified LOXHD1 mutations, provided association of 

2482 rare alleles of LOXHD1 with FCD pathogenesis. 

2483 In the second case homozygosity mapping was performed in six members of two 

2484 Yemenite Jewish families affected by retinitis pigmentosa, identifying a few 

2485 regions of homozygosity. WES was then performed to provide deeper analysis of 

2486 those regions, allowing detection of a novel frameshift mutation in the USH1C 

2487 gene. 

2488 High throughput sequencing approaches alone can in fact present the substantial 

2489 issue of generating false positive association of variants with the disease 

2490 (MacArthur et al., 2014). This would have severe consequences if we consider the 

2491 translation of genomic research discoveries into the clinical diagnostic or 

2492 therapeutic setting. 
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2493 It has been estimated that for 27% of the published mutations associated with 

2494 severe diseases there was not any direct evidence for pathogenicity or they were 

2495 shown to be common polymorphisms (Bell et al., 2011), considering that many 

2496 false positive associations probably remains undetected. 

2497 Even though an unambiguous assignment of causality between variant and 

2498 pathology may not always be possible, a supportive functional study would be 

2499 fundamental, not only to give additional evidence for the gene variation as the 

2500 cause of the disease, but also to understand the role of the gene in the aetiology of 

2501 the pathology. 

2502  

 
 
2503 

 

4.1.1 Aims of Chapter 4 

2504 CRIM1 was selected from the list of genes obtained through WES performed in 

2505 the Northern Irish family affected by pterygium (Chapter 2) and was found to be 

2506 highly expressed in individual pterygium samples (Chapter 3). 

2507 CRIM1 expression has been shown to play a key role in murine eye development, 

2508 including lens fibre cells as well as corneal and conjunctival epithelium, corneal 

2509 endothelium and retina (Lovicu et al., 2000). Its importance in eye development 

2510 and association with Colobomatous macrophthalmia with microcornea syndrome 

2511 (MACOM) has been demonstrated (Beleggia et al., 2015) together with its 

2512 association with the reduced susceptibility of ACOP cattle in developing BOSCC 

2513 under elevated solar radiation exposure (Pausch et al., 2012). 

2514 However, CRIM1 has not been previously associated with any corneal or 

2515 conjunctival abnormality in humans; therefore a functional analysis was 

2516 performed to determine whether the H412P mutation found within the Northern 

2517 Irish family interferes with the normal function of the protein. 

http://topics.sciencedirect.com/topics/page/Epithelium
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2518 
 

2519 Once  CRIM1  expression  in  pterygium  and  conjunctiva  was  assessed  using 
 

2520 immunohistochemistry (IHC),  I  then  performed  a  series  of  in  vitro functional 
 

2521 assays to validate the role of CRIM1 in pterygium pathogenesis and discriminate 
 

2522 between the  wild  type and H412P  mutant forms  of CRIM1.  This  was achieved 
 

2523 with a series of assays chosen for their link with pterygium features or pterygium 
 

2524 previously associated pathways:  MTT proliferation assay,  ERK phosphorylation 
 

2525 using Western Blot, Bcl-2 antiapoptotic expression levels through qRT-PCR and 
 

2526 
 

2527 
 

2528 

apoptosis analysis using the TUNEL assay. 
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2529 4.2 METHODS 
 
 

2530 4.2.1 Patient recruitment 
 

2531 Clinical examinations were performed at Cathedral Eye Clinic, Belfast, UK and in 
 

2532 Facultad de Medicina, Santa Cruz, Bolivia. 
 

2533 Pterygium and control tissues, consent forms and completed questionnaires were 
 

2534 obtained  from  each  individual  examined  under  national  ethical  approval (see 
 

2535 
 
 

2536 
 

2537 

Chapter 2 and 3). 
 
 
 
 

4.2.2 Cell culture 
 

2538 HCE-S cells were cultured as previously described (Chapter 2). 
 

2539 IOBA-NHC, a cell line spontaneously immortalized from human conjunctiva (a 
 

2540 kind  gift  from  Prof.  Yolanda  Diebold),  was  cultured  as  previously described 
 

2541 
 

2542 

(Diebold et al., 2003). 

 
 

2543 4.2.3 PCR 
 

2544 CRIM1 expression was determined in parallel in pterygium as well as in corneal 
 

2545 epithelial  cells  scraped  from  a  healthy  cornea,  corneal  cell  lines  HCE-S and 
 

2546 IOBA-NHC using the following exonic primers: F: 5’- 
 

2547 CTCCCTCACCGAGTACGAAG-3’ and R: 5’-GGCCTTGGAGCAATCTGG-3’. 

2548 PCR was performed as following: initial denaturation at 95°C for 3 minutes, then 

2549 35 cycles of: denaturation at 95°C for 30 seconds, annealing at 60°C for 30 

2550 seconds, elongation at 72°C for 1 minute and final elongation at 72°C for 5 

2551 minutes. 
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2552 VEGFA expression was evaluated in a VEGFA121 plasmid, HCE-S cells, IOBA- 
 

2553 NHC  cells  and  corneal   epithelial  cells  using  the  following  primers:   F:   5’- 
 

2554 ATGGATCCATGAACTTTCTGCT-3’ and R: 5’- 
 

2555 TGAATTCACCGCCTCGGCTTGTC-3’.  These  primers  amplify  both VEGF165 
 

2556 and VEGF121 isoforms, which could then be discriminated on an agarose gel: 

2557 VEGF165 isoform produce an amplicon of 750bp while VEGF121 one of 610bp. 

2558 VEGFA121 plasmid (Cat. n. MHS6278-202759193 in pCMV SPORT6) was 

2559 purchased from Dharmacon, Lafayette, US. 

2560 PCR was performed as following: initial denaturation at 95°C for 3 minutes, then 

2561 35 cycles of: denaturation at 95°C for 30 seconds, annealing at 57°C for 30 

2562 seconds, elongation at 72°C for 1 minute and final elongation at 72°C for 5 

2563 minutes. 

2564  

 
 
2565 

 

4.2.4 Immunohistochemistry (IHC) 

2566 Pterygium and conjunctival tissues were formalin fixed and paraffin embedded. 

2567 7μm thick sections were cut and affixed to 1:50 (3-Aminopropyl) triethoxysilane 

2568 (APES): acetone (both from Sigma, UK)-treated slides. The slides were left to dry 

2569 overnight at 65ºC and then dewaxed using xylene and rehydrated through a 

2570 graded series of ethanol solutions. After washing in PBS, the tissues were 

2571 permeabilised using 0.5% Triton X-100 to allow the primary antibody access to 

2572 the intracellular C-terminal domain of the CRIM1 protein. The sections were 

2573 incubated in a Proteinase K solution (Fisher Bioreagents, BP1700-50, 10ug/ml in 

2574 PBS) for 45 minutes at 37ºC for antigen retrieval. Specific binding sites were 

2575 blocked using 5% goat serum in PBS for 30 minutes at room temperature (RT); 

2576 goat serum was chosen because the secondary antibody is made in goat. After that 
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2577 tissue sections were incubated with a rabbit polyclonal CRIM1 antibody (Abcam- 

2578 ab189203) at 1:100 in 5% goat serum in PBS for 1h at RT; rabbit IgG was used as 

2579 an isotype control. After three quick slide immersions in PBS at room 

2580 temperature, secondary antibody fluorescein isothiocyanate (FITC)-conjugated 

2581 goat anti-rabbit IgG (Santa Cruz, USA) was used at 1:100 dilution, the sections 

2582 were incubated with the antibody for 40 minutes at RT. After three final washes 

2583 in PBS (1 minute each at room temperature) each section was mounted with 

2584 DAPI fluorescence mounting medium (DAKO, Denmark). Images were obtained 

2585 using a 20× N Archoplan lens on an AxioScope.A1 microscope equipped with an 

2586 AxioCam MRc camera (Carl Zeiss, Germany). 

 
2587 

 

2588 4.2.5 Impression cytology samples 

2589 Impression cytology   samples obtained from conjunctival and pterygium 

2590 superficial epithelial were harvested as described in Chapter 3. Impression 

2591 cytology samples were subsequently fixed in 95% ethanol for 20 minutes at room 

2592 temperature and stained for CRIM1 as described in IHC methods. 

2593  

 
2594 

 
4.2.6 Site Directed Mutagenesis 

2595 Human CRIM1 cloned in a pcDNA3.1 plasmid was a kind gift from Dr. L 

2596 Wilkinson, Institute for Molecular Bioscience, University of Queensland, 

2597 Brisbane, Australia (Wilkinson et al., 2003). Site directed mutagenesis was 

2598 performed to obtain the H412P mutated CRIM1 clone, using the Quick Change II 

2599 kit (Agilent Technologies), following the manufacturer’s instructions. The entire 

2600 CRIM1 sequence was checked by Sanger Sequencing (Department of Zoology, 

http://www.zeiss.com/microscopy/en_de/products/light-microscopes/axio-scope-a1-for-biology.html
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2601 University of Oxford), using the following primers (amplicon length is shown 

2602 after every primer couples):   

2603 T7_F 5’TAATACGACTCACTATAGGG 3’,   

2604 Seq1_R 5’GCAGAATGTGCAGTCGTCTT 3’ (1.2 Kb amplicon),   

2605 Seq1_F 5’ TGATCGAGGGTTATGCTCCT 3’,   

2606 Seq1_R 5’ GCAGAATGTGCAGTCGTCTT 3’ (560bp amplicon),   

2607 Seq2_F 5’ TACTACGTGCCCGAAGGAGA 3’,   

2608 Seq2_R 5’ GGCACTTTCACAGGGTTTGT 3’ (212bp amplicon),   

2609 Seq3_F 5’ TGCCGGGAATGCTACTGT 3’,   

2610 Seq3_R 5’ ACAGAAGGGCAGGACTCAGA 3’ (420bp amplicon),   

2611 Seq4_F 5’ CTGAGTCCTGGAAGCCTGAC 3’,   

2612 Seq4_R 5’ CCTGGAGGTGACCCATATCT 3’ (420bp amplicon),   

2613 Seq5_F 5’ AACCATCGAGGAGAGGTTGA 3’,   

2614 Seq5_R 5’ TCGTCTTCCGTCTTTTGAAAC 3’ (400bp amplicon)   

2615    

 
 
2616 

 

4.2.7 MTT assay 

2617 Reverse transfection was performed in HCE-S cells with either negative control 

2618 plasmid, pCas9D10A_GFP (Addgene/Zhang lab), wild-type or H412P mutant 

2619 CRIM1 plasmid using Lipofectamine 2000, according to the manufacturer’s 

2620 instructions, and seeded in a 12 well plate (Falcon #353043, BD Corning Life 

2621 Sciences, MA, USA) at 1.5 × 105 cells/well. Eighteen hours later, cells were 

2622 trypsinised, counted and seeded onto a 96 well plate (Falcon #351172 BD 

2623 Corning Life Sciences, MA, USA), at 6.5 × 103 cells/well, allowing them to 
 

2624 adhere for 2-3 hours. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
 

2625 bromide (MTT) solution in PBS was then added to cultures at a concentration of 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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2626 0.5 mg/ml in 100ul of culture medium. Following 2h of incubation, the medium 

2627 was removed and the formazan crystals which precipitated inside the cells were 

2628 resuspended in DMSO. Absorbance was then measured at 570 nm using a filter- 

2629 based multi-mode microplate reader, FLUOstar Omega (BMG Labtech, 

2630 Aylesbury, UK) and quantified as relative percentages compared to control 

2631 conditions. The MTT reading for each condition and each experiment was 

2632 repeated at 24, 48, 72 and 96 hours post transfection. 

2633  

 
 
2634 

 

4.2.8 Western Blotting 

2635 HCE-S cells were reverse transfected with negative control plasmid 

2636 pCas9D10A_GFP (Addgene/Zhang lab), CRIM1 wild type and mutant plasmid, 

2637 using Lipofectamine 2000 as described above. 

2638 Transfected cells were incubated for 24, 48 and 72 hours at 37°C with 5% CO2. 

2639 Lower cell seeding densities were used for the 72 and 96 hour timepoint to avoid 

2640 cells becoming too confluent as this causes a decrease in ERK phosphorylation 

2641 independent of the effect of CRIM1 (Vinals and Pouyssegur, 1999, Kaya et al., 

2642 2012). 

2643 Proteins were extracted using Complete Lysis-M (Roche Diagnostics) and 

2644 proteinase inhibitor for mammalian cells and tissues (Sigma-Aldrich P8340) 

2645 following the manufacturer’s instruction. 

2646 Protein quantification was performed using the Bradford assay (BioRad) in a 96 

2647 well plate, and absorbance was determined by FLUOstar Omega Microplate 

2648 Reader (BMG Labtech, Aylesbury, UK). 

http://www.bmglabtech.com/en/products/omega-series/fluostar-omega/
http://www.bmglabtech.com/en/products/omega-series/fluostar-omega/
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2649 Absorbance values were normalised for each sample with bovine serum albumin 

2650 (BSA) standard curve and 25µg of the extracted proteins were loaded in a 4-12% 

2651 NuPAGE® Bis-Tris Precast Gels (Thermo Fisher Scientific UK). 

2652 Proteins were resolved within the gel using NuPAGE® MOPS SDS Running 

2653 Buffer at 150V and transferred onto the Amersham TM Hybond ECL (GE 

2654 Healthcare Life Sciences) nitrocellulose membrane with 10% methanol transfer 

2655 buffer at 25 V. The membrane containing the proteins was then left for 1hour at 

2656 room temperature submerged in 5% non-fat dry milk in TBS-Tween to prevent 

2657 subsequent non-specific antibody binding. 

2658 A custom made 6% polyacrilammide gel was prepared to allow the high 

2659 molecular weight CRIM1 protein to enter the gel. A custom prepared RIPA buffer 

2660 was used as a more efficient method for cell lysis to obtain membrane proteins. A 

2661 range of different temperatures were used for protein denaturation. CRIM1 

2662 antibody (ab189203) purchased from abcam was used at different dilutions to 

2663 detect CRIM1 protein of 114kDa size. An HA tag was introduced after amino 

2664 acid 73 (Phenylalanine) of CRIM1 sequence, as previously described (Wilkinson 

2665 et al., 2003) using a two-stage PCR (Wang and Malcolm, 2002). HA-tag insertion 

2666 was sequence verified by Sanger sequencing. An anti-HA antibody (ab9110) 

2667 purchased from abcam was then used at different dilutions to recognise the HA 

2668 tag introduced in CRIM1. 

2669 Phospho-ERK (#9101) and ERK (#9102) antibodies (Cell Signalling) were 

2670 diluted 1:100 and 1:500 respectively in 5% milk in TBS-Tween and left to 

2671 incubate overnight at 4ºC. After three washes of 10 minutes in TBS-Tween a 

2672 secondary horseradish peroxide-conjugated polyclonal swine anti-rabbit antibody 

2673 (DakoCytomation, Ely, UK) was used at a 1:2000 dilution in 5% milk in TBS- 

http://www.gelifesciences.com/webapp/wcs/stores/servlet/productById/en/GELifeSciences-us/25006201
http://www.gelifesciences.com/webapp/wcs/stores/servlet/productById/en/GELifeSciences-us/25006201
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2674 Tween for 1 hour at room temperature. Protein binding was detected by standard 
 

2675 chemiluminescence: SuperSignal™   West   Pico   Chemiluminescent Substrate 
 

2676 (Thermo  Fisher  Scientific  UK)  and  imaged  using the G:BOX  transilluminator 
 

2677 (Syngene).   Quantification   was   performed   using   GeneTools   image analysis 
 

2678 software:  average  peak  values  of  phospho  ERK  were  normalised  against the 
 

2679 average  ERK  values.  All  the  obtained  results  were  then  normalised  to  the 
 

2680 
 
 

2681 
 

2682 

transfection control. 
 
