
Developing a Generic Architecture
for Autonomic Fault Handling in

Mobile Robots

Martin Doran

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of

Ulster University.

Department of Computing and Engineering

Ulster University

April 14, 2020

2

I, Martin Doran, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

The Autonomic Computing paradigm was first presented almost 18 years ago as a

20-30 year long research agenda. Organizations like NASA, have explored the pos-

sibilities of using autonomic systems in their future missions due to vast distances

experienced in space exploration. Planetary and mobile robots operate in hostile

environments and because of their remote location, human intervention for repairs

is not possible. Hardware devices, like mobile robots, are susceptible to internal

and external environmental changes, which can lead to faults occurring. Some re-

search has been conducted in terms of handling faults in mobile robots but there is

no generic autonomic model that can be used for any type of system fault, in any

type of mobile robot. This Thesis describes a generic autonomic architecture for

use in developing systems for managing hardware faults in mobile robots. Using

autonomic principles, this Thesis focuses on how to detect faults within a mobile

robot and how specialised algorithms can be deployed to compensate for the faults

discovered. The initial design of a generic architecture is developed using inspi-

ration from the MAPE-K and IMD architectures. Case studies are presented that

show three different fault scenarios that can occur within the effectors, sensors and

power units of a mobile robot. The results from each of the Case Studies is used

to create and refine a generic autonomic architecture that can be utilized for any

general mobile robot setup for fault handling. A further Case Study is presented,

which exercises the generic autonomic architecture in order to demonstrate its util-

ity. This Thesis addresses the fundamental challenges in operating remote mobile

robots with little or no Human intervention. If a fault does occur within the mobile

robot during field operations, then having a self-managing strategy as part of its pro-

Abstract 4

cesses may result in the mobile robot continuing to function at a productive level.

Research in this Thesis has provided insights into the shortcomings of existing robot

design which is also discussed.

Acknowledgements

I would like this opportunity to thank my supervisors Roy Sterritt and George

Wilkie, for their guidance, valuable suggestions and continuous encouragement

over the last six years.

For my family and friends.

For Allstate NI for allowing me every other Monday off to work on my PhD.

Note on Access to Contents

I hereby declare that with effect from the date on which the thesis is deposited in

Research Student Administration of Ulster University, I permit

1. the Librarian of the University to allow the thesis to be copied in whole or

in part without reference to me on the understanding that such authority applies to

the provision of single copies made for study purposes or for inclusion within the

stock of another library.

2. the thesis to be made available through the Ulster Institutional Repository

and/or EThOS under the terms of the Ulster eTheses Deposit Agreement which I

have signed.

IT IS A CONDITION OF USE OF THIS THESIS THAT ANYONE WHO

CONSULTS IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITH

THE AUTHOR AND THAT NO QUOTATION FROM THE THESIS AND NO

INFORMATION DERIVED FROM IT MAY BE PUBLISHED UNLESS THE

SOURCE IS PROPERLY ACKNOWLEDGED.

6

CONTENTS 7

Contents

1 Introduction 19

1.1 Research Context . 19

1.2 Research Problem . 21

1.3 Research Objectives . 22

1.4 Chapter Outline . 23

1.5 Overview of Publications . 25

2 Literature Review 27

2.1 Introduction . 27

2.2 Autonomic Computing . 27

2.2.1 Origins and Motivations 27

2.2.2 Autonomic Model . 29

2.2.3 Autonomic Developments 38

2.2.4 Organic Computing . 40

2.3 Autonomic Fault Handling in Mobile Robots 42

2.3.1 Fault classification . 43

2.3.2 Fault Tolerance in Autonomic Computing 44

2.3.3 Autonomic Management for fault handling 45

2.3.4 Organic Computing - fault handling in robots 50

2.4 Generic Autonomic Fault Architectures 50

2.4.1 Using and Adapting the Autonomic Model: MAPE-K 51

2.5 Summary . 57

3 Research Hypothesis and Method 59

3.1 Goals . 59

CONTENTS 8

3.1.1 Design Patterns . 59

3.2 Research Method . 60

3.2.1 Case Study Methodology 60

3.2.2 Generic Architecture (awareness) 61

3.2.3 Generic Autonomic Fault Architecture (Creation Phase) . . 62

3.2.4 SDLC Methodology . 63

3.3 Summary . 64

4 Self-Adaptive Mobile Robot Wheel Alignment - Case Study 66

4.1 Introduction . 66

4.1.1 Introducing the basic AIFH model 68

4.1.2 Research Method . 68

4.2 Conceptual Requirements . 71

4.2.1 Research Question . 72

4.2.2 Resources required . 73

4.3 Conceptual Design . 75

4.3.1 Developing the AIFH Architecture for wheel alignment

fault handling . 75

4.3.2 State Machine . 77

4.3.3 Knowledge Base - applied to AIFH 78

4.4 Implementation . 80

4.4.1 Robot Task Data Evaluation 80

4.4.2 Wheel Alignment Error Evaluation 82

4.4.3 Wheel Alignment Error Compensation 83

4.4.4 Wheel Alignment Data Trending 85

4.5 Demonstration (testing) . 86

4.5.1 Using intervals in the fault compensation policy 87

4.6 Evaluation . 88

4.7 Summary . 90

CONTENTS 9

5 Autonomic Sonar Sensor Fault Management for Mobile Robots -

Case Study 92

5.1 Introduction . 92

5.2 Research Method . 94

5.3 Conceptual Requirements . 96

5.3.1 Problem Definition . 96

5.3.2 Resources required . 97

5.4 Conceptual Design . 98

5.4.1 Developing the AIFH Architecture for sonar sensor fault

handling . 98

5.4.2 State Machine . 101

5.5 Implementation . 102

5.5.1 Sonar sensor fault Scenarios 102

5.5.2 Sonar Sensor Failure States 103

5.5.3 Detecting Sonar Fault - Awareness 104

5.5.4 Processing Sonar Fault - Analysis 110

5.6 Demonstration (testing) . 112

5.6.1 Compensation for Sonar Fault - Adjustment 112

5.7 Evaluation . 118

5.8 Summary . 119

6 Autonomic Management for Mobile Robot Battery Degradation -

case study 121

6.1 Introduction . 121

6.1.1 Research Method . 123

6.2 Conceptual Requirements . 126

6.2.1 Research Question . 126

6.2.2 Resources required . 127

6.2.3 Simulated Battery Performance 128

6.2.4 Simulated Battery setup task 129

6.3 Conceptual Design . 132

CONTENTS 10

6.3.1 Autonomic Battery Management 132

6.4 Implementation . 135

6.4.1 Autonomic Battery Power Management 135

6.5 Demonstration (testing) . 140

6.5.1 Robot Task Three - Motion Management (with battery

degradation) - applying a compensation policy 140

6.5.2 Battery Degradation Compensation Algorithm 140

6.6 Evaluation . 141

6.7 Summary . 143

7 Generic Architecture for Fault Detection (AIFH) 145

7.1 Introduction . 145

7.2 Overview - Generic Architecture (Fault Handling) 146

7.2.1 Comparative analysis of the architectural model used in

each case study . 147

7.3 High-Level AIFH Architecture . 147

7.4 AIFH architectural components . 148

7.4.1 System Manager . 148

7.4.2 Autonomic Manager . 149

7.5 Building the AIFH Architecture 156

7.5.1 Low-Level AIFH Architecture 158

7.5.2 Awareness Layer . 158

7.5.3 Analysis Layer . 160

7.5.4 Adjustment Layer . 161

7.6 Applying the Generic AIFH Architecture (Stereo Vision Camera

Fault) . 162

7.6.1 Introduction . 162

7.6.2 Stereo Vision Camera - properties 163

7.6.3 Triangulation . 163

7.6.4 Disparity . 164

7.6.5 Awareness (finding a potential fault) 164

7.6.6 Analysing (establishing what sensor is faulty) 166

7.6.7 Adjustment (compensating for the stereo camera fault) . . . 170

7.6.8 Conclusions (compensating for the stereo camera fault) . . . 170

7.7 AIFH Autonomic Architecture Summary 171

8 Conclusions and Future Work 174

8.1 Overall Summary . 174

8.2 Conclusions . 177

8.3 Future Work . 178

Appendices 180

A Case Study Reference: Wheel Alignment Fault 180

A.1 Pioneer P3-DX Robot laser alignment readings 180

B Case Study Reference: Sonar Sensor Fault 184

B.1 Pioneer P3-DX Robot - sonar sensor fault states and compensation

rotation values . 184

B.2 Sonar Sensor Fault - Compensation experiment 185

Bibliography 186

List of Figures

2.1 Autonomic MAPE-K model proposed by IBM [1]. 30

2.2 Autonomic coordination for feedback loops [2]. 32

2.3 Virtual Machine Architectures - 3 Towers (a) and 3 Layers (b) mod-

els [3][4]. 34

2.4 Affect and Cognition modal - (three levels of behaviour) [5],

adapted from [4]. 35

11

LIST OF FIGURES 12

2.5 An Autonomic Computing expression of the IMD [6]. 36

2.6 Organic Computing - System Controller [7]. 41

2.7 Schematic representation of standard ORCA architecture [8]. 42

2.8 Faults Diagnosed and Mitigated at the CONTROL layers [9]. 46

2.9 Utility Function policies for controlling bandwidth resource [10]. . . 49

2.10 MAPE-K Control Loop for the Cloud [11]. 52

2.11 The MAPE-K-based framework for self-healing of online sensor

data [12]. 54

2.12 Collective Planning using the MAPE architecture [13]. 55

2.13 Robust Planning Framework for Cognitive Robots [14]. 56

3.1 The proposed autonomic generic architecture phase development

using a case study approach. 61

3.2 AIFH Architecture contains attributes from both the MAPE-K [1]

and IMD models [5] . 62

4.1 The basic AIFH model. 68

4.2 SDLC Model used in the research methodology for Autonomic

Wheel Alignment . 69

4.3 Pioneer P3-DX research mobile robot. 73

4.4 (a) The LMS 200 Laser has 180 °field of view. (b) The laser creates

a fan of laser light that scans from right to left. (c) Objects are

detected by breaking the laser fan projection. 74

4.5 Pioneer P3-DX wheel alignment laboratory setup. 74

4.6 Autonomic Management System for Wheel Alignment case study. . 76

4.7 State Machine Design for the case study Wheel Alignment Error. . . 78

4.8 Knowledge Base - how knowledge is partitioned to reflect auto-

nomic fault handling in a mobile robot. 79

4.9 Graph (a) shows the path of the robot with both wheels at optimal

performance. Graph (b) shows the path of the robot with one wheel

in a damaged state. 82

LIST OF FIGURES 13

4.10 The Pioneer P3DX robot with a damaged wheel: this caused to the

robot to slew to the right. A1 to A2 represents the expected distance

the robot should be from the wall. B1 to B2 represents the average

distance the robot was offset from the expected destination point. . . 83

4.11 Represents how the angle of turn is calculated for robot alignment

error compensation. 83

4.12 This chart shows the how wheel alignment data for a slightly dam-

aged wheel can be used to signify a possible impending fault. 86

4.13 Using the wheel alignment compensation algorithm, the robot jour-

ney accuracy is increased when the number of intervals is also in-

creased. (a) Robot journey uses one interval. (b) Robot journey uses

two intervals. 88

4.14 This chart shows the how the Arc Method and the Wave Method

compensation algorithms improved the wheel alignment error on

the X-80 robot [15]. 89

5.1 SDLC Model used in the research methodology for Sonar Sensor

Fault Management. 94

5.2 (a) P3-DX with its 6 forward facing sonar sensors. (b) Each sensor

comprises a Polaroid transducer. 97

5.3 The sonar sensors are arranged 1-6 on the array, with a 20 °angle

between each sensor. 97

5.4 User Sonar Interface (developed by the author), for displaying sonar

data from the Pioneer P3-DX robot. 98

5.5 Autonomic Management System for the Sonar Sensor Fault Han-

dling case study. 99

5.6 State Machine Design for the case study - Sonar Sensor Fault Man-

agement. 102

5.7 Failure states for the sonar sensors on the P3-DX mobile robot. . . . 104

5.8 IsNormalState Test - checking that the sonar readings reported by

the robot are accurate. 105

LIST OF FIGURES 14

5.9 IsMinorState Test - readings for adjacent sensors are slightly dif-

ferent to the octadecagon design of the sonar array on the P3-DX

robot. 106

5.10 The difference value between two adjacent sensors is calculated to

allow for the octadecagon design of the sonar array. This is de-

scribed as the tolerance range tr 106

5.11 The User Sonar Interface program (a), shows Sonar sensors 0-3 with

a ’5000’ reading = disabled state. The object in (b), cannot be de-

tected. 108

5.12 IsCatastrophicState - all the sonar sensors are reported as ’disabled’

(a). The sonar sensors can no longer detect objects in the path of the

robot (b). The P3-DX ’bumper’ sensor will cause the robot to stop,

when coming into contact with an object (c). 109

5.13 Sonar[x] has been flagged for checking by Awareness layer. Adja-

cent sensors Sonar (4) and Sonar (6) are used to verify that reading

from Sonar (5) is correct. 110

5.14 (a) Sonar sensors (4-6) are disabled. (b) The P3-DX robot is re-

quired to rotate -60°so that the object can be detected (using sonar

sensors (1-3)). 113

5.15 Example: when applying the compensation algorithm, Sonar 4 (a)

is able to detect the object (b), after a ’rotation’ command to the

robot has been implemented. 114

5.16 When a sonar fault is detected, the Robot is stopped at selected in-

tervals. The robot is then rotated to check for possible objects. . . . 117

5.17 The increased in the number of sonar sensor faults will also increase

the number of rotations required to compensate for the fault. 119

6.1 SDLC Model used in the research methodology for Autonomic

Wheel Alignment . 123

6.2 The DOD (Depth of Discharge) characteristics for the lead-acid bat-

tery used in the Pioneer P3-DX robot [16]. 128

LIST OF FIGURES 15

6.3 Battery simulation program (developed by the author), using

(MRDS) and robot (P3-DX) rendering using (SPL). 129

6.4 Shows the percentage charge required to complete a task when the

battery is at various stages within its cycle - using 50 % DOD. . . . 131

6.5 Autonomic Model for Battery Degradation Management 132

6.6 The cycle lifetime of the P3-DX battery using a DOD of 50 %. The

Proactive Control loop is concerned with the pre-degradation phase. 133

6.7 shows the power(W) required for the ’motion’ component in the

P3-DX when driven at various speeds [17]. 135

6.8 Line chart showing what Percentage Charge is available to a robot

task at given cycle point within the battery lifetime. 142

6.9 Line chart showing what Percentage Charge is available to a robot

task at given cycle point within the battery lifetime. 142

7.1 AIFH architecture (High-Level view). 148

7.2 AIFH architecture - System Manager modules. 149

7.3 Shows how the attributes within the Knowledge Base are used by

each Layer within the AIFH Architecture. 152

7.4 (a) - Shows tolerance values compared to real-time sensor data. (b)

- tolerance values compared to historical data. 153

7.5 Example of ’fixed’ tolerance value - used to identify disabled sonar

sensors . 153

7.6 Example of a ’dynamic’ tolerance value for laser sensor distance

readings . 154

7.7 Policy Selector - Knowledge Base policies for Sonar Sensor Fault. . 155

7.8 Low-Level AIFH Generic Autonomic Architecture. 157

7.9 UML diagram showing the relationships within the AIFH ’Aware-

ness’ Layer. 159

7.10 UML sequence diagram showing the relationships within the AIFH

Analysis Layer. 161

7.11 UML sequence diagram showing the relationships within the AIFH

Adjustment Layer . 162

7.12 The PCI nDepth Stereo Vision Camera 163

7.13 (a) The PCI nDepth Stereo Camera mounted on a P3-DX mobile

robot. (b) Shows the Triangulation method for finding point P. . . . 164

7.14 Stereo Vision Camera Faults. (a) Sensor shutdown, (b) Impact

(pitch/yaw) and (c) De-focus Blur 165

7.15 The Pioneer P3-DX Bumper can be used to calculate the distance

between the stereo camera and the object 167

7.16 Shows how each camera sensor can be tested by evaluating two im-

ages taken by the same camera sensor from its original position and

from the position of the opposing camera 169

List of Tables

4.1 Pioneer P3-DX wheel alignment testing - the numbers represent the

amount in millimetres (mm) that the robot was from its required

destination point, after each task. 81

4.2 Comparing offset values using a given number of intervals 87

4.3 Pioneer P3DX wheel alignment testing - the numbers represent the

amount in millimetres (mm) that the robot was from its required

destination point, after each task. 88

5.1 Sonar Sensor Fault Scenarios . 113

6.1 Shows the percentage rate (DR) and depth of discharge (DOD) for

the P3-DX battery. When DOD falls below 60%, then the battery

loses its ability to hold a significant charge and therefore DOD is

denoted as ’-’ . 130

16

6.2 Power requirements for each component in the Pioneer P3-DX robot

[17]. 135

6.3 Robot Task One: setup values for robot running @ battery cycle 0. . 136

6.4 Robot Task Two: setup values for robot running @ battery cycle 1100.138

6.5 Robot Task Three: compensation - reduce speed @ battery cycle

1100. 140

6.6 Parameter values used in the evaluation of the battery performance

using a DOD rate of 30 %. 141

7.1 Fault Scenarios . 168

List of Equations

4.1 Right-Angled Triangle . 83

4.2 Angle of Turn for alignment error . 84

4.3 Interval equation for alignment compensation 84

5.1 Find distance to object of adjacent sonar sensor 106

5.2 Tolerance Value of adjacent sonar sensor 106

6.1 Distance Unit calculation for simulated battery 130

6.2 Discharge Percentage calculation for simulated battery 131

6.3 Battery Percentage calculation for simulated battery 131

7.1 Calculate distance from object to Camera Baseline 167

17

Acronyms

AUTONOMIC COMPUTING (AC)

AUTONOMIC COMPUTING INITIATIVE (ACI)

ARTIFICIAL INTELLIGENCE (AI)

AUTONOMIC ELEMENT (AE)

AUTONOMIC FAULT-MANAGEMENT (AFM)

AUTONOMIC INTELLIGENT FAULT HANDLING (AIFH)

CONCURRENCY CO-ORDINATION RUN-TIME (CCR)

DEPTH OF CHARGE (DOD)

INTELLIGENT MACHINE DESIGN (IMD)

MONITOR ANALYSE PLAN EXECUTE KNOWLEDGE (MP)

MICROSOFT ROBOTICS DEVELOPMENT STUDIO (MRDS)

ORGANIC COMPUTING (OC)

ORGANIC ROBOTIC CONTROL ARCHITECTURE (ORCA)

PROPORTIONAL INTEGRATED DERIVATIVE (PID)

SMART BATTERY SYSTEM (SBC)

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

Chapter 1

Introduction

This chapter introduces the research topic of this thesis. Section 1.1 discusses the

context within which the research problems are recognized. Section 1.2 discusses

the problem statement. Section 1.3 presents the overall aim and objectives of this

research. Finally, Section 1.4 presents the Chapter outline.

1.1 Research Context
In the late 1960’s the world’s first mobile robot ’Shakey’ was developed by re-

searcher’s at Stanford Research Institution (now SRI International) [18]. The com-

ponents attached to ’Shakey’, i.e., range finders, vision camera and bumper sensors,

are typical of components you would find on present-day mobile robots. In the 21st

century, mobile robots can be found in factories, warehouses, laboratories and office

spaces. These modern-day mobile robots are not just the proverbial ’pack mule’ but

contain on-board intelligence and real-time adaptive capabilities [19]. However, it

is in the space industry that mobile robots are pushed to their limits in terms of reli-

ability and robustness. These types of mobile robots or planetary rovers, operate in

hostile environments; and because they are in a remote location, human intervention

to make any repairs is impossible.

When a fault occurs in a mobile robot, there are various ways the operator can

become aware that there is a problem. The mobile robot may sound an alarm or

send a message to main operations. Other scenarios may include the mobile robot

becoming motionless or perhaps veering off from its normal operating area. In any

1.1. Research Context 20

event, human operators are there to examine, fix or replace any faulty component

found on the mobile robot. If a fault occurs in a component on a planetary rover,

then the robot may lose a degree of functionality depending on the extent of the

fault. Human intervention is limited to ’software updates’ or shutting down some

on-board systems in-order to preserve other components. Each component can be

subjected to various fault scenarios, i.e. intermittent, permanent or non-functioning

(total failure). However, maintenance cannot be employed, and parts cannot be re-

placed or repaired [20]. It is therefore important that the planetary rover can adapt

to new situations if an error occurs. Authors in [21], explained that faults that oc-

curred in NASA’s Spirit Rover, where due to unknown factors or environmental

interactions. Fault tolerance strategies where limited, as faults in the motor system

could not be resolved due to the performance degradation imposed when the Spirit

Rover switched to a system fault mode. In 2018 NASA reported issues with the

Opportunity Rover in [22]. They reported three main faults low-power fault, clock

fault and uploss fault. When ’Opportunity’ experienced a problem, it can go into so

called ”fault mode” where it automatically takes action to maintain its health. How-

ever, NASA could not resolve the issues with ’Opportunity’, and it was declared

’lost’ in February 2019.

The term ’Autonomic’ is described as occurring involuntarily or sponta-

neously, resulting from internal stimuli [23][24]. The Autonomic Computing

Paradigm is a concept that has been inspired by the human autonomic nervous sys-

tem. Its main objective is that computer and software systems can manage them-

selves with only high-level guidance from humans [25]. One of the main aspects of

autonomic computing described in [26], is that an autonomic system must perform

something comparable to healing, it must be able to recover from routine or ex-

ceptional events that might cause some individual parts to malfunction. In the case

of mobile robots (planetary rovers), operating in remote destinations, [27][28] have

described the need for future NASA missions to be autonomic by necessity, owing

to the complex nature of the software and hardware systems involved.

1.2. Research Problem 21

1.2 Research Problem

In the last decade, several research approaches have been taken in fault handling

for mobile robots. A representative list of such approaches can be found in research

such as [29][30][31]. These approaches utilize fault tolerance and FDI (Fault Detec-

tion and Isolation) techniques to detect, analyse and recover from hardware faults

in mobile robots. Although these techniques provide fault-handling solutions in

mobile robots, they are constrained by the fact that early design decisions must be

applied to fault tolerance systems. This results in a lack of flexibility if roles and

strategies need to be altered when the system is operating in the field. Autonomic

fault handling offers self-adaption and the ability to use a generic software approach

when designing a system that can react to behavioural changes [32].

In 2003, IBM presented a white paper that described an autonomic reference

model in the form of the MAPE-K (Monitor, Analyses, Plan, Execute - Knowledge)

feedback loop [1]. The MAPE-K architecture assumes the availability of sensors

and effectors in order to gather data for managed resources. Within its feedback

loop, there is functionality to monitor the sensed data, to analyse the current state,

to plan corrective actions and to execute these actions via the effectors. The MAPE-

K is a popular model when building self-adaption into current systems but its orig-

inal form is normally altered, so that researchers can adapt it to their own specific

requirements [33][34][12][13]. It therefore begs the question whether the MAPE-K

model, in its original configuration [1], goes far enough for developers to design

an effective self-adaptive solution? Research reported in [35], proposed that there

are sources of uncertainty in the MAPE-K which may affect its components. The

MAPE-K monitoring component may be affected by inherent imperfections of sen-

sors. These imperfections may be a result of sensing latency: by the time analyses

occurs the information is outdated. Other imperfections could be a result of sen-

sor inaccuracy: the sensor cannot distinguish deviations between the actual reading

and the ideal reading. The authors in [36], state that within the MAPE-K the role

of knowledge is unclear. In their Formal Reference Model (FORMS), they elabo-

rate on knowledge by making distinctions between (1) architectural model (struc-

1.3. Research Objectives 22

tural and behavioural data); (2) goal model (action policies and utility functions);

(3) environmental model (in which the managed autonomic element is situated).

In robotics, research reported in [4][5], discusses the IMD (Intelligent Machine

Design) as a model where computing systems should be designed to operate au-

tonomously, unattended and be highly robust. The IMD consists of three levels

with ’intelligence’ increasing from the lower to the higher level. The lowest level

(Reaction), is in direct contact with sensors and motor elements. The highest level

(Reflection), makes decisions based on knowledge and experiences. Research in

[6], makes a case for integrating the autonomic MAPE-K model to operate on each

level of the IMD architecture. But does the IMD design go far enough for the de-

velopment of self-adaption in robots? Is there a case for using both MAPE-K and

IMD to create a hybrid architecture for fault handling in mobile robots?