 
 

4.2.9 RNA extraction and reverse transcription from cells 
 

2683 RNA was extracted from corneal epithelial cells, pterygium cells, HCE-S and 
 

2684 IOBA-NHC cells and reverse transcribed into cDNA as previously described in 
 

2685 
 

2686 

Chapter 3. 

 
 

2687 4.2.10 Quantitative real-time PCR 
 

2688 The qRT-PCR assays were performed using a Lightcycler 480 II (Roche, West 
 

2689 Sussex  UK) on cDNA  which was  reverse transcribed  from the  RNA  extracted 
 

2690 from the cells. 
 

2691 
 

2692 

Real Time Ready Assays for CRIM1 (assay id. 112278), VEGFA (assay id. 

140396), SRCAP (assay id. 126413), TGFβ (assay id. 104720), GAPDH (assay 

2693 id. 141139) and HPRT (assay id. 102079) were purchased from Roche, West 
 

2694 Sussex, UK.; qRT-PCR conditions used as described in Chapter 3. 
 

2695 SYBR green (Fermentas, Cambridge, UK) technology qRT-PCR was performed 
 

2696 using Bcl-2 primers (For AGCATGGGAGCCACGACCCT, Rev 
 

2697 GGCCAAGGCCACACAGCCAA) and HPRT primers (For 
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2698 AGCTTGCGACCTTGACCAT, Rev GACCACTCAACAGGGGACAT), a kind 

2699 gift from H. Nesbitt (Nesbitt et al., 2016). For the SYBR green qRT-PCR the 

2700 cDNA was diluted 1:40. 4µl of this solution were then used for the qRT-PCR in a 

2701 final volume of 10µl. qRT-PCR was set up as follows: Preincubation at 95°C for 

2702 5 minutes and then 50 cycles of 1) Denaturation at 95 °C for 10 seconds, 2) 

2703 Annealing at 53°C for 10 seconds and 3) Extension at 72°C for 10 seconds. A 

2704 final Melting Curve was performed after the amplification program as an 

2705 indicator of a single specific PCR product under the following conditions: 95°C 

2706 for 5 seconds, 65°C for 1 minute and then 64 cycles of 0.5°C increment (10 

2707 seconds each) reaching 97 °C. 

2708  

 
2709 

 
4.2.11 TUNEL assay 

2710 The terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) 

2711 assay was performed on HCE-S cells, reverse transfected with Lipofectamine 

2712 2000 using a Mock transfection with a plasmid of no relevant function: pGL4.17 

2713 [luc2/Neo] plasmid (Promega Madison, WI USA), CRIM1 wild type and CRIM1 

2714 H412P plasmids and plated in a 24 well plate (Falcon 353047, Corning Life 

2715 Sciences UK) containing previously UV sterilised coverslips. After 72 hours cells 

2716 were fixed with 4% PFA and stained using the In Situ Cell Death Detection kit 

2717 (Fluorescein; Roche, Burgess Hill, Surrey, UK) following the manufacturer’s 

2718 instructions. Coverslips were mounted with Fluorescence mounting medium 

2719 (DAKO, Denmark) and imaged using a fluorescent AxioScope A1 microscope 

2720 equipped with an AxioCam MRc camera (Carl Zeiss, Germany), 10x objective. 

2721 Twelve images for each condition and for the two experimental replicates were 

2722 further quantified: total DAPI cells were normalised dividing by the higher 
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2723 number of total cells in each field using ImageJ software (US National Institutes 
 

2724 
 

2725 

of Health). 

 
 

2726 4.2.12 Statistical Analysis 
 

2727 Statistical analysis was performed using Student's t-test as previously described in 
 

2728 
 

2729 
 

2730 

Chapter 3. 
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2731 4.3 RESULTS 

 
2732 

 
4.3.1 CRIM1 is highly expressed in pterygium and conjunctiva 

2733 Given the previous experiments performed in this study (Figure 2.2 in Chapter 2) 

2734 showing CRIM1 expressed in HCE-S cells, specific sites and levels of its 

2735 expression in pterygium affected and unaffected conjunctival tissue were 

2736 assessed. 

2737 The online TiGER gene expression database showed CRIM1 to be expressed in 

2738 the whole eye, without differentiating between the specific tissues composing it. 

2739 To assess CRIM1 expression in pterygium, constituted by a conjunctival 

2740 epithelial layer overlying an internal fibrotic connective tissue (Kim et al., 2016), 

2741 CRIM1 expression was analysed both in pterygium tissues and unaffected 

2742 conjunctiva by PCR and immunostaining (Figure 4.1). 

2743 A preliminary PCR performed in different tissues of the anterior eye confirmed 

2744 CRIM1 expression in normal corneal epithelium, pterygium and also in HCE-S 

2745 and IOBA-NHC cell line cDNA, the latter two both endogenously expressing 

2746 CRIM1 protein (Figure 4.1 A). 

2747 Immunohistochemical analysis showed that CRIM1 was present across the whole 

2748 pterygium tissue section: from the anterior head (Figure 4.1 B1) to the posterior 

2749 tail (Figure 4.1 B2). Moreover, CRIM1 was observed both in the external and 

2750 more organised hypertrophic conjunctival epithelium and also in the internal 

2751 fibroblasts immersed in the elastic and collagenous connective tissue 

2752 characterising pterygium structure. CRIM1 was also detected in the vascular 

2753 endothelial cells surrounding the vessels (Figure 4.1 B2 arrows). 
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2754 CRIM1 was detected in conjunctiva from an unaffected individual (Figure 4.1 
 

2755 B3) and in impression cytology samples obtained from the superficial conjunctiva 
 

2756 of unaffected individuals (Figure 4.1 B4). 
 

2757 Characteristic structures of other tissues were found inside the pterygium stroma 
 

2758 were positive for CRIM1: staining was shown surrounding a hair follicle structure 
 

2759 

2760 

2761 

and inside a sebaceous gland (Figure 4.1 C). 
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A. 
 
 
 
 
 
 
 
 

2762 B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2763 

2764 

 

Figure 4.1 CRIM1 is expressed in pterygium, conjunctiva and 

2765 cornea 

2766 Panel A. A PCR (35 cycles) showed expression of CRIM1 in different 

2767 corneal tissues: corneal epithelium, pterygium, HCE-S (corneal 

2768 epithelium) and IOBA-NHC (conjunctival epithelium) cell lines. A 

2769 negative control, where no reverse transcripase (RT) was added when 

2770 converting RNA to cDNA, is shown for each sample on the right. 

2771 Panel B. IHC showing CRIM1 (green) compared to cell nuclei (blue) 

2772 on 1) pterygium head 2) pterygium tail, the plain arrows indicate 

2773 vessels and 3) peculiar structures identified in pterygium stroma: an 
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2774 hair  follicle  (empty  arrow)  and  a  sebaceous  gland  (plain  arrow, 
 

2775 enlarged in the image below). The bottom image of column 3 identifies 
 

2776 an  IgG  control  in  pterygium  tissue.  CRIM1  expression  was  also 
 

2777 detected in 4) an unaffected conjunctiva and 5) an  Impression cytology 
 

2778 
 

2779 
 

2780 
 

2781 

sample of superficial unaffected epithelial conjunctival cells. Scale bars 

on merge images 50µm. 
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2782 4.3.2 CRIM1wt, but not H412P, is anti-proliferative if overexpressed 

2783 The high CRIM1 expression level found in conjunctiva and pterygium tissue 

2784 supports a role for this gene in the aetiology of pterygium. 

2785 At this point it becomes relevant to understand which is the more appropriate 

2786 functional assay able to discriminate between the two variants (wild type and 

2787 H412P), but, at the same time, relate this to pterygium pathogenesis. 

2788 Therefore I sought to develop assays to investigate the functional consequences of 

2789 the H412P CRIM1 mutation. The HCE-S cell line, spontaneously formed from 

2790 corneal epithelium (Notara and Daniels, 2010), was chosen for in vitro 

2791 experiments as pterygium is thought to arise primarily from a limbal abnormality 

2792 (Chui et al., 2011, Cardenas-Cantu et al., 2015, Das et al., 2015). 

2793 HCE-S cells grow in culture as an epithelial monolayer with limited 

2794 multilayering, maintain the typical epithelial morphology, are responsive to EGF 

2795 signalling promoting cell proliferation and express typical primary corneal 

2796 epithelial markers like cytokeratin 3, PAX 6, the basal cell integrins β1 and α9 as 

2797 well as ABCG2, characterising the stem cell population (Notara and Daniels, 

2798 2010). 

2799 Moreover, transfection efficiency was previously tested in our laboratory for 

2800 HCE-S and IOBA-NHC cell lines. HCE-S presented a good transfection 

2801 efficiency of 80% with GFP expression construct at 72 hours from transfection, 

2802 while a low transfection efficiency of 23% was registered for the IOBA-NHC 

2803 conjunctival cell line. 

2804  

2805 The H412P mutation was introduced into the human CRIM1 expression plasmid 

2806 by site directed mutagenesis and the complete CRIM1 sequence checked by 

http://topics.sciencedirect.com/topics/page/PAX6
http://topics.sciencedirect.com/topics/page/Integrins
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2807 Sanger sequencing, confirming the presence of the nucleotide change Adenine > 

2808 Cytosine, corresponding to the His > Pro mutation at position 412 and the absence 

2809 of any other mutations. 

2810 HCE-S cells were transfected with an empty plasmid, wild type and the H412P 

2811 mutant CRIM1 plasmids. qRT-PCR revealed a significant CRIM1 overexpression 

2812 with respect to the endogenous CRIM1 both at 48 hours (CRIM1 wt 6 ± 0.82, 

2813 p<0.01 and CRIM1 H412P 5.8 ± 0.97, p<0.05) and at 72 hours (CRIM1 wt 6.4 ± 

2814 1.075, p<0.01 and CRIM1 H412P 6.3 ± 1.4 p<0.01) (Figure 4.2A). 

2815 Despite knowing that CRISPR wt and H412P constructs transfection give a 

2816 similar 6 fold RNA overexpression in HCE-S cells, protein overexpression might 

2817 be different between the two constructs. Several attempts were made to show the 

2818 CRIM1 protein expression using western blotting (see in Materials and Methods 

2819 of Chapter 4) but unfortunately they all resulted ultimately unsuccessful. 

2820 Even though pterygium pathogenesis is still under investigation, it is generally 

2821 considered a proliferative condition because it is mainly characterised by an over- 

2822 proliferation of the cells composing it (Cardenas-Cantu et al., 2015, Detorakis and 

2823 Spandidos, 2009b, Chui et al., 2011). 

2824 Moreover, a decrease in proliferation after transient CRIM1 overexpression has 

2825 recently been reported in vascular endothelial cells (Nakashima et al., 2015). 

2826 An in vitro MTT proliferation assay was then performed to determine if either 

2827 CRIM1 wild-type (wt) or H412P overexpression altered the proliferation rate of 

2828 HCE-S cells (Figure 4.2B). Compared to Mock transfected HCE-S cells, CRIM1 

2829 wt overexpression had a significant anti-proliferative effect, which was most 

2830 significant at 72 hours (∆abs 72-24hours 0.6 ± 0.017 OD; p<0.01). This effect 

2831 was not observed in the CRIM1 H412P transfected cells (∆abs 72-24hours 0.52 ± 
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2832 0.017 OD), which had a proliferation rate that was not significantly different from 

2833 the Mock transfected control (∆abs 72-24hours 0.57 ± 0.012 OD). 

2834  
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A. B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2835  

2836 Figure 4.2 In vitro functional assay in HCE-S cells: decreased 

2837 proliferation with CRIM1 wt overexpression 

2838 Panel A. qRT-PCR showing CRIM1 overexpression in mRNA 

2839 obtained from HCE-S cells transfected with Human CRIM1 (wild type 

2840 and H412P) into pcDNA3.1 plasmid. Both CRIM1 wt and H412P 

2841 mutant were significantly overexpressed at 48h and 72h after 

2842 transfection respect to the Mock control. Data represent fold change of 

2843 the 2-∆Ct mean ± SEM respect to Mock transfected HCE-S. n=3 with 

2844 three technical replicates each condition. 

2845 Panel B. MTT assay showing HCE-S cell proliferation at 72h after 

2846 transfection with Mock, CRIM1 wt and H412P mutant constructs. 

2847 CRIM1 wt, when overexpressed, has an anti-proliferative role respect 

2848 to the Mock transfected control (p<0.001), role which is lost 

2849 overexpressing instead CRIM1 H412P. n=6 with 8 technical replicates 

2850 for each condition. 
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2851 MTT assay was repeated in IOBA-NHC conjunctival cells under the same 

2852 conditions. However, no differences were noticed between the CRIM1 wt, H412P 

2853 or mock transfected cells (data not shown). This is possibly due to the low 

2854 transfection efficiency which characterize those cells as previously described and 

2855 which prevented from further analysis on IOBA-NHC cells. 
 
 
2856 

 

4.3.3 CRIM1 overexpression results in increased ERK phosphorylation 

2857 Recent literature has shown an association between the overexpression of CRIM1 

2858 and a decrease in cell proliferation in vascular endothelial cells (Nakashima et al., 

2859 2015), as mentioned in the previous paragraph. The same group also observed 

2860 that, after VEGFA treatment, a parallel increase in CRIM1 expression and ERK 

2861 phosphorylation occurred (Nakashima and Takahashi, 2014). This, together with 

2862 other studies explaining how ERK pathway activation is involved in UV induced 

2863 pterygium (Di Girolamo et al., 2003, Chao et al., 2013), directed the following 

2864 research towards the analysis of ERK phosphorylation in CRIM1 wt or H412P 

2865 transfected HCE-S cells. 

2866 A Western Blot assay was used to determine ERK phosphorylation levels 

2867 following transfection with either CRIM1 wt or H412P. No significant 

2868 differences could be detected at either 48 or 96 hours post-transfection between 

2869 the groups. On the contrary, 72 hours after transfection, a significantly increased 

2870 ERK phosphorylation was observed in the CRIM1 wt transfected cells compared 

2871 to either the CRIM1 H412P or Mock transfected cells (Figure 4.3 A). 

2872 Densitometry quantification (GeneTool) revealed a 57 fold increase in ERK 

2873 phosphorylation in CRIM1 wt transfected cells in comparison with the normal 

2874 ERK phosphorylation levels of the Mock transfected control cells (value set at 1). 
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2875 Only a 1.8 fold increase was observed when HCE-S cells were transfected with 
 

2876 
 

2877 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2878 

2879 

CRIM1 H412P mutant construct (Figure 4.3 B). 
 
 
 
 

 

2880 Figure 4.3 In vitro CRIM1 pathway analysis: ERK phosphorylation 
 

2881 increases when overexpressing CRIM1 wt 
 

2882 Panel A. ERK phosphorylation (pERK) was detected by Western Blot 
 

2883 analysis. No evident changes in pERK were appreciated overexpressing 
 

2884 Mock, CRIM1 wt and H412P plasmids in HCE-S cells at 48 and 96 
 

2885 hours post transfection. On the contrary, at 72 hours post transfection 
 

2886 ERK resulted highly phosphorylated upon CRIM1 wt overexpression 
 

2887 when compared to CRIM1 H412P and Mock control. The figure is a 
 

2888 representative image of two different experimental replicates. 
 

2889 Panel B. Western Blot results were quantified using GeneTool software 
 

2890 (version 3, SynGene). 

A. 

B. 
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2891 4.3.4 CRIM1 overexpression increases apoptosis 

2892 In parallel to ERK phosphorylation, other possible pathways predicted to be 

2893 affected by CRIM1 mutation were investigated. qRT-PCR was used to determine 

2894 expression of three factors implied in CRIM1 interaction and found altered in 

2895 corneal diseases: VEGFA, Transforming Growth Factor beta Induced (TGFβI) 

2896 and Bcl-2. 

2897 Firstly, VEGFA, which has been shown to be increased in pterygium in order 

2898 to promote angiogenesis (Bianchi et al., 2012, Cardenas-Cantu et al., 2015, 

2899 Detorakis and Spandidos, 2009b, Detorakis et al., 2010) was investigated. 

2900 Furthermore, VEGFA described interaction with CRIM1 in kidney glomerulus 

2901 (Wilkinson et al., 2007b) and their combined role in regulating retinal vasculature 

2902 during development (Fan et al., 2014) suggest a synergistic activity between 

2903 CRIM1 and VEGFA in vessel growth during pterygium formation. 

2904 Similarly, expression of TGFβI, found mutated in many corneal dystrophies 

2905 (Kannabiran and Klintworth, 2006) was assessed. TGFβI is induced by TGFβ, 

2906 which is upregulated in pterygium (Bianchi et al., 2012) and has been shown to 

2907 modulate limbal cell proliferation by BMPs (Notara and Daniels, 2010), which in 

2908 turn interact with CRIM1 (Wilkinson et al., 2003). 

2909 Finally levels of expression of the anti-apoptotic Bcl-2 were measured to 

2910 associate apoptosis with pterygium deregulated proliferation. Bcl-2 belongs and 

2911 gives the name to the wider Bcl-2 family which includes both pro-apoptotic 

2912 (including Bax, Bak, BAD, BIM, BID, PUMA) and anti-apoptotic (including Bcl- 

2913 2, Bcl-XL, Bcl-W, A1A, MCL1) proteins (Youle and Strasser, 2008, Adams and 

2914 Cory, 1998). 
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2915 A marked increase in apoptosis had previously been described in the basal 

2916 epithelial layer of pterygium compared with normal conjunctival tissues, where 

2917 apoptotic cells were found throughout the whole thickness of the epithelium (Tan 

2918 et al., 2000). 

2919 There are at least 7 isoforms of VEGFA in human, generated by alternative 

2920 splicing of the same gene; between those, VEGFA165 is the predominant, 

2921 followed by VEGFA121 (Ferrara et al., 2003). VEGFA isoforms differ between 

2922 them also by their distribution, being VEGFA121 freely diffusible while 

2923 VEGFA165 existing in both soluble and bound status (Amadio et al., 2016). In 

2924 conjunctiva, limbus and pterygium, VEGFA165 and VEGFA121 are the only 

2925 expressed isoforms (Gebhardt et al., 2005). I therefore went to investigate 

2926 VEGFA165 and VEGFA121 expression by   PCR: they   were both found 

2927 endogenously expressed by HCE-S cells (Figure 4.4A), another indication 

2928 suggesting HCE-S cells as a good model for the study of pterygium cellular 

2929 mechanisms. 

2930 CRIM1 wt and H412P plasmids were transfected into HCE-S and gene 

2931 expression assessed at 48 hours and 72 hours (Figure 4.4B). Levels of VEGFA 

2932 and TGFβI expression were not significantly different between the wild type and 

2933 the H412P mutant CRIM1 transfected cells (VEGFA: wt 48 hours 0.8351 ± 

2934 0.0740, H412P 48 hours 0.8966 ± 0.0630, wt 72 hours 1.1447 ± 0.0940, H412P 

2935 72 h 1.0443 ± 0.1100, TGFβ-I: wt 48h 0.7410 ± 0.0730, H412P 48h 0.8630 ± 

2936 0.0480, wt 72h 0.9428 ± 0.0650, H412P 72h 1.1810 ± 0.1080, all values are 

2937 expressed in 2-∆Ct). 

2938 In contrast, a significant decrease in Bcl-2 expression level was observed in the 

2939 CRIM1 wt with respect to H412P mutant and Mock transfected cells (p value 
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2940 <0.05) both at 48 hours and 72 hours (wt 48 hours: 0.5453 ± 0.0720, H412P 48 
 

2941 
 

2942 
 

2943 
 
 
 
 
 
 
 
 
 
 
 
 

2944 

2945 

hours: 1.1647 ± 0.1800 and wt 72 hours: 0.5977 ± 0.0240, H412P 72 hours: 

1.2376 ± 0.1350, all values are expressed in 2-∆∆Ct, Figure 4.5). 

 
 

 

 

2946 Figure 4.4 Pathway analysis: Bcl-2 expression levels decreases 
 

2947 upon CRIM1 wt overexpression 

2948 Panel A. PCR (35 cycles) was used to evaluate VEGFA expression in 

2949 HCE-S and IOBA-NHC cells, compared with the VEGF121 plasmid and 

2950 corneal epithelial cells. VEGFA121 isoform is expressed in all the 

2951 samples tested while the VEGF165 isoform shows a lower expression, 

2952 particularly visible in HCE-S cells. 

2953 Panel B. VEGFA, TGFb and Bcl-2 expression levels measured by 

2954 qRT-PCR. HCE-S cells were transfected with Mock, CRIM1 wt and 

2955 H412P plasmids and harvested after 48 and 72 hours. VEGFA and 

2956 TGFb expression showed not significant variation between Mock, 

2957 CRIM1 wt and CRIM1 H412P while Bcl-2 expression significantly 

A. B. 
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2958 decreased in CRIM1 wt compared with Mock transfected HCE-S both 

2959 at 48 and 72 hours post transfection. 

2960 Data represent fold change of the 2-∆Ct mean ± SEM compared to the 

2961 Mock transfected HCE-S. n=3 with three technical replicates each 

2962 condition. 

2963  

2964 Data obtained in Figure 4.4 suggested that CRIM1 affects the apoptotic pathway 

2965 by regulating the expression of Bcl-2 and predicts that transfection with CRIM1 

2966 wt should increase the rate of apoptosis. 

2967 An increased apoptosis rate in the CRIM1wt transfected cells was confirmed by a 

2968 TUNEL assay. At 72 hours the CRIM1 wt transfected HCE-S showed a 

2969 significantly higher rate of apoptosis compared to the CRIM1 H412P and Mock 

2970 transfected HCE-S. The number of TUNEL positive cells/relative DAPI total 

2971 cells of CRIM1 wt transfected cells (25.6 ± 1.8) was significantly higher than the 

2972 one of both CRIM1 H412P mutant and Mock transfected HCE-S (3.9 ± 0.4 and 

2973 2.7 ± 0.5 respectively; p<0.001) (Figure 4.5). 

2974  
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2975 
 
 
 
 
 
 
 
 
 
 
 
 

2976 

2977 

 
A. B. 

 

 
 

Figure 4.5 CRIM1 wt overexpression elicits apoptosis 
 

2978 Panel A. TUNEL assay in HCE-S cells transfected with wild type and 
 

2979 H412P mutant CRIM1 plasmids. TUNEL-positive cells are stained in 
 

2980 green and nuclei are stained in blue-DAPI. CRIM1 wt presents a higher 
 

2981 
 

2982 

apoptosis rate compared to the CRIM1 H412P transfected cells. 

Objective 10x; scale bar, 50µm. The figure is a representative image of 

2983 twelve fields and two different experimental replicates. 
 

2984 Panel B. TUNEL assay quantification was performed in 12 fields for 
 

2985 
 

2986 
 

2987 

each condition using ImageJ. n=3 
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2988 4.4 DISCUSSION 

2989 CRIM1 emerged from WES analysis as a candidate gene for pterygium 

2990 pathogenesis in the Northern Irish family. However, the family was too small for 

2991 sufficient meioses to be studied to conclude that the mutation co-segregates with, 

2992 and causes, pterygium in this family. 

2993 A comprehensive functional analysis would therefore reinforce our selection of 

2994 CRIM1 as a candidate gene obtained from WES analysis and also help insert 

2995 CRIM1 into a pathological context with clinical relevance. 

2996 CRIM1 expression in specific ocular tissues has not previously been described. 

2997 The available online databases, such as TiGER, only show CRIM1 expression in 

2998 the whole eye, without distinguishing between its different components. 

2999 Expression analysis by qRT-PCR and IHC confirmed the presence of CRIM1 in 

3000 conjunctiva and in pterygium throughout its whole longitudinal section, both in 

3001 the external epithelium and the internal pterygium stroma, where it could be 

3002 localised in the cells surrounding the vessels. 

3003 CRIM1 expression was previously described in endothelial cells during capillary 

3004 formation (Glienke et al., 2002) and an interaction between CRIM1 VWFs 

3005 domains and VEGFA, the main factor promoting angiogenesis, was documented 

3006 in glomerular vascular development (Wilkinson et al., 2007b). This, together with 

3007 our CRIM1 observed around the vessels, suggests a possible interaction between 

3008 VEGFA and CRIM1 during the critical angiogenic process of pterygium 

3009 formation (Coroneo, 1993, Cardenas-Cantu et al., 2015). 

3010 CRIM1 was also detected in characteristic structures previously identified in 

3011 pterygium (Chui et al., 2011): a hair follicle (Figure 4.1C, empty arrow) and a 

3012 sebaceous gland (Figure 4.1C plain arrow, enlarged in the figure below). 
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3013 VEGF mediated angiogenesis has an important role in mediating hair follicle 

3014 growth and size (Yano et al., 2001) through ERK pathway activation (Li et al., 

3015 2012), again reinforcing the idea of an interaction between CRIM1 and VEGF, 

3016 which are in turn involved in the ERK pathway. 

3017 Those cutaneous appendages have already been described during corneal 

3018 epithelial transdifferentiation induced by dermal embryonic stimuli (Pearton et al., 

3019 2004), in which transient amplifying cells can be reprogrammed to the epidermal 

3020 linage, demonstrating their multipotency (Ferraris et al., 2000). Therefore, during 

3021 pterygium formation, the epithelium turns out to be deregulated, not only towards 

3022 an epithelial-mesenchymal transition, but also initiating a transdifferentiation 

3023 program toward an epidermal type tissue. 

3024 An ocular congenital benign tumor, quite similar to pterygium for its localization, 

3025 symptoms and treatment, is the limbal dermoid, also presenting with those 

3026 peculiar structures like sebaceous gland and hair follicles (Watson et al., 2013). 

3027 Previously, CRIM1 has been shown to have a role during eye development 

3028 (Lovicu et al., 2000, Beleggia et al., 2015). However, expression of CRIM1 

3029 detected both at mRNA (qRT-PCR) and protein (IHC) level reflects its active 

3030 function, even in the adult cornea even if CRIM1 function, in the eye in 

3031 particular, has not yet been completely investigated. 

3032 A connection between CRIM1 and a typical feature characteristic of pterygium 

3033 development: its increased cell proliferation rate was investigated. I assessed the 

3034 effect of the H412P mutation upon cell proliferation using the simple and widely 

3035 used MTT assay. Decreased proliferation rate in corneal cells overexpressing 

3036 CRIM1 wild type was noted, which was not found in the cells transfected with 

3037 mutant H412P CRIM1. A similar effect of CRIM1 upon cell proliferation has 
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3038 been previously described in vascular endothelial cells (Nakashima et al., 2015), 

3039 This leads to the hypothesis that CRIM1 may have a role in protecting against 

3040 pterygium by decreasing cell proliferation in response to mitogenic stimuli, a role 

3041 which is lost in the H412P mutant protein. 

3042 An important intracellular mechanism involved in modulating cell proliferation is 

3043 the ERK pathway, a subfamily of the MAPK. This pathway has been found 

3044 deregulated in many tumours leading to uncontrolled growth (Johnson and 

3045 Lapadat, 2002). ERK in particular has many different interactors that regulate its 

3046 cascade dynamics: the resulting signal is therefore highly heterogeneous 

3047 depending on the effectors and substrates, on the frequency and amplitude of the 

3048 growth factor pulses and on the specific type of cell (Rauch et al., 2016). 

3049 Activation of ERK pathway through ERK phosphorylation has been described in 

3050 pterygium or conjunctival cells treated with UVB (Di Girolamo et al., 2003) or 

3051 with UVA (Chao et al., 2013) radiation. 

3052 Therefore, because of the proven relevance of the ERK pathway in cell 

3053 proliferation and UV induced pterygium, I compared the effect of HCE-S 

3054 transfection with CRIM1 wild type and H412P plasmid on ERK phosphorylation. 

3055 Western blot analysis clearly showed an increase in ERK phosphorylation in the 

3056 CRIM1 wt transfected cells compared to either the Mock or CRIM1 H412P 

3057 transfected cells. This represents the first time an increase in CRIM1 expression 

3058 has been correlated with a consequent activation of the ERK pathway in HCE-S 

3059 cells and therefore suggests CRIM1 is an upstream regulator of ERK 

3060 phosphorylation. 

3061 A similar concomitant elevated CRIM1 expression and ERK phosphorylation was 

3062 previously described in vascular endothelial cells upon VEGFA treatment 
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3063 (Nakashima and Takahashi, 2014), which has relevance to the angiogenesis 

3064 observed in pterygium. 

3065 These promising results encouraged further research to investigate which are the 

3066 other actors involved in CRIM1 proliferation and ERK pathway activation. 

3067 While VEGFA and TGFβI expression levels showed no variation between the 

3068 three transfection conditions, the anti-apoptotic Bcl-2 was found to be 

3069 significantly decreased in the CRIM1 wt transfected cells in comparison to the 

3070 CRIM1 H412P and Mock transfected cells both at 48 and 72 hours (Figure 4.4). 

3071 These data seem to be in accordance with the previously shown MTT 

3072 proliferation results (Figure 4.2B): to a slower proliferation rate registered for the 

3073 CRIM1 wt transfected HCE-S corresponds to a lower Bcl-2 expression, therefore 

3074 higher apoptosis. The increase in apoptosis in the CRIM1 wt transfected HCE-S 

3075 was confirmed by a TUNEL assay (Figure 4.5). 

3076 According to all the previous results obtained, several studies confirmed a 

3077 decreased Bcl-2 expression upon ERK phosphorylation (Cagnol and Chambard, 

3078 2010), therefore increased apoptosis, even if ERK phosphorylation can also 

3079 decrease the apoptosis depending on the tissue and conditions studied (McCubrey 

3080 et al., 2007). 