1.3 Research Objectives
The goal of this research is to develop a generic autonomic architecture for fault

handling in mobile robots. Using the autonomic MAPE-K and IMD models as a

basis, the generic autonomic architecture is gradually developed through case study

interrogation. The motivation is that developers can use the generic autonomic ar-

chitecture as a reference when designing future mobile robotic systems. The pro-

posed approach is intended to retain the important elements found in autonomic

computing but also to improve upon current autonomic models.

The following are the set of objectives:

1. Research the main attributes associated with the MAPE-K and IMD models

and establish if they do enough within the autonomic robotic community or

is there areas that can be improved upon.

2. Develop self-awareness (i.e. becoming aware), when establishing a fault sce-

nario within a mobile robot.

3. Using case study methods, identify common design patterns in-order to de-

velop an autonomic generic architecture for handling component faults in mo-

bile robots.

1.4. Chapter Outline 23

1.4 Chapter Outline

The structure of this thesis is as follows:

Chapter 1 - Introduction.

Chapter 2 - Literature Review: the origins of Autonomic Computing are dis-

cussed and why its introduction is an attempt to address the growing complexity

of computer systems we find today in modern computing. An alternative model is

also discussed in the form of the Intelligent Machine Design (IMD) and how it can

be integrated with IBM’s MAPE-K architecture. Further discussions are centred

around Organic Computing and how it differs from the original autonomic comput-

ing concept to form its own architectural development. This chapter also describes

fault handling in mobile robots and how autonomic systems compare to traditional

fault tolerance systems. Finally, current research in the autonomic computing field

is discussed and how researchers have used the autonomic MAPE-K and the robotic

IMD in their work.

Chapter 3 - Research Hypothesis and Overview: in this chapter the thesis

goals are presented and how design patterns can be used in analysis of faults in

robots. The Research Method is also presented in this chapter showing how case

study Methodology is used as a means to develop the autonomic generic architec-

ture. Further discussions in this chapter explain how the MAPE-K and IMD models

can be integrated to form the basis of a new architecture. Finally, SDLC (Software

Development Life Cycle), is discussed as the methodology used within the case

studies of this thesis.

Chapter 4 - Self-Adaptive Mobile Robot Wheel Alignment - case study: this

chapter demonstrates how an autonomic management system can be implemented

to handle a ’wheel alignment’ fault in a mobile robot. The SDLC model is used

to analyse, design, implement and test each stage of the case study. This chapter

also presents the initial development of the autonomic generic architecture and how

it can be designed to handle a ’wheel alignment’ fault in a mobile robot. Finally,

testing and evaluation methods are used to demonstrate the compensation policy

applied to the ’wheel alignment’ fault and how it improves its performance over

1.4. Chapter Outline 24

distance and time.

Chapter 5 - Autonomic Sonar Sensor Fault Management for Mobile Robots -

case study: in this chapter, methods are discussed for how to handle sonar sensor

faults in a mobile robot. The SDLC methodology is used for the analysis, imple-

mentation and testing of the sonar sensor fault. The autonomic generic architecture

is further developed by introducing Knowledge Base attributes to identify, analyse

and finally, compensate for the fault. The chapter concludes with an evaluation pro-

cess to test the compensation policy and how it affects the performance of the robot

in terms of detecting objects.

Chapter 6 - Autonomic Management for Mobile Robot Battery Degradation -

case study: in this chapter, methods are discussed on how to handle battery degrada-

tion within a mobile robot. This case study uses SDLC methods for designing, im-

plementing and testing. The autonomic generic architecture is further developed by

incorporating control loops (reactive and proactive), in identifying the fault (aware-

ness), processing the fault (analysis) and compensating for the fault (adjustment).

The chapter concludes with testing the compensation policy and how it affects the

performance of the mobile robot in relation to power consumption and task com-

pletion.

Chapter 7 - Generic Architecture for Fault Management (AIFH): in this chap-

ter the findings accumulated from the case studies (Chapters 4, 5 and 6), are used to

design a fully fledged generic autonomic architecture for handling faults in a mobile

robot. A High-level design is introduced, explaining the elements found in the Au-

tonomic and System Managers. This chapter then explorers the self-healing module

(the module that handles the feed-back control loops) and the knowledge-base mod-

ule (which includes attributes such as policies, tolerance values and historical data).

This chapter then presents the low-level design of the AIFH (Autonomic Intelli-

gent Fault Handling) architecture. Each layer of the AIFH architecture (Awareness,

Analysis and Adjustment) is discussed, and how those layers play a role in detect-

ing, processing and compensating for faults. Finally, in this chapter, the generic au-

tonomic architecture (AIFH) is evaluated by introducing a further case study (Stereo

1.5. Overview of Publications 25

Camera Vision Fault). The main goal in this Section is to demonstrate the utility of

the generic architecture in a new fault scenario.

Chapter 8 - Conclusions and Future Work: provides conclusions to the re-

search discussed in this thesis and what future work is under proposed.

1.5 Overview of Publications
The research presented in this thesis produced six publications and one submission.

These publications and submission, span over the six years of part-time study.

The first publication was presented and published for the 11th IEEE Inter-

national Conference and Workshops on the Engineering of Autonomic and Au-

tonomous Systems [15] (2014). Using indoor GPS, a mobile robot was tracked

to discover wheel alignment faults. This paper introduced to the research, an au-

tonomic strategy to compensate for the wheel alignment fault. This publication

contributed to research carried out in Chapter 4.

The second publication was presented and published for the 13th Symposium

on Advanced Space Technologies in Robotics and Automation [37] (2015). This

publication introduces a high-level concept of robotics based on the autonomic

computing paradigm, with the aim of developing self-managing and autonomous

software for space missions. The three main areas of research included autonomic

architecture, cooperation between robots and development of middle-ware.

The third publication was presented and published for the Eighth International

Conference on Adaptive and Self-Adaptive Systems and Applications [38] (2016).

This publication detailed how an Autonomic Management System (based on the

MAPE-K [1]), could be applied for detecting, evaluating and compensating a wheel

alignment fault on a mobile robot. This publication relates to research carried out

in Chapter 4.

The fourth publication was presented and published for the 19th International

Conference on Autonomic Computing and Computer Engineering, [39] (2017). In

this publication, an extension of the MAPE-K architecture is introduced as the AAA

(Awareness), (Analysis) and (Adjustment) model, to handle sonar sensor faults in

1.5. Overview of Publications 26

mobile robots. This publication relates to research carried out in Chapter 5.

The fifth publication was presented and published for the 20th International

Conference on Autonomic Computing and Computer Engineering, [40] (2018). In

this publication, research was conducted on how battery degradation can affect task

performance on a mobile robot. Autonomic principles where applied to handle

the battery degradation fault, so that the mobile robot could still operate in some

capacity. This publication relates to research carried out in Chapter 6.

The sixth publication was presented and published for SMC-IT (Interna-

tional Conference on Space Mission Challenges for Information Technology),

IEEE/NASA, in Pasadena, California (2019). In this publication, the AIFH archi-

tecture was presented as extension to the MAPE-K and IMD models and how it

could be implemented for fault handling in mobile robots.

Finally, the seventh paper was published by Innovations in System and Soft-

ware Engineering, NASA Journal, (2020). This journal represents a summary of

the research completed by the author over the duration of the PhD. Journal title,

’Autonomic Architecture for Fault Handling in Mobile Robots’.

Chapter 2

Literature Review

2.1 Introduction
The following literature review concerns itself with origins of Autonomic Comput-

ing and how it can influence how we develop computers systems now and in the

future. The review further explorers how hardware faults in systems can be han-

dled using an autonomic approach and the importance of an generic architecture is

in delivering these goals. This Chapter is organized as follows: Section 2.2 deals

with the fundamentals in Autonomic Computing, the types of attributes and various

interpretations that have been employed by researchers in developing autonomic

models. Section 2.3 deals with an Autonomic approach to handling faults in mobile

robots and the influence of Organic Computing in this area of research. Section

2.4 looks at how a generic architecture based on current autonomic models can be

adapted to fault handling in computing systems. Section 2.5 contains a summary of

the literature review.

2.2 Autonomic Computing

2.2.1 Origins and Motivations

The Autonomic Computing Initiative (ACI), was promoted by IBM in 2001, to ad-

dress the ever-increasing complexity of computer systems [41][42]. Technological

advances in computer and software systems have resulted in legacy systems being

constantly updated to a point where management of these systems is becoming un-

2.2. Autonomic Computing 28

tenable. To further the complexity, there is increased need to distribute data, appli-

cations and system resources across international and national business boundaries

[43]. However, updating current systems in terms of self-* management properties

[41], is a difficult task because of the dependencies and limitations that are tied to

the system’s earlier design strategies [44].

IBM’s ACI, is inspired by the human body’s nervous system. The nervous sys-

tem acts and reacts to stimuli which are independent to the individual’s conscious

input. Just as the human body functions without interference from the individ-

ual (e.g., temperature rises and falls, breathing rate etc), the autonomic computing

environment operates and reacts in response to the information it retrieves [45].

However, there are important distinctions between the autonomic activities within

the human body and the activities performed in an autonomic computer system.

Many of the decisions made within the human body regarding autonomic activity

are involuntary, whereas decision making within a autonomic computer system, is

often carried out by a Autonomic Manager which in-turn, will communicate with

the System Manager to carry out tasks and the polices [46][47].

IBM proposed self-management, where functions could be accomplished by

taking appropriate action based in the current state of the surrounding environ-

ment. Computer systems with self-managing components could potentially reduce

the cost of owning and operating such systems. These attributes are defined as fol-

lows [1]:

• Self-configuration - the ability to dynamically adapt to changing environ-

ments. when changes occur, policies can be enforced that result components

being deployed or removed (with minimal human intervention). Dynamic

adaption can increase both growth and flexibility within an IT organization,

when faced with future changes.

• Self-healing - has the ability to detect improper operations. It can analyse and

make changes when faced with disruptions. The components operating within

a self-healing environment, can deploy policies that can correct the computer

system without affecting the surrounding environment. If components fail,

2.2. Autonomic Computing 29

a self-healing system can initiate corrective action to adapt to environmental

changes.

• Self-optimizing - the ability of the IT environment to maximize resource

allocation and utilization when faced with dynamically changing work-

loads. Self-optimizing components can learn from experience and thus make

changes to themselves in-order to achieve the overall business objectives.

Self-optimization helps provide a high standard of service for Users and busi-

ness clients.

• Self-protecting - system components have the ability to detect hostile threats

and take corrective action to make themselves less vulnerable to attacks. Self-

protecting capabilities allows businesses to enforce security policies that will

ultimately affect productivity and customer satisfaction. Self-protection is

also about monitoring the system as a whole and reacting to any changes that

could affect its integrity.

2.2.2 Autonomic Model

According to IBM [48], the Autonomic attributes, referred to as self-CHOP (Con-

figure, Heal, Optimize and Protect), are the foundations for self-managing systems.

These autonomic concepts can be orchestrated using an Autonomic Manager [47],

in which the Autonomic Manager implements a feedback loop. The autonomic

feedback loop is integrated into the MAPE-K model (Monitor, Analyse, Plan, Exe-

cute - using a Knowledge base) - see Figure 2.1.

The MAPE architecture divides the feedback loop into four separate parts.

Each part has access to the knowledge resource.

• Monitor - processes information from managed resources (sensors etc). The

monitor function processes the data until it recognizes a symptom that needs

to be further investigated. The autonomic system has two types of monitoring:

passive and active monitoring. Passive monitoring involves using a third party

monitoring function. For example, in a LINUX, VMSTAT is used to monitor

CPU utilization. The Autonomic Manager can directly access third party

2.2. Autonomic Computing 30

SENSORS EFFECTORS

MANAGED RESOURCE

AUTONOMIC MANAGER

KNOWLEDGE

EXECUTE

Feedback Loop

MONITOR

ANALYSE PLAN

Figure 2.1: Autonomic MAPE-K model proposed by IBM [1].

monitoring tools [49]. Active monitoring means the Autonomic Manager

has a direct connection with its surrounding environment, in particular with

sensors. The active monitoring process can be affected by the goals set by

Administration. These goals can allow the monitoring process to transform

the data selected using operations such as analyzing, filtering and aggregation.

• Analyse - takes the symptoms identified by the monitoring process and per-

forms data analysis. The analyses process draws on the knowledge store to

make comparisons and assist with decision making. The knowledge store can

contain policies, which can be implemented to investigate symptoms passed

down from the monitoring function. The analyse function is responsible for

determining the extent of the fault and if required, make a decision if changes

are required.

• Plan - takes the symptom data from the analyse function and determines what

action is needed to compensate for the fault. The Plan function can utilize

policies that allow it to initiate an alteration within managed resource. A plan

of action can either be static or dynamic. A static plan would consist of a

set of steps that must be carried out in sequence, when a particular condition

2.2. Autonomic Computing 31

has occurred. A dynamic plan would require choosing the best plan (from

an existing collection of plans), by iterating through various fault scenarios.

Therefore, the Plan function is making a hypothesis on the effect a planned

action might take.

• Execute - provides the managed resource to execute the policies that where

instigated by the Plan function. This is achieved by using the appropriate

effectors. The Execute function has no ability to modify the surrounding

environment.

Although knowledge is shared by all the ’parts’ within the Autonomic Man-

ager, Monitor and Analyse use the knowledge store extensively in order to make

decisions regarding the discovery of symptoms or faults and how best to deal with

them. In an autonomic computing system, knowledge captures data, renders it in

a standard way so that it can be used by the Autonomic Manager, and that in turn

enables new knowledge to be discovered and learned [50].

2.2.2.1 Feedback Loop Application

In the MAPE-K, the feedback loop orchestrates the interaction between the different

attributes within the Autonomic Manager. The feedback loop can be described as

a closed loop system. The feedback loop can determine whether an environmental

change requires the need for adaption or not [51]. The autonomic systems use

feedback loops to achieve self-management [52].

Research conducted in [53], shows how the MAPE-K feedback can be applied

in adaptive systems as three distinct categories.

Independent loop - in this category, the agents possess all the main attributes

within the MAPE-K. If changes occur to the local environment, then agent will

become aware of these changes. However, these types of independent feedback

loops are not usually found in a collective system.

Interacting loop - within a collective system, there are many interactions be-

tween agents that possess autonomic self-properties. Even though the MAPE-K

loop exists within each agent, there is interaction between agents as each loop is

2.2. Autonomic Computing 32

executed.

Distributed loop - as typical distributed system can contain different types of

agents. These types of agents may include intelligent controllers or agents. Some

distributed systems may also contain human operators.

Research reported in [25], describes the autonomic element as having a local

loop and a global loop. The local loop is only aware of environment states that re-

sults from knowledge base that is embedded within the element. However, the local

loop is ignorant of the overall behaviour of the entire system and therefore can-

not affect any global changes. The global loop can handle unknown environmental

states which can manifest as artificial intelligence, machine learning and human in-

teraction. The global loop can initiate changes in behaviour, which can be triggered

by a fall in the overall system performance levels.

Real autonomic systems require multiple management feedback loops. In re-

search conducted by [2], the autonomic MAPE (plan/execute) is replaced with a

transition function, which in-turn triggers the actuators - see Figure 2.2..

Figure 2.2: Autonomic coordination for feedback loops [2].

These types of multiple loops can be arranged in an hierarchical framework

where the top layer AM (Autonomic Manager) coordinates the lower-level AM’s.

The hierarchical system allows each feedback loop to perform its own function-

2.2. Autonomic Computing 33

ality but at the same time coordination of strategy and polices are enforced using

controlled interfaces.

2.2.2.2 Autonomic Policies

In autonomic computing, policies play an important role as they describe how the

system is guided in terms of decision making and actions taken. In general, policies

are described as three types, action, goal and utility [54].

• Action Policy - determines what action is taken depending on a given current

state. This type of policy typically takes the form of (IF, THEN) conditions.

The condition will specify a specific state or a set of possible states. It is pre-

sumed that the design author, knows what state will be reached depending on

the actions taken. This is deemed necessary, to ensure the system is exhibiting

rational behaviour.

• Goal Policy - rather that specifying an exact current state, Goal policies rather

specify a desired state or set of desired states. The system responsible for

initiating a particular action, can in-turn make a transition from a current

state to some desired state. Rather than relying on a human to create a specific

behavioural pattern (i.e. Action policy), the system generates is own rational

behaviour itself, using Goal policies. Goal policies allow a greater flexibility,

which frees human policy makers from necessarily having to learn about the

low-level details of a system function.

• Utility Function Policies - this type of policy is a function that expresses

the value of each possible state. Utility Function policies provide more fine-

grained and flexible specification in terms of behaviour, that you would find

in Action and Goal policies. For example, in a situation where multiple Goal

policies would conflict (i.e. they could not all be achieved simultaneously),

Utility policies allow for unambiguous, rational decision making by specify-

ing an appropriate trade-off.

2.2. Autonomic Computing 34

2.2.2.3 3 Tier Model - Inspiration

The Autonomic Nervous System was a topic discussed in [55], in the late 1960s.

In this research, observations where being made of that human behavioural charac-

teristics where conspicuously absent from any current computer system. However,

human activity can be described as a set of goals and at any time, can be inter-

rupted by environmental changes. Goal priorities can be changed by generating

interrupts and therefore, affects intelligent behaviour. Research conducted at the

end of the 90s in [3], suggested a ’three tower’ model to describe perception, cen-

tral processing and action. Within this model, there is a provision for ’information’

storage and recording of results - (see Fig. 2.3(a)). Further research in [4], intro-

duces the concept of a 3-tier model that has at its lowest level, reactive mechanisms,

and at its highest level, reflective processes. Within the reactive layer, external or

internal actions are performed immediately. The reflection or meta-management

level, provides the ability to monitor, evaluate and control internal processes - (see

Fig. 2.3(b)).

Perception
Central

Processing Action

Reflective (Meta
Management)

Reasoning

Reactive

(a) (b)

Figure 2.3: Virtual Machine Architectures - 3 Towers (a) and 3 Layers (b) models [3][4].

Research conducted in [5], acknowledges the work carried out in [4], as they

also proposed a human information processing model operating on three levels.

However, although the ’reaction’ level is shared by both models, there are funda-

mental differences between the ’Reasoning’ and ’Routine’ layers and the ’Reflective

Meta Management’ and ’Reflection’ layers (see Figure 2.4).

The 3-Tier modal (Figure 2.4), described in [5], implies that computer systems

2.2. Autonomic Computing 35

Sensory Motor

Reflection

Routine

Reaction

Figure 2.4: Affect and Cognition modal - (three levels of behaviour) [5], adapted from [4].

need to be designed in such a way that they can run autonomously, unattended and

maintain high reliability. The three levels proposed are the Reaction level, Routine

level and Reflection level. The Reaction level (the lowest level), contains the imme-

diate responses coming from data supplied by sensory systems. The Routine level

(mid-level), is complex and involves considerable processing for behavioural selec-

tion and guidance. Inputs comes from sensory systems, the Reaction level and the

Reflection level. The Routine level can also perform assessments. The Reflection

level (highest level), deliberates about itself. It performs operations based on expe-

riences and knowledge. This level has no direct link to ’sensory’ or ’motor’ systems

but relies on input from the lower levels. These ’layers’ are explored further in

Section 2.2.2.4.

The 3 Tier modal or IMD (Intelligent Machine Design) architecture was then

integrated into an ’autonomic computing expression’ by research conducted in [5];

in their paper, they state that the IMD modal (integrated with self* properties at

each level), is more closely related to biological systems and therefore better suited

to certification as opposed to the MAPE-K model. There is increase in ’intelligence’

when moving from the lowest level (Reaction) to the highest level (Reflection). The

’response’ speed increases when moving from the highest level (Reflection) to the

lowest level (Reaction).

2.2. Autonomic Computing 36

2.2.2.4 IMD and MAPE-K

IMD is significantly different from the MAPE Architecture, both structurally and

behaviourally. In this alternative model, behaviours are differentiated in terms of

urgency and responding to changes in the environment [6]. The IMD architecture

closely relates to how the intelligent biological system works. The IMD architecture

proposes three distinct layers (see Figure 2.5) as follows:

Figure 2.5: An Autonomic Computing expression of the IMD [6].

• Reaction Layer - the lower layer, the Reaction layer, is connected to the

sensors and effectors. When it receives sensor information, it reacts rela-

tively faster than the other two layers. The main reason for this is that its

internal mechanisms are basic, direct and normally hard-wired, therefore, its

behaviour is an autonomic response to incoming signals. The Reaction layer

takes precedence over all other layers and can trigger higher layer processing.

• Routine Layer - the Routine layer is more intelligent and skilled compared

to the Reaction layer. It is expected to access working memory which con-

tains a number of policy definitions that can be executed based on knowledge

and self-awareness. As a result, it is comparatively slower than the Reaction

2.2. Autonomic Computing 37

Layer. The Routine layer activities can be activated or inhibited by the Re-

flection Layer. If the Routine layer is unable to find a suitable policy for an

immediate objective, it hands control over to the Reflection layer. The Re-

flection layer, the highest level, helps the machine deal with deviations from

the norm.

• Reflection Layer - the Reflection layer has the responsibility of developing

new policies and therefore this layer consumes a larger number of computer

resources. The Reflection layer can deal with the abnormal situations, using

a combination of learning technologies, specialized algorithms, knowledge

databases and self-awareness. The Reflection Layer can analyse current data

or historic data and identify when to change and selects a policy to decide

what to change. The Reflection layer can inhibit or activate processes be-

longing to the Routine layer through new policy definitions.

All layers in the IMD architecture can implement the four common self-CHOP

properties - see Figure 2.5.

2.2.2.5 Autonomy and Autonomicity

Autonomy in the context of computing systems, can achieve its goals without the

need for human intervention and therefore can be regarded as self-governing. Ex-

amples of autonomy can be seen in space missions conducted by NASA from the

mid-1980s on-wards [56]. Autonomicity is regarded as being self-managing. From

an autonomic perspective, this would embrace self-configuring, self-optimizing,

self-healing and self-protecting. Autonomicity differs from Autonomy in that it

can adapt to changing environments. Autonomy relies on a pre-set of routines that

have been previously designed and cannot be changed. Autonomicity allows for

changes to be made when in operation. If a instrument fails then another instrument

can be re-configured to take over from the failed component. From a (IMD) per-

spective (reaction, routine and reflection), autonomicity would be associated with

the reaction layer whereas autonomy would correlate with the reflection layer [37].

In Machine Learning techniques, autonomicity is described as levels of automation.

2.2. Autonomic Computing 38

Level 0 is described as having no autonomic characteristics (data is provided by the

human developer), where level 4 (the highest autonomicity), is described as being

fully autonomic with no human interference [57].

2.2.3 Autonomic Developments

IBM’s Architectural Blueprint for Autonomic Computing (2003-2006) [1][47], pro-

vided a platform for corporations, researchers and developers to integrate autonomic

principles into existing systems or to consider those principles when designing fu-

ture systems.

In 2003, the Microsoft Corporation instigated its interest in autonomic comput-

ing with the Dynamic System Initiative (DSI). Window Server tools such a Resource

Management [58], promised to give more control over CPU and memory utilization

for managing storage area networks. NASA’s interest in Autonomic Computing

was evidenced by research conducted in 2005 regarding the ANTS (Autonomous

Nano-Technology Swarm) mission [59]. It proposed the use of autonomic proper-

ties to organize the behavior of swarms of pico-class satellites; self-configuration

(loss of communication for one satellite, causes its role to be switched to another

local satellite), self-optimization (collecting information on asteroids of particular

interest, reducing wasted resources), self-healing (if a satellite is lost due to environ-

mental forces, then it can be replaced by another), self-protection (collisions data

reported by individual satellites is shared with the rest of the group, therefore action

can be taken to adjust orbits and trajectories). In 2008, research conducted in [60],

proposed a method of organizing a Web service-based environment as a collection

of agent-based Web services with self-managing features. The autonomic manager

would be responsible for handling the ACL’s (Agent Communication Language)

messages from the agents and would guarantee the best web-service for the client.

Autonomic Management has also been investigated by Cloud Computing de-

velopers. In 2012, research carried out in [61], proposed that because Cloud sys-

tems are large scale and contain multiple distribution centres, they need to be au-

tomated and integrated with intelligent strategies for dynamic provisioning of re-

sources in an autonomic manner. In their Cloud system architecture, they introduce

2.2. Autonomic Computing 39

an Autonomic Management system to deal with resource provisioning, application

scheduling and security/attack detection. Cloud autonomics is the use of autonomic

computing to enable organizations to more effectively harness the power of cloud

computing. This is achieved by automating management through business policies.

Investigations written in an article in 2015 in [62], envision a future where sys-

tems are continuously monitored and if the environment goes out of compliance,

the autonomic manager is able to make necessary changes to bring it back in line.