3081 In conclusion, our data provide insights into the CRIM1 pathomechanism in the 

3082 human cornea. A possible function of CRIM1 in the adult tissue was revealed by 

3083 the expression observed both in pterygium and unaffected conjunctiva. Several 

3084 experiments were then carried out to understand what this function was: 

3085 overexpression of CRIM1 wt in HCE-S cells results in a decreased proliferation 

3086 rate and increased apoptosis following activation of the ERK pathway. Whereas, 
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3087 the H412P mutation, by impairing CRIM1 function, results in a protein unable to 

3088 elicit either the ERK phosphorylation or the apoptotic pathways. 

3089  
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3102 5.1 INTRODUCTION 

3103 The human body, in particular the areas most frequently uncovered, like skin and 

3104 the anterior eye, is exposed to UV radiation everyday. UV exposure is responsible 

3105 for several beneficial effects like the induction of vitamin D production and β- 

3106 endorphin release but also detrimental consequences such as photo ageing and 

3107 carcinogenesis (Fell et al., 2014, Pandel et al., 2013, Holick, 2008). 

3108 UV rays can be divided into three components with differing wavelengths: UVA 

3109 (320 – 400 nm), UVB (290 – 320 nm) and UVC (100 – 290 nm). 

3110 While we are shielded from UVC and 90% of UVB by absorption of the ozone 

3111 layer, most of the UVA (90-99%) can penetrate the atmosphere, thus reaching the 

3112 earth’s surface. Depletion of the stratospheric ozone layer intensifies the amount 

3113 of UV rays reaching the earth and this has been associated with an increased eye 

3114 damage rate (Štípek et al., 2004). 

3115 The human cornea also acts like a shield to protect the anterior eye from UV 

3116 radiation and obstruct light transmittance. The anisotropic corneal properties 

3117 ensure that UV light transmittance is reduced with the reduced wavelength: while 

3118 UVB, characterized by a lower wave length, is completely arrested at the corneal 

3119 epithelial layer, UVA transmittance is reduced only 20% by the corneal 

3120 epithelium and can therefore penetrate the corneal stroma. The UV transmittance 

3121 reduction is generally due to two different processes: absorbance and light 

3122 scattering. Absorbance is mainly ascribed to the tear-film constituents, cellular 

3123 components present in epithelial keratinocytes and stromal keratocytes and 

3124 aromatic amino acids in stromal proteins, while light scattering is determined by 

3125 the disposition of stromal collagen fibres (Lombardo et al., 2015). 
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3126 UVB and UVA exert different effects once they reach the cells. While UVB with 

3127 its higher incident energy induces direct damage to DNA, UVA possesses a 

3128 higher wavelength and therefore less incident energy, causing mainly oxidative 

3129 stress inside the cells (Rezzani et al., 2014a). 

3130 UVA, once absorbed by the cells, reacts with different chromophores like flavins 

3131 and aromatic amino acids (histidine, tryptophan and tyrosine), generating reactive 

3132 oxygen species (ROS) including radicals (superoxide anion O2∙− and the hydroxyl 

3133 radical OH∙), as well as non-radicals like hydrogen peroxide (H2O2 and 1O2). 

3134 Mammalian cells developed two different defensive mechanisms against ROS 

3135 products of oxidative stress: one involving non-enzymatic antioxidants including 

3136 ascorbic acid, α-tocopherol, glutathione and β-carotenoides, while the other the 

3137 enzymatic antioxidants such as superoxide dismutase (SOD), catalase, and 

3138 glutathione peroxidase (GPx) (Merwald et al., 2005). 

3139 If not removed by these antioxidant systems, the ROS can damage the DNA, 

3140 protein and cell membranes. 

3141 Regarding DNA damage, both UVA and UVB irradiation induces either 

3142 dimerization of pyrimidines, leading to cyclobutane pyrimidine dimer (CPD) 

3143 formation in DNA, or formation of oxidized DNA bases, such as 8-oxo-7,8- 

3144 dihydro-2’-deoxyguanosine (8-oxo-dG). 

3145 While CPD formation, inducing C to T transitions, increases with decreasing 

3146 wavelength it is therefore more frequent upon UVB irradiation; UVA mainly 

3147 induces 8-oxo-dG, which is responsible for G to T transversion. The basal layer 

3148 of human squamous cancer cell contains more G to T transversion than C to T 

3149 transitions suggesting an more important role for UVA than UVB in human skin 

3150 carcinogenesis (Agar et al., 2004). 
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3151 As previously introduced in Chapter 1, 8-oxo-dG (also known as 8-OHdG) has 

3152 been found to be upregulated in pterygium (Kau et al., 2006) together with its 

3153 metabolising enzyme hOGG1 (Tsai et al., 2005b). 

3154 Moreover, a decrease in the antioxidant enzymes like SOD, catalase and GPx 

3155 registered in pterygium in parallel to an increase in the lipid peroxidation marker 

3156 MDA and NO represent other signs of a remarkable oxidative stress (Balci et al., 

3157 2011a). 

3158 The extensively documented influence of oxidative stress in pterygium implicates 

3159 an important role for UVA mediated damage in its pathogenesis. UVA is also 

3160 responsible for mediating gene mutation, ECM component degradation, protein 

3161 kinase and phosphatase activation and inflammation (Chao et al., 2013); all key 

3162 processes in pterygium formation. 

3163 Even if direct DNA damage caused by UVB rays can be more damaging in the 

3164 superficial cells of the anterior eye and has been more extensively studied in 

3165 pterygium, UVA rays can play a pivotal role in pterygium development because 

3166 of their abundance, corneal penetration and related oxidative stress. 

3167 Other than pterygium, several other eye pathologies have been associated with a 

3168 UV exposure etiology. 

3169 While for some ocular diseases the association with UV exposure is still not clear 

3170 like in the case of pinguecula, nuclear and posterior subcapsular cataract, OSSN, 

3171 ocular melanoma and age-related macular degeneration (AMD); for others this 

3172 evidence has been more extensively proven like in the case of pterygium, 

3173 photokeratitis, climatic droplet keratopathy (CDK), cortical cataract and eyelid 

3174 malignancies including basal cell carcinoma (BCC) and squamous cell carcinoma 

3175 (SCC) (Yam and Kwok, 2014). 
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3176 The most common eye damage directly caused by UV radiation is photokeratitis, 

3177 a corneal inflammation often called “snow blindness”. Photokeratitis represents 

3178 the acute response to UV overexposure causing exfoliation of the superficial 

3179 corneal epithelial cells through their shedding into the tear film and apoptosis. 

3180 Normally, symptoms like photophobia and tearing appear up to 6 hours after sun 

3181 exposure and resolves spontaneously in 24-48 hours (Cullen, 2002). 

3182 Another UV associated disease is the rarer Climatic droplet keratopathy, 

3183 characterised by altered protein accumulation (droplet) in the stroma, which can 

3184 lead to corneal scarring and opacification (Taylor, 1980). 

3185 A study conducted in 838 watermen from the Chesapeake Bay in Maryland 

3186 revealed pterygium onset in 140 (16.7%) and climatic droplet keratopathy in 162 

3187 (19.3%) of the individuals analysed. Both the pathologies were found to be 

3188 significantly associated with UV exposure following a statistical analysis 

3189 considering independent contribution of UVB and UVA, age of participants and 

3190 eye protection worn (Taylor et al., 1989). 

3191 UVB and UVA radiation are also responsible for altering the structure of the 

3192 proteins localised in the outermost layer of the lens, the cortex, leading to its 

3193 opacification and cortical cataract (DILLON et al., 1999). 

3194 More severe eye pathologies associated to UV exposure are the two kinds of 

3195 carcinoma affecting the eyelid: Basal cell carcinoma (BCC) and Squamous cell 

3196 carcinoma (SCC). 

3197 Even if BCC is more common, its association with UVR is more complex in 

3198 comparison to SCC, for which a cumulative sun exposure as etiologic factor has 

3199 been well established (Newton et al., 1996). 
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3200 A similar type of eye tumour affecting cattle and responsible for substantial 

3201 economic losses, the bovine ocular squamous cell carcinoma (BOSCC, eye 

3202 cancer), is also etiologically associated to an extensive UV light exposure 

3203 together with the lack of ambilateral circumocular pigmentation (ACOP) (Pausch 

3204 et al., 2012). In this study CRIM1 was identified as a QTL for UV-protective eye 

3205 area pigmentation in ACOP cattle. 

3206 This study is the first associating CRIM1 with a UV related eye disease, an 

3207 association which bears directly on my investigation into pterygium. 

3208  

 
3209 

 
5.1.1 Aims of Chapter 5 

3210 Based on the leading role of UV solar radiation on pterygium development, the 

3211 effects UV radiation has in vitro were investigated in more detail. 

3212 Both UVB and UVA were initially used to irradiate HCE-S cells and measure 

3213 changes in gene expression and in the intracellular signalling pathway. Because of 

3214 the greater influence of UVA on pterygium-associated cellular pathways, further 

3215 analyses were carried out using UVA alone. The use of qRT-PCR and western 

3216 blotting helped delineating the UV triggered ERK pathway and the important 

3217 involvement of CRIM1 expression regulation within it. A final confirmation of 

3218 the role of CRIM1 in response to UV irradiation was sought using siRNA 

3219 knocking down CRIM1 expression to the HCE-S endogenous level. 

3220  

3221  
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3222 5.2 METHODS 
 
 

3223 5.2.1 Cell culture 
 

3224 
 

3225 

HCE-S cells were cultured as previously described (Chapter 2). 

 
 

3226 
 

3227 
 

3228 

5.2.2 UV treatment 
 

HCE-S cells were seeded in a 24-well plate at 1×105 cells per well in growth 

medium and left to adhere overnight at 37oC and 5% CO2. The following day they 

3229 
 

3230 

were treated using the UVA cross-linker (IROC Innocross AG, Ramsen, 

Switzerland) delivering a dose of 5.4 J/cm2 as previously described (Moore et al., 

3231 2014). In parallel HCE-S cells were irradiated using the Arcadia D3 6% UVB 
 

3232 
 

3233 

lamp (Arcadia, UK) with an aluminium reflector at a distance of 15 cm from the 

cells for 34 minutes; irradiating the monolayer with a final dose of 0.5 J/cm2 of 

3234 UVB. 
 

3235 The same doses of UVA and UVB irradiation were used in experiments in which 
 

3236 the ERK inhibitor (MEK inhibitor, U0126) was added to culture media an hour 
 

3237 
 

3238 

prior to the UV treatment as previously described (Chao et al., 2013), at a 

concentration of 10µM. 

3239 After irradiation, HCE-S cells were incubated in culture medium at 37°C with 5% 
 

3240 CO2 and harvested at 1, 6, 12, 24 and 48 hours. Every condition was repeated in 
 

3241 
 

3242 
 

3243 
 

3244 

two wells of a 24 well plate and the experiment was repeated three times. 
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3245 5.2.3 Quantitative Real time PCR  

3246 qRT-PCR was performed as previously described (Chapter 3 and 4). 

3247  

 
3248 

 
5.2.4 Western Blot 

3249 Western Blot was performed as previously described (Chapter 4). 

3250  

 
3251 

 
5.2.5 siRNA transfection 

3252 Four different siRNAs targeting CRIM1 sequence (Set of 4 Upgrade: ON- 

3253 TARGETplus CRIM1 siRNA, LU-008492-00-0002, 2nmol, Dharmacon) were 
 

3254 reverse  transfected  in  HCE-S  cells  using  Lipofectamine  RNAiMAX  (Fisher 
 

3255 Thermo Scientific), following the manufacturer’s  instructions.  The  four siRNAs 
 

3256 were  transfected  singularly or  as  a  pool  at  a final  concentration of  10nM and 
 

3257 normalised to the results from a non-specific siRNA control (NSC4) (Allen et  al., 
 

3258 2013). 
 

3259 A titration of different concentrations (0.2-0.5-1-10nM) of the siRNA pool 
 

3260 
 

3261 

reverse transfected in HCE-S cells as described above was subsequently tested. 

 
 

3262 5.2.6 MTT assay 
 

3263 
 

3264 

MTT proliferation assay was performed as previously described (Chapter 4) 
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3265 5.3 RESULTS 

 
3266 

 
5.3.1 UVA exposure increases CRIM1 expression 

3267 CRIM1 expression, previously shown to be increased in pterygium affected 

3268 patients from Northern Ireland (Chapter 3), was further investigated by qRT-PCR 

3269 in an in vitro HCE-S cell system, following UVA and UVB light exposure. 

3270 A clear estimation of the eye exposure to UV radiation has never been determined 

3271 and it is very variable on the base of daylight activities which differ between 

3272 individuals. 

3273 The amount of UV used for the irradiation has been estimated based on the 

3274 daylight UV dose: an average dose of 60-70 J/cm2 per day was determined in 

3275 central Europe in spring, considering that UVA represents the majority of the UV 

3276 irradiation reaching the earth surface (95% UVA) (Marionnet et al., 2014). The 

3277 above-mentioned daily average dose can be reduced to 10% of the initial value if 

3278 we consider that the effective human eye exposure in the average population is 

3279 limited to a few hours daily. Based on those considerations together with the fact 

3280 that UVA is 100 times more abundant than UVB, I selected a low dose of 5.4 

3281 J/cm2 UVA and 0.5 J/cm2 UVB for our experiments on HCE-S cells. A similar 

3282 dose of UVA was also used in a previous study carried on in pterygium cells 

3283 (Chao et al., 2013) and also in corneal epithelial cells demonstrating the UVA 

3284 induced oxidative stress effects (Moore et al., 2014). 

3285 An increased expression of CRIM1 was observed at 3, 6 and 24 hours after UV 

3286 light treatment (Figure 5.1). While UVB irradiation resulted in a significant 

3287 increase in CRIM1 expression only at 24 hours after the treatment in comparison 

3288 with the untreated control (2-∆∆Ct ± SEM values at 3, 6 and 24 hours are 
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3289 respectively: 1.3074 ± 0.0300, 0.9000 ± 0.0130 and 1.9509 ± 7.5147-3, the latter 

3290 with a p ≤ 0.05 ); UVA rays elicited a significant CRIM1 increase from 6h 

3291 continuing to 24h after the treatment (2-∆∆Ct ± SEM values at 3, 6 and 24 hours are 

3292 respectively: 0.8971 ± 0.1464, 8.5940 ± 0.2158 p ≤ 0.05 and 10.3867 ± 0.3977 p 

3293 ≤ 0.01). 

3294  
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3295 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3296 

3297 
 

3298 Figure 5.1 UV treatment in HCE-S increases CRIM1 expression 
 

3299 qRT-PCR revealed a significant increased CRIM1 expression levels in 
 

3300 HCE-S  cells  at  6  (p  ≤  0.05)  and  24  hours  (p  ≤  0.01)  after  UVA 
 

3301 treatment and at 24 hours (p ≤ 0.05) after UVB treatment compared to 
 

3302 
 

3303 

the untreated control. 
 

Data represent fold change of the 2-∆∆Ct mean ± SEM respect to 
 

3304 
 

3305 

untreated HCE-S. n=3 with three technical replicates each condition. 

 

3306 After showing that  a cellular response  to  UV   involves  an  increase  in  CRIM1 
 

3307 expression,  the other components  of the previously examined  pathway with and 
 

3308 without the CRIM1 mutation were investigated (see Chapter 4). 
 
 

3309 
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3310 5.3.2 UV treatment regulates ERK phosphorylation 

3311 Because CRIM1 expression was significantly elevated at 24 hours post-treatment 

3312 for both UVA and UVB, the 24 hour time point was chosen to analyse the effects 

3313 of an ERK phosphorylation inhibitor on CRIM1 expression following UV 

3314 irradiation (Figure 5.2). Surprisingly ERK inhibitor treatment potentiated the UV- 

3315 induced increase in CRIM1 expression at 24 hours after treating the HCE-S cells 

3316 both with UVA and UVB light (control: 0.63 ± 0.07, inhibitor only 0.77 ± 0.02, 

3317 UVA only: 1.82 ± 0.15, UVA + inhibitor: 3.75 ± 0.12, UVB: 1.26 ± 0.15 and 

3318 UVB + inhibitor 3.08 ± 0.51; values were expressed as 2-∆Ct). CRIM1 expression 

3319 levels were significantly different from the control both for UVA + inhibitor (p ≤ 

3320 0.001) and UVB + inhibitor (p ≤ 0.05); but also between reciprocal UV ± 

3321 inhibitor values: UVA (p ≤ 0.001) and UVB (p ≤ 0.05). 

3322 The effect was dependent upon UV irradiation since CRIM1 expression in cells 

3323 treated with the ERK phosphorylation inhibitor alone was not increased when 

3324 compared with the untreated cells (Figure 5.2). 

3325  
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3326 

3327 
 

3328 Figure 5.2 ERK-I together with UV treatment increases CRIM1 
 

3329 expression further 
 

3330 qRT-PCR evaluation of CRIM1 expression with UV treatment using 
 

3331 ERK  inhibitor  (ERK-I,  UO126).  An  additive  effect  in  increasing 
 

3332 CRIM1  expression  was  observed  when  treating  the  cells  with  UV 
 

3333 
 

3334 

irradiation (both UVA and UVB) and inhibiting ERK pathway. 
 

Data represent fold change of the 2-∆Ct mean ± SEM compared to 
 

3335 
 

3336 
 

3337 

untreated HCE-S. n=3 with three technical replicates each condition. 
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3338 Since irradiation with UVA has similar, but greater effects on CRIM1 expression 

3339 than UVB, subsequent experiments testing the UV effects on cellular response 

3340 and gene expression were conducted using UVA irradiation alone. 

3341 ERK phosphorylation was previously shown to be increased in pterygium cells 

3342 after 6 and 24 hours of UVA exposure (Chao et al., 2013). I therefore assessed 

3343 levels of ERK phosphorylation in HCE-S to confirm that my model systems 

3344 behave similarly. 

3345 The ERK phosphorylation I observed at 1 and 3 hours after UVA treatment was 

3346 not significantly different to the untreated control but by 6 hours it was 

3347 significantly elevated and remained so at 24 hours (Figure 5.3A), exactly as 

3348 observed by Chao et al. 

3349 The average of the pERK/ERK bands in the membrane, normalised to each 

3350 relative control, was quantified as 5.6 and 32.1 at 6 and 24 hours after UVA 

3351 irradiation, respectively (Figure 5.3B). 

3352 ERK inhibitor was used in the same experiment with HCE-S harvested 24 hours 

3353 after UVA treatment to confirm its inhibitory ability on ERK phosphorylation. 

3354  
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3355 
A. B. 

 
3356   

3357 Figure 5.3 UV increases ERK phosphorylation 

3358 Panel A. Western Blot protein analysis in HCE-S cells revealed a 
 
3359 

 
increase in ERK phosphorylation at 6 and 24 hours after UVA 

 

3360 irradiation.  

3361 Panel B. Western Blot quantification both at 6 hours (5 folds) and 24  

3362 hours (34 folds) respect to normal ERK phosphorylation levels of the  

3363 untreated control obtained using GeneTool software.  

 
3364 

  

3365 5.3.3 UVA decreases Bcl-2 expression  

3366 Bcl-2, as discussed in Chapter 4, is an anti-apoptotic protein which, if 
 
3367 

 
overexpressed, inhibits cell death (Youle and Strasser, 2008). 

3368 ERK phosphorylation has been often associated with decreased Bcl-2 expression 

3369 and therefore to increased apoptosis (Cagnol and Chambard, 2010), 

3370 DNA damage induced in primary (MEF and IMR90), immortalized (NIH3T3) 

3371 and transformed (MCF-7) cells by different treatments including ultraviolet 
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3372 irradiation (UV), determines ERK pathway activation and cell apoptosis, which is 

3373 reduced if using U0126 (the same ERK inhibitor used here) (Tang et al., 2002). 

3374 Similar experimental conditions were applied to our study, in which the rate of 

3375 apoptosis was investigated following UVA treatment activating the ERK pathway 

3376 in HCE-S cells (Figure 5.4). 

3377 A significantly decreased level of Bcl-2 expression was observed if compared to 

3378 the control in HCE-S treated either with ERK inhibitor or UVA (2-∆∆Ct ± SEM 

3379 values for ERK-I: 0.53 ± 0.05 and UVA 0.48 ± 0.06; both p ≤ 0.05 compared to 

3380 the untreated control). These results imply an increased apoptosis rate in cells 

3381 treated with either UVA or an inhibited ERK pathway. 

3382 However, when ERK inhibitor and UVA irradiation were used together the Bcl-2 

3383 expression increased (2-∆∆Ct ± SEM of 1.45 ± 0.13) and although not significantly 

3384 different from the untreated control, a significant difference was observed in 

3385 comparison with solely UVA or ERK inhibitor treated HCE-S (p ≤ 0.001). 

3386 This confirms that increased ERK phosphorylation (UVA) corresponds to 

3387 decreased Bcl-2 expression, suggesting an increased apoptosis in HCE-S cells 

3388 upon UV mediated ERK pathway activation, as previously shown in other cell 

3389 types (Tang et al., 2002). 

3390  
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3391 

3392 
 

3393 Figure 5.4 UVA decreases Bcl-2 expression, which is restored by 
 

3394 adding ERK-I 
 

3395 Bcl-2 expression level was measured by qRT-PCR. HCE-S cells were 
 

3396 
 

3397 

UVA irradiated with and without ERK inhibitor and harvested 24hours 

after treatment. Data represent fold change of the 2-∆∆Ct mean ± SEM 

3398 respect to untreated HCE-S. n=3 with three technical replicates each 
 

3399 
 

3400 
 

3401 

condition. 
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3402 5.3.4 UVA irradiation increases VEGFA expression but not SRCAP 

3403 The expression of two other genes, VEGFA and SRCAP, following UVA 

3404 irradiation, was investigated using qRT-PCR: VEGFA, for its previously 

3405 described interaction with CRIM1 (Wilkinson et al., 2007b) and its possible role 

3406 in pterygium angiogenesis and SRCAP, the other variant identified by WES that 

3407 is highly expressed in cornea but initially deemed less likely to be causative 

3408 because the identified R968H variant in SRCAP doesn’t belong to any functional 

3409 domain and because of less literature association with eye or UV related diseases 

3410 compared to CRIM1. 

3411 24 hours after UVA treatment, VEGFA showed a marked increase in its 

3412 expression (Figure 5.5A), significantly different from the untreated control (2-∆∆Ct 

3413 values ± SEM at 3, 6 and 24 hours respectively: 0.9600 ± 0.0300, 1.2900 ± 

3414 0.1300 and 5.8600 ± 0.9000 p ≤ 0.01). 

3415 On the contrary, SRCAP gene expression did not show any significant variation 

3416 upon UVA when compared to the untreated control (Figure 5.5B) data, which 

3417 helps confirm our selection of CRIM1 as the top candidate. 

3418  
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3419 
A. B. 

 

3420 

3421 
 

3422 Figure 5.5 UVA increases VEGFA expression level but not SRCAP 
 

3423 Panel A. qRT-PCR showing a significant increased VEGF-A 
 

3424 expression in HCE-S 24 hours after UVA treatment. 
 

3425 Panel  B.  qRT-PCR  was  used  to  evaluate  SRCAP  expression.  No 
 

3426 differences in SRCAP expression were observed after 3, 6 and 24 hours 
 

3427 
 

3428 

from UVA treatment. 
 

Data represent fold change of the 2-∆∆Ct mean ± SEM compared to 
 

3429 
 

3430 
 

3431 

untreated HCE-S. n=2 with three replicates each condition 
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3432 5.3.5 Upon UVA exposure, 0.5nM targeted siRNA restores CRIM1 
3433 expression to basal levels in HCE-S cells 

3434 CRIM1, ERK and Bcl-2, as shown previously, are interrelated in playing a pivotal 

3435 role in the intracellular pathway triggered by UV exposure. However the cause- 

3436 effect or the effected-effector relationship between the actors under examination 

3437 was still not completely elucidated. 

3438 Four siRNAs against CRIM1 were chosen to further analyse its effect upon the 

3439 response to UV of HCE-S cells and to shed light onto the mechanism implicated 

3440 in pterygium development. 

3441 All of the four siRNAs, included in the pool (the four siRNA added together 

3442 reaching the same total concentration of the single siRNAs), used at a final 

3443 concentration of 10nM, efficiently knocked down CRIM1 endogenous expression 

3444 (Figure 5.6) at 48 hours after HCE-S transfection. I obtained the following 2-∆Ct 

3445 mean values ± SEM: 0.46 ± 0.07 with siRNA05, 0.4 ± 0.02 with siRNA06, 0.24 

3446 ± 0.04 with siRNA07, 0.42 ± 0.02 with siRNA08, 0.29 ± 0.04 with the pool of the 

3447 four siRNAs. All of those values of CRIM1 expression were significantly (p < 

3448 0.001) different from those of the three controls used: 1.7 ± 0.03 with NSC4, 1.88 

3449 ± 0.1 in HCE-S with no siRNA (but with Lipofectamine) and 1.33 ± 0.01 with 

3450 Untreated HCE-S. 

3451  
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3452 

3453 
 

3454 Figure 5.6 siRNAs targeting CRIM1 efficiently knocks down its 
 

3455 expression in HCE-S cells 
 

3456 CRIM1 expression obtained using qRT-PCR of HCE-S cells cDNA 48 
 

3457 hours post  transfection.  All  four 10  nM  siRNAs  tested were  able to 
 

3458 significantly knock down CRIM1 expression, including the pool of the 
 

3459 
 

3460 

four of them used at the same final concentration. 
 

Data represent fold change of the 2-∆Ct mean ± SEM. n=2 with three 
 

3461 
 

3462 

replicates each condition 

 

3463 The siRNA pool was used for the next experiments in which CRIM1 expression 
 

3464 was evaluated treating HCE-S cells with UVA rays. 
 

3465 
 

3466 

The HCE-S endogenous level of CRIM1 expression, which was normalised at 1 ± 
 

0.01 2-∆Ct ± SEM for the Mock control (NSC4), increased after UVA treatment 
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3467 with NSC4 to 1.7 ± 0.05, p ≤ 0.05. Because levels of CRIM1 expression appear 

3468 critical and finely regulated under UV treatment, a series of siRNA concentrations 

3469 were further tested (0.2nM, 0.5nM, 1nm and 10nM) in order to find the one which 

3470 would bring CRIM1 expression back to the HCE-S endogenous level (Mock 

3471 transfection control, NSC4). 

3472 A dose response curve of CRIM1 expression in HCE-S transfected with the 

3473 siRNA pool at different concentrations was observed: 2-∆Ct ± SEM values of 1.3 ± 

3474 0.13 with 0.2nM, 0.85 ± 0.1 with 0.5nM, 0.53 ± 0.08 with 1nM and 0.21 ± 0.03 

3475 with 10nM. 

3476 The concentration of 0.5nM of the siRNA pool (siCRIM1) was found to be the 

3477 one able to bring the CRIM1 expression level close to the Mock (NSC4) level 

3478 (Figure 5.7A). 

3479 An MTT proliferation assay was then performed in HCE-S upon UVA treatment 

3480 and, through the use of the siRNA pool, confirmed the anti-proliferative effect of 

3481 the CRIM1 over-expression. In fact, as shown in Figure 5.7B, exposure to UVA 

3482 light significantly increased HCE-S proliferation at 72 hours (∆OD 72-24 hours 

3483 control 0.53 ± 0.02 vs UVA 0.6 ± 0.03; p ≤ 0.05). If 0.5nM CRIM1 siRNA 

3484 (siCRIM1) was added, HCE-S proliferation increased even more (∆OD 72-24 

3485 hours: 0.7 ± 0.02, with p ≤ 0.05 compared to UVA and p ≤ 001 compared to the 

3486 Mock NSC4 control). Those results show that using UVA irradiation and 

3487 blocking CRIM1, the cells acquire an additional sprint in their proliferation. 

3488  
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A. B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3489 

3490 
 

3491 Figure 5.7 siCRIM1 0.5nM restores normal CRIM1 expression and 
 

3492 confirms its anti-proliferative activity 
 

3493 Panel A. A qRT-PCR shows the amount of CRIM1 siRNA (0.5nM) 
 

3494 
 

3495 

able to restore the endogenous CRIM1 level in HCE-S after UVA 

exposure. Data represent 2-∆Ct ± SEM. n=3 with three technical 

3496 replicates each condition 
 

3497 Panel  B.  MTT  assay  demonstrating  an  increased  proliferation upon 
 

3498 UVA  exposure  which  is  further  increased  if  CRIM1  is  restored  to 
 

3499 endogenous  levels  (siRNA  0.5nM),  confirming  the  antiproliferative 
 

3500 effect when CRIM1 is overexpressed. n=6 with 8 technical replicates 
 

3501 
 

3502 
 

3503 

for each condition. 
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3504 5.3.6 CRIM1 regulates UVA mediated ERK phosphorylation 

3505 Given the results obtained using 0.5nM of siRNA confirming the role of CRIM1 

3506 to prevent UV induced cell proliferation, the ERK phosphorylation pathway was 

3507 assessed using a Western blot protein assay (Figure 5.8). 

3508 As shown previously, ERK phosphorylation was significantly increased 24 hours 

3509 after UV exposure. Transfection of cells with 0.5nM CRIM1 siRNA prior to UV 

3510 exposure abolished ERK phosphorylation. Quantification of western blot bands 

3511 was normalised as pERK/ERK and numbered 1 for Mock control (NSC4), 13.1 

3512 for UVA (NSC4) and 1.6 for UVA + siRNA CRIM1 (0.5nM). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3513  

3514 Figure 5.8 siCRIM1 0.5nM restores normal ERK phosphorylation 

3515 levels 

3516 Panel A. Western Blot analysis was used to detect ERK 

3517 phosphorylation at 24 hours after UVA treatment in HCE-S cells. The 

3518 increased ERK phosphorylation due to UVA exposure was brought 

3519 back  to  normal  levels  using 0.5nM CRIM1 siRNA. The figure is a 

3520 representative image of two different experimental replicates. 

3521 Panel B. Western Blot results were quantified using GeneTool software 

3522 (version 3, SynGene). 