With the ever-expanding scale of the Internet and new devices and technologies

being introduced in both wired and wireless environments, network management is

a continuing challenge to both industry and the academic world. Research proposed

in 2017 in [63], made the case for introducing autonomic system engineering into

networks (wired and wireless), and the implementation of self-managing functions

and self-adaptability. It introduces an Autonomic Network which contains AN’s

(Autonomic Nodes). Each AN provides a common set of capabilities across the

network called Autonomic Networking Infrastructure (ANI). The main goal is to ac-

quire self-knowledge, discovery, and the information needed for network operations

without external configuration. Research in [64], conducted an extensive survey on

the possibility of adapting autonomic principles for communication networks. For

network security management, autonomic self-protection and self-healing can be

deployed to enforce denial of service detection and defense, using the CPN (Cog-

nitive Packet Network) paradigm [64]. There is a comparison between traditional

security models (centralized) and autonomic system models (decentralized), where

the use of multiple agents can allow for the autonomic identification of irregular

network activity.

Social Networking has become popular as a means of initiating collaborative

work and a method of helping people maintain contacts and communicate up-to-

date information. However, it is not in real-time, as it does not rely on event trig-

gers to inform the interested parties. In 2018, research in [65], proposed a Generic

Autonomic Social-Collaborative Framework (GASCF) and an Autonomic Adapter

(AA), within the Health Care system. This framework can be used to implement

2.2. Autonomic Computing 40

a social-collaborative application that will enable self-managed and adaptive func-

tionality. Multiple AA’s will work in cooperation to monitor the systems behavior,

track changes and make any necessary changes to hardware and software resources,

or send notifications to network nodes. The objectives of this work, in providing

an autonomic framework, are similar to some of the research aims outlined in this

thesis, where a autonomic generic framework is proposed in Chapter 7.

The future development of Autonomic Computing is very much alive as an arti-

cle from car manufacturer Ford in 2018 proves [66]. The Ford company is working

with Autonomic, a Silicon Valley based company, to build an open cloud-based

platform, i.e. Transportation Mobility Cloud (TMC). This platform will be able to

manage information flow and basic transactions between a variety of components in

the transportation ecosystem (service providers, personalized cars, bicycles, pedes-

trians, transit systems and city infrastructure including parking and traffic light man-

agement). An example of TMC capabilities, is to employ real-time location updates

in cities to control traffic flow by dynamically rerouting cars to reduce congestion.

A city can ensure that no empty self-driving vehicles are driving on the most im-

portant arteries used by people during rush hour. Within the automotive industry

the use of customizing is now so well established that popular magazines such as

’CAR’ [67], regularly contains reports referring to a vehicle’s autonomy level as

between 1 and 5.

2.2.4 Organic Computing

Organic Computing [68][69], can be viewed as an extension of the autonomic vision

of IBM [1], as it also incorporates self-* management properties. It is a form of

biological inspired computing with organic properties. Organic Computing is based

on a large collection of autonomous systems, which are equipped with sensors and

actuators. Autonomic computing focuses on removing the human users from the

system control loop, whereas Organic computing emphasizes the interaction with

human users and respecting their needs.

Figure 2.6 shows the Organic System Controller [7]. The SUOC (System

under Observation and Control), contains a set of interacting elements and agents

2.2. Autonomic Computing 41

input output SUOC
ob

se
rv

es

Observer

observation model

Controller
reports

controls

Selects observation model

Organic System

System status
& goals

Figure 2.6: Organic Computing - System Controller [7].

which do not depend on the existence of an observer/controller. The Observer will

contain pre-processor, aggregator, data analyzer, predictor and log file. The Con-

troller contains mapping, action selector, history evaluation, goals, objectives, sim-

ulation model and adaption model.

Organic Computing has been the inspiration for software architectures such

as ORCA (Organic Robotic Control Architecture), developed by researchers in [8].

The ORCA architecture is built from Organic Computing Units (OCUs) and Ba-

sic Computing Units (BCUs). The characteristics of the ORCA architecture are

the scalability and flexibility to property changes of the constituent OCU and BCU

units. The BCUs, implement tasks concerned with the robot’s control. These tasks

can be defined as ’sensor’ processing, such as wheel motor movement, sonar sensor

control and robot arm control. OCUs on the other hand are responsible for moni-

toring the correct behavior of the BCUs and to influence their outputs or to change

their behavior in the case of malfunctions - see Figure 2.7.

Research presented later in this thesis concentrates on specific aspects of robot

control, including both sonar sensors and ’wheel’ motor movement. In Section

2.3.4, Organic Computing is explored further, regarding the research that has been

conducted in relation to fault handling in mobile robots.

2.3. Autonomic Fault Handling in Mobile Robots 42

Figure 2.7: Schematic representation of standard ORCA architecture [8].

2.3 Autonomic Fault Handling in Mobile Robots

Mobile Robots are devices that rely on commands that provide instructions for ’mo-

tion’ and sensor data capture, that report the physical world around them. Mobile

robots can either operate in a closed environment such as an industrial factory or

hospital; or can operate remotely, such as a pipe inspection vehicle or as a planetary

rover. In the case of robots operating in remote regions, it may not be convenient

or possible to intervene in order to repair faults. A hardware fault like a damaged

wheel on a mobile or planetary robot, can disrupt mission objectives. NASA’s JPL

Center reported faults on all six wheels from the current Curiosity Rover Mission

on Mars [70]. Each of the six rubber wheel casings on the Rover had been punc-

tured by sharp rock material from the planet surface. Consequently, NASA’s Mis-

sion Control was forced to plan alternate routes for the Curiosity Rover, in order

to avoid certain rock types that had caused the damage to the wheels. Autonomic

computing implementation can help address the common failure modes found in

mobile robots. Planetary rovers would obvious recipients for implementation of

self-managing systems [71].

2.3. Autonomic Fault Handling in Mobile Robots 43

2.3.1 Fault classification

Mobile robots like all mechanical devices, eventually succumb to some sort of hard-

ware fault or hardware defect. The severity of the fault will dictate the available

functionality that the mobile robot can provide. Typical faults for mobile robots

are loss of sensors, motorized faults, damaged wheels or power faults. A fault in a

system is a variance from the expected behavior of the system [72]. Faults can be

classed as follows:

• Permanent (which exists until repaired).

• Transient (which disappear on their own).

• Intermittent (which repeatedly appear).

Component faults don’t always show themselves as simply being non-

functional or disabled. In [31] , the authors use Evidence, Fault and Value nodes to

identify hardware faults, by recognizing changes in sensor data over time.

In research conducted in [73], robotic failures in relation to NASA missions

where investigated. They categorized systems failures as follows:

Wheel Failures - track slippage failures are a frequent occurrence. Self-

optimization can be applied to slow down the drive system and minimize further

damage.

Control System Failures - [73] stated that these are the most common types

of physical failure. If the robot became unresponsive, then recycling the operating

system was normally the best course of action to fix this type of issue.

Sensor Failures - the example given in [73], relates to video sensing, where a

remote robot could encounter an environment in which dirt particles could inhibit

the sensor. Using a self-repair protocols, where a simple sensor wash could re-

instate the sensor to full functionality.

Power Failures - when power is low, the autonomic properties engaged pro-

tocols that would redirect the robot to the nearest charging station. In the case of a

NASA mission, the robot would temporarily power down until the Sun would be in

a favourable position to allow a solar panel re-charge.

2.3. Autonomic Fault Handling in Mobile Robots 44

Although investigations carried out in [73], identify key failure areas in mo-

bile robots, there is little to offer in terms of identifying the failure and processing

the data available, in-order to formulate a strategy to compensate for the error. In

Chapters 4 to 6 in this thesis, we offer case studies on hardware failures in mobile

robots. The key strategy for each case study, is Awareness (how is the failure/fault

identified?), Analysis (evaluating the extent of the problem through using historical

and current data) and Adjustment (Is it possible given the fault data, to establish an

compensation strategy to allow the mobile robot to continue to function?).

2.3.2 Fault Tolerance in Autonomic Computing

Traditionally Fault-tolerant systems in robots has become increasingly important

especially for robots that operate in remote or hazardous environments. In order

to perform tasks without human intervention, mobile robots would require the abil-

ity to tolerate and detect internal faults [74]. Many legacy and current systems

employ traditional fault tolerance approaches. However, with information systems

growing in size, many resources are now connected through complicated networks.

Systems configurations can change dramatically, even during real-time operations.

With information systems now seemingly boundary-less in nature, a single cen-

tralized system manager has become less feasible. Autonomic computing offers

managed units over a distributed network. Cooperation and collaboration can ex-

ist among ’computing’ units where there is no requirement for a centralized man-

agement mechanism. Autonomic Management systems can also share computing

power with different sites, even across enterprises [75].

In Research conducted in [76], implies that dependability and fault tolerance

can perhaps be aligned to AC’s principle for self-healing. However, systems that are

incorrectly configured and/or optimized inefficiently, are likely to lead to failures in

the future.

Fault Tolerance Control Systems (FTCS), are defined as control systems which

can automatically maintain the system stability and maintain an acceptable degree

of performance when component failures occur [77]. There are four main FTCS

principles:

2.3. Autonomic Fault Handling in Mobile Robots 45

• Fault Detection: to detect that there is something wrong in the system and

that a fault has occurred somewhere.

• Fault Isolation: to decide which component is faulty and its location within

the system.

• Fault Identification: to identify the fault and how severely the fault will

affect the system.

• Fault Recovery: To adapt the system controller structure according to the

identified fault. To maintain the system’s stability and to continue to operate

at an acceptable performance level.

2.3.3 Autonomic Management for fault handling

As part of IBM’s original Autonomic concept, self-diagnosis and self-healing are of

particular importance when dealing with system problems. One of the main goals

was to create systems that could self-manage and take appropriate action when fac-

ing system failure [48]. Self-diagnosis is not only concerned with the discovery of

potential faults but also the severity and consequences relating to the fault. Self-

healing is concerned with recovery and repairing itself when dealing with unex-

pected faults. The main challenge in designing an autonomic system is that all

possible fault scenarios cannot be anticipated, it is preferable to design a system

that can detect and resolve problems at run-time [78].

Research conducted in [79], investigates that detection of abnormal behavior

in a sensor is not always sufficient evidence that the sensor is actually faulty. They

proposed to use correlation between sensors as an indication of failure. If one sensor

displays faulty behavior due to a faulty component, then is it reasonable to assume

the other sensor is not affected by the fault and its reported data still reflects the

robot’s behavior? However, the same cannot be said about correlated sensors that

share the same component, as both sensors can ultimately be affected by the same

fault. Research in [78], describes how robotic failure detection, failure recovery and

system reconfiguration can be achieved through their Distributed Integrated Affect

2.3. Autonomic Fault Handling in Mobile Robots 46

Reflection Cognition (DIARC) architecture. Using an ADE (Architecture Develop-

ment Environment) multi-agent framework, they propose a system that can request

information about the current state of components within the network. If a failure

occurs, for example, in the navigation system, then they can locate a component to

take the place of the failed component.

In AC, self-healing is the ability to diagnose and re-configure system func-

tions, so that a degree of reliability is maintained. Autonomic Management can be

employed to orchestrate dealing with system failures. Giving the Autonomic Man-

ager more decision-making abilities will lessen the need for human intervention.

Investigations carried out in [9], proposed the idea of using an AC system to con-

trol current AACS (Autonomous Automatic Control Systems). Fault diagnosis and

mitigation’s are conducted at the control layers. They propose that policies are put

in place to deal with different types of robotic failure. In Figure 2.8, researchers

in [9], create a table of possible fault scenarios within different parts of the robotic

system. Depending on the ’cause’ of the fault and the ’type’ of fault discovered i.e.

(1) or (3) vehicle problems, (2) or (4) environmental conditions, they choose a pol-

icy that can handle that particular fault situation. Using an Autonomic Management

strategy, they apply the following autonomic policies:

Figure 2.8: Faults Diagnosed and Mitigated at the CONTROL layers [9].

2.3. Autonomic Fault Handling in Mobile Robots 47

1. Autonomic Healing - self-healing is done by defining and isolating possible

faults, diagnoses and applying a mitigation plan at the control layer.

2. Autonomic Optimization - the implementation of self-optimization deals

with the efficiency and effectiveness of the AACS, in order to decrease the

energy consumption, e.g., applying a strategy that extends battery duration

and therefore energy consumption becomes critical in longer missions.

3. Autonomic Configuration - the implementation of self-configuration princi-

ples, deals with the adaption of AACS in order to improve requirements and

goals.

4. Autonomic Protection - the implementation of self-protection deals with in-

ternal and external AACS network security. Detection, anticipation and iden-

tification of attacks to guarantee high security at all times.

The arguments set out in [9], are effective in categorizing how to apply the AC

concepts to managing mobile robots and robotic systems. However, this is a high

level approach and there is no detail on how to systematically deal with faults in a

mobile robot; for example, one of their fault diagnoses policies discusses how in

discovering a hardware failure, they simply activate a redundant system to replace

the faulty one. Research conducted in this thesis, is concerned with analyzing the

performance of hardware components within a mobile robot and therefore creating

the conditions for anticipating hardware faults, rather than waiting for them to oc-

cur. If a fault is discovered, then several policies may be required to analyze and

implement a strategy to handle and compensate for the fault. However, research in

[9], does make some excellent arguments concerning energy efficiency; as part of

the case studies conducted in this thesis, there is in-depth analysis conducted on the

effects of lead-acid battery degradation on mobile robot tasks and performance.

In research carried out in [80], their proposal states that in order to handle faults

within a network, an implementation of an Autonomic Fault-Management (AFM)

control loop is used to assist network personnel. The AFM contained within a

network node would be responsible for detecting the presence of a fault, finding the

2.3. Autonomic Fault Handling in Mobile Robots 48

cause of the fault and finally, removing the root cause. To increase self-management,

they have formulated a set of criteria in which network personnel should be brought

into the loop, if the fault demands it.

• Criterion 1 (The AFM should raise an alarm if incidents reported on the net-

work exceed a predefined threshold).

• Criterion 2 (If the AFM manager is unable to resolve an incident, then this

situation should be escalated to network operation personnel).

• Criterion 3 (If an incident is reported but is unknown to the CS (Causality

Model) of the network, then Fault-Removal cannot be triggered and therefore

should be escalated to network personnel).

• Criterion 4 (The AFM cannot identify the root cause of a fault, then an alarm

should be raised to network personnel).

• Criterion 5 (The AFM should raise an alarm if the same type of incidents

are repeatedly being reported. This could indicate a failure in clearing down

reported faults. If this is the case, then network personnel should be notified).

• Criterion 6 (If the AFM executes a Fault-Removal and it fails, then this should

be escalated to the network personnel).

• Criterion 7 (An alarm should be raised by the AFM if a particular component

in the network has failed. This should be escalated to the network personnel).

Research conducted in [80], shows that Autonomic Management is not re-

stricted to only detecting/handling faults but also can prove to be a useful tool in

reporting to network personnel if the automated systems are not capable of deal-

ing with a fault. This is an interesting concept as Autonomic Management Systems

cannot possibly cover all aspects of fault handling. The ’human’ presence cannot be

entirely removed from the ’loop’ and therefore totally automated systems at present,

are not achievable.

2.3. Autonomic Fault Handling in Mobile Robots 49

Resource Management in mobile robots is important, especially for those

robots that operate remotely. Poor Resource Management can then lead to the

mobile robot developing faults or in a worst-case scenario, complete shutdown.

Research proposed in [10], presents a model-based, utility approach to autonomic

management of mobile robot resources. Mobile robots can be setup in various con-

figurations. Some configurations may reduce the time a robot has to complete tasks

before a battery recharged is required. Other configurations may require that the

robot has full connection to a wireless network. The Autonomic Manager is re-

sponsible for monitoring the state of the system, analyzing the current state, plan

changes required to achieve objectives and to execute these changes. Using various

Utility Functions, researchers in [10], attempted to make the best use of bandwidth

available to the mobile robot. The size of the bandwidth available, will determine

the amount of resources that the mobile robot can access. The autonomic manager

will select a particular Utility Function policy, which will result in greater band-

width being made available to the mobile robot.

Figure 2.9: Utility Function policies for controlling bandwidth resource [10].

Figure 2.9 shows how different Utility Function policies allow for different

uses of bandwidth. Depending on the task the robot needs to perform, certain com-

ponents are turned ’off’ so that band-width is preserved. If the bandwidth available

is low, then the robot is put into an operating mode in which the range of tasks it

can execute is significantly reduced.

Research carried out in [10], proposes a Autonomic Management system to

handle resource allocation for a mobile robot. This type of resource management is

2.4. Generic Autonomic Fault Architectures 50

significant especially if the mobile robot is operating remotely. The research carried

out in Chapter 6 of this thesis, focuses on how a mobile robot can complete tasks

when dealing with battery degradation. If power resource is low, then some tasks

may not be achievable. Reducing the power required for other components within

the mobile robot will provide more resources to allow tasks to be completed.

2.3.4 Organic Computing - fault handling in robots

Although work conducted in this thesis is mainly concerned with Autonomic Com-

puting, much can be learned by investigating other fields such as Organic Comput-

ing (OC), which relates to this research. Using the architectural model ORCA [8],

first discussed in Section 2.2.4, research carried out in [81], shows how a robot sys-

tem can apply self-adaptive techniques even when faced with a major hardware fail-

ure. The ORCA architectural model was employed for developing hexapod robots.

The researchers in [81], experimented in developing a robot that could sense mal-

function within its leg support mechanism. In order to make fault detection more

adaptive, they introduced RADE (Robot Anomaly Detection Engine). If a servo in

one of the legs was showing a ’high’ current reading, then RADE could detect the

anomaly and report it as a malfunctioning leg. If a malfunction was detected, then

the robot was capable of initiating a leg amputation routine to discard the faulty leg:

a system re-configuration was performed, which would enable the hexapod robot to

continue with its mission despite losing a leg. Data was carefully analysed from the

robot’s individual ’leg’ components to establish if there was a possible fault. They

then used re-configuration algorithms to compensate for the missing limbs. The

research in [81], is very relevant to the work carried out in this thesis. One of the

main objectives common in all the case studies in this thesis, is to establish possi-

ble compensation algorithms, that will allow a mobile robot to continue to function

even with a faulty component or sensor.

2.4 Generic Autonomic Fault Architectures
Research conducted in this thesis is not only concerned with autonomic fault detec-

tion and handling, but also with the question of how common elements found in the

2.4. Generic Autonomic Fault Architectures 51

experimental case studies, can be brought together to form a generic autonomic fault

architecture. This generic architecture is based on the MAPE-K Autonomic Archi-

tecture described in [1] and the IMD Architecture in [5] - (see Section 2.2.2.3). This

Section of the Literature Review discusses how researchers have applied the Auto-

nomic MAPE-K architecture to their field of work and identifies areas of published

work which are applicable to research carried out in this thesis.

2.4.1 Using and Adapting the Autonomic Model: MAPE-K

In remote areas, collaboration between mobile robots is particularly important. Re-

search in [82], has implemented autonomic control loops to coordinate actions

between different mobile robots. Using the MAPE-K control loop, knowledge is

passed between nodes (robots), such as vision processing and communication pro-

tocol. On each robot, the Autonomic Manager needs process data supplied locally

and information supplied as (knowledge) from the collective. Researchers in [82]

have employed the Autonomic model to great effect by creating a sensor network

using corroborative mobile robots. They can now monitor a large area using reduced

power capacity but at the same time, increasing performance.

Resources for Cloud computing are made available through networks or

through the internet itself. In Cloud Architectures, the cloud server will manage

and control all applications [34]. Research conducted in [11], shows how the Cloud

Controller implements a utility function that involves end-users and providers. The

key property of the Controller is robustness. The Controller needs to deal with ac-

tivities such as erratic workloads, resource congestion, multi-tier applications and

scalability. They have adapted the MAPE-K architecture (feedback Loop), as a

means of managing their Cloud System - see Figure 2.10.

Monitor workloads provided by applications, Analyse the input data as a

means to discover possible faults, Plan a strategy for initiating an action policy

for resource management, Execute the plan or policy for a specific platform and

incorporate any shared Knowledge. Research conducted in [11], shows how the

MAPE-K architecture can be incorporated into an existing Cloud architecture. This

gives the existing architecture a robustness and the ability to use feedback as a

2.4. Generic Autonomic Fault Architectures 52

Figure 2.10: MAPE-K Control Loop for the Cloud [11].

means of error correction.

Smart Cites [83], are an example where Wireless Sensor Networks (WSNs)

can provide a basic infrastructure for collecting information such as traffic flow,

pollution and weather monitoring, Research conducted in [12], shows that WSNs

are expected to be self-managing systems in order to tackle the increasing complex-

ity of modern-day smart environments. Research in [12], put forward a framework

based on the MAPE-K architecture as a means of self-healing sensor data supplied

online.

1. Monitoring - monitoring and analysis as a function of the monitoring pro-

cess. Monitoring collects data such as topology and configuration properties.

The Monitoring process is also responsible for collecting real-time readings

from sensors and retrieves historical data from previous sensor readings. The

Monitoring process uses a filter process to isolate the symptoms. If ’symp-

toms’ are found, then this information is passed to the Analyse stage.

2. Analyse - fault detection, diagnosis of faults and finally, classification of

faults. Sensor data received from the Monitor process is analyzed to detect

faulty readings. Symptoms are process and if changes are required, the fault

data is passed to the Plan stage.

2.4. Generic Autonomic Fault Architectures 53

3. Plan - initiate system recovery and fix any outstanding faults as a function of

plan/execute. The Plan process determines an action plan to recover from the

fault. The Plan process can either take the form of a complex work-flow or it

might be as simple as a single command instruction.

4. Execute - alerts the user of changes to the system as a process of plan/execute.

The Execute process changes the behavior of the managed resource based on

the recommendations supplied by the Plan process.

Sensor data received from the Monitor process are analysed to identify fault read-

ings within the sensor data. In the case of a sensor reading being detected as faulty,

a shared Knowledge Base is implemented to classify the fault type. A fault model

relating to the classification, is initiated at the Plan stage. During this process, the

readings from faulty nodes are corrected. After the fault is diagnosed, the Analyze

process will update the Knowledge Base. The aim is to make sure all the sensors

across the framework are synchronized and consistent. The Analyse process will

then send self-healing requests to the Plan process. The Plan process will then de-

cide if appropriate action is needed to either heal the fault or to notify Users to take

any further action. Figure 2.11, shows how the researchers in [12] have adapted the

MAPE-K model for self-healing of sensor data within a WSN.

2.4. Generic Autonomic Fault Architectures 54

Figure 2.11: The MAPE-K-based framework for self-healing of online sensor data [12].

Although research conducted in [12] relates to WSNs, the fundamentals em-

ployed for fault detection are also relevant to the work carried out in this thesis.

Using the Monitoring process and combined with historical data, the awareness of

a possible fault can be identified. When a fault is identified, a classification pro-

cess is used to identify what policy plan can be implemented to handle the fault.

The policy is executed in-order to correct the discovered fault. If a fault cannot be

healed, then the User is notified to take some action.

Aggregate Computing is a recently proposed framework to build CASs (Col-

lective Adaptive Systems). Research conducted in [13], presents a proposal to

bridge the gap between the MAPE autonomic manager and a fully distributed self-

organizing CASs. It presents an example model of collective-adaption that is built

around the concept of ensemble, which is a collection of autonomous agents which

collaborate to perform tasks. Each agent implements a MAPE loop that allows for

the interaction with other agents. Figure 2.12, shows how two agents can commu-

nicate via their MAPE loops. Each agent is in a Monitoring state, while executing

2.4. Generic Autonomic Fault Architectures 55

its tasks and monitoring the environment through active handlers. If an issue is trig-

gered between agents (1) or an agent is asked to solve an issue (4), then the Analyze

state is activated. Based on the triggered issue, the corresponding Analyzer is called

(2) and (5). The Planning state is then activated, where all agents involved in the

issue provide a resolution process (Agents A and B). The best resolution is selected

(6), and the Execute process commits the request as being completed (7-9).

Figure 2.12: Collective Planning using the MAPE architecture [13].

Research in [13], has proposed the possibility of modelling CAS systems as an

aggregation of multiple MAPE loops. In future work, they propose to extend their

experiments by adopting the MAPE-K model, where the K (Knowledge) component

can be used to share knowledge among agents and therefore make more context-

aware decisions.

The generic fault autonomic architecture in this thesis, can be applied to the

operation of Cognitive Robots. A cognitive robot possesses the abilities to solve

problems, plan its own tasks and learn from experience just as intelligent systems

in nature do. Research conducted in [14], has put forward an plan for a robust

planning framework for cognitive robots. Using the MAPE-K architectural model,

their framework contains six modules - Planning module, Scene/Object module,

Execution module, Monitoring module, Reasoning module and Learning module.

These modules are connected to sensor and motor interfaces of a robot system - see

Figure 2.13.