A. B. 
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3523 5.3.7 CRIM1 regulates UVA mediated apoptosis 

3524 Finally, to relate ERK and CRIM1 regulation with apoptosis and check the 

3525 congruence with the results I obtained transfecting the HCE-S with CRIM1 wt 

3526 and H412P constructs (Chapter 4), Bcl-2 expression levels were examined 

3527 (Figure 5.9). 

3528 24 hours after UVA treatment of HCE-S cells, Bcl-2 expression decreased 

3529 significantly compared with the untreated control (2-∆∆Ct values for UVA treated 

3530 HCE-S: 0.61 ± 0.06, p ≤ 0.01). However, pretreatment with 0.5nM pool siRNA 

3531 prevented the decrease in Bcl-2 expression which was not significantly different 

3532 from Mock NSC4 transfected cells (2-∆∆Ct values of siCRIM1+UVA: 0.96 ± 0.08). 

3533  
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3534 
 
 

3535 

3536 

 
 

Figure 5.9 siCRIM1 0.5nM restores normal Bcl-2 expression levels 
 

3537 Bcl-2 expression was measured by qRT-PCR. HCE-S cells were treated 
 

3538 
 

3539 

with: UVA and UVA + siCRIM1 and harvested 24 hours later. Data 

represent 2-∆∆Ct ± SEM with respect to Mock HCE-S. n=3 with three 

3540 
 

3541 
 

3542 

technical replicates. 
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3543 5.4 DISCUSSION 

3544 Pterygium is considered to be one of the most common opthalmohelioses and its 

3545 pathogenesis is mainly attributed to UV radiation overexposure. Studying the 

3546 effects of UV irradiation on CRIM1 expression and other pathways involved in 

3547 pterygium formation is fundamental to understand the function that CRIM1 exerts 

3548 in cornea and how this function can be altered in pterygium. 

3549 Both UVA and UVB irradiation effects were initially investigated in HCE-S cells, 

3550 testing CRIM1 expression. 

3551 Comparing the two experiments described in Figure 5.1 and Figure 5.2 is possible 

3552 to see that both graphs are consistent in showing the same increase in CRIM1 

3553 expression at 24 hours post UV treatment. 

3554 UVA treatment, at the dose I used, gave both quicker and larger effects and that is 

3555 why UVA only was chosen for further experiments. 

3556 This is in accordance with two observations: the vast majority of the UV radiation 

3557 reaching the earth’s surface is composed of UVA, 10-100 times more abundant 

3558 than UVB (Moan, 2001), and the cornea transmits more UVA (80%) than UVB 

3559 (60%) (Coroneo, 1993, Chao et al., 2013). 

3560 Moreover oxidative stress, mainly attributed to UVA rather than UVB rays 

3561 (Rezzani et al., 2014a), has been well documented in pterygium (Balci et al., 

3562 2011a, Kau et al., 2006, Tsai et al., 2005b). 

3563  

3564 Besides the increase in CRIM1 expression as a cellular response to UV treatment, 

3565 I have shown a concomitant increase in ERK phosphorylation (Figure 5.3). 

3566 Both UVA and UVB were previously shown to induce ERK phosphorylation in 

3567 epidermal cells like HaCat cells (He et al., 2004) and NHEK (Normal Human 
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3568 Epidermal Keratinocytes) (Syed et al., 2012) but also in pterygium fibroblasts 

3569 upon UVA (Chao et al., 2013) or UVB (Di Girolamo et al., 2003) irradiation. 

3570 Similar results in term of ERK phosphorylation and CRIM1 expression were 

3571 obtained in Chapter 4: to a CRIM1 overexpression, induced this time by CRIM1 

3572 wt plasmid transfection, corresponds again with an increase in ERK 

3573 phosphorylation (Figure 4.4). 

3574 This implies that ERK phosphorylation can be triggered either by UVA 

3575 irradiation or by CRIM1 overexpression and is therefore downstream of those two 

3576 factors. 

3577 However, if we block this ERK activation (using ERK inhibitor, see Figure 5.2), a 

3578 feedback mechanism pushes the overexpression of CRIM1 even higher with the 

3579 purpose of switching back on ERK phosphorylation and the consequent 

3580 intracellular signalling. 

3581 Increased ERK phosphorylation must inhibit the increase in CRIM1 since 

3582 inhibition of ERK phosphorylation potentiates the increase in CRIM1 expression. 

3583 Similarly, inhibition of CRIM1 upregulation prevents an increase in ERK 

3584 phosphorylation. This suggests that the two are tightly linked in a possible 

3585 negative feedback loop. 

3586  

3587 Several homeostatic feedback mechanisms have been described in the ERK 

3588 pathway. ERK represents the terminal kinase within the MAPK signalling 

3589 pathway in several human cell lines and is phosphorylated by MEK1/2, the so- 

3590 called gatekeepers of ERK activity, which is in turn phosphorylated by active 

3591 RAF in a pathway triggered by growth factors receptors activation (Caunt et al., 

3592 2015). 
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3593 This whole pathway can be regulated at multiple levels by feedback mechanisms 

3594 which can be distinguished in post-translational and transcriptional negative 

3595 feedback loop. 

3596 A post-translational feedback regulates ERK activity through direct ERK 

3597 phosphorylation of inhibitory sites in upstream proteins like RAF-1 or a 

3598 transcriptional negative feedback loops is able to dephosphorylate threonine and 

3599 tyrosine residues through dual-specificity phosphatases (DUSPs) in turn regulated 

3600 by transcription factors downstream of ERK (Fritsche‐Guenther et al., 2011). 

3601 Phosphorylation of ERK is involved in different pathways with a main 

3602 antiproliferative activity through apoptosis, senescence or autophagy and its 

3603 regulation is fine and complex, possibly involving ROS (Cagnol and Chambard, 

3604 2010). ERK signalling pathway has been described as the most prominent in 

3605 tumours because of its importance in regulating cell proliferation and survival, 

3606 controlling the activity of Bcl-2 proteins and regulating the apoptosis (Caunt et 

3607 al., 2015). 

3608 A dynamic balance between the growth factor induced ERK pathway and stress 

3609 mediated activation of JNK-p38, other two MAPK proteins, determines cell 

3610 survival fate. Induction of the apoptotic pathway in physiological condition is 

3611 given by an inhibition of ERK with a concurrent activation of JNK and p38 

3612 pathway (Xia et al., 1995). 

3613 Similarly, inhibiting ERK pathway (ERK inhibitor alone), the internal HCE-S 

3614 balance is disrupted and decreased Bcl-2 expression level suggests the cell are 

3615 induced to apoptosis (Figure 5.4). 
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3616 However, under DNA damaging agents like UV exposure, an increase in ERK 

3617 phosphorylation was shown to induce apoptosis in multiple cell types (Tang et al., 

3618 2002). 

3619 Results obtained observing the expression levels of Bcl-2 seems to suggest that 

3620 upon UVA treatment alone HCE-S cells tend to activate the apoptotic process 

3621 (decreased Bcl-2). On the contrary, if HCE-S cells are UVA irradiated while the 

3622 ERK pathway is blocked (UVA+ERK Inhibitor), Bcl-2 levels are restored to the 

3623 ones of untreated cells, suggesting that the apoptotic process is reduced (Figure 

3624 5.4). ERK pathway activation is therefore essential in maintaining the activity of 

3625 Bcl-2 expression upon UV irradiation. 

3626 This seems not only to confirm the data obtained in Tang et al. paper asserting 

3627 that ERK activation induces apoptosis but is also in accordance with our previous 

3628 results (Chapter 4) showing that an increase in ERK phosphorylation corresponds 

3629 with a decreased Bcl-2 level and an increased apoptosis in HCE-S cells 

3630 transfected with wild type CRIM1. 

3631 Moreover, stress induced apoptosis mediated by the ERK pathway, was shown to 

3632 be downregulated by VEGFA in microvascular endothelial cells (Gupta et al., 

3633 1999). Here I have shown a VEGFA increase upon UVA treatment in HCE-S 

3634 cells, highly significant after 24 hours, which, accordingly to Goupta et al. may 

3635 counteract ERK pathway activation and therefore cell apoptosis. Those 

3636 contrasting actions by VEGFA promoting angiogenesis in one side and ERK 

3637 promoting apoptosis in the other might reach a limit beyond which pterygium can 

3638 or cannot develop. Regulation of those mechanisms is delicate and therefore 

3639 needs further investigation. 
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3640 VEGFA, which results in an upregulation in pterygium compared to normal 

3641 conjunctiva (Detorakis et al., 2010, Bianchi et al., 2012) and in pterygium 

3642 fibroblasts treated with UV (Di Girolamo et al., 2006a), is well documented also 

3643 in normal corneal epithelium, stroma and endothelium (Di Girolamo et al., 2004). 

3644 The presence of the potent anti-angiogenetic VEGFA in the avascular cornea is 

3645 counterbalanced by the expression of soluble VEGF receptor-1 (also known as 

3646 sflt-1), which binds VEGFA and prevents its functionality, being in this way 

3647 responsible for corneal avascularity (Ambati et al., 2006). 

3648 Finally, the observed increase in both VEGFA and CRIM1 in corneal epithelial 

3649 cells at 24 hours after UVA radiation, suggest that their proven interaction 

3650 (Wilkinson et al., 2007b) can have a role in UV triggered intracellular response, a 

3651 role that needs further investigation to be fully elucidated. 

3652 Thus, studying the effects of UV radiation on HCE-S cells, I have demonstrated 

3653 that UV rays, in particular UVA after 24 hours are able to: 

3654 - increase CRIM1 expression three fold (Figure 5.1) 

3655 - increase ERK phosphorylation roughly thirty fold (Figure 5.3) 

3656 - decrease Bcl-2 suggesting an increase in apoptosis (Figure 5.4) 

3657 - increase VEGFA expression six fold (Figure 5.5) 

3658 - activate CRIM1 - ERK pathway interaction which is regulated by a negative 

3659 feedback loop mechanism (Figure 5.2) 

3660  

3661 But what would happen if, upon UVA exposure, we bring back CRIM1 levels to 

3662 the normal endogenous expression level? Are we able to restore the physiological 

3663 intracellular ERK pathway and apoptosis? In this case are we sure that restoring 
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3664 the normal conditions is good for the cell which is exposed to a damaging agent 

3665 like UV? 

3666 Trying to answer all these questions is challenging; to have final proof of the 

3667 cellular mechanism and to test if it was possible to restore the initial cellular 

3668 physiologic conditions, CRIM1 expression was regulated using a series of 

3669 concentration of the siRNA against CRIM1. Once selected the CRIM1 siRNA 

3670 dose able to restore the level of CRIM1 expression similar to the endogenous 

3671 HCE-S level, I analysed cell proliferation, ERK phosphorylation and apoptosis. 

3672 It is known that UVA exposure promotes cell cycle progression and cell 

3673 proliferation in HaCaT keratinocytes (He et al., 2008) while UVA delivery 

3674 through crosslinking causes increased apoptosis both in human (Mencucci et al., 

3675 2010) and rabbit (Wollensak et al., 2004) corneal keratinocytes. 

3676 However, not much is known about UV induced proliferation in pterygium, even 

3677 though it is considered essentially to be more of a proliferative than a 

3678 degenerative disease. 

3679 UV light represents a chronic stimulus in the eye surface which alters the normal 

3680 processes of growth control in cornea and conjunctiva. Similar chronic 

3681 inflammation processes determine tissue hyperplasia like in the case of cutaneous 

3682 keloids, which shares a genetic base with pterygium, a similar ethnical prevalence 

3683 (Haugen and Bertelsen, 1998) and analogue fibroblast proliferation (Cameron, 

3684 1983). 

3685 If it is true that CRIM1 has an anti-proliferative effect (as discussed in Chapter 4), 

3686 bringing CRIM1 expression back to endogenous levels after UVA exposure 

3687 would enhance the proliferation further because of the dearth of CRIM1 

3688 overexpression. 
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3689 Irradiating HCE-S cells with UVA, I observed an increase in cell proliferation. 

3690 Using 0.5nM siRNA, the CRIM1 expression was reduced to its endogenous level 

3691 in HCE-S and their proliferation increased even further compared to the UVA 

3692 only treatment, as expected presuming CRIM1 preventing proliferation. 

3693 Again ERK pathway activation was investigated: besides increased ERK 

3694 phosphorylation upon UVA confirming the previously obtained results (Figure 

3695 5.3), I showed a decrease of ERK phosphorylation back to normal levels when 

3696 using 0.5nM siRNA against CRIM1 in addition to UVA irradiation (Figure 5.8). 

3697 As previously seen in Figure 4.4 in Chapter 4, by just modulating CRIM1 

3698 expression it is possible to influence ERK phosphorylation: an elevated CRIM1 

3699 expression corresponds in both cases to an increase in ERK phosphorylation. 

3700 Finally, a decreased Bcl-2 expression after 24 hours from UVA treatment in 

3701 HCE-S cells, seems to confirm the pro-apoptotic role of UVA irradiation. Bcl-2 

3702 levels are then restored by adding 0.5nM of siCRIM1 (Figure 5.9). Therefore, the 

3703 expression level of CRIM1 represents a key passage to all the downstream UV 

3704 activated pathways examined: knocking down CRIM1 to return it to endogenous 

3705 levels is enough to prevent ERK phosphorylation induced by UV and bring Bcl-2 

3706 levels back to the endogenous one. 

3707 The last experiments, performed modulating CRIM1 expression upon UVA 

3708 treatment, confirmed all the previous results and in particular the reduced cell 

3709 proliferation observed once CRIM1 is overexpressed. 
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3724 6.1 Pterygium relevance 

3725 Pterygium, a common ocular surface tissue overgrowth, is generally associated 

3726 with symptoms like tearing, dry and itchy eyes causing eye irritation and 

3727 inflammation (Uy et al., 2005). In advanced cases it can invade the central cornea 

3728 and reach the pupil, inducing corneal scarring and astigmatism; this impairs 

3729 normal vision and requires surgical removal (Detorakis and Spandidos, 2009a). 

3730 Even if the novel methods of surgical intervention described in Chapter 1 

3731 improved the outcome from the initial bare sclera only technique, a recurrence 

3732 rate of 12% still persist after the surgery (Ono et al., 2016). 

3733 Prevalence of pterygium varies highly with the latitude but can be increased by 

3734 other risk factors like not wearing a hat or sunglasses, working in outdoor 

3735 environments, especially in presence of dust or surfaces which reflect the solar 

3736 radiation or concrete (Mackenzie et al., 1992). Also living in rural rather than 

3737 urban areas represent a risk factor for pterygium development according to studies 

3738 carried on in Australia and China (Ma et al., 2007, McCarty et al., 2000). 

3739 A noteworthy pterygium prevalence, averaged 10.2% worldwide (Liu et al., 

3740 2013a), correlates with an high rate of surgery which, including primary and 

3741 recurrent pterygium interventions, represents the 1% of all the ocular surgeries in 

3742 more developed countries and 0.5% in lower developed regions (Lucas et al., 

3743 2008). 