2.4. Generic Autonomic Fault Architectures 56

Figure 2.13: Robust Planning Framework for Cognitive Robots [14].

The Planning module constructs high-level plans for given tasks. It uses the

Knowledge Base to aid in the generation of valid plans. If a plan for a given state

is found, then the Execution module can execute the actions within the plan. The

Scene/Object module is responsible for updating the Knowledge Base, based on

data gathered from the environment. The Plan and Monitoring modules receive

information from the Execution module, which monitors the execution of the plan

and if appropriate, detects any failures. The Reasoning module reasons about any

failures that are discovered and alters the parameters of the failed action if required.

The Learning module is responsible for the robot to adapt itself based on experience

gained through actions and how the environment may be affected by those actions.

The research conducted in [14], shows that it is not always necessary to treat

the MAPE feedback back loop as one step after the next. After analyses, it may

be required to return back to the monitoring process if circumstances have changed

within the environment. Updating the Knowledge Base may result in parameter

changes and thus tolerance values to detect faults can also change. Tolerance Adap-

tion is an important part of the generic architecture proposed in this thesis. Toler-

ance values need to be dynamic so that faults are not reported unnecessarily.

2.5. Summary 57

2.5 Summary

This Literature review set out to introduce the concept of Autonomic Computing

and how AC has developed over the years since its conception by IBM in 2001 [41].

The Autonomic Architecture (MAPE-K) has been reviewed as well as alternative

architectures such as Intelligent Machine Design (IMD) and Organic Computing.

Fault classification plays a key role in how faults are interpreted. By their

very complex nature, mobile robots will likely suffer some type of hardware failure

during their lifetime. With mobile robots that operate remotely, faults become par-

ticularly challenging, as these robots are not easily retrieved for repair (for example,

if the vehicle is a planetary rover), and the fault may affect how the robot performs

its tasks. The Autonomic Manager can provide a method for self-diagnosis and self-

healing. Using the autonomic MAPE-K feedback loop as a basis, many researchers

have developed various methods for detecting and handling fault scenarios. How-

ever, there is a noticeable lack of the employment of ’early detection’ methods. In

most research cases, there is a reaction to the fault, rather than a prediction that a

fault may occur. The use of the MAPE-K Knowledge Base is fundamental in using

historical and current data to establish if a fault has occurred or if a fault may be

pending.

Section 2.4.1 in this Literature review, examined how researchers have ex-

tended the MAPE-K architecture and integrated into their existing architectures. A

generic autonomic architecture can be implemented to handle general system ac-

tivities but also handle various types of violations and faults. A common theme

proposed by researchers are the use of policies to handle the various fault scenarios.

Detecting the fault is only part of the problem; finding a policy to compensate is a

key part, as this can restore the system to its original state or at least to a functioning

state. However, policies are only useful if the type of fault occurring is predictable.

Not all fault scenarios are possible to predict; therefore, policies need to be dynamic

so that they can process data that is produced by unpredictable faults.

One of the main objectives of this thesis, is to investigate and experiment with

faults scenarios within a mobile robot system through case studies. Common ob-

2.5. Summary 58

servations and solution elements are then drawn from each case study and used to

design a generic autonomic fault architecture. The motivation here is to not only to

detect faults and provide compensation policies but also to highlight that designers

of mobile robots should endeavour to allow more programmatic access to compo-

nents within the robot, so that if a fault occurs, compensation strategies can be more

effective.

Chapter 3

Research Hypothesis and Method

This chapter presents the overall research directions of this work through guiding

Research Hypothesis. It also presents the method used to shed light on the guiding

research hypothesis.

3.1 Goals
1. Research the main attributes associated with the MAPE-K and IMD models

and establish if they do enough within the autonomic robotic community or

is there areas that can be improved upon.

2. Identify self-awareness (i.e. becoming aware), when establishing a fault sce-

nario within a mobile robot.

3. Using case study methods, identify common design patterns in-order to de-

velop an autonomic generic architecture for handling component faults in mo-

bile robots.

3.1.1 Design Patterns

What design patterns can be identified when defining a solution for fault detection,

analysis and compensation in mobile robots? A design pattern is a reusable solu-

tion to a recurring problem [84]. Re-usability: reusing existing knowledge from

previous designs can reduce development time and decrease complexity. Software

patterns can be applied at three levels: analysis level, design level and implementa-

tion level [85]. This type of design pattern configuration can be applied within the

3.2. Research Method 60

Methodology.

3.2 Research Method

3.2.1 Case Study Methodology

A case study methodology allows an investigation to be carried out relating to a

event within its real-life context. In this thesis, case study attributes are as follows:

Resources - are provided by a fully working robot (Pioneer P3-DX), which is

fitted with multiple sensors. The robot has an internal computer board which can be

assessed remotely in order to run tasks.

Units of Analysis - data from multiple tasks is used to establish if ’threshold’

values are exceeded. Using multiple tasks ensures that evidence gathered reflects

the behaviour of components and sensors accurately.

Generalization and Reliability - Through experimentation, establish that sen-

sors are reporting correct data. Compare the sensor results with established pa-

rameters, so that faults identified are legitimate. Validate ’fault’ data with actual

observations.

Internal Validity - establish patterns within and between each case study. Are

there distinct relationships in the results produced from each case study? It is im-

portant when developing a generic architecture to find common elements. The final

generic architecture, while performing its goals, must remain as simplistic as possi-

ble.

A successful case study demonstrates the potential of the generic architecture

in providing evidence of how faults in robots can be identified, analysed and if pos-

sible repaired. In this thesis, three case studies will be used assist the development

of an autonomic ’generic architecture’; each case study provides a component fault

scenario within a mobile robot. To validate the ’generic architecture’, a further case

study will be implemented. The case studies will form part of a 3 phased structure

- see Figure 3.1.

Creation Phase - the outline proposal of taking elements from the MAPE-K

and IMD models to create a new generic architecture.

3.2. Research Method 61

Evolutionary Phase - as each case study (1-3) is investigated, results from

using awareness, analysis and adjustment methods will contribute to developing

the autonomic generic architecture.

Validation Phase - will demonstrate how the fully formed autonomic generic

architecture can be applied to a further case study (4).

MAPE-K and IMD

Case Study 1

Generic Architecture V1

Case Study 2

Generic Architecture V2

Case Study 3

Generic Architecture V3

Final Generic Architecture

Case Study 4
Ev

o
lu

ti
o

n
a

ry
 P

h
a

se

V
a

li
d

a
ti

o
n

 P
h

a
se

C

re
a

ti
o

n
 P

h
a

se

Undefined Generic
Architecture

Figure 3.1: The proposed autonomic generic architecture phase development using a case
study approach.

3.2.2 Generic Architecture (awareness)

In robotic research, the notion of self-awareness is still a major topic of discussion.

Can a machine develop self-awareness and by doing so, understand its environment,

be in control of its own actions and be responsible for those actions [86]? In research

carried out in [87], a self-simulator was created that allowed a robot arm to self-

model itself by collecting multiple trajectories, each comprising of one-hundred

pointers. The researchers in [87], deliberately created a 3D deformed part of the

arm and the robot was able to detect the ’change’ and re-train its self-model.

Self-awareness forms a fundamental part of the ’generic architecture’ re-

3.2. Research Method 62

searched in this thesis. In Autonomic computing, self-aware is a system’s ability to

’know itself’. A self-aware system must have knowledge of internal components,

their current status and their historical journey.

3.2.3 Generic Autonomic Fault Architecture (Creation Phase)

For the purposes of this thesis, the Generic Autonomic Fault Architecture will be

referenced as AIFH (Autonomic Intelligent Fault Handling) architecture.

The AIFH (Autonomic Intelligent Fault Handling) architecture developed for

this research takes elements from the MAPE-K and IMD architectures. The MAPE-

K architecture can be modified so that subsets of monitor, analyse, plan and execute

functions can be utilized [1]. The AIFH architecture can also adapt attributes from

the IMD architecture. The IMD architecture uses a layer design but only the Routine

layer and Reaction can communicate with the sensors and effectors. Knowledge is

only accessible through the Reflection layer [5] - see Fig. 3.2.

AIFH Architecture MAPE-K Architecture IMD Architecture

Figure 3.2: AIFH Architecture contains attributes from both the MAPE-K [1] and IMD
models [5]

In Section 3.1, a research question was proposed ”Does the MAPE-K and IMD

models do enough to guide the development of autonomic systems for robots or can

they be improved upon?”. The MAPE-K architecture follows a series of steps -

monitor, analyze, plan and execute (using a feedback loop), which could form the

basis of a fault-management architecture. However, does simply monitoring events

and declaring an incident fulfil the demands for an autonomic system? The IMD

architecture uses ’intelligence’ in its decision making in terms of reflection. There-

fore, to attain the desired autonomic performance, intelligent monitoring would be

3.2. Research Method 63

preferable. Not only are reactive incidents reported but also trends in component

behavior is also reported. If a component or sensor can be identified as a possible

risk to the robot’s operational status, then this could prevent a system failure in the

field. Therefore, in this thesis, intelligent monitoring will aid in answering the ques-

tion, ’Becoming ’aware’, what does it mean and how does it work?’. In other words,

not simply reporting a fault but making intelligent decisions about impending faults.

3.2.4 SDLC Methodology

To design the generic architecture, the SDLC (Software Development Life Cycle)

methodology will be applied within each of the case studies (see Chapters 4, 5

and 6). SDLC promotes a well-structured approach to defining each stage of the

case study. SDLC is a standard process of the methodology to structure all steps

necessary to analyse, design, implement and test the system. In general, SDLC

methodology contains the following steps:

1. The system requirements are defined. In particular, what goals are expected

and what resources are needed to achieve those goals.

2. The proposed system is designed. The plans are laid out for the architec-

tural design and what operating systems, software programming and report-

ing mechanisms are required. Design patterns identified.

3. The system is implemented. Analysis performed on collected data by devel-

oping specialized Algorithms.

4. The system is tested. The analysed data is evaluated to produce reports and

specialized algorithms are developed that can alter system parameters if re-

quired.

5. The system is evaluated. Test results should be evaluated for consistency.

Have the goals laid out in the requirements been achieved? What lessons

where learned during the SDLC process?

The main objective in each case study is to develop the AIFH basic model

(see Fig. 3.2), into an autonomic generic architecture that can be used to handle

3.3. Summary 64

component faults in a mobile robot. The case studies are specific to certain systems

within a mobile robot. The first case study is centred around the drive system of

the robot and how a wheel fault can affect navigation objectives. The second case

study is centred around object detection sensors; this case study explores how faults

in sonar sensors can limit the ability of the robot to detect objects. The third case

study is centred around the power resource within the mobile robot; this case study

examines how degradation in the battery power supply can affect how the robot

performs in completing its tasks. Using the SDLC Methodology, each case study

will be laid out as follows:

Requirements: - sets outs the research objectives for the case study and what

goals are to be achieved. The fault scenario (experiment), is explained and what sys-

tems in the robot will be affected. Laboratory setup is explained and what parame-

ters are used to carry out the experiment. Resources required for the experiment are

identified, i.e. hardware and software requirements.

Design: - will show the outline design of the generic architecture and how it

can be applied to evaluating sensor data from a mobile robot. How the evolution of

the AIFH model can identify design patterns and layers within the architecture can

be identified.

Implementation: - shows how data from the sensor/effector/power system

data can be monitored and therefore implement self-awareness. The development

of specialized algorithms to process the data and evaluate the extent of the fault.

Testing/Evaluation: - When the fault data has been analysed, test strategies

can be implemented to establish a method of compensation for the fault. Evaluating

the results will establish if the case study objectives have been achieved.

3.3 Summary

In this chapter, the Goals of the thesis research where identified. The Research

Method chosen was based on case study Methodology. The case study phases

where identified so that the autonomic generic architecture can be developed as each

case study is completed. The basic generic architecture was designed based on the

3.3. Summary 65

MAPE-K and IMD architectural models. Finally, SDLC Methodology is proposed

as means to develop each case study. SDLC offers a well-structured approach, as it

defines each stage of the case study. Chapters 4 - 6 will contain a unique case study

for a fault scenario within a mobile robot. These case studies will help to contribute

to the final Autonomic Generic Architectural design explored in detail in Chapter 7.

Chapter 4

Self-Adaptive Mobile Robot Wheel

Alignment - Case Study

4.1 Introduction

Physical failures in mobile robots can affect hardware components such as effec-

tors, sensors, power units and communication. Section 2.3 discussed Autonomic

Fault Handling and showed how self-diagnosis was concerned with discovery and

evaluation of a fault and self-healing was concerned with recovery and repair from

a fault. In this Chapter, a case study is presented which involves the processing of

sensor data and how that data is interpreted as an indication of a hardware fault. The

case study research example, shows how a fault in the wheel component of a mo-

bile robot can affect how the robot performs regarding dead reckoning. Using the

AIFH autonomic model as a base (see Section 3.2.3), the architecture is expanded

to handle hardware fault diagnosis in mobile robots. Processes are implemented to

establish if a fault exists (Awareness), evaluate the extent of the fault (Analysis) and

finally, to compensate for the fault (Adjustment). These processes are put in-place

so that the mobile robot can still perform at an operational level.

Wheel Fault detection in mobile robots has been the subject of some investi-

gation. Research conducted in [88], shows how wheel faults on mobile robots can

be detected using LMN’s Local Model Networks. Comparisons are made between

the actual wheel parameter output with the LMN model output. If the values are

4.1. Introduction 67

significantly different, then the presence of a wheel fault is greatly increased. The

use of a Kalman Filter for detecting wheel faults is explored by researchers in [89].

They can detect when a mobile robot is experiencing wheel slippage, due to contact

with an object in the local environment. Research conducted in [90], explores the

use of mathematical models to generate residuals. The mathematical model of a

system process is run in parallel to the real system generated by the robot itself.

The difference between the measured process variable and the variable estimated

through the mathematical model, provides the residual values; the goal is to detect

faults as early as possible and provide the User with an adequate warning. Further

research conducted in [91], explores the use of multiple robots that implement a

common shared co-operation algorithm to track the trajectory of individual robots.

The trajectory of the robots is verified using beacons placed within the area in which

the robots operate. If the trajectory of a robot does not follow the desired path, then

a fault is declared against the offending robot. However, their research has yet to

develop a compensation strategy for the estimated fault.

Although there has been considerable research in the detection of wheel faults

on mobile robots, there is very little research concerning the application of the Au-

tonomic Model to detect wheel faults. There is also a lack of research conducted

in the form of compensating for wheel damage in a mobile robot when a fault is

detected. For the case study presented in this Chapter, wheel faults are introduced

into real robots and handled using the Autonomic Management approach.

This case study is organized as follows: Section 4.1.2 describes how the Re-

search Methods is implemented by utilizing the SDLC (Software Development Life

Cycle) model. Section 4.2 presents Conceptual Requirements which describe the

Research question, goals and resources needed to complete the case study. Section

4.3 presents the Conceptual Design and describes how the Autonomic Manage-

ment System has been adapted to provide self-awareness, self-analysis and self-

adjustment, when dealing with mobile robot faults. Section 4.4 presents Imple-

mentation of the wheel alignment fault scenarios and how Awareness, Analysis and

Adjustment have been used to evaluate and compensate for a fault. Section 4.5

4.1. Introduction 68

demonstrates through testing, how the compensation algorithm for the wheel align-

ment fault performs; results from the testing are then analyzed. Section 4.6 presents

an evaluation of the case study. Section 4.7 concludes the case study with a sum-

mary statement.

4.1.1 Introducing the basic AIFH model

The AIFH architecture consists of two sections: the System Manager and the Au-

tonomic Manager. The System Manager provides the communications between the

hardware components (i.e. sensors and effectors), to the Autonomic Manager. The

System Manager also provides the interface between the robotic system and the

human interface. The Autonomic Manager contains 3 main elements: Awareness,

Analysis and Adjustment. Each of these elements are connected via a feedback loop

which orchestrates the flow of data within the Autonomic Manager. As each case

study is developed, the AIFH architecture will evolve, as different fault patterns are

identified and applied to the final generic architecture.

EFFECTORS

Analysis

Adjustment

Autonomic
Manager

Awareness

SENSORS

System
Manager

Feedback loop

Figure 4.1: The basic AIFH model.

4.1.2 Research Method

The SDLC model approaches solving a given problem in well-defined steps. Figure

4.2 shows how the SDLC Model can be applied to the Autonomic Self-Adaptive

Robot Wheel Alignment case study.

4.1. Introduction 69

Requirements Design Implementation Testing

Research Question: can
Autonomic Management
be implemented so that
self-awareness , self-
diagnosis and self-
healing techniques can
be employed to handle
component faults in
robots?

Designing the current
robot System to
integrate with the AIFH
Autonomic model and
further develop the
generic architecture .
Implementation of a
State Machine to assist
on the detailed design.

Monitoring the data
from the sensors.
Using the Knowledge
Base to determine if
there are anomalies.
Analyse the fault data
and recommend a plan
to compensate for the
error.

Using Autonomic
Management, execute
the compensation
algorithm an observe if
the robot can self-adapt
to the changing
environment. Do the
performance results
reflect the changes
made?.

Figure 4.2: SDLC Model used in the research methodology for Autonomic Wheel Align-
ment

For the purpose of this case study, the SDLC model from Figure 4.2 is em-

ployed. SDLC model ensures that all the work carried out within the case study is

documented and results generated.

• Requirements - lays out the broad research objectives of the particular case

study. It is a detailed investigation of the system and is carried out in ac-

cordance to the objectives proposed. It involves a detailed study of various

operations performed by the system and their relationships within and out-

side the system [92]. To develop the research question successfully, physical

components such as the Pioneer P3-DX robot and LMS 200 laser are required.

The robot will also require wheels that are in optimal condition and wheels

that are damaged (damaged wheels are achieved by altering the internal foam

structure of the robot wheel, thereby causing the effect of a ’flat’ tyre).

• Design - based on the information collected at the requirements stage. The

logical system design is arrived at as a result of system analysis and how it

is converted into physical system design. The SDLC process moves from the

what in the requirements phase to the how in the design phase [92]. For this

case study, the design is concerned with applying the Autonomic Model to

handle how the robotic system can adapt to the discovery of a component

fault. In Chapter 3, Section 3.2.3, the initial concept of the AIFH architecture

4.1. Introduction 70

was introduced. In this case study, the findings accumulated in the autonomic

wheel alignment research, will provide a means to develop the AIFH archi-

tectural model. The layers contained in the AIFH architecture are Awareness,

Analysis and Adjustment. Self-Awareness is the most important, as it is an

indicator to the mobile robot autonomic manager that there is a fault within

the system. Self-Analysis is used to evaluate the extent of the fault. Self-

Adjustment takes the analyzed data and applies a specialized algorithm to

compensate for the fault.

The design phase is also concerned with how a State Machine design, which

is based on the MRDS (Microsoft Robotics Development Studio) CCR (Con-

currency Co-ordination Runtime) [58], can be implemented to handle the

complicated process of fault analyses and fault compensation on the mobile

robot.

• Implementation - the system design needs to be implemented to make it a

workable system. To create the wheel alignment experiment, the robot is first

fitted with two wheels working at optimal performance. The robot tasks are

performed, and the wheel alignment data is collected. The second phase of

the experiment involves fitting the robot with a damaged wheel. The robot

tasks are then run again, and the wheel alignment data is collected. In this

case study, programming is implemented to allow the Autonomic Manager

access to the sensor data in the AIFH Knowledge Base. Further programming

is implemented to evaluate any fault data that supplied by the Monitoring

process. When the fault has been identified, then additional programming is

required for formulate a possible compensation strategy.

• Testing/Evaluation - involves system integration and system testing of the

programs and procedures coded at the implementation phase. Testing is a

method of testing the system against the requirements and design. For this

case study, testing will involve evaluating the P3-DX robot on how wheel

alignment performs with ’no wheel damage’ and ’with wheel damage’. Test

4.2. Conceptual Requirements 71

Strategy:

1. Run the robot tasks with the robot fitted with two fully operational

wheels.

2. Does the robot arrive at the expected destination when operating with

no wheel damage?

3. Is the wheel alignment data for the ’no wheel damage’ test, within tol-

erance values?

4. Does wheel alignment data suggest that there could be a possible wheel

fault in the future?

5. Run the robot tasks with the robot fitted with one damaged wheel.

6. Does the robot arrive at the expected destination when fitted with a dam-

aged wheel?

7. How much is the alignment tolerance value compromised with the robot

fitted with a damaged wheel?

8. With the wheel alignment fault identified, run the robot tasks using the

compensation algorithm.

9. Is the wheel alignment data for the ’wheel damage’ test, within tolerance

values?

10. How did the compensation algorithm perform when adapting intervals

during the robot tasks?

4.2 Conceptual Requirements

The Requirements phase in a SDLC model is the most crucial step in creating a suc-

cessful case study. Requirements define the problem, objectives and the resources

needed to complete the study.

4.2. Conceptual Requirements 72

4.2.1 Research Question

4.2.1.1 Goals

Using AIFH model (see Fig. 3.2), as a baseline, the AIFH architecture is further

developed in this case study to establish if an autonomic architecture can be used to

detect and compensate for robot component faults.

• Awareness - can Monitoring past and present experimental data, allow the

Autonomic Manager the ability to decide if there is a wheel fault on the robot?

• Awareness - can Monitoring past and present experimental data highlight any

trends that the wheel alignment data may be suggesting an impending fault?

• Analysis - can Analysis provide the means to establish the extent of the fault?

• Adjustment - can Planning/Execute provide a policy that will compensate

for the fault in the wheel component?

4.2.1.2 The Experiment

Using the Pioneer P3-DX robot fitted with the LMS 200 laser. The LMS 200 laser

is used to measure the distance from the P3-DX robot to the laboratory wall. The

laser is important in this experiment as it can accurately measure distance values

and therefore wheel alignment values can be calculated.

In laboratory conditions, the robot is driven on a parallel course at a fixed dis-

tance from the wall for not more than 2 meters. This robot is then turned 180 ° and

the procedure is then repeated several times. Before the robot begins each ’run’,

the laser is used to record the distance the robot is from the laboratory wall. This is

repeated when the robot comes to a stop and before it is rotated for the next run. The

distance data collected by the laser component, is stored on a database for analysis.

The first experiment is conducted with both wheels on the robot are fully opera-

tional - data is then collected and ’wheel alignment’ performance is then evaluated.

The second experiment is conducted with the robot fitted with one damaged wheel.

Fitting the mobile robot with one damaged wheel is significant, as it shows how a

4.2. Conceptual Requirements 73

wheel fault will affect wheel alignment performance. The third experiment is con-

ducted using a slightly damaged wheel. This experiment is concerned with flagging

to the User or Mission Control, of a possible impending fault. Although the wheel

alignment data will be within tolerance values, the aim of the experiment is to show

that even slight changes to wheel alignment readings could mean a possible wheel

fault in future operations.

4.2.2 Resources required

4.2.2.1 Hardware setup

Experiments carried out in this case study are conducted using a Pioneer P3-DX

robot. The Pioneer P3-DX robot has two independent drive wheels, plus an addi-

tional caster wheel for stability. The internal drive uses a Proportional Integrated

Derivative (PID) system with wheel encoder feedback to adjust a pulse-width mod-

ulation (PWD) at the internal motor drivers to control the power to the motors [93]

- see Figure 4.3.

Figure 4.3: Pioneer P3-DX research mobile robot.

The P3-DX mobile robot is fitted with an LMS 200 Laser. The LMS 200 is a

laser that is capable of measuring distances out to 80m over a 180° arc. The sensor

operates by shinning a laser via a rotating mirror. As the mirror spins, the laser

scans 180° , effectively creating a fan of laser light. Any object that breaks this fan,

reflects laser light back to the sensor. Distances are calculated based on how long

the laser light takes to bounce back to the sensor - see Figure 4.4.

4.2. Conceptual Requirements 74

180°

(a) (b)

(c)

Figure 4.4: (a) The LMS 200 Laser has 180 ° field of view. (b) The laser creates a fan of
laser light that scans from right to left. (c) Objects are detected by breaking the
laser fan projection.

4.2.2.2 Laboratory setup

For the laboratory experiment (as described in 4.2.1.2), the P3-DX robot is setup

parallel to the laboratory wall. The laboratory wall is used as a reference marker.

The LMS laser fitted on the P3-DX robot is used to measure the distance the robot

is from the laboratory wall. In Figure 4.5, points A1 and A2 represent the distance

(using the laser), the robot begins a task from the wall. Points B1 and B2 represent

the distance the robot is from the wall at the end of the task. The tolerance value is

set and stored in a database for reference when tasks are executed. If the B2 value

exceeds the tolerance limit, then this would represent a wheel alignment fault.

B2

Laboratory Wall

B1 A1

A2

Pioneer P3-DX

LM2 Laser

Tolerance Limit

Expected Path

Figure 4.5: Pioneer P3-DX wheel alignment laboratory setup.

4.3. Conceptual Design 75

4.3 Conceptual Design
The Requirements in Section 4.2 have provided a mechanism to fulfil the case study

experiment. This Section is concerned with conceptual design and how the auto-

nomic principles can be applied to dealing with ’wheel alignment faults’.

4.3.1 Developing the AIFH Architecture for wheel alignment

fault handling

Using the basic AIFH architecture introduced in Figure 4.1, the Autonomic Man-

ager and System Manager are expanded to form the elements required to process

faults in mobile robots. The three processes discussed in Section 4.1.1, Awareness,

Analysis and Adjustment, are arranged in 3 layers. The Autonomic Manager man-

ages the communication between each layer and how the knowledge base is shared.

In the MAPE-K architecture [1], the Autonomic Manager implements an intelligent

control loop that is made up of four parts. Each part communicates and collaborates

with one another and share appropriate data (knowledge). For the AIFH (Auto-

nomic Intelligent Fault Handling) model, two separate control loops are required -

Reactive Loop and Proactive Loop.

• Reactive Loop - this control loop is concerned with making decisions based

on the current component state. The Reactive Loop is initiated by the Sys-

tem Manager, as tasks are been carried out by the robot. The Reactive Loop

passes through each Layer within the Fault Handling Architecture. This con-

trol loop is responsible for passing fault data between each layer. Finally, the

Reactive Loop will communicate and provide data to the System Manager, if

task adjustments are required to compensate for a fault.

• Proactive Loop - this control loop is concerned with processing historical

data with current data. The Proactive Loop can make decisions based on

performance trends from sensors and effectors. This control loop is based in

the Awareness Layer and reports unusual readings to the User Interface which

is based in the System Manager.

4.3. Conceptual Design 76

EFFECTORS

Knowledge

Analysis

Calculate the error values
related to the wheel

alignment fault.

Adjustment
Calculate the necessary
adjustments required to

compensate for the
alignment error.

Knowledge

Knowledge

Autonomic Manager

Reactive Control Loop

Proactive Control Loop

Awareness

Check that robot has
arrived at its expected
destination. Check for

unusual readings

A
n

al
ys

is
 L

ay
er

A

d
ju

st
m

en
t

La
ye

r
A

w
ar

en
es

s
La

ye
r

SENSORS

System
Manager

Initiate

Feedback

Reporting

Laser
Readings

Robot Drive
Commands

Knowledge Path

Reporting

User

Interface

Figure 4.6: Autonomic Management System for Wheel Alignment case study.

Figure 4.6 shows the Autonomic Manager and System Manager for the Wheel

Alignment case study. The System Manager is responsible for handling task pa-

rameters, sensor control and effector control. While the System Manager is running

a task, the distance readings taken by the LMS 200 laser (from the mobile robot

to the laboratory wall), are recorded into a database as Knowledge. As each task is

completed, the Autonomic Manager Reactive control loop is executed. The distance

data contained in the database table provides the Autonomic Manager with ’knowl-

edge’ of how the robot is performing regarding its wheel alignment accuracy. The

Awareness Layer is responsible for checking the distance readings from each task

against a known tolerance value (stored in the database and calculated when setting

up the laboratory experiment - see Section 4.2.2.2). If the robot alignment data is

above expected tolerance value, then the task data is passed to the Analysis Layer.

The Proactive control loop that is initiated in the Awareness Layer, will process dis-

tance readings that are within tolerances but are showing a trend that may suggest

that a fault may be impending. These ’suspect’ readings are flagged to the System

4.3. Conceptual Design 77

Manager User Interface. The Analysis Layer is responsible for evaluating fault data

sent by the Awareness Layer. The Analysis Layer uses policies contained in the

knowledge base to establish the how much the robot has strayed from its expected

destination; this is known as the error offset angle value. The data gathered in the

Analysis Layer is then passed to the Adjustment Layer. In the Adjustment Layer,

the angle of turn value is then calculated. The angle of turn is important as it pro-

vides the mobile robot a rotation angle value that will allow the robot to slew back

towards its intended path. The Adjustment Layer uses a wheel alignment compen-

sation policy from the knowledge base, which implements the angle of turn value.

This policy (algorithm), adapts a stop-rotate strategy to allow the robot to slew back

towards its intended path. The System Manager uses the fault compensation data

from the Adjustment Layer to control the robot’s movement via the effectors.

The Autonomic Management System for the Wheel Alignment case study

shows how autonomic self-awareness, self-analysis and self-adjustment is integral

in establishing if there is a fault in the wheel alignment of the mobile robot. It is

important that the robot is Aware that there could be a possible fault and that it re-

quires investigation. Self-awareness is also key, as it not only reports faults that are

obvious (like a severely damaged wheel) but it also reports any subtle changes in the

wheel alignment data that could predict a possible fault in the future. With a wheel

alignment fault identified, then the autonomic self-adjustment process is important

for the robot to continue to function. When the fault data has been analysed, then

this data can then be applied to a compensation policy. The compensation policy is

dynamically designed so that various faults scenarios can be handled depending on

the severity of the wheel damage. When the compensation policy is applied to the

wheel alignment fault, then the System Manager will initiate the autonomic reactive

control feedback loop and therefore will trigger the Awareness Layer to check that

the robot is within expected tolerance values.

4.3.2 State Machine

Software development for this case study was carried out using the MRDS frame-

work. MRDS is a service-oriented programming model that allows the creation of

4.3. Conceptual Design 78

asynchronous and state-driven applications [94]. Code implementation is carried

out using the C# language in Microsoft Visual Studio. Database work was engi-

neered using Microsoft SQL Server and User defined stored procedures. To create

the robot tasks for the case study, requires the design of an event driven and state-

based behavior process, using a state machine - see Figure 4.7.

MOVING

READINGS

START

Adjust
heading angle

Take laser reading at

destination point

Record to database

Moving

Task

setup

values
Move required

distance

Error detected,

adjustment

required

STOP

User Form
Values

End task

Process task values

from database

DATABASE

USER INTERFACE

WHEEL ALIGNMENT ADJUSTMENT SYSTEM PROCESSING

System
Processing

Record to
Database

Move a specified

distance before next

adjustment Move

completed

Laser
Readings

Figure 4.7: State Machine Design for the case study Wheel Alignment Error.

In the MRDS framework, as each state is executed, transitions are added.

These transitions are triggered by notifications received from Partner services [95].

The System Processing ’state’ (see Figure 4.7), is executed after the robot has com-

pleted a series of tasks. If necessary, the System Processing can initiate the ’Wheel

Alignment Adjustment’ state.

4.3.3 Knowledge Base - applied to AIFH

In IBM’s Autonomic Blueprint [47], Knowledge source is described as containing

different data types such as symptoms, policies, change requests and change plans.

4.3. Conceptual Design 79

This knowledge can be stored and shared among autonomic managers. For auto-

nomic fault handling, knowledge base is important not only to store historical data

but also, data such as tolerance values, real-time component data, adjustment poli-

cies and symptoms. In research conducted in [96], they use the Knowledge Base to

store Recovery Patterns. When a component failure occurs, the autonomic will then

select the appropriate recovery pattern(s) to compensate for the fault. Knowledge-

based approaches can use SDG (Signed Direct Graph), to represent the topology

of the robotics system. Faulty expressions can be associated with both hardware

and software faults. These expressions can be represented as nodes such as sensors,

actuators and feed-back. Each node stores a value and a limit/above within the node

is considered as been faulty [97].

Knowledge Base

Historical
Data

Tolerance
Values

Real – time
data

Policies

Input

Sensor Data

AWARENESS

ANALYSIS

AWARENESS ANALYSIS

ADJUSTMENT

AWARENESS

Sensor Data

Output

Symptoms

AWARENESS

Dynamic
Parameters

AWARENESS

ANALYSIS ANALYSIS

Autonomic Manager

From System Manager

Figure 4.8: Knowledge Base - how knowledge is partitioned to reflect autonomic fault han-
dling in a mobile robot.

Figure 4.8 shows how the knowledge base can be implemented in autonomic

fault handling for a mobile robot. Sensors data (provided by the System Manager),

is filtered by the Autonomic Manager, so only relevant information is available to

the knowledge base.

• Real-time data - is available to the Awareness Layer, so that any anomalies in

the data can be quickly identified.

• Tolerance Values - these values are used by the Awareness Layer to check

4.4. Implementation 80

that sensor data is within threshold limits. Tolerance Values can also be up-

dated by the Analysis Layer if behavior changes require threshold limits to be

adjusted.

• Dynamic Parameters - used to compare a component value with a ’dynamic’

value stored in the Knowledge Base. If they are equal, then action can be

taken within the Awareness Layer or Analysis Layer.

• Historical Data - over time, sensor data is recorded into the Knowledge Base

for evaluation. This data can be used to evaluate the performance of each

sensor as the robot completes its tasks.

• Symptoms - if sensor readings are trending towards tolerance limits, then

’symptoms’ data can be stored here and made available to the User Interface

or Mission Control, to alert of possible impending faults. ’Symptoms’ data is

the responsibility of the Awareness Layer.

• Policies - these are specialized algorithms used to analyze data that has been

flagged in the Awareness Layer to indicate a possible fault. The policies con-

tained in the Analysis Layer can evaluate the extent of the fault. This ’evalu-

ated’ data is then passed to the Adjustment Layer. The policies contained in

the Adjustment Layer are used to compensate to the fault.

4.4 Implementation
The Conceptual Design in Section 4.3 provided the architectural Autonomic Model

for handling the alignment fault. The Implementation Section will show how the

fault data is analyzed and how an adjustment algorithm can be formulated to com-

pensate for the fault.

4.4.1 Robot Task Data Evaluation

Using User input values, the robot performs a series of tasks. The readings from

each task are recorded in the SQL database. After a series of tasks are completed,

4.4. Implementation 81

the evaluation algorithm is executed to establish if the data received is within tol-

erance limits. This evaluation algorithm contains a Standard Deviation equation

(non-grouped data), which produces a performance value that can be compared to

the expected tolerance value. Table 4.1 shows testing carried out using the P3-DX

robot and LMS laser finder. Test Scenario A represent the robot operating with both

drive wheels at optimal performance. Test Scenario B represents the robot operat-

ing with one damaged wheel. A ’damaged’ wheel is simulated by removing some

of the inner packing structure of the wheel. The means the wheel cannot support

the robot fully and causes the robot to slew to one side.

Table 4.1: Pioneer P3-DX wheel alignment testing - the numbers represent the amount in
millimetres (mm) that the robot was from its required destination point, after
each task.

Pioneer P3DX Wheel Alignment Testing
Test Scenario A: for a Robot with two wheels in optimal condition (tasks 1-50) SD

1-10 2 9 -9 -4 -5 -7 -22 -7 -6 -5
11-20 -8 -13 -13 11 -14 4 -13 2 -6 -6
21-30 3 -11 -12 -10 4 -10 9 -11 -4 -2 8.57
31-40 -5 -10 -8 2 -7 -12 3 -5 -14 10
41-50 6 -2 -7 4 -13 5 8 3 -4 7

Test Scenario B: for a Robot with one slightly damaged wheel (tasks 51-60) SD
51-60 -35 -49 -56 -61 -54 -69 -55 -64 -31 -45 12.16

Significant changes to the standard deviation (SD) value shown in Table 4.1

indicated that there was an error with the ’wheel alignment’ on the Pioneer P3-

DX robot. The Autonomic Manager (Monitoring) process identifies that there are

significant changes in the SD values by comparing the SD Tolerance value set in

the Tolerance database table with the SD value produced by the robot tasks. Using

the Autonomic Manager, the robot is now Aware that there is a fault in the ’wheel

alignment’ functionality. Figure 4.9, shows the path of the robot over a predefined

distance using (a) where both wheels are at optimal performance and (b) where one

wheel which has been damaged.

4.4. Implementation 82

D
is

ta
n

c
e
 t

ra
v
e
ll

e
d

 b
y
 R

o
b

o
t

Distance of Robot from the Wall

Expected path

Robot path

Wall

D
is

ta
n

c
e
 t

ra
v
e
ll

e
d

 b
y
 R

o
b

o
t

Expected path

Robot path

Wall

Error offset

Distance of Robot from the Wall

(a) (b)

Fig.2 (a) (b)

Figure 4.9: Graph (a) shows the path of the robot with both wheels at optimal performance.
Graph (b) shows the path of the robot with one wheel in a damaged state.

The ’Error Offset’ value can be used as part of the parameters required to cal-

culate the angle of error value. The consequences of this fault are that the robot will

not arrive at its expected destination point and thus will inhibit any tasks assigned to

the robot. Now that the robot is slewing away from its expected destination point, to

correct the alignment error, the robot will need to adjust its heading ’angle’ at cal-

culated intervals during its journey. To achieve this, the robot would travel a certain

distance, stop, then turn itself back toward the expected path, then move forward

again.

4.4.2 Wheel Alignment Error Evaluation

Now that an alignment error has been established in Section 4.4.1, analysis is re-

quired to define the extent of the error. In-order to slew the robot back towards its

destination path, then the angle error value is required. The angle error value is

calculated using trigonometry - see Figure 4.10

4.4. Implementation 83

a
𝛼

𝛽

b

c

A2

Wall

A1

B2

B1

Figure 4.10: The Pioneer P3DX robot with a damaged wheel: this caused to the robot to
slew to the right. A1 to A2 represents the expected distance the robot should
be from the wall. B1 to B2 represents the average distance the robot was offset
from the expected destination point.

Using the values take from Test Scenario B (see Table 4.1), an average distance

from which the robot was from the expected destination is calculated. Using a

Right-Angled Triangle equation (see (4.1)), the angle between the Hypotenuse side

and the Opposite side is calculated (see Figure 4.10). The angle of error value

(AE), is then used to establish the angle of turn needed for the robot to make its

heading adjustment.

AE(α) = sin−1
(

a
c

)
(4.1)

4.4.3 Wheel Alignment Error Compensation

AE

AE

AE
AA

I

R1
R2

R3

Robot position
Robot path
Robot path (with damaged wheel)

P

Figure 4.11: Represents how the angle of turn is calculated for robot alignment error com-
pensation.

4.4. Implementation 84

The angle of turn calculation is established using the values represented in Fig.

4.11. The R1, R2 and R3 represent the robot’s position during its journey. When

the robot reaches the position I (interval), the robot is commanded to stop. Angle

AE represents the angle of the wheel alignment error calculated in Fig. 4.10. The

AE angle value is then doubled. The reasoning behind this is that twice the AE

values are required to bring the robot back to the expected path. The (2*AE) value

is then divided by the number of intervals at which the robot is required to stop. The

angle AA represents the angle of turn needed to allow the robot to re-establish the

expected journey path marked as P. The robot heading angle is then adjusted, the

robot is turned on its axis according to the angle of turn AA, see equation (4.2).

The robot continues its journey by moving forward on its new heading for another

interval.

AA =
2AE

I
(4.2)

The more intervals (when the robot stops and adjusts its direction of travel),

the more accurate the robot journey will be in terms of keeping to the original path.

In equation (4.3), the interval distance is represented by ID and total distance is

represented by TD. The interval distance is calculated as follows:

ID =
T D

I
(4.3)

There is now enough data collected in Section 4.4.2 and Section 4.4.3 to com-

pose an compensation algorithm for implementation. Algorithm 1, shows the robot

task parameter data required (distance and number of intervals). If the robot ’error

offset’ value is greater than the tolerance range then the value of the ’angle error’

is calculated. As the robot is running its tasks, the robot will stop at the predefined

interval value and then rotate towards its original destination path. This will repeat

until the robot has reached its destination point.

4.4. Implementation 85

ALGORITHM 1: Robot Wheel Alignment Fault Compensation
Input: offsetValue = how far the robot is from expected destination point.

toleranceRange = if this value is exceeded, then an error has
occurred
ni = number of required intervals
dis = distance for robot to travel
id = interval distance

Output: The angle of adjustment required (AngleO f Ad justment) to turn
the robot when an interval.

cd = current distance traveled by robot
id = dis/ni
if (o f f setValue >toleranceRange) then

AlignmentErrorAngle (ae) = sinθ(RightAngle− equation);
Angleo f Ad justment (aa) = 2∗ae/ni;

end
while cd <dis do

Adjust the Robot direction at interval setting (id);
if (dis mod id = 0) then

StopRobot();
RotateRobot(aa);
MoveRobot();

end
cd = updateCurrentDistanceTravelled();

end

4.4.4 Wheel Alignment Data Trending

The Awareness Layer (discussed in Section 4.3.1), is not only responsible for de-

tecting wheel alignment errors but also to highlight alignment data that may suggest

that there could be possible wheel fault in the future. The Awareness Layer initi-

ates the Proactive control loop to handle this process (see Fig. 4.6). If action can

be taken before a fault actually occurs in real-time, then this could have a positive

effect on mission objectives and resources.

Using a slightly damaged wheel on the Pioneer P3-DX, it is possible to create

wheel alignment data that is significantly different to the normal wheel alignment

data (no wheel damage) but still within tolerance levels.

4.5. Demonstration (testing) 86

Experiment 1

Experiment 2

Experiment 3

Tolerance Line

Figure 4.12: This chart shows the how wheel alignment data for a slightly damaged wheel
can be used to signify a possible impending fault.

Figure 4.12 shows wheel alignment experiments carried out on the P3-DX

robot. Experiments 1 and 2 are conducted using two fully working wheels with no

reported damage. Experiment 3 is conducted with a slightly damaged wheel fitted

to the robot. There are significant changes in the alignment data for experiment 3

compared to experiment 1 and 2 - but not severe enough to signify a tolerance fault

warning.

As part of the Autonomic Manager (Awareness Layer), evaluation of this wheel

alignment data provides Users (mission operations), the ability to decide if a course

of action is required in terms of mission objectives or indeed to replace hardware

components.

4.5 Demonstration (testing)

In Section 4.4 the implementation of the Autonomic Wheel Alignment process

showed how analysis was able to calculate the extent of the alignment fault and

how further calculation performed (see Algorithm 1), provided a means for com-

pensating for the fault. This Section shows how the wheel alignment compensation

algorithm affects the performance of the mobile robot tasks.

4.5. Demonstration (testing) 87

4.5.1 Using intervals in the fault compensation policy

When the mobile robot has engaged the fault wheel alignment compensation policy,

then strategy needs to be formulated for how many intervals are required for the

robot to complete its tasks. An interval is defined as the point where the robot

is stopped and turned on its axis back towards its expected route path. In Table

4.2, the number of intervals will dictate the value of the Adjustment angle and the

maximum offset value.

Table 4.2: Comparing offset values using a given number of intervals

Pioneer P3-DX wheel alignment testing.
Distance to travel Number of

intervals
Adjustment Angle Maximum offset

error value
2000mm 1 12° 44mm
2000mm 2 6° 26mm

In figure 4.13, results using the wheel alignment compensation algorithm,

show that the more intervals employed, then the greater the accuracy of the robot

to track its expected path. This could be vital if the robot is required to drive down

a narrow channel, where the error offset value is within the limits of the terrain.

However, although a greater number of intervals gives greater accuracy, the more

times the robot stops and rotates, then this will have an impact on resources like

power consumption. Furthermore, the more intervals employed will also increase

the time it will take for the robot to complete its tasks, as each interval requires the

mobile robot to stop.

In Section 4.4, Test Scenario B (see Table 4.1) showed how the wheel align-

ment fault caused the robot to veer off course and therefore triggered the SD (stan-

dard deviation) value to rise above the tolerance value. Table 4.3 shows how the

wheel alignment compensation algorithm has resulted in the robot now operating

within tolerance values.

4.6. Evaluation 88

Distance of Robot from the Wall

D
is

ta
n

c
e
 t

ra
v
e
ll

e
d

 b
y
 R

o
b

o
t

Expected path

Robot path

Wall
Max. error offset

Using 1 Interval

Expected path

Robot path

Wall
Max. error offset

Distance of Robot from the Wall

D
is

ta
n

c
e
 t

ra
v
e
ll

e
d

 b
y
 R

o
b

o
t

Using 2 Intervals

Fig.3

(a) (b)

Figure 4.13: Using the wheel alignment compensation algorithm, the robot journey accu-
racy is increased when the number of intervals is also increased. (a) Robot
journey uses one interval. (b) Robot journey uses two intervals.

Table 4.3: Pioneer P3DX wheel alignment testing - the numbers represent the amount in
millimetres (mm) that the robot was from its required destination point, after
each task.

Pioneer P3DX Wheel Alignment Testing
Test Scenario C: a Robot with damaged wheel using compensation algorithm. SD

-7 8 6 -5 4 -15 -7 3 6 -1 7.91

4.6 Evaluation
This case study posed a problem of how to detect a wheel fault on a mobile robot

and then how to compensate for that wheel fault. In earlier experiments conducted

around ’wheel alignment’ [15], the X80 robot was used along with ’indoor’ GPS

to track the movements of the robot. GPS data was used to evaluate the wheel

alignment data and algorithms where then implemented (Arc and Wave methods),

4.6. Evaluation 89

to compensate for the alignment error. The Arc Method [15], used the wheel align-

ment error data to point the robot in a direction that would take into account the

reported slewing error. The Arc Method was only effective if there where no ob-

jects in the path of the robot. The Wave Method [15], used a tacking routine, where

the robot’s direction is periodically adjusted back towards the intended route path.

This method allowed the robot to stay close to the expected journey path and there-

fore could avoid any potential obstacles. Although these methods had some success,

the accuracy of the GPS was sporadic and unreliable. The wheel alignment com-

pensation algorithm results showed improvement, but they where still far from the

’perfect alignment’ value that was required, see Figure 4.14.

Figure 4.14: This chart shows the how the Arc Method and the Wave Method compensation
algorithms improved the wheel alignment error on the X-80 robot [15].

The Pioneer P3-DX robot (equipped with the LMS 200 laser), was then intro-

duced to the case study. The accuracy of the laser provided a reliable source for

wheel alignment data. The wheel alignment experiments where first tested against

the robot with no wheel damage. This was a useful experiment as it verified the

accuracy of the laser readings and tested that the ’proportional drive’ system on

the robot was working as expected. Experiments with a damaged wheel fitted to the

robot initially worked well but the main issue was that the robot was slewing consid-

erably away from its expected path before the compensation algorithm could adjust

4.7. Summary 90

its heading back towards the expected path. To overcome this, intervals where in-

troduced to the robot task. At each interval, the robot is stopped and then using the

compensation algorithm, its heading is adjusted back towards the expected path.

This reduced the slewing or error offset value and therefore improved how the robot

followed its expected route path.

Using the AIFH architecture a Reactive and Proactive control loop was in-

tegrated into the system using an Autonomic Manager. The Autonomic Manager

worked alongside the System Manager, so that the robot tasks are constantly mon-

itored. The Autonomic Manager consisted of three layers - Awareness, Analysis

and Adjustment. Self-awareness has the ability to detect and report on component

faults within a robot. Self-awareness is more than just monitoring the system data.

Self-awareness can interpret the data and inform Users of possible impending faults

rather than just reacting to a ’alarm’ type fault. Self-analysis is key to determine the

extent of a fault. This information is crucial to determine if the fault can be com-

pensated for. Self-adjustment allows the robot to continue to function even when

operating with a faulty component.

4.7 Summary

The Autonomic Self-Adaptive Robot Wheel Alignment case study set out to demon-

strate how an Autonomic Management System can be implemented to handle com-

ponent errors within a mobile robot such as the Pioneer P3-DX. The System De-

velopment Life Cycle (SDLC) was implemented as a research model to describe a

sequence of activities including requirements, design, implementation and testing.

The Research question posed for this case study stated - if the AIFH architecture

(derived from the MAPE-K autonomic model and IMD model) can be applied to

detecting wheel alignment faults on a mobile robot and if possible, compensate for

those faults? Can the mobile robot adapt to its changed environment and continue

to function even with a wheel alignment fault?

The AIFH ’Knowledge Base’ was used to store ’task’ data from the mobile

robot and to provide ’tolerance’ checking against the ’wheel alignment’ results.

4.7. Summary 91

By comparing historical data and current data, the Autonomic Manager Aware-

ness Layer flagged up that there was a fault with the wheel alignment on the robot.

The Awareness Layer is also capable of determining if the wheel alignment results,

which are within tolerance limits, are significant enough to alert Users or Mission

Control that there could be possible wheel fault in future robot tasks. The Aware-

ness Layer then passes all wheel alignment fault data to the Analysis Layer. The

Autonomic Manager Analysis Layer was then able to establish the extent of the fault

and provide fault data to the Autonomic Manager Adjustment Layer. A compensa-

tion algorithm was implemented to adjust the robot ’task’ parameters and therefore

compensate for the fault. Although the compensation algorithm was implemented

successfully, there where consequences regarding the operation of the mobile robot

in terms of power consumption and journey time.