3744 Pterygium accounts therefore for a considerable proportion of all eye surgeries, 

3745 assuming a certain weight for the National Health Service and a substantial cost to 

3746 the community. If we consider Australia, a study in 2000 estimated the annual 

3747 cost of pterygium surgery and health assistance to be US$ 100M, this cost might 

3748 be lower in countries where pterygium is removed at a later stage but overall 
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3749 increased if we consider higher cases of visual loss and consequent loss of 

3750 productivity (Hirst, 2000). 

3751 In order to find a specific treatment for pterygium, able to directly target the 

3752 etiopathogenic factors and prevent the need for surgical intervention with the 

3753 associated risk of recurrence, an understanding of the molecular basis which 

3754 determines its development is required. 

3755 One path to understanding the molecular basis of pterygium is by analysing the 

3756 genetic background of the affected patients. 

3757 The completion of the Human Genome Project paved the way for new 

3758 perspectives in practicing medicine with the development of targeted therapies 

3759 starting from each individual’s molecular profile, this is the emerging area of 

3760 stratified (or personalized) medicine (Ginsburg and McCarthy, 2001). 

3761 Even though this research field is in constant evolution, some successes have 

3762 already been achieved in cancer (Cutter and Liu, 2012). Complex pathologies like 

3763 AMD, where extensive information is already known regarding the genetic and 

3764 environmental etiologic factors as well as the intracellular pathways involved, 

3765 present a good model for a personalized medicine approach (Baird et al., 2009). 

3766  

3767 Several genes and mutations have also previously been associated with pterygium 

3768 pathogenesis (Kau et al., 2004, Detorakis et al., 2005a, Tsai et al., 2004a, 

3769 Demurtas et al., 2014), and all of those genes were mainly involved in pterygium 

3770 altered cellular mechanisms: oxidative stress, proliferation and vascularisation 

3771 (see Table 1.2 in Chapter1). However, there is still not a common intracellular 

3772 pathway explaining pterygium etiopathogenesis. 

3773  
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3774 6.2 CRIM1, selected as a candidate gene from WES analysis, 

3775 revealed to be involved in UV triggered ERK pathway and 

3776 apoptosis 

3777 The present study began with the identification of a Northern Irish family, rarely 

3778 exposed to the sun but presenting with pterygium in three subsequent generations. 

3779 Whole exome sequencing was chosen because of the limited number of 

3780 participating family members which would have made a linkage analysis 

3781 approach more difficult, because of the lower costs in comparison with whole 

3782 genome sequencing and because most of the disease-causing mutations occurs in 

3783 the exonic portion of the genome (Rabbani et al., 2014). 

3784 Family pedigrees affected by pterygium were previously examined for their 

3785 clinical relevance (Romano et al., 2016, Islam and Wagoner, 2001b, Zhang, 

3786 1987a) but their genetic background was not investigated at a deeper level. This is 

3787 the first time a next generation sequencing approach has been applied to a 

3788 pterygium family study. 

3789 WES data initially   identified 451,153 variants in the family members 

3790 participating in the study. Those variants were analyzed using Ingenuity Variant 

3791 analysis software, which was able to filter the WES data through a series of 

3792 filters: the first filter, Confidence, eliminated all the variants which were poorly 

3793 read, the second, Common Variants excluded the ones present in more than 0.5% 

3794 of the population, the third, predicted deleterious variants, selecting the ones with 

3795 a possible damaging effect according to Polyphen and SIFT and finally genetic 

3796 screening selected only the variants which were present in the affected and absent 

3797 in the unaffected sibling. 
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3798 A subsequent deeper analysis of the literature allowed the selection of five 

3799 candidate genes, which were then analysed for their eye expression profile and 

3800 eye disease association, directing the subsequent research on CRIM1. 

3801  

3802 CRIM1 gene screening in two additional unaffected family members revealed the 

3803 same H412P mutation in CRIM1, suggesting a possible incomplete penetrance as 

3804 an inheritance mechanism. 

3805 Disease penetrance can be influenced by many factors including age, for example 

3806 MEN1 as described in Chapter 3, environmental factors like family history or 

3807 reproductive factors which increase the risk of ovarian cancer in BRCA1 and 

3808 BRCA2 mutant carriers (Brekelmans, 2003), by the genetic modifiers where the 

3809 penetrance is given by polymorphic alleles at other gene loci or by epigenetic 

3810 regulation (Cooper et al., 2013). 

3811 No other mutations in CRIM1 VWFs were identified within the 12 Northern Irish 

3812 patients while a novel R745C missense mutation was found in one of the 9 

3813 Bolivian patients examined, which is possibly damaging according to Polyphen 

3814 and predicted to affect protein function according to SIFT. 

3815 Given the low MAF of this mutation, its presence in one pterygium patient 

3816 reinforces our hypothesis of CRIM1 as a causative gene involved in pterygium 

3817 pathogenesis but more family data and additional functional assays on R745C 

3818 would be required to prove this theory. 

3819  

3820 Comparing CRIM1 expression in populations coming from a low UV exposure 

3821 zone (Northern Ireland) and from a high UV exposure area (Bolivia), a higher 
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3822 CRIM1 expression was found only in pterygium-affected individuals from 

3823 Northern Ireland with regard to the unaffected controls. 

3824 This reinforces CRIM1’s potential role in pterygium pathogenesis even if a 

3825 mutation in CRIM1 is not the direct cause of pterygium. 

3826 Given the fact that surgical excision in Northern Ireland is performed at an earlier 

3827 stage of pterygium development, we can speculate here that expression of CRIM1 

3828 increases as an early response to UV damage, but is lost at a later stage of the 

3829 disease, similarly to what happens in TG2 during liver fibrosis (Nardacci et al., 

3830 2003). This theory is consistent with the data of the affected family member in 

3831 which CRIM1 expression was particularly low and therefore the CRIM1 

3832 protective mechanism was lost as a consequence of the H412P mutation. 

3833  

3834 Looking for the effect that the H412P mutation could have in CRIM1 function, I 

3835 have shown that overexpression of CRIM1 wild-type in HCE-S cells slows down 

3836 their proliferation, while no changes in proliferation were observed in cells 

3837 overexpressing mutant CRIM1 H412P (Figure 4.2B in Chapter 4). 

3838 Normal levels of CRIM1, as seen in HCE-S cells (Figure 4.1 in Chapter 4), have 

3839 been shown to be necessary for in vivo invasion of the myocardium and enhanced 

3840 migration of primary epicardial cells but also for cell proliferation and apoptosis 

3841 during cardiomyocyte development (Iyer et al., 2016). 

3842 This might be similar to what happens to pterygium if an individual is carrying 

3843 the mutation in CRIM1: altered cell proliferation and enhanced cell migration. 

3844 Moreover, when overexpressed, CRIM1 demonstrated a decreased proliferation in 

3845 vascular endothelial cells (Nakashima et al., 2015), similar to what observed in 



194  

3846 HCE-S cells and highlights once again that normal levels of CRIM1 are necessary 

3847 to maintain a regulated cell proliferation. 

3848 An abnormal proliferation is one of the main characteristics for pterygium 

3849 development (Coroneo, 1993): overexpression of CRIM1 seems to counteract and 

3850 contain this process, therefore slowing down pterygium formation, while this 

3851 function is lost in the case of the H412P mutation. 

3852  

3853 In an attempt to determine if the effect of the mutation was due to signalling 

3854 pathways I investigated other proteins involved in CRIM1 interactions: I did not 

3855 find any differences in VEGFA and TGFBI gene expression between CRIM1 wt 

3856 and H412P mutant transfected cells (Figure 4.5 in Chapter 4). CRIM1 

3857 overexpression, either wt or H412P, seems not to have a direct effect upon 

3858 expression of these genes. 

3859 On the contrary, a decrease in anti-apoptotic Bcl-2 in CRIM1 wt overexpressing 

3860 cells suggested a possible involvement of apoptosis, and this was confirmed by an 

3861 increase of apoptosis in CRIM1 wild-type transfected cell using TUNEL assays 

3862 (Figure 4.6 in Chapter 4). These results may explain the anti-proliferative effect I 

3863 observed when overexpressing CRIM1 wt (Figure 4.2 in Chapter 4). 

3864 Basal pterygium epithelial cells were previously found to express high levels of 

3865 Bcl-2 compared to the upper pterygium epithelium and normal conjunctiva and 

3866 showed a higher rate of apoptosis (Tan et al., 2000). According to our results, 

3867 CRIM1 overexpression increases the apoptosis but, if an H412P mutation is 

3868 present, the cells seem to become unresponsive to apoptotic stimuli (Figure 4.6 in 

3869 Chapter 4), showing a slower proliferation rate (Figure 4.2 in Chapter 4). 

3870  
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3871 The apoptosis process induced by deregulation of the antiapoptotic Bcl-2 has also 

3872 been previously shown to be mediated by ERK activity (Cagnol and Chambard, 

3873 2010). Therefore, correlation between higher apoptosis and ERK phosphorylation 

3874 was investigated, demonstrating an increase in ERK phosphorylation in HCE-S 

3875 cells overexpressing CRIM1 wt (Figure 4.3 in Chapter 4). Those results suggest 

3876 that CRIM1, ERK and Bcl-2 are actors of the same pathway. 

3877  

3878 To understand how those factors could be related in disease pathogenesis, I 

3879 focused my attention on the main pterygium triggering factor: UV light. 

3880 The role of UV in CRIM1 regulation was analysed by irradiating HCE-S cells in 

3881 vitro: an increased expression of CRIM1 was observed at 6 and 24 hours from 

3882 UV treatment (Figure 5.1 in Chapter 5), an effect which was revealed to be more 

3883 marked when irradiating with UVA as compared to irradiation with UVB. As 

3884 discussed in Chapter 5, this might be due to the fact that UVA induces more 

3885 oxidative stress than UVB (Rezzani et al., 2014b), which is a mechanism known 

3886 to play an important role during pterygium development (Balci et al., 2011b). 

3887  

3888 Upon UVA irradiation, VEGFA expression was highly increased at 24 hours 

3889 (Figure 5.5A in Chapter 5), as previously observed with UVB irradiation in 

3890 pterygium epithelial cells (Di Girolamo et al., 2006b). Since HCE-S cells behave 

3891 similarly to pterygium cells under UVA exposure, they represent a good model 

3892 for the study of pterygium. 

3893 Moreover, increased VEGFA in HCE-S cells occurs in parallel with CRIM1 

3894 overexpression under UV exposure, suggesting a possible interaction between 

3895 VEGFA and CRIM1 that would benefit from further investigation. 
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3896  

3897 Studying the effect of UV light upon the ERK pathway, an increased ERK 

3898 phosphorylation at 6 and 24 hours following UVA irradiation was noticed (Figure 

3899 5.3 in Chapter 5), consistent with the previously reported results of studies in 

3900 pterygium cells (Chao et al., 2013). The direct role of CRIM1 in this increase in 

3901 ERK phosphorylation in response to UV light was demonstrated by the 

3902 downregulation of ERK phosphorylation in cells by CRIM1 siRNA (Figure 5.8 in 

3903 Chapter 5). Therefore, modulation of CRIM1 expression interferes with ERK 

3904 phosphorylation pathway triggered by UVA exposure. 

3905 Those results imply that CRIM1, whose expression is increased by UV 

3906 irradiation, is an upstream regulator of the ERK pathway leading to cell apoptosis 

3907 through Bcl-2 expression modulation (Figure 5.9 in Chapter 5). 

3908  

3909 The anti-proliferative role of CRIM1 upon UVA irradiation was also confirmed: 

3910 UV light, as already shown in pterygium cultured cells (Chao et al., 2013), 

3911 increases cell proliferation, which was further elevated by the use of siRNA 

3912 against CRIM1. In this case CRIM1 targeting siRNA prevents the increase in 

3913 CRIM1 expression following UVA exposure and therefore it is unable to carry 

3914 out its previously proposed protective anti-proliferative effect, explaining the 

3915 increased proliferation rate with the use of CRIM1 siRNA (Figure 5.7B in 

3916 Chapter 5). 

3917  

3918 Increased CRIM1 expression observed when the cells were treated with UVA and 

3919 ERK inhibitor, suggests negative feedback regulation of the ERK pathway, as 

3920 previously reported (Mirzoeva et al., 2009), where MEK inhibition was shown to 
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3921 counteract cell apoptosis in breast cancer. When ERK phosphorylation is 

3922 inhibited, the cell tends to further increase CRIM1 upon UV exposure in an 

3923 attempt to activate the downstream pathway. CRIM1 is not altered when the cells 

3924 are treated with ERK inhibitor alone, without UV irradiation, underlying the 

3925 importance of UV irradiation as an initial trigger for the whole pathway. 

3926  

3927 When studying the apoptosis involvement downstream the ERK pathway, I found 

3928 that the Bcl-2 expression was decreased when HCE-S cells were treated with 

3929 ERK inhibitor alone as well as with UVA alone, but the additive effect of UVA 

3930 and the ERK inhibitor brought Bcl-2 levels back to normal. 

3931 Decreased Bcl-2 expression upon UVA irradiation suggested a pro-apoptotic 

3932 effect of UVA (Figure 5.4 in Chapter 5). By adding ERK inhibitor alongside 

3933 treatment with UVA, the pathway was blocked at the point of ERK 

3934 phosphorylation and CRIM1 resulted more highly expressed than by treatment 

3935 with UVA alone (Figure 5.2 in Chapter 5). The same treatment with ERK 

3936 inhibitor and UVA is also able to bring Bcl-2 expression back to HCE-S 

3937 endogenous levels, thus possibly inhibiting apoptosis induced by UVA alone 

3938 (Figure 5.4 in Chapter 5). In this case, with the addition of ERK inhibitor, ERK 

3939 phosphorylation remains blocked and is unable to reduce Bcl-2 expression. This 
 
3940 

 
result confirms the consequential pathway: CRIM1 expression, ERK 

 
3941 

 
phosphorylation, Bcl-2 expression and eventually apoptosis. 

3942  

3943 The series of cross-acting pathways analysed within this study helped delineating 

3944 a cell mechanism response to UV which involves an increase in CRIM1 

3945 expression, supported by the analogous increase in CRIM1 expression within the 
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3946 Northern Irish pterygium affected individuals. The increase in CRIM1 expression 

3947 is therefore responsible for enabling ERK phosphorylation and decreasing Bcl-2 

3948 expression, towards an activation of the apoptosis process (Figure 6). 

3949  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3950 

3951 

  

3952 Figure 6 CRIM1 regulates pERK in a feedback loop pathway 

3953 Based on experimental evidence, this schematic image proposes the 
 
3954 

 
intracellular pathway triggered by UV light that may act as a protective 

3955 mechanism against pterygium development. 

3956 UV irradiation results in an increase in CRIM1 cellular expression, 

3957 followed by activation of the ERK pathway. In the presence of UV 
 

3958 light, increased ERK phosphorylation down-regulates CRIM1 



199  

3959 expression. Inhibition of the ERK phosphorylation blocks this feedback 

3960 and under UV CRIM1 expression is further increased in a cellular 

3961 attempt to circumvent the blocked ERK activity. Moreover, ERK 

3962 phosphorylation induces a decreased expression of the anti-apoptotic 

3963 Bcl-2, causing the cell to go into apoptosis. This was confirmed by 

3964 adding ERK inhibitor upon UVA treatment: where CRIM1 is increased 

3965 further and the downstream apoptosis is blocked. 