The research carried out in this case study provides a valuable experience in

providing data in the implementation of a Generic Autonomic Architecture for fault

handling in a mobile robot (see Chapter 7).

Chapter 5

Autonomic Sonar Sensor Fault

Management for Mobile Robots -

Case Study

5.1 Introduction

This case study is concerned with how the Autonomic Model (discussed in Chapters

2 and 3), can be applied to dealing with a sonar sensor faults on a mobile robot.

Ultrasonic range sensors are common on research robots like the Pioneer P3-

DX. Sonar sensors are used to detect objects which are in the same plane as the sen-

sor itself. This is referred to as the 2D assumption. The sonar sensor is mounted in

such a way that their acoustic axis is parallel to the floor [98]. Although traditional

ultrasound sensors do not operate in a vacuum environment, they can be adapted to

work on planets such as Mars, if the mechanism for generating the acoustic wave is

effective in a thin atmosphere [99]. Mobile robots that operate in remote locations

have a high demand on hardware reliability. Planetary rovers use both camera and

sensors to navigate environment around them. Sensor failure would mean a severe

impact on mission objectives. Planetary rovers such as SR2 described in [100],

use range finders to help the robot detect nearby objects. Traditional fault toler-

ance techniques have been employed by researchers in [101], using adapter sensor

analysis. Further studies have shown that by comparing the known state and the

5.1. Introduction 93

actual sensor feedback of a collections of sensor nodes, can lead to the detection

of single sensor drop-outs. If sensor failure is identified, then compensation could

be possible by using known values instead of measured ones [102]. Detection of

abnormal behaviour in sensors can also be achieved by comparing sensor data with

neighbouring sensor data [79]. In this research, the authors take input readings of

the sensors and subject them to a correlation test that determines which sensors are

correlated to each other. In this case study, the data from suspected sonar sensors is

checked by using adjacent sonar sensors. If the results between the sonar sensors do

no match, then the sensor is flagged as requiring detailed analysis. Although previ-

ous research has been conducted on the performance of sonar sensors, no published

research has dealt with the consequences of losing sonar sensing ability. If a mobile

robot loses part of its object detection ability, then research is needed to investigate

how it is possible to compensate for the loss of some of the sonar sensors.

If a fault occurs in a sensor, then there is no realistic way of retrieving the

remote robot for to repairs. For mobile robots to navigate within their environment,

they rely on object detection sensors. When an object is detected, then the mobile

robot can adjust its drive system to avoid the object. Types of sensors used to detect

objects are sonar, laser and camera sensors. For the purpose of this case study, sonar

sensors are utilized for experimental purposes. If a sonar sensor on a mobile robot

becomes faulty, then the robot’s ability to detect objects is greatly reduced. This

case study explores how detection of a faulty sonar sensor(s) is achieved and how

self-adaption can be implemented to compensate for the fault.

In Chapter 4, the basic AIFH architectural design was implemented to handle

wheel alignments faults in mobile robots. However, the Knowledge Base was not

well defined as there was no named attributes such as policies, real-time data and

tolerance values. In this case study, the Knowledge Base is clearly defined as it

presents the role each attribute plays and how they contribute to handling sonar

sensor faults in mobile robots.

This case study is organized as follows: Section 5.2 describes how Research

Methods are achieved by utilizing the SDLC (Software Development Life Cycle)

5.2. Research Method 94

modal. Section 5.3 presents Conceptual Requirements which describe the Re-

search question, goals and resources needed to complete the case study. Section

5.4 presents the Conceptual Design and describes how the Autonomic Management

System is used to self-adapt when dealing with mobile robot sonar sensor faults.

Section 5.5 presents Implementation of the wheel alignment fault scenarios and

how Awareness, Analysis and Adjustment can used to evaluate and compensate for

a sonar sensor fault. Section 5.6 demonstrates through testing, how the compensa-

tion algorithm for the sonar sensor fault performs. Results from the testing are then

analysed. Section 5.7 is used to evaluate the results in the case study and finally,

Section 5.8 concludes the case study with a summary statement.

5.2 Research Method
Research Methods are based in the SDLC (Software Development Life Cycle)

model - see Figure 5.1. Each stage in the SDLC is used to develop the research

question, design the autonomic architecture used in the Sonar Sensor Fault Man-

ager, implement specialized algorithms to identify and compensate for the fault and

testing to verify the case study goals are achieved.

Requirements Design Implementation Testing

Problem Definition: can
Autonomic Management
be implemented so that
self-awareness and self-
adaptive techniques can
be employed to handle
sonar sensor faults?

Monitoring the data
from the sensors.
Using the Knowledge
Base to determine if
there are sonar sensor
faults.
Analyse the fault data
and recommend a plan
to compensate for the
error.

Using Autonomic
Management, execute
the compensation
algorithm an observe if
the robot can self-adapt
to losing sonar sensor
ability. Do the
performance results
reflect the changes
made?.

Further enhance the
AIFH architecture.
Expand the use of
Knowledge Base
attributes to develop the
generic architecture.
Implementation of a
State Machine to assist
on the detailed design.

Figure 5.1: SDLC Model used in the research methodology for Sonar Sensor Fault Man-
agement.

• Requirements - is a detailed investigation of the system and is carried out in

accordance to the objectives proposed. The requirements are concerned with

5.2. Research Method 95

defining research question and what resources are required to complete the

case study. To develop the research question, physical components such as

the Pioneer P3-DX robot fitted with a Sonar Sensor forward array is required.

A ’bumper’ component is also required to prevent the robot being damaged

when coming into contact with an object.

• Design - based on the information collected at the requirements stage. For

this case study, the design is concerned about applying the Autonomic Archi-

tecture to handle how the robotic system can self-adapt to the discovery of

a component fault. The design phase will incorporate the AIFH architecture

(Awareness, Analysis and Adjustment) and further develop it to handle the

Sonar Sensor fault scenario. The design phase will also incorporate a State

Machine. The State Machine implemented using MRDS and CCR (Concur-

rency Co-ordination Runtime) [58], which can handle recording of sensor

data, analyses of sensor data and initiate sensor fault adjustment if required.

• Implementation - the system design needs to be implemented to make it a

workable system. To create the sonar sensor fault experiment, each sonar

on the sensor array is tested. Readings from each sensor are verified against

measurements taken with a physical tape measure. Adjacent sonar sensors

are tested to check for correlation. Implementation includes designing cus-

tom algorithms to identify multiple sonar sensor fault scenarios. Finally, a

specialized algorithm will be required to compensate for sonar sensor faults.

In this case study, the AIFH architecture is employed: Awareness - to identify

any faults with the sonar sensors, Analysis - to evaluate the extent of the fault

discovered and finally Adjustment - to implement a compensation strategy to

deal with sonar sensor faults.

• Testing - involves system integration and system testing of the programs and

procedures coded at the implementation phase. Testing is a method of testing

the system against the requirements and design. In this case study, testing

will involve verifying the sonar sensors are working as expected. Testing

5.3. Conceptual Requirements 96

the Analysis programming so that faults are identified and finally testing the

compensation algorithm can still provide the robot the ability to detect an

object even with some sonar sensor faults. Test Strategy:

1. Test that the sonar sensors are reporting the correct distance readings.

2. Do neighbouring sonar sensors report similar distance readings?

3. The Pioneer P3-DX robot will report a default sensor reading of value

5000, if a sonar sensor becomes unresponsive. If a sonar sensor reading

equals a value ’5000’, the robot will halt its current task.

4. Does the Analysis Layer knowledge-based policies indicate what sonar

sensors need to be flagged as being disabled?

5. Does the Adjustment Layer knowledge-based policy (compensation al-

gorithm), allow objects to be detected even when the robot has reported

’disabled’ sonar sensors?

5.3 Conceptual Requirements

5.3.1 Problem Definition

5.3.1.1 The Experiment

Using the Pioneer P3-DX robot fitted with a Sonar sensor array: in laboratory con-

ditions, the sonar sensors on the array are tested to confirm that the distance readings

they report are accurate when measured using traditional measuring tape. Adjacent

sonar sensors are also tested to check that their readings are accurate. The main

experiment involves sonar sensors that are disabled and how the mobile robot can

compensate for the loss of its object detection ability.

5.3.1.2 Goals

Can the AIFH architectural model be further developed to detect/compensate for

faulty sonar sensors?

• Awareness - can monitoring past and present experimental data, allow the

Autonomic Manager the ability to decide if there is a sonar sensor fault?

5.3. Conceptual Requirements 97

• Analysis - can analysis provide the means to establish the extent of the fault?

• Adjustment - can the fault data provided by analysis, be used by a knowledge

base policy, to provide a means to compensate for the fault in the sonar sensor

array?

5.3.2 Resources required

For this case study, the Pioneer P3-DX research robot is used. The P3-DX is

equipped with an array of Polaroid sonar sensors. The array comprises of 8 electro-

static transducers and a sonar ranging module - see Figure 5.2 (b). The individual

transducers are controlled by the ranging module. The ’echo’ signals captured by

the transducers, allows the module to calculate ranges from 6” to 35ft [93]. For the

purposes of this case study, only the 6 forward facing sonar sensors will be used in

the experiment - see Figure 5.2 (a). Each sonar sensor is placed on the array as part

of an octadecagon shape - see Figure 5.3.

(a) (b)

Figure 5.2: (a) P3-DX with its 6 forward facing sonar sensors. (b) Each sensor comprises
a Polaroid transducer.

6 5 4 3 2 1

-50°

-30°
-10° 10°

 30°

 50°
6

5
4 3

2

1

Sonar Sensor Array

Figure 5.3: The sonar sensors are arranged 1-6 on the array, with a 20 ° angle between each
sensor.

5.4. Conceptual Design 98

To access the data reported from each sonar sensor, a custom-built User Sonar

Interface was required. The User Sonar Interface was developed using Microsoft’s

MRDS and .Net C# programming language in Microsoft Visual Studio - see Figure

5.4. The User Sonar Interface can display distance readings for each sonar on the

sensor array mounted on the P3-DX robot - Sonar 0 to Sonar 7. Any disabled sonar

sensors are marked in red on the interface display. The P3-DX robot can also be

controlled using the User Sonar Interface for forward/backwards movement and

rotating.

Figure 5.4: User Sonar Interface (developed by the author), for displaying sonar data from
the Pioneer P3-DX robot.

5.4 Conceptual Design
This Section details the design and architecture for this case study.

5.4.1 Developing the AIFH Architecture for sonar sensor fault

handling

In Chapter 4, a case study showed how the AIFH Architecture was developed for

handling wheel alignment faults in a mobile robot. In this case study, the AIFH

architecture will be further developed for detected Sonar Sensor Faults in a mobile

robot, with particular emphasis on the use of the Knowledge Base. This Autonomic

Manager contains three layers, Awareness, Analysis and Adjustment. The System

Manager is responsible for initiating the ’control’ loops. The main feedback control

5.4. Conceptual Design 99

loop (Reactive Loop), will feed data through each layer. The secondary control loop

(Proactive Loop), will operate in the Awareness and Analysis Layer. The AIFH

architectural model for the Sonar Sensor Fault handling is shown in Figure 5.5.

EFFECTORS

Identify all enabled/disabled
sonar sensors.

SENSORS

System
Manager

Initiate

Feedback

Loop

Reporting

Sonar Sensor
Readings

Robot Drive
Commands

User

Interface

Tolerance
Values

Historical
Data

Real-time
Data

Policies

Symptoms

Dynamic
Parameters

K
n

o
w

le
d

ge
 B

as
e

Process Readings

Sonar Senor Error Detected

Evaluate Sonar Senor Data

Evaluate data between
sonar sensors

Unusual Readings
Identified ?

Yes

Fault

Execute Compensation Policy (part 2)
using values attained by Compensation

Policy (part 1). Send adjustment
commands to System Manager

Reactive Loop

Proactive Loop

Knowledge Input

Knowledge Output

No Fault

A
u

to
n

o
m

ic
 M

an
ag

er

ADJUSTMENT LAYER

ANALYSIS LAYER

AWARENESS
LAYER

Oversensitive

Adjust Tolerance
Value

Execute Compensation Policy (part 1) – to establish
‘angles’ of rotation that are needed to compensate

for the sonar sensor faults.

Figure 5.5: Autonomic Management System for the Sonar Sensor Fault Handling case
study.

1. Awareness Layer - the main function of the Awareness layer is to establish

if there is a failure within the sonar sensors. If a failure is detected, then the

data gathered within this layer is passed to the Analysis layer. The Aware-

ness Layer can also detect if there are unusual readings between adjacent

sonar sensors. Those sonar sensors that are showing unusual readings, are

flagged as requiring investigation. Task data from the sonar sensors is pro-

cessed and updated to the Knowledge Base. As each task is performed by

the mobile robot (Pioneer P3-DX), the sonar sensor data is recorded. These

records will then collate to form the historical data within the Knowledge

5.4. Conceptual Design 100

Base. The Knowledge Base Real-time sonar data is compared to the stored

Dynamic Tolerance value, which will in turn, identify if any sonar sensors are

disabled. The Pioneer P3-DX robot reports a default reading of value 5000,

if a sonar sensor is unresponsive (this value is stored in the Knowledge Base

as a dynamic tolerance value). If a sonar sensor reports a reading of ’5000’,

then it is immediately marked as being disabled. The Reactive control loop is

responsible for reporting ’disabled’ sonar sensors to the Analysis layer.

The Proactive Control loop is responsible for evaluating readings between ad-

jacent sonar sensors. If the robot is facing an object, then each of the sonar

sensors will report a slightly different reading to its adjacent sensor. This

is due to the fact that the sonar array fitted to the robot is octadecagon in

shape - see Figure 5.3. The Awareness Layer must establish what the current

tolerance range value is between adjacent sonar sensors. A policy from the

Knowledge Base is used to calculate the tolerance range value. This will be

explained in more detail in Section 5.5.3. This policy is enforced to prevent

the Proactive Control loop being ’oversensitive’ in declaring a possible fault,

if readings between two adjacent sonar sensors are not the same. The toler-

ance range is dynamic, and therefore can be updated in the knowledge Base

by the Proactive control loop. However, if readings between adjacent sonar

sensors is above the acceptable tolerance range, then the Proactive Control

loop will mark these sensors as ’suspect’. Data relating to ’suspected’ sonar

sensors is passed to the Analysis Layer for further investigation.

2. Analysis Layer - the Analysis Layer uses data received from the Awareness

Layer to establish the extent of the sonar sensor failure. This layer will map

out what sonar sensors have been declared as ’disabled’ and pass this informa-

tion to the Adjustment layer. The Analysis layer will also check sonar sensors

that have been identified in the Awareness layer as requiring further investi-

gation. When a sonar sensor is reporting a different reading from its adjacent

sensors, then analysis is required to established that the sensor is operating

correctly. The Check Sonar Reading policy (from the knowledge base), is

5.4. Conceptual Design 101

then executed. This policy (algorithm), uses neighbouring sonar sensors to

verify that the suspected sonar sensor is indeed reporting valid data. If it

is established that the sonar sensor is reporting invalid data, then that sonar

sensor is marked as being disabled. If, however, adjacent sonar sensors are

reporting valid data, then the Proactive control loop will declare a ’no fault’

and report back to the Awareness Layer.

3. Adjustment Layer - the Adjustment layer receives data from the Analysis layer

that identifies what sonar sensors are currently disabled. Depending on the

number of sensors that are marked disabled, will influence the amount of ad-

justments required to handle the fault. First, the Adjustment layer needs to

establish how many sonar sensors are disabled. If all sonar sensors are dis-

abled then no adjustment policy can be applied in-order to compensate for the

fault. If there one or more sonar sensors are still functioning, then the Adjust-

ment Layer will execute Compensation policy (part 1), to establish how many

rotations the robot will have to make to compensate for the disabled sensors.

This is explained in greater detail in Section 5.5.3. When all the ’rotation’

angles have been calculated, this data is then passed to Compensation policy

(part 2). Compensation policy (part 2), will then execute ’rotation’ commands

via the System Manager, in-order for the P3-DX robot to locate any objects

in its path during while executing a task - (see Figure 5.5). All compensa-

tion polices are stored in the Knowledge Base. The Knowledge Base is also

updated with the current state of each sonar sensor.

5.4.2 State Machine

Software development for this case study was carried out using MRDS framework.

MRDS is a service-oriented programming model that allows the creation of asyn-

chronous and state-driven applications [94]. Code implementation is carried out

using the C# language in Microsoft Visual Studio. Database work was engineered

using Microsoft SQL Server and User defined stored procedures. To create the

robot tasks for the case study, required the design of a event driven and state-based

5.5. Implementation 102

behavior process, using a state machine - see Figure 5.6.

DISPLAY

READINGS

START

Adjust
Robot Rotation

Record to database

Display

Task setup

values Send to display

Error detected,

adjustment

required

STOP

User Form
Values

End task

Process sonar data

DATABASE

USER INTERFACE

SONAR SENSOR ADJUSTMENT ALGORITHM SYSTEM PROCESSING

System
Processing

Record to
Database

Rotate robot

depending on

degree of fault.

Object detected

Sonar
Readings

Figure 5.6: State Machine Design for the case study - Sonar Sensor Fault Management.

In the MRDS framework, as each state is executed, transitions are added.

These transitions are triggered by notifications received from Partner services [95].

The System Processing ’state’ (see Figure 5.6), is executed after the robot has mon-

itored and analysed the sonar sensor data. If necessary, the System Processing can

initiate the ’Adjust Robot Rotation’ state.

5.5 Implementation

5.5.1 Sonar sensor fault Scenarios

Ranging sensors like sonar, are widely used in research and industrial robotics.

They allow a robot to see an object without actually coming into contact with it.

However, sonar sensors are limited to a relatively low range distance compared to

a sensor such a a laser. Sonar sensors can also suffer from ’Ghost’ echoes, where

5.5. Implementation 103

there is a dense obstacle distribution and complex surfaces [103]. When a sonar

sensor becomes faulty it can impact a robot’s ability to navigate its surrounding

environment. A single sonar sensor fault would result in a minor reduction in the

robot’s ability to detect objects as its neighbouring sensors can compensate for the

failure. However, if the one or more sonar sensors fail, then this severely impacts

the robots object detection abilities.

5.5.2 Sonar Sensor Failure States

Sonar sensors faults in this case study are classed as failure states. Each failure

state represents a fault level that can occur on the P3-DX mobile robot. Sonar

Sensor Failure States (see Figure 5.7):

• IsNormal - all sonar sensors are working as expected - Figure 5.7(a) .

• IsMinor - one or two sonar sensors are either disabled or reporting erroneous

data - Figure 5.7(b).

• IsMajor - a loss of 3 or more (but not all) sonar sensors. Provides only limited

sensing ability - Figure 5.7 (c).

• IsCatatrophic - all forward facing sonar sensors are disabled. No ability to

detect objects - Figure 5.7 (d).

5.5. Implementation 104

P3DX P3DX

P3DX

(a) (b)

(c) (d)

Object Object

Object Object

Figure 5.7: Failure states for the sonar sensors on the P3-DX mobile robot.

5.5.3 Detecting Sonar Fault - Awareness

Using the architectural model discussed in 5.4.1, the Awareness Layer is part of

the process that detects any anomalies within the sensors. Through monitoring and

knowledge gained from previous robot tasks; the robot can become Aware that there

is a possible fault with the sonar sensors. Using the failure states described in 5.5.2,

various test scenarios where performed to establish if there was a possible fault

within the P3-DX sonar array.

5.5.3.1 IsNormalState

All sonar sensors where tested under normal conditions. Using the User Sonar

Interface program, the IsNormalState (see Figure 5.7 (a)), proved that each of the

sonar sensors where able to detect objects correctly. Measurements where taken

between the object and each sonar sensor using a measuring tape - see Figure 5.8

(b) and (c). These values where then compared to the values being reported by the

sonar sensors using the User Sonar Interface program (discussed in Section 5.3.2) -

5.5. Implementation 105

see Figure 5.8 (a).

(a) (b) (c)

Figure 5.8: IsNormalState Test - checking that the sonar readings reported by the robot are
accurate.

5.5.3.2 IsMinorState

When a sonar sensor becomes faulty (due to impact or electrical issues), then it

reports via the System Manager, as a value of 5000 (disabled state). Autonomic

Manager (Awareness process) will pick this value up during the Reactive control

loop check. If a sonar sensor reports a reading of ’5000’, then the sonar sensor is

marked as disabled. If a sonar sensor is reporting significantly different ’distance’

data to its neighbouring sensors, then an assessment is required to confirm its valid-

ity. For example: on the robot sensor array, Sonar 4 is reporting a value of ’415’,

Sonar 5 a value of ’245’ and Sonar 6 a value of ’417’. Sonar 5 needs checking as its

value is considerably lower than Sonar 4 and Sonar 6. However, Sonar 5 could be

detecting an object and reporting a correct reading; this can be verified by using the

adjacent sensors to check the reading is valid, see Figure 5.10 (object marked as

d). When comparing the values of neighbouring sonar sensors, we need to consider

the location of the sonar sensors within the sonar array. The forward- facing sensors

on the sonar array (1-6), are arranged as part of an octadecagon design. If a sonar

sensor is detecting an object square-on, then its neighbor senor will also detect this

object but will be reporting the distance value as slightly higher - see Figure 5.9.

This difference value needs to be considered when comparing neighbouring sonar

sensors. Figure 5.10 shows how the tolerance range is calculated between neigh-

bouring sonar sensors. Equations 5.1 and 5.2 used to calculate tr the tolerance

value. These calculations contribute to the logic used in Algorithm 2.

5.5. Implementation 106

As sonar sensors 2,

3 and 4 scan the

same object, their

readings are slightly

different due to the

shape of the sonar

array on the P3-DX

robot.

Figure 5.9: IsMinorState Test - readings for adjacent sensors are slightly different to the
octadecagon design of the sonar array on the P3-DX robot.

b =

(
a1+a2
Cos(α)

)
(5.1)

tr = (b −a1) − (a2) (5.2)

α

𝑎1

b

c

𝑎2

1

0

2
3 4

6

7

Outline of the sonar sensor array (0 – 7)
c Centre of the Robot

tr

tr Tolerance Range

5

d

Figure 5.10: The difference value between two adjacent sensors is calculated to allow for
the octadecagon design of the sonar array. This is described as the tolerance
range tr

.

5.5. Implementation 107

ALGORITHM 2: Disparate Readings Between Adjacent Sonar Sensors
Input: sonarReadings sr[] = readings from 1-6 sonar sensors

toleranceRange tr = tolerance value allowed between adjacent
sensors
sonarPostion sp = position of specific sonar sensor
Rotation Angle ra = 20°

Output: differenceValue = is greater than the tolerance range, then that
particular sonar sensor is marked as disabled.

for (each sonar(sn) in sonar array) do
if (sn == 1) then

reading1 = sr[sn];
RotateRobot(−ra);
reading2 = sr[sn+1];
differenceValue = (reading2− reading1);

end
if (sn == 6) then

reading1 = sr[sn];
RotateRobot(ra);
reading2 = sr[sn-1];
differenceValue = (reading2− reading1);

end
if (sn > 1 and sn < 6) then

reading1 = sr[sn];
RotateRobot(ra−);
reading2 = sr[sn+1];
RotateRobot(ra+ ra);
reading3 = sr[sn-1];
differenceValue = (reading1− (reading2+ reading3/2));

end
if (differenceValue > tr) then

sn = disabled;
end

end

Algorithm 2: - a tolerance range tr value can now be applied to Algorithm 2,

where all the sonar sensors are checked for any unusual values. Adjacent sonar

sensors are rotated towards the same target. Sonar distance readings from each

sensor are recorded. Logic contained in Algorithm 2, can identify what readings are

significantly different from their immediate neighbours. The Awareness Layer has

access to the Algorithm 2 policy via the Knowledge Base. If a sonar sensor requires

checking, then this information is passed to the Analysis Layer for processing.

5.5. Implementation 108

5.5.3.3 IsMajorState

When two or more sonar sensors become faulty (see Figure 5.7 (c)), then the robot’s

ability to detect objects in its path is greatly reduced. If the robot loses 50 percent of

its sonar sensors, it can be completely blind on one side. Monitoring of the sensor

data would indicate that there was a fault in several sonar sensors in the array i.e.,

each of the faulty sonar sensors would be reporting a ’5000’ value (disabled state).

(a) (b)

Figure 5.11: The User Sonar Interface program (a), shows Sonar sensors 0-3 with a ’5000’
reading = disabled state. The object in (b), cannot be detected.