3966 This pathway was shown to be impaired in the case of the H412P 

3967 mutation in CRIM1, found in the Northern Irish family affected by 

3968 pterygium (Chapter 2). 

3969  

3970 This CRIM1 mediated protective mechanism against UV light resulted impaired 

3971 in the case of the H412P mutation found in a Northern Irish family affected by 

3972 pterygium. 

3973 Another protective mechanism developed against UV is observed in white-headed 

3974 Fleckvieh cattle, characterised by a peculiar pigmentation surrounding the eyes 

3975 (ambilateral circumocular pigmentation, ACOP). These cattle, less susceptible to 

3976 development of the common UV induced bovine ocular squamous cell carcinoma 

3977 (BOSCC, eye cancer), CRIM1 was identified as a quantitative trait loci (QTL) by 

3978 a GWAS study together with other 11 QTLs. (Pausch et al., 2012). None of the 

3979 other QTLs found in this study came up in the genes identified by our WES 

3980 analysis. 

3981  

3982 Moreover, both CRIM1 and pterygium were previously associated with tissue 

3983 remodelling in cancer and EMT, the molecular process in which epithelial cells 
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3984 acquire mesenchymal characteristics, switching on some genes like N-cadherins, 

3985 integrins, MMPs and switching off others like members of the miR-200 family, 

3986 E-cadherin and regulating pathways like WNT/β−catenins and TGF-β (Kalluri 

3987 and Weinberg, 2009, Lamouille et al., 2014). 

3988 Pterygium pathogenesis has been associated with EMT since researchers observed 

3989 a downregulation of members of the miR-200 family (Engelsvold et al., 2013) 

3990 and an increased expression of β−catenin (Kato et al., 2007, Jaworski et al., 

3991 2009). 

3992 β−catenin, together with cadherins, interact with the cytosolic domain of CRIM1 

3993 to mediate cell-cell adhesion (Ponferrada et al., 2012). CRIM1 also interacts with 

3994 integrins in lens surface epithelium (Zhang et al., 2015) and extracellularly as an 

3995 antagonist of Bone Morphogenetic Factors (BMP) 4 and 7 (Wilkinson et al., 

3996 2003). 

3997 BMP antagonists are known to impair cancer cells migration and adhesion like for 

3998 example Chordin which, antagonising BMP4, blocks migration in melanoma 

3999 (Rothhammer et al., 2005) and Noggin which antagonises BMP2 and inhibit cell 

4000 invasion in stomach cancer cells (Kang et al., 2010). Also the BMP antagonist 

4001 CRIM1 was described as a risk factor for cancer development (Zeng and Tang, 

4002 2014), found to be upregulated in drug-resistant myeloid leukaemia HL60 cells 

4003 (Prenkert et al., 2010) and to promote lung cancer cell migration and adhesion 

4004 (Zeng et al., 2015). CRIM1 has been also shown to be cleaved extracellularly by 

4005 MMP14, enzyme fundamental for regulation of cell invasion and tissue 

4006 remodelling (Butler et al., 2008) which was found upregulated in pterygium 

4007 (Bradley et al., 2010). 
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4008 At the same time, as introduced in Chapter 1, also pterygium and pinguecula were 

4009 described as a precursor for cancer development as squamous cell carcinoma and 

4010 malignant melanoma (Chui et al., 2011). 

4011 Pterygium formation can thus be due to a disregulating mechanism triggered by 

4012 UV and involving CRIM1 expression as well as EMT (Kato et al., 2007, 

4013 Engelsvold et al., 2013), eventually evolving in cancer, and abnormal tissue 

4014 remodelling through expression of metalloproteinases, cytokines and growth 

4015 factors (Di Girolamo et al., 2004, Coroneo et al., 1999b), see Figure 1.4 in 

4016 Chapter 1. 

4017  

 
4018 6.3 Conclusion 

4019 This research focused on the analysis of a Northern Irish family affected by 

4020 pterygium but rarely exposed to its main etiogenic factor, the sun, in order to find 

4021 a gene and a molecular pathway involved in its pathogenesis. The H412P 

4022 mutation in CRIM1 was selected as the most likely candidate to be associated 

4023 with pterygium onset in the affected members of the family. 

4024 Subsequent CRIM1 sequence screening and expression analysis in ethnically 

4025 different pterygium affected individuals suggests CRIM1 H412P as a possible 

4026 founder mutation inherited within the family with reduced penetrance even if 

4027 CRIM1 overexpression in some pterygium affected individuals implies CRIM1 

4028 involvement in pterygium onset. 

4029 A subsequent functional analysis demonstrated the multistep intracellular 

4030 pathway triggered by CRIM1 overexpression, involving ERK phosphorylation 

4031 and apoptosis; a pathway which can be induced by UV irradiation and which was 

4032 blocked if the H412P mutation was introduced in CRIM1 gene. 
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4033 Consequential intracellular events triggered by UV and involving the regulation 

4034 of CRIM1 expression have been described within this thesis using multiple 

4035 experiments which confirm the functional involvement of CRIM1 in the UV 

4036 cellular response toward apoptosis. 

4037 Novel information revealed within this study leads the way for a deeper 

4038 understanding of the pterygium pathomechanism and can be used as a diagnostic 

4039 tool for pterygium early detection, evaluating CRIM1 mutations or levels of 

4040 expression in members of families affected by pterygium or in patient individuals 

4041 when they present the first pterygium symptoms. 

4042 Further studies on a higher number of patients and on CRIM1 related intracellular 

4043 mechanisms hold the promise for a personalized treatment of pterygium. 

4044  

 
4045 6.4 Future perspectives 

4046 In order to understand which the best paths to follow from the results obtained to 

4047 date are, we need to determine the remaining unsolved questions about CRIM1 

4048 and pterygium. 

4049 Firstly, are there any other mutations in other domains of the CRIM1 gene in the 

4050 individual patients investigated? Are those domains important for CRIM1 

4051 function in pterygium? Are there any other mutations in one of the CRIM1 

4052 interactors? How is CRIM1 expression regulated? Is CRIM1 methylation 

4053 involved in its expression regulation? Which are the other intracellular actors 

4054 involved in the CRIM1-ERK-apoptotic pathway? 

4055 Future experiments following the results obtained within this study should 

4056 therefore include both a clinical investigation and a deeper molecular study into 

4057 the pathways involved in pterygium pathogenesis. 
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4058  

4059 A deeper clinical investigation would start from a wider genetic screening of the 

4060 population, including not only CRIM1 VWFs but also the other functional 

4061 domains: IGFBP and the four antistasin-like domains. 

4062 IGFBP is part of the well characterised IGF systems composed by the type-I and 

4063 type-II IGFs, type-I and type-II IGF receptors, IGFBP and IGFBP proteases. Six 

4064 types of IGFBPs have been described in mammals and they bind IGF with a 

4065 higher affinity than IGF receptors, modulating IGF availability and activity and 

4066 prolonging their half-life. IGFBPs can bind to other molecules including insulin, 

4067 all regulating important biological processes, in particular cell proliferation and 

4068 differentiation (Hwa et al., 1999) 

4069 Two different microarray analyses comparing pterygium with unaffected 

4070 conjunctiva have revealed differences in IGFBP expression levels: IGFBP-2 

4071 expression was found to be dramatically increased in pterygium (Solomon et al., 

4072 2003), while IGFBP-3 which was revealed to be down-regulated in pterygium 

4073 (Wong et al., 2006). 

4074 In its N-terminal domain, CRIM1 contains a cluster of 10 conserved cysteines 

4075 which form the IGFBP motif (GCGCCXXC) (Kim et al., 1997), similar to the 10 

4076 cysteine motif found in the N-terminal domain of IGFBP-7, also known as 

4077 MAC25 (Murphy et al., 1993). 

4078 IGFBP-7 has been shown to bind IGF-I and II in vitro with a low affinity but also 

4079 insulin (Yamanaka et al., 1997). Given the high similarity between CRIM1 and 

4080 IGFBP-7, we can speculate similar interactions (Kolle et al., 2000a) responsible 

4081 for cell growth regulation in pterygium together with an increased IGFBP-2 and 

4082 decreased IGFBP-3 expression. 
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4083 Moreover, it has been demonstrated that IGFBP-2 stimulates glioma cell 

4084 proliferation and invasion though integrin β1-ERK pathway (Han et al., 2014) and 

4085 IGFBP-3 activates ERK pathway and motility in HUVEC cells with a dual effect 

4086 on cell survival or apoptosis depending on the experimental conditions (Granata 

4087 et al., 2004). 

4088 Therefore, new mutations might be found in the N-terminal IGFBP domain of 

4089 CRIM1, which has not yet been investigated. 

4090  

4091 Little information is available regarding the antistasin domain, except for the fact 

4092 that it is a potent anticoagulant for its ability to inhibit factor Xa (Holstein et al., 

4093 1992) and it is also able to inhibit cell proliferation in cultured aortic smooth 

4094 muscle cells (Gasic et al., 1992). 

4095 I can therefore speculate that a mutation found in one of the four CRIM1 

4096 antistasin domains could impair cell proliferation and thus be involved in 

4097 pterygium pathogenesis. 

4098  

4099 A wider screen for germline CRIM1 mutations on a higher number of patients 

4100 either from low UV exposure or high UV exposure areas would then make the 

4101 data more statistically significant. 

4102 However, not finding a mutation in the CRIM1 gene does not exclude the role of 

4103 CRIM1 in pterygium formation: a mutation could be found in one of many 

4104 CRIM1 interactors like VEGFA, where the 936 C>T mutation has already been 

4105 described in pterygium samples (Peng et al., 2014) or in another protein involved 

4106 in the same cellular pathway. Alternatively the level of CRIM1 expression could 

4107 be altered by epigenetic means and therefore a deeper analysis on CRIM1 
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4108 epigenetic state upon UVA treatment or in pterygium samples would be 

4109 necessary. 

4110 Finding other mutations or modifications in CRIM1 or its interactors would 

4111 increase the importance of CRIM1 involvement in pterygium pathogenesis, 

4112 shortening the distance from a future personalized treatment and giving the 

4113 patients a more solid diagnostic tool. 

4114  

4115 Additional experiments are also necessary to better understand and delineate the 

4116 internal pathway which involves CRIM1 overexpression. The first CRIM1 

4117 interactor to investigate would be the pro-angiogenic VEGFA. 

4118 It is known that CRIM1 interacts with VEGFA through its VWFs in transfected 

4119 fibroblastic Cos-7 cells (Wilkinson et al., 2007a) and that Crim1 is able to 

4120 enhance autocrine VEGFA signalling in retinal vascular endothelial cells (Fan et 

4121 al., 2014). 

4122 In order to reveal if VEGFA is involved in the same pathway and if this is due to 

4123 a possible interaction with CRIM1, the first set of experiments should include in 

4124 vitro blocking of UV induced VEGFA overexpression. This would be obtained 

4125 using a VEGFA inhibitor in HCE-S treated with UV and then evaluating the 

4126 effects that this would have on CRIM1 expression, ERK phosphorylation, Bcl-2 

4127 regulation and apoptosis. 

4128 A parallel experiment would include blocking CRIM1 overexpression induced by 

4129 UV through 0.5nM siCRIM1 and an evaluation of VEGF expression levels that 

4130 we know increased upon UV treatment (Figure 5.4). 

4131  
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4132 CRIM1 has also been shown to be important for regulating the release of growth 

4133 factors from the cells (Wilkinson et al., 2007a), similarly to its function in 

4134 antagonizing the BMP maturation process, delivery to the cell surface and cell 

4135 secretion (Wilkinson et al., 2003). This would lead to an investigation of which 

4136 growth factors are involved in pterygium development and the cell proliferative 

4137 activity that elicits growth towards the central cornea and how they are distributed 

4138 which may give an idea on the directionality of the growth. 

4139 Candidates for growth factors involved in pterygium include, connective tissue 

4140 growth factor (CTGF) for example contains a cysteine knot motif similar to 

4141 CRIM1 (O'Leary et al., 2004b) and is able to regulate VEGFA induced 

4142 angiogenesis (Lee et al., 2015), platelet-derived growth factor (PDGF) which can 

4143 bind CRIM1 (Wilkinson et al., 2007a) and is upregulated in pterygium (Kria et 

4144 al., 1996), Heparin-Binding epidermal growth factor-like growth factor (HB- 

4145 EGF) (Nolan et al., 2003) or FGF-2 which are upregulated in pterygium 

4146 (Detorakis et al., 2010). 

4147 Their expression could be studied by qRT-PCR and their distribution by IHC or 

4148 mass spectrometry. 

4149 Evaluating the involvement of growth factors is important because the ERK 

4150 pathway is generally activated by multiple cell growth factors including those 

4151 involved in pterygium or CRIM1 interactions such as FGF (Lanner and Rossant, 

4152 2010, Ochi et al., 2003), PDGF (Pratsinis and Kletsas, 2007), HB-EGF (Filardo et 

4153 al., 2000) and CTGF (Tan et al., 2009). 

4154 The role of CRIM1 might therefore be to interact with some of those growth 

4155 factors, regulate their availability on the cell surface and thus promote the tissue 

4156 overgrowth. 
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4157 Finally, CRIM1 tridimensional structure has not yet been described and, as a 

4158 transmembrane protein, its crystallization is not easy because of its instability and 

4159 hydrophobicity (Shimamura, 2016). Novel techniques like the lipidic cubic phase 

4160 crystallization was proven successful to determine membrane protein structure at 

4161 high resolution (Weierstall et al., 2014) and can therefore be used with CRIM1 to 

4162 elucidate domains interactors and related functional mechanisms. 

4163  

4164 Subsequent experiments could be done to validate in vivo the results previously 

4165 obtained with the HCE-S in vitro model. 

4166 The UVA crosslinker lamp could be used on wild type mice eyes and CRIM1 

4167 expression evaluated comparing a UV treated mice with mice not exposed to UV 

4168 light. Previous experiments were done treating the mice eyes with a UVA 

4169 crosslinker once the epithelial layer was removed and this elicited an increased 

4170 apoptosis in the central corneal stroma (Wang, 2008). 

4171 Cryosections and IHC staining of the mouse eyes would allow one to not only 

4172 evaluate differences in CRIM1 expression between UV treated and untreated 

4173 mice but also attain a better understanding of localization of CRIM1 protein in 

4174 cornea and conjunctiva and therefore understanding where it exerts its major 

4175 functions. ERK phosphorylation could be also analysed through anterior eye 

4176 protein extraction and compared between UV irradiated and non-irradiated eyes. 

4177 Within these experiments, Bcl-2 expression could be assessed within samples by 

4178 extracting RNA from the anterior eye tissue and analysis by qRT-PCR. 

4179  

4180 Now that the function of CRIM1 in UV cellular response has been in part 

4181 described, a deeper understanding of the role of CRIM1 and its involvement in 
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4182 intracellular pathways will shed light in the mechanism of pterygium 

4183 pathogenesis. 

4184 At clinical level those novel information could be used to develop a non-invasive 

4185 diagnostic tool which would therefore be extensively used in clinical assessments 

4186 as well as a personalised treatment, beneficial to the public health system and to 

4187 the general population. 

4188  
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