In Figure 5.11, the mobile robot has lost sonar sensors 0 - 3. The object ahead

of the robot is currently undetected. The if the robot continues this trajectory it will

hit the object. However, the P3-DX is also equipped with a ’bumper’ sensor. If the

’bumper’ sensor is triggered, then the robot automatically comes to a stop. When

a sonar sensor becomes disabled, the autonomic Awareness process is employed

to identify what sonar sensors are faulty (see Figure 5.5). The the disabled state

’5000’ value is stored in the Knowledge Base as a ’fixed’ tolerance value. As the

Awareness layer processes the sonar sensor data, it can use this ’fixed’ tolerance

value in the Knowledge Base, as a trigger to detect a faulty sensor. All ’fault’ data

is then passed from the Awareness layer to the Analysis layer for further processing.

The Analysis layer will then determine the extent of the fault using policies from

the Knowledge Base.

5.5. Implementation 109

5.5.3.4 IsCatastrophicState

In Figure 5.12, the Awareness layer reports that all sonar sensors are disabled. Us-

ing the Knowledge Base ’fixed’ tolerance value for a disabled state ’5000’ sonar

sensor, the Awareness layer is able to determine (become aware), that the robot has

no object detection sensors available. When all sonar sensors are reported as dis-

abled, the robot is automatically stopped by the System Manager. If all the sonar

sensors in the array become disabled at the same time, the P3-DX ’bumper’ sen-

sor (see Figure 5.12(c)), will also stop the robot from further movement; this is to

prevent any unnecessary damage to the body of the robot. In this state, the robot

is unable to detect objects in its path. No compensation algorithm can be applied

when the robot is in this state.

(a) (b) (c)

Figure 5.12: IsCatastrophicState - all the sonar sensors are reported as ’disabled’ (a). The
sonar sensors can no longer detect objects in the path of the robot (b). The P3-
DX ’bumper’ sensor will cause the robot to stop, when coming into contact
with an object (c).

For testing the different sonar sensor states, the User Sonar Interface program,

was developed for this purpose. Many hours where spent by the author to develop a

software solution, that converted the raw data from the sonar sensor device drivers,

into readable data and presented as a User Interface (see Appendix B2).

5.5. Implementation 110

5.5.4 Processing Sonar Fault - Analysis

If during the Awareness Layer, a Sonar Sensor (sonar[x]) is identified for checking,

then this data is passed to the Analysis Layer for processing. In the Analysis Layer,

the (Check Sonar Readings) policy from the Knowledge Base, is then executed -

see Algorithm 3. The Check Sonar Readings algorithm will issue commands to

the robot to use the sonar sensors adjacent to the sonar[x], to check if the readings

reported by sonar[x] where indeed correct.

Algorithm 3: - the process performed by Algorithm 3, involves using two

neighbouring sonar sensors to be rotated to the original position of sonar[x] - see

Figure 5.13. If the readings reported by both sonar sensors are different from

sonar[x], then sonar[x] will be tagged as being disabled. If sonar[x] is at position

one or six on the sonar array, then it will have only one neighbouring sonar sensor

available for checking. If the reading reported by this one sonar is different from

sonar[x], then sonar[x] will be tagged as being disabled. All sonar sensors tagged

as being disabled will be handled by the Adjustment Layer.

c

1

0

2
3 4

6

7

Outline of the sonar sensor array (0 – 7)
c Centre of the Robot

P3-DX

Object

Sonar[x] = 5

Adjacent sonar

Figure 5.13: Sonar[x] has been flagged for checking by Awareness layer. Adjacent sen-
sors Sonar (4) and Sonar (6) are used to verify that reading from Sonar (5) is
correct.

.

5.5. Implementation 111

ALGORITHM 3: Check Sonar Readings
Input: sonarCheck[][] contains the sonar position and readings

sr[] = current reading from the sonar sensor array

sc = 0 - track each sonar processed

col = 0 - array column track

tr = tolerance range calculated in Algorithm 2

ra = 20° Rotation Angle

Output: sonarCheck[][] is marked disabled if error is found.

for (sc < number of sonarCheck rows) do

if (sonarCheck[sc][col] == 1) then

RotateRobot(−ra);

checkReading = sr[sc+1];

end

if (sonarCheck[sc][col] == 6) then

RotateRobot(ra);

checkReading = sr[sc-1];

end

if (sonarCheck[sc][col] > 1 and sonarCheck[sc][col] < 6) then

RotateRobot(ra−);

SonarReadingA = sr[sc+1];

RotateRobot(ra);

SonarReadingB = sr[sc-1];

checkReading = ((SonarReadingA+SonarReadingB)/2));

end

di f fValue = (checkingReading - sonarCheck[sc][col +1])

if (di f fValue >tr) then

sonarCheck[sc][col] = disabled;

end

sc = sc + 1
end

5.6. Demonstration (testing) 112

5.6 Demonstration (testing)

5.6.1 Compensation for Sonar Fault - Adjustment

5.6.1.1 Fault scenarios

If the Analysis Layer has identified a fault in the sonar sensor array, then the Ad-

justment Layer will implement a compensation policy. The compensation policy

deals with fault found in the six forward facing sensors only (see Figure 5.2). The

compensation policy will adopt a ’stop’ and ’rotate’ strategy in-order to compensate

for faulty sonar sensors. A fully operational sonar sensor will be rotated to position

in the array of a faulty sonar sensor. The more sonar sensors that are disabled, then

the more ’stop’ and ’rotation’ commands will be required in order for the robot to

detect objects in its path.

Using the six forward sensors in the array, there are 64 possible combinations

of sonar values (enabled/disabled), using binary notation. Binary notation 000000

describes all sensors are working as designed (no action required). Binary notation

111111 means all sensors are disabled (the robot is unable to detect an object -

IsCatastrophicState); this leaves 62 possible sonar fault combinations that can be

dealt with using the compensation policy.

Table 5.1 shows an example of how much the robot needs to rotate (clockwise

or anti-clockwise), in order to compensate for the loss of one or more sonar sensors.

There is an angle of + or - 20° between each sonar sensor on the array. A single

sonar fault will only require one rotation of the robot to compensate for the missing

sensor. A loss of three or more sonar sensors could require the robot to rotate at

three different stages in order to compensate for the missing sensors. It must be

noted, that if the robot is required to rotate a certain degree value to compensate

for a disabled sonar sensor, after the sonar reading has been checked, the robot will

be rotated back to its original position. This guarantees that the robot is always

pointing to its original heading angle.

Figure 5.14, shows a representation of Scenario 4 from Table 5.1. The robot

has lost 3 sonar sensors and is unable to detect any object within the field of those

5.6. Demonstration (testing) 113

sensors. The robot is therefore rotated -60° so that the 3 remaining working sonar

sensors can detect the object.

Table 5.1: Sonar Sensor Fault Scenarios

’Enabled’ sonar
sensors positions,

used to
compensate for

fault

Angle of
’Enabled’ sonar

sensor on the
array

’Disabled’ sonar
position and
(angle on the

array)

Robot rotation(s)
required (+ or -)

Scenario 1 - the sonar sensor at position 3 has become disabled
2 30° 3 (10°) -20°

Scenario 2 - the sonar sensor at position 3 and 2 have become disabled
4 -10° 3 (10°) +20°
1 50° 2 (30°) -20°

Scenario 3 - the sonar sensors at position 2, 4, 5 and 6 have become disabled
1,3 10°, 50° 2 (30°), 4(-10°) -20°
3 10° 5 (-30°) -40°
3 10° 6 (-50°) -60°

Scenario 4 - the sonar sensors at position 4, 5 and 6 have become disabled
1,2,3 -10°, -30°, -50° 4 (-10°), 5 (-30°), 6

(-50°)
-60°

Object Object

-60°

P3DX

(a) (b)

Figure 5.14: (a) Sonar sensors (4-6) are disabled. (b) The P3-DX robot is required to rotate
-60° so that the object can be detected (using sonar sensors (1-3)).

5.6.1.2 Fault Compensation Algorithms

When the disabled sonar sensors are first discovered, the P3-DX robot is stopped,

and analysis takes places to evaluate the extent of the fault. If there are multiple

5.6. Demonstration (testing) 114

sonar sensor faults, then the number of rotations will increase. Table 5.1 shows

the sonar fault scenarios including the number of rotations required to compensate

for the disabled sensors. Utilizing the autonomic Monitor and Analysis processes,

the ’disabled’ sonar sensors are identified. This information is then passed to the

Adjustment process. The Adjustment process engages a policy that can utilize the

autonomic self-adjustment algorithm. The compensation policy for disabled sonar

sensors is presented in Algorithm 4 and Algorithm 5. Algorithm 4: - is used to

work out the position of the disabled sonar sensors; it then calculates how much

rotation is required for the remaining enabled sonar sensors to take the place of the

disabled sonar sensors. Algorithm 5: - is used to work out the minimum number

of robot rotations required to compensate for the faulty sonar sensors. Finally, all

rotation values are sent from the (Adjustment layer [array]), to the Operation Policy

in the System Manager, to execute the physical robot rotation commands required

to compensate for the faulty sonar sensors.

Figure 5.15 shows how scenario 4 (sonar fault) from Table Table 5.1, can be

dealt with using the compensation algorithms. The compensation strategy allows

the robot to detect an object (see Figure 5.15 (a), Sonar 4 reading) and therefore

will be able to take action to avoid collision. When Algorithm 5 has been executed,

it will return the ’rotation’ values required to compensate for the fault.

(a) (b)

Figure 5.15: Example: when applying the compensation algorithm, Sonar 4 (a) is able to
detect the object (b), after a ’rotation’ command to the robot has been imple-
mented.

5.6. Demonstration (testing) 115

ALGORITHM 4: Compensation For Disabled Sonar Sensors (Part 1)
Input: sonarArray[] = enabled/disabled sonar sensor positions

disabledArray[] = disabled sonar ’angle’ position values
enabledArray[] = enabled sonar ’angle’ position values
lsa = -50° (lowest sonar sensor angle)
hsa = 50° (highest sonar sensor angle)
ia = 20° (incremental angle value)
av = 0° (angle value initialized for each sonar sensor)

Output: The combinationArray[] = di f f erence value required for an
’enabled’ sonar array to take the place of a ’disabled’ sonar array.

i = 0
for (av = lsa; av < hsa + 1; av = av + ia) do

if (sonarArray[i] == ’disabled’) then
disabledArray[i] = av;

end
if (sonarArray[i] == ’enabled’) then

enabledArray[i] = av;
end
i = i + 1

end
ii = 0 (inner index)
oi = 0 (outer index)
av = 0 (reset angle value)
for (dv < disabledArray count) do

for (av = ia; av < hsa + 1; av = av + ia) do
if (enabledArray[ii] == (disabledArray[oi] + (-av))) then

combinationArray[ii] = av;
end
if (enabledArray[ii] == (disabledArray[oi] + (av))) then

combinationArray[ii] = -av;
end
ii = ii + 1

end
oi = oi + 1

end

5.6. Demonstration (testing) 116

ALGORITHM 5: Compensation For Disabled Sonar Sensors (Part 2)
Input: calcArray[] = the ’sorted’ angle values needed for compensation.

combinationArray[] pre-populated (See Algorithm 3).
Output: rotateArray[] = this array will contain the rotation values the

robot needs to perform to compensate for the sonar sensor fault
var nearestValue = 0; (find the nearest position value)
var sonarResultCount = combinationArray.Count;
for (int index = 0; index ¡ sonarResultCount; index++) do

nearest = ca.OrderBy(x => math.abs(long)x−0)).First();
combinationArray.Remove(nearestValue);
calcArray.Add(nearestValue);

end

int eSi = 0; (enabled array index);
foreach (int calc in calcArray) do

foreach (string enabledSonar in enabledArray) do
if (disabledAr-
ray.Contains((int32.Parse(enabledArray[eSi].ToString()) +
(calc)).ToString()))) then

disabledArray.Remove((Int32.Parse(enabledArray[eSi].ToString())+
(calc).ToString());

if (!rotateArray.Contains(calc)) then
rotateArray.Add(calc);

end
end
eSi++;

end
eSi = 0;

end

5.6.1.3 Fault Compensation Testing

By introducing a compensation policy to handle sonar sensors faults, the Pioneer

P3-DX robot can still detect objects. The robot now must make changes in how it

executes its tasks. In Figure 5.16, the robot has lost half of the sonar sensors (1-

3). However, sonar sensors (4-6) are still functioning. In this example, the robot is

instructed to stop every at every 200mm interval. The robot will then rotate (using

the compensation policy), so that the sonar sensors that are still functioning, will

be able to detect any objects within the robot’s path. Although the compensation

policy is effective in detecting objects using limited sensor ability, there is a impact

on executing the task set out for the robot. The time to complete the task will

5.6. Demonstration (testing) 117

increase as the robot has to stop and check for objects. There is also an increase in

demand for more power resources, as the robot will be taking longer to complete

the task and executing multiple ’movement’ commands in order to detect objects

along the robot’s path.

P3DX

P3DX

P3DX

200mm

400mm

600mm

Object

Path direction of P3-DX Robot

Rotation of the Robot performed at intervals

Object is seen, when detection threshold is reached

Disabled Sonar Sensors

Object

Figure 5.16: When a sonar fault is detected, the Robot is stopped at selected intervals. The
robot is then rotated to check for possible objects.

As with Chapter 4 (Wheel Alignment Fault Handling), the importance of his-

torical data is key to understanding fault scenarios. Comparing current data with

data recorded from previous tasks, helps us to establish if a fault has occurred and

what impact it has on the performance of the mobile robot. Using this knowledge

we can then make calculations for compensating for the fault. We also discovered

in this case study that setting fixed threshold values for detecting objects could not

always be applied. The sonar sensor is octadecagon in profile, therefore each sensor

can be at a slightly different distance from an object. For example: if sensor A is

5.7. Evaluation 118

nearer to an object than sensor B, then the distance values they report back will be

different. If we use a +- 10mm threshold value to detect an object for sensor A, then

sensor B’s distance calculation would lie out of that threshold and could wrongly be

flagged as a possible faulty sensor during the Awareness process. This is described

as a threshold being ’over sensitive’; we therefore have to allow for the physical dif-

ference between two adjacent sensors before applying a threshold value (see Figure

5.10).

5.7 Evaluation

Using the AIFH architecture a Reactive and Proactive control loop was integrated

into the system using an Autonomic Manager. The Autonomic Manager worked

alongside the System Manager, so that the robot tasks are constantly monitored.

The Autonomic Manager consisted of three layers - Awareness, Analysis and Ad-

justment. Self-awareness has the ability to detect and report on component faults

within a robot. Self-awareness is more than just monitoring the system data. Self-

awareness can interpret the data and inform Users of possible impending faults

rather than just reacting to a ’alarm’ type fault. Self-analysis is key to determine the

extent of a fault. This information is crucial to determine if the fault can be com-

pensated for. Self-adjustment allows the robot to continue to function even when

operating with a faulty component.

However, the more sonar sensors that are at fault, then the greater impact it

will have on the operational efficiency of the robot. Figure 5.17 shows a selection

of possible fault combinations (odd numbered fault scenarios), of 31 in total, from

a possible 62 (as discussed in Section 5.6.1.1). The greater number of ’disabled’

sonar sensors on the array, then the greater number of robot rotations are required

to compensate for the faulty sensors. This ultimately will have an impact on task

time and power required. When a fault occurs in the sonar sensor array, then the

mobile robot self-adapts to the changes in its sensor state.

5.8. Summary 119

Figure 5.17: The increased in the number of sonar sensor faults will also increase the num-
ber of rotations required to compensate for the fault.

5.8 Summary
Autonomic Sonar Sensor Fault Management for Mobile Robots case study set out to

demonstrate how an Autonomic Management System can be implemented to handle

sonar sensor hardware failures in a mobile robot such as the Pioneer P3-DX. The

System Development Life Cycle (SDLC) was implemented as a Research Model

to describe a sequence of activities including requirements, design, implementation

testing and evaluation. The Research question posed for this case study stated - if

the AIFH architecture (derived from the MAPE-K and IMD autonomic models),

can be applied to detecting sonar sensor faults on a mobile robot and if possible,

compensate for those faults? Can the mobile robot adapt to its changed environment

and continue to function even with a sonar sensor fault?

The AIFH Knowledge Base is used to gather ’task’ data from the mobile robot

and to provide ’tolerance’ data for sonar sensor information. Using the Reactive

Control feedback loop, the Awareness Layer can report directly to Analysis Layer

if any of the sonar sensors are displaying a disabled state. Using the Proactive

Control feedback loop, the Awareness Layer is also capable of detecting unusual

5.8. Summary 120

readings between neighbouring sonar sensors. Those sensors under investigation

are then passed to the Analysis Layer for further processing. The AIFH Knowledge

Base contains a policy to allow the Analysis Layer to determine if there is any faults

with those sensors under investigation. If a fault is detected, then this information

is passed to the Adjustment Layer. In the Adjustment Layer, two policies from the

Knowledge Base are required to calculate how the remaining enabled sonar sensors

can be implemented to compensate for the disabled sonar sensors; a further policy is

then used to send ’movement’ commands (rotation, forward motion) to the System

Manager.

This case study shows how autonomic principles can be employed so that a

mobile robot can self-adapt to changes to its sonar sensor functionality. Not only

can faults be identified but also a compensation strategy can allow the robot to

continue to function. However, laboratory experiments showed that as the number

of disabled sonar sensors increased, then the time for the robot to complete its task is

also increased. This can also have an impact on the power resources available to the

robot. Research carried out in this case study provides valuable data for generating

a Generic Autonomic Architecture for handling component faults in a mobile robot

(see Chapter 7).

Chapter 6

Autonomic Management for Mobile

Robot Battery Degradation - case

study

6.1 Introduction

This case study is concerned with how the Autonomic principles (discussed on

Chapters 2 and 3) can be applied to managing mobile robot power resources when

experiencing battery degradation.

Lead-acid batteries which contain a lead-calcium grid structure, are vulnerable

to an aging process due to the fact they are repeatedly cycled [104]. This aging pro-

cess is known as battery degradation. Various models for battery degradation have

been investigated in [105], to determine the degradation curve for any lead-acid

battery. Data provided from degradation curve can assist researchers in predicting

when battery degradation will affect the system operations. With the vast improve-

ments in computer technology, the need for improved battery design and a reduction

in battery degradation, are in demand more than ever [106]. In research conducted

in [107], the Smart Battery System (SBS) offers the ability to adjust the charging

profile in response to actual requirements i.e., charging voltage and charging cur-

rent. SBS can also monitor various charge states and raise Alarms if a damaged bat-

tery is detected. Although SBS is aware of charge states, it has no formal processes

6.1. Introduction 122

to deal with battery degradation. Prognostic-enabled Decision Making (PDM), is

a research area that aims to integrate prognostic health data and knowledge of fu-

ture operations, into the decision making when selecting a particular action within

the System [108]. Health checks include reporting battery capacity faults and other

operations including heavy load capacity and temperature variations. PDM is em-

ployed as a fault reporting tool rather than a tool that can react to identifying battery

degradation.

This case study employs a simulated battery configuration based on the actual

lead-acid battery contained in our laboratory robot (Pioneer P3-DX). The research

will concentrate on how battery degradation can affect how a mobile robot performs

basic tasks, like moving from one location to another. Task management is impor-

tant especially if the robot is operating on remote environments. Investigations will

also focus on the importance of how the battery charging is maintained. Research

in this case study will also focus on how to compensate for battery degradation so

that the mobile robot can still complete its allocated tasks. Although some con-

siderable research has been carried out in applying autonomic principles with fault

detection in robots, there is very little evidence of any research carried out in auto-

nomic power management in mobile robots. Robot sensors and effectors are vitally

important in the operation of mobile robots, but they rely heavily on the power sup-

ply within the robot. If power supply is degraded or compromised, then this will

have a detrimental effect on the performance of sensors and effectors.

In Chapter 5, the AIFH architecture was further developed by using Knowledge

Base attributes (within the Autonomic Manager), to handle sonar sensor faults in

mobile robots. However, the use of both reactive and proactive feedback loops

where limited. In this case study, the proactive loop takes an important role in

alerting the User/Mission Control of an impending fault. This describes the AIFH

having self-awareness and the ability to make decisions when faced with a changing

environment.

This case study is organized as follows: Section 6.1.1 describes how the Re-

search Methods is implemented by utilizing the SDLC (Software Development Life

6.1. Introduction 123

Cycle) model. Section 6.2 presents Conceptual Requirements which describe the

Research question, goals and resources needed to complete the case study. Section

6.3 presents the Conceptual Design and describes how the Autonomic Management

System has been adapted to use the AIFH architectural model to handle mobile

robot power management faults. Section 6.4 presents Implementation of the bat-

tery degradation fault scenario and how Awareness, Analysis and Adjustment have

been used to evaluate and compensate for a fault. Section 6.5 demonstrates through

testing, how the compensation algorithm for the battery degradation fault performs.

Results from the testing are then analysed. Section 6.6 presents an evaluation of the

case study. Section 6.7 concludes the case study with a summary statement.

6.1.1 Research Method

The SDLC model approaches solving a given problem in well-defined steps. Figure

6.1 shows how the SDLC Model can be applied to the Autonomic Robot Battery

Degradation Fault case study.

Requirements Design Implementation Testing

Research Question: can
Autonomic Management
be implemented so that
self-awareness and self-
adaptive techniques can
be employed to be
aware when battery
degradation occurs?

Designing the current
robot System to
integrate with the AIFH
Autonomic model and
further develop the
Generic architecture .

Monitoring the data from
the mobile robot power
management system -
Use the Knowledge Base
to determine if there are
anomalies. Analyse
power system parameters
and recommend a plan to
compensate for the any
fault discovered.

Using Autonomic
Management, execute
the compensation
algorithm an observe if
the robot can self-adapt
to when dealing with
battery degradation. Do
the performance results
reflect the changes
made?.

Figure 6.1: SDLC Model used in the research methodology for Autonomic Wheel Align-
ment

For the purpose of this case study, the SDLC model from Figure 6.1 is em-

ployed. SDLC model ensures that all the work carried out within the case study is

documented and results generated.

• Requirements - lays out the broad research objectives of the particular case

study. It is a detailed investigation of the system and is carried out in ac-

6.1. Introduction 124

cordance to the objectives proposed. It involves a detailed study of various

operations performed by the system and their relationships within and outside

the system [92]. To develop the research question successfully, a simulated

robot battery environment is required to emulate the characteristics of the Pi-

oneer P3-DX robot.

• Design - based on the information collected at the requirements stage. The

logical system design is arrived at as a result of system analysis and how it

is converted into physical system design. The SDLC process moves from the

what in the requirements phase to the how in the design phase [92]. For this

case study, the design is concerned with applying the Autonomic Model to

handle how the power management system in the robot can adapt to the dis-

covery of a battery fault. In Chapter 3, Section 3.2.3, the initial concept of

the AIFH architecture was introduced. In this case study, the findings accu-

mulated in the autonomic battery degradation research, will provide a means

to further develop the AIFH architectural model. The layers contained in the

AIFH architecture are Awareness, Analysis and Adjustment. Self-Awareness,

is the most important, as it is an indicator to the mobile robot autonomic man-

ager that there is a fault within the system. Self-Analysis is used to evaluate

the extent of the fault. Self-Adjustment takes the analysed data and applies a

specialized algorithm to compensate for the fault.

• Implementation - the system design needs to be implemented to make it a

workable system. To create the battery degradation experiment, a simulation

of the P3-DX robot is employed. The properties from the ’actual’ P3-DX

robot battery are used as parameter values in the experiment. Using the P3-

DX robot DOD (Depth of Discharge) chart, then the battery degradation pro-

cess can be simulated within the programming. In this case study, program-

ming is implemented to allow the Autonomic Manager access to the power

management data in the AIFH Knowledge Base. Further programming is im-

plemented to evaluate any fault data that supplied by the Monitoring process.

The Analysis process is used to investigate the extent of the fault. When the

6.1. Introduction 125

fault has been analysed, then additional programming is required for formu-

late a possible compensation strategy.

• Testing/Evaluation - involves system integration and system testing of the

programs and procedures coded at the implementation phase. Testing is a

method of testing the system against the requirements and design. For this

case study, testing will involve evaluating the how the simulated P3-DX bat-

tery performs when the battery is in optimal condition and when the battery

is exposed to degradation.

Test Strategy:

1. Using the simulation program for the P3-DX robot, run a robot task over

a fixed distance, including speed and power requirement in watts (W).

2. Set the battery cycle value of the robot to represent the battery at optimal

charge capacity.

3. Use the battery properties (taken from the actual P3-DX battery), to

include parameters such as Watt Hours (WH), battery rating (Ah) and

voltage (V).

4. Record the amount of battery charge needed to complete the task.

5. Is there enough battery change to complete the robot task?

6. Repeat the simulated task for the mobile robot with the same parameter

values.

7. Set the battery cycle value to represent the battery when it is near its

’end of life’ state.

8. Record the amount of battery charge needed to complete the task.

9. Is there enough battery change to complete the robot task?

10. If there is not enough battery charge to complete the task, then declare a

fault.

11. How did the battery degradation compensation algorithm perform, when

applied to the simulated robot task?

6.2. Conceptual Requirements 126

6.2 Conceptual Requirements
The Requirements phase in a SDLC model is the most crucial step in creating a suc-

cessful case study. Requirements define the problem, objectives and the resources

needed to complete the study.

6.2.1 Research Question

6.2.1.1 Goals

Using AIFH model (see Fig. 3.2), as a baseline, the AIFH architecture is further

developed in this case study to establish if an autonomic architecture can be used to

detect and compensate for robot power management faults.

• Awareness - can processing past and present experimental data, allow the

Autonomic Manager the ability to decide if there is a power fault on the robot?

• Awareness - can processing past and present experimental data highlight any

trends that the capacity of the robot is reduced as the battery cycle count

increases?

• Analysis - can analysis provide the means to establish the extent of the fault?

• Adjustment - can an adjustment strategy be provided that will compensate

for the battery degradation?

6.2.1.2 The Experiment

A robot simulation program (see Figure 6.3), is used to render the Pioneer P3-DX

robot. The battery values are taken from the actual P3-DX battery properties (see

Section 6.2.2.3). The first part of the experiment shows how the battery performs

using a chosen DOD (Depth of Discharge) strategy (see Section 6.2.4). The second

part of the experiment simulates a series of robot tasks. The battery properties and

task instructions supply the parameter values used in each robot task. These values

are then integrated into equations to establish battery capacity required for each task

(see Section 6.4.1). Depending on the ’charge’ cycle used, then battery degradation

will start in influence the task result. Finally, if battery degradation has been flagged

6.2. Conceptual Requirements 127

by the Autonomic Manager, then a compensation strategy is employed within the

task to handle the battery degradation fault (see Section 6.5.1).

6.2.2 Resources required

6.2.2.1 Battery Degradation in Lead-Acid Batteries

Battery degradation is unavoidable in lead-acid batteries; however, the rate of degra-

dation can be predicted depending on how the battery is managed during its lifetime.

However, the rate of degradation can be managed depending on some known factors

[104].

6.2.2.2 Battery Degradation Factors

• Loss of active material from positive plates.

• Loss of capacity due to the physical changes in the active material of positive

plates.

• Temperature elevated temperatures reduce battery life.

• Cycle service discharge cycles reduce battery life.

6.2.2.3 Pioneer P3-DX Robot - battery properties

Experimentation in this case study with real batteries is unrealistic, as battery degra-

dation can take many months to occur. However, to accurately simulate the battery

performance, the properties of the actual Pioneer P3-DX robot battery is imple-

mented. The Pioneer P3-DX uses the YUASA NP Series (NP7.5) battery. The

NP7.5 data sheet provided all the necessary battery capacity and charge ratings

[109].

The life of a battery can be described as the number of ’charge’ cycles it can

produce before being discarded. The number of charge cycles available greatly

depends on how the battery is charged/discharged during its lifetime [110]. DOD

(Depth of Discharge) is used to describe how deeply a battery is discharged. The

less a battery is discharged then the greater the number of ’charge’ cycles you will

6.2. Conceptual Requirements 128

get from the battery over its lifetime. Fig. 6.2 shows the DOD characteristics of

the lead-acid battery used in the Pioneer P3-DX robot. [16].

20

40

60

80

100

120

200 400 600 800 1000 1200 1400

100%
DOD

50%
DOD

30%
DOD

Number of cycles

P
e

rc
e

n
ta

g
e

 o
f
c
a

p
a

c
it
y
 a

v
a

il
a

b
le

Figure 6.2: The DOD (Depth of Discharge) characteristics for the lead-acid battery used in
the Pioneer P3-DX robot [16].

If a battery is discharged at nearly 100 %, then the number of battery cycles

available during the its lifetime is greatly reduced. If the battery is only discharged

to 30 %, (see Fig. 6.2), then numbers of charge cycles available will increase.

Battery degradation can be managed by applying basic principles when charging

the battery.

• A lead-acid battery should never be discharged below 80 %, otherwise over

time the battery will be damaged [111].

• To prevent sulfating and stratification, a lead-acid battery needs an Equalizing

Charge. The battery is charged at a higher voltage and this is required every

10 charge cycles [111].

• The Pioneer Robot battery supply should be maintained above 11 VDC (Volt-

age Direct Current). If it falls below 10 VDC, the battery warning signals.

6.2.3 Simulated Battery Performance

Experimentation with real batteries in a mobile robot is unrealistic as battery degra-

dation can take many months to occur. For this case study, the Pioneer P3-DX robot

6.2. Conceptual Requirements 129

battery is simulated using MRDS (Microsoft Robotics Developer Studio) and SPL

(Simulation Programming Language) editor to provide a graphics environment (see

Figure 6.3).

Figure 6.3: Battery simulation program (developed by the author), using (MRDS) and
robot (P3-DX) rendering using (SPL).

6.2.4 Simulated Battery setup task

In the simulated Setup Task, the mobile robot travels from point A to point B, which

is measured at 200 meters. Table 1 shows the DOD rates at 100%, 50% and 30%.

The cycle number represents the number of times the battery has been re-charged.

The following parameters are defined to create a basic battery simulation in-

volving the DOD values (see Table 6.1).

DR depth of charge rate (this is the percentage of dis-charge used before the

battery is cycled). DOD depth of discharge (this is the percentage available in the

battery to discharge). DP discharge percentage (this is the amount of discharge

available at a particular cycle count). BP battery percentage (this is the amount of

battery charge required to complete a task). SU single unit (this unit is calibrated

1% of battery power and will move the robot a distance of 20 meters). DISTU

distance unit (this is the number of SUs required given a distance value).

6.2. Conceptual Requirements 130

Table 6.1: Shows the percentage rate (DR) and depth of discharge (DOD) for the P3-DX
battery. When DOD falls below 60%, then the battery loses its ability to hold a
significant charge and therefore DOD is denoted as ’-’

No. Cycle Number DOD charge @
100 %

DOD charge @
50%

DOD charge @
30%

1 0 100 100 100
2 20 104 101 101
3 40 108 103 101
4 80 110 104 102
5 100 101 107 103
6 120 95 107 103
7 140 91 108 103
8 160 80 108 104
9 180 60 109 105

10 200 - 110 106
11 240 - 103 106
12 280 - 105 107
13 320 - 102 107
14 340 - 98 108
15 360 - 95 108
16 380 - 91 109
17 400 - 86 110
18 500 - 80 110
19 600 - 60 110
20 700 - - 108
21 800 - - 106
22 900 - - 102
23 1000 - - 98
24 1050 - - 95
25 1100 - - 90
26 1150 - - 80
27 1200 - - 60

Equation (6.1) is used to calculate the DISTU value.

DISTU =
Distance

SU
(6.1)

Using the Cycle Number value from Table 6.1, the DP can be calculated using

Equation (6.2)

DP =
DOD∗DR

100
(6.2)

6.2. Conceptual Requirements 131

The percentage of charge required to complete a task is calculated using Equa-

tion (6.3). This percentage is important, as the mobile robot system manager needs

to establish if the there is enough charge left in the battery to complete the task.

BP =
100∗DISTU

DP
(6.3)

Figure 6.4 shows the percentage charge required to complete the task when

the battery is at various stages within its cycle. In this example the DOD rate is set

at 50%. The robot task distance = 200 meters. In the early stages of battery life, the

battery charge requirements for the task remain constant. However, after 240 charge

cycles, the percentage of charge increases as the battery degradation increases. This

would have an impact on tasks that required the robot to travel long distances.

Figure 6.4: Shows the percentage charge required to complete a task when the battery is at
various stages within its cycle - using 50 % DOD.

6.3. Conceptual Design 132

6.3 Conceptual Design

6.3.1 Autonomic Battery Management

In Chapter 4 and Chapter 5, the AIFH architecture was developed to handle both

wheel alignment faults and sonar sensor faults. In this Chapter the AIFH model

is further developed to handle power management fault (battery degradation). The

AIFH model contains a System Manger and an Autonomic Manager. The System

Manager is responsible for initiating the ’control’ loop - Reactive and Proactive.

The main feedback loop (Reactive), will traverse through each of the Autonomic

Manager layers - Awareness, Analysis and Adjustment. The secondary feedback

loop (Proactive), will operate in the Awareness Layer. The AIFH architectural

model for the robot Battery Degradation fault handling is shown in Figure 6.5.

EFFECTORS

SENSORS

System
Manager

Initiate

Feedback

Loop

Battery State

Tolerance
Values

Historical
Data

Real-time
Data

Policies

Symptoms

Dynamic
Parameters

K
n

o
w

le
d

ge
 B

as
e

Process Readings

Report of pending
battery degradation

Check Battery Cycle
Count

Execute Battery
Analysis policy

Fault

Execute
Compensation Policy

for battery fault

Reactive Loop

Proactive Loop

Knowledge Input

Knowledge Output

No Fault

A
u

to
n

o
m

ic
 M

an
ag

e
r

ADJUSTMENT LAYER

ANALYSIS LAYER

AWARENESS LAYER

User

Interface

Reports

Report

Adjustment ? ye
s

no

Figure 6.5: Autonomic Model for Battery Degradation Management

6.3. Conceptual Design 133

1. Awareness Layer - this layer is responsible for flagging a potential fault within

the power management system on the robot. The Awareness layer will use the

Knowledge Base data to establish if there is potentially a fault. The Reactive

Control loop will initiate the ’Process Readings’ module. This module will

update the Knowledge Base (Dynamic Parameters), with the current state of

the battery i.e., current charge available and current cycle count. The Reac-

tive Control loop will then execute the ’Check Battery Cycle Count’ module.

Using the Knowledge Base ’historical data’ and dynamic parameters’, this

module can make a decision as to whether there is a potential battery degra-

dation fault. If a possible fault has been identified, then all the collected data

is passed to the Awareness Layer. The Proactive Control loop uses the Knowl-

edge Base ’historical’, ’real-time’ and ’dynamic parameters’ data to establish

if there is a possible pending battery degradation fault. The Proactive Con-

trol loop has access to the DOD (Depth of Charge) value and can match this

with the current battery ’cycle count’. If a possible battery degradation fault

is imminent, a report can be sent to the System Manager User Interface. In

Figure 6.6, the chart shows the pre-degradation phase; the Proactive Control

alerts the System Manager during this period of the battery lifeline before the

degradation phase occurs.

125

50

75

100

25

20 40 80 100 120 140 160 180 200 240 280 320 340 360 380 400 500

Cycle Count

Ch
ar

ge
 C

ap
ac

ity

Pre-Degradation Degradation

Figure 6.6: The cycle lifetime of the P3-DX battery using a DOD of 50 %. The Proactive
Control loop is concerned with the pre-degradation phase.

6.3. Conceptual Design 134

2. Analysis Layer - this layer uses data received from Awareness layer to estab-

lish if a there is a fault in the power system within the robot. The Analysis

layer uses a ’Battery Analysis’ policy from the Knowledge Base to check on

the state of the battery. The ’Battery Analysis’ policy uses the Knowledge

Base ’tolerance values’ and ’dynamic parameters’ together with ’real-time’

task data, to establish if there is a battery fault. If the tolerance threshold

limits are exceeded, then battery is now declared as being in a ’degradation’

state. However, if the battery is operating within tolerance limits, then the

Reactive Control loop will initiate the ’Report’ module to inform the System

Manager that ’no fault’ was found - see Figure 6.5.

3. Adjustment Layer - this layer receives data from the Analysis layer containing

information about the battery degradation fault. This layer is used to make

possible adjustments to the robot System Operations in order to compensate

for the fault. The Reactive Control loop initiates the ’Execute Compensation

Policy for battery fault’ module which utilizes the Knowledge Base ’policies’.

This policy can then be used to make adjustments i.e., reduce the speed of the

motors and therefore, reduce the amount of battery power needed to complete

a task. If an adjustment can be made, then the Adjustment Layer will pass the

necessary data to the System Manager to make the adjustment. However, if

no possible adjustment can be made, then the Reactive Control loop will send

a report to the System Manager - see Figure 6.5.

The Autonomic Manager will periodically monitor the data supplied by the

robot sensors and battery monitor. If performance data is within acceptable thresh-

olds, the Autonomic Manager will not intervene. The Autonomic Manager will also

update historical as each task is completed. If similar task is requiring more battery

capacity that it did previously, then this could indicate that the battery is coming

to the end of its life in terms of a useful power source. If a battery cannot retain a

charge of more than 80 %, then it needs to be replaced [104]. Alternatively, the Au-

tonomic Manager could enforce a policy where the DOD rate is changed. Lowering

the DOD rate (at the charging station) can extend the batteries life cycle count.

6.4. Implementation 135

6.4 Implementation

6.4.1 Autonomic Battery Power Management

The Pioneer P3-DX robot contains components that require a certain level of power-

input. The lead-acid batteries contained within the robot supply the necessary power

for the components. Research conducted in [17], shows the relative power required

for each of the Pioneer P3-DX components - see Table 6.2.

Table 6.2: Power requirements for each component in the Pioneer P3-DX robot [17].

Component Power Percentage
Motion 2.8W ˜ 10.6W 12% ˜ 44.6%

Sensing (sonar) 0.58W ˜ 0.82W 1.9% ˜ 5.1%
Micro-controller 4.6W 14.8% ˜ 28.8%

Embedded Computer 8W ˜ 15W 33.3% ˜ 65.3%

For this experiment in the case study, investigations where carried out in how

battery degradation can affect how much power is available for the ’Motion’ com-

ponent during different stages of the lifetime of the battery. Fig. 6.7 shows how

the research conducted in [17], describes the amount of power needed for the robots

’Motion’ component when driven at various speeds.

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Speed (mm/s)

M
ot

io
n

Po
w

er
 (W

)

Figure 6.7: shows the power(W) required for the ’motion’ component in the P3-DX when
driven at various speeds [17].

6.4. Implementation 136

The autonomic battery power management design for the mobile robot in-

cludes a System Manager and an Autonomic Manager - see Figure 6.5. The System

Manager accepts input from the User Interface and translates this into commands

which will provide direction and speed for the Pioneer P3-DX robot. The Auto-

nomic Manager monitors and analyses tasks performed by the robot. The Auto-

nomic Manager considers the current battery ’cycle’ value and the current power

(W) utilized by the robot for the ’Motion’ component. If the threshold limits of

the battery in its present state are being exceeded, then the Autonomic Manager

will make the necessary adjustments to the power (W) level that is provided to the

’Motion’ component.

6.4.1.1 Robot Task One - Motion Management

Using data collected by research conducted in [17], battery data from Fig. 6.2 and

the User input values, we can construct parameter and test values - see Table 6.3.

Table 6.3: Robot Task One: setup values for robot running @ battery cycle 0.

Parameters Values
RS Robot Speed (mm/s) 600 (0.6 M)
PR Power required (W) 8

DIS Distance to travel (M) 5,000
T Time (hr.) 2.31

WHU Watt Hours used 18.48
WC Watt Hour capacity 25.2

BC Battery Cycle 0

The battery in the Pioneer P3-DX provides 84 watt-hours of power capacity

[112]. When the battery is at cycle 0, then the battery capacity is 100%. The battery

rating is 7000mAh offering 12 volts [16]. The following equation (6.4), is used to

calculate the watt hour value for the battery. (E = Energy, Q = milliamp hours and

V = Voltage). This will give 84 watt-hours as described in [112].

E(wh) = Q(mAh) x
V (v)
1000

(6.4)

6.4. Implementation 137

Using the values in Table 6.3, we can establish the value of the ’motion’ com-

ponent in terms of watt hours used.

WHU = PR x T (6.5)

To prolong the life of the battery, a DOD rate of 30% is employed - see Fig.

6.2. When adopting a 30 % DOD rate, this means that the battery is never allowed

to fall below 70% charge capacity. The battery at 100% charge gives 84 watt-hours

of power, however, if 30% DOD rate is used, then only 25.2 watt-hours available for

the Pioneer robot at battery cycle 0 (see equation (6.6) for how watt-hour capacity

WC is calculated at the DOD rate). Using the WHU value from equation (6.5), we

can then calculate the percentage capacity (PC) required for the robot to complete

Robot Task (see Table 6.3).

WC =
E(wh)

100
x DOD (6.6)

PC =
WHU
WC

x 100 (6.7)

The PC value is calculated using equation (6.7). For this experiment, the

acceptable threshold (AT) value for how much capacity a robot task uses, is set to

80%. If the PC value is below the AT value, then the task can complete successfully.

If the PC value is above the AT threshold value, then task is under threat as it is

using full power resource from the battery at the present DOD rate.

The initial robot Task (see Table 6.3), requires a battery charge capacity PC

of 73.33%, when employing equation (6.7). The PC value of 73.33% is below the

threshold value (80%) and therefore no adjustment from the Autonomic Manager is

required.

6.4. Implementation 138

6.4.1.2 Robot Task Two - Motion Management (with battery degra-

dation)

In this experiment, the same parameters are used from Robot Task one but in this

case, the battery is now in a degradation phase and therefore the amount of charge

capacity is reduced. The robot task is run using cycle 1100 (see Table 6.4), which

results in capacity dropping from 100% to 90% (see Fig. 6.5). We need to re-

calculate the (Ewh) value using equation (6.4). This results in battery capacity

being reduced from 84 watt-hours to 75.6 watt-hours. Using the DOD rate of 30%,

we now have 22.68 watt-hours available for the task. If we apply equation (6.7),

then the task will require 81.48% of battery capacity PC, which is above the accept-

able threshold AT value of 80%.

Table 6.4: Robot Task Two: setup values for robot running @ battery cycle 1100.

Parameters Values
RS Robot Speed (mm/s) 600 (0.6 M)
PR Power required (W) 8

DIS Distance to travel (M) 5,000
T Time (hr.) 2.31

WHU Watt Hours used 18.48
WC Watt Hour capacity 22.68

BC Battery Cycle 1100

Within the Analysis Layer, a battery degradation fault is identified using the

’Battery Analysis’ policy. Algorithm 6 (Battery Analysis Policy), shows how task

input and analysis performed by the Autonomic Manager can establish if the PC

value is within tolerance values. Using the current ’Battery Cycle Charge’ percent-

age and the current ’Battery Cycle Count’, a check is made to see if the battery

has reached its final ’cycle count’ according to its DOD status. If this check re-

turns ’true’ then the battery has expired and no compensation for the fault can be

applied. If the battery is still functioning, then the equations (6.5), (6.6) and

(6.7) are applied in order to establish that the PC Percentage Charge is below the

’charge’ threshold limit (held in the Knowledge Base - in Tolerance values). If PC

is above the ’charge’ threshold limit, then a fault is declared, and the relevant data is

6.4. Implementation 139

then passed to the Adjustment Layer to apply a compensation policy - (see Section

6.5.1).

ALGORITHM 6: Battery Analysis Policy - checks that PC is within toler-
ance range.

Input: DOD = selectChargeRatingForBattery()
batteryCycleCount = getCurrentBatteryCycleCount()
batteryCyclePercentageValue =
getCurrentBatteryCyclePercentage(batteryCycleCount, DOD)
upperCycleValue = getUpperCycleValue(DOD).

Output: thresholdExceeded = if this value is set to true, then the
ad justmentBatteryCompensation() algorithm needs to be
engaged.

if (batteryCycleCount > upperCycleValue) then
batteryExpired = true;

end
if (batteryExpired = f alse) then

double RS = robotSpeedInput();
int PR = powerRequiredInput();
double DIS = distanceToTravelInput();
//Calculate the travel time for task;
double T = DIS/(RS/1000);
//Calculate the watt hours used for task;
double WHU = T ∗PR;
//Energy available from battery at cycle count position;
double Q(mAh) = 7ah∗batteryCyclePercentageValue;
double E = Q(mAh)∗ voltage/1000;
//Use the DOD rate, calculate the working battery capacity;
double WA = DOD∗E/100;
//Calculate the percentage capacity required by the robot task;
double PC = WHA/WA∗100;
//Calculate the percentage of battery capacity required for task does not
exceed threshold value;

if (PC > 80%) then
thresholdExceeded = true;

end
//If threshold value is exceeded then call the Battery Adjustment
Algorithm;

if (thresholdExceeded = true) then
ad justmentBatteryCompensation();

end
end

6.5. Demonstration (testing) 140

6.5 Demonstration (testing)

6.5.1 Robot Task Three - Motion Management (with battery

degradation) - applying a compensation policy

The Implementation Section (6.4), showed how the robot performed a task with an

optimal battery and a battery that was experiencing degradation issues. The experi-

ment in Section 6.4.1.2 showed that the battery degradation led to threshold values

being exceeded. To compensate for the battery degradation fault, an adjustment pol-

icy is required, so that the robot can complete a task with the threshold limits. To

bring the task performed by the robot at cycle 1100 below the battery usage thresh-

old value of 80%, we need to reduce the speed and power of the robot. If we use

the adjusted values from Table 6.5, the WHU value is now at 18.00 using equation

(6.5). We can then calculate the PC value using equation (6.7). The resulting PC

value of 79.66% is now below the threshold AT value of 80% and therefore the

robot can safely complete the task.

Table 6.5: Robot Task Three: compensation - reduce speed @ battery cycle 1100.

Parameters Values
RS Robot Speed (mm/s) 500 (0.5 M)
PR Power required (W) 6.5

DIS Distance to travel (M) 5,000
T Time (hr.) 2.77

WHU Watt Hours used 18.00
WC Watt Hour capacity 22.68

BC Battery Cycle 1100

6.5.2 Battery Degradation Compensation Algorithm

If the PC value is above the acceptable threshold limit, then Algorithm 7 is initi-

ated. This Policy is stored in the Knowledge Base of the AIFH Autonomic Man-

ager. The Adjustment Layer will use this policy to make adjustments to the power

requirements of the robot so that less battery charge is required. The Compensation

Algorithm 7, will be periodically run until the PC value is below the threshold limit

value.

6.6. Evaluation 141

ALGORITHM 7: Battery Compensation Algorithm
1: procedure ADJUSTMENTBATTERYCOMPENSATION() . Adjust speed of the

robot Input: robotMotorSpeedValue = UserInputValueForMotorSpeed
2: //Use built in Microsoft Drive functions to update the motor speed value
3: Drive.SetDrivePowerRequest request = new

Drive.SetDrivePowerRequest()
4:

request.Le f tWheelPower = (double)OnMoveLe f t ∗ robotMotorSpeedValue;
5: request.RightWheelPower =

(double)OnMoveRight ∗ robotMotorSpeedValue;
end

6.6 Evaluation

Using the same task configuration used in Section 6.4.1.1, Table 6.6 shows the

parameter values used for the evaluating the Battery Degradation case study. The

equations used in Section 6.4.1.1 are applied to a range of ’Cycle Counts’ that rep-

resents the life of the battery.

Table 6.6: Parameter values used in the evaluation of the battery performance using a DOD
rate of 30 %.

Parameters Values
RS Robot Speed (mm/s) 600 (0.6 M)
PR Power required (W) 8

DIS Distance to travel (M) 5,000
T Time (hr.) 2.31

WHU Watt Hours used 18.48

In Figure 6.8, the percentage charge needed from the battery to complete a

robot task (see Table 6.6), decreases as the battery reaches its mid-cycle range (200-

700). After the battery cycle has reached 800, the percentage charge PC needed in-

creases as the battery starts to experience the effects of degradation. Eventually the

percentage charge required exceeds the Tolerance Limit (1100-1150), and therefore

the robot task cannot be completed using the current ’parameter’ configuration in

Table 6.6.

6.6. Evaluation 142

Pe
rc

en
ta

ge
 C

h
ar

ge
 A

va
ila

b
le

 @
 3

0%
 D

O
D

Battery Cycle Count

Percentage Charge (PC)
required for a robot task at
each Cycle point (Table 5.6).

Tolerance Limit

Figure 6.8: Line chart showing what Percentage Charge is available to a robot task at given
cycle point within the battery lifetime.

In Figure 6.9, the Battery Degradation Adjustment policy is applied when

the battery gradation fault has been identified (battery cycle 1000). In Figure 6.8,

battery cycle 1100 and 1150 where above the tolerance limit. In Figure 6.9, the

application of the Adjustment Policy brings battery cycle 1100 and 1150 below the

tolerance limit.

Pe
rc

en
ta

ge
 C

h
ar

ge
 A

va
ila

b
le

 @
 3

0
%

 D
O

D

Battery Cycle Count

Percentage Charge (PC)
required for a robot task at
each Cycle point (Table 5.6).

Tolerance Limit

Fault Adjustment Policy
for Battery Degradation
applied.

Adjustment Policy = Watt
output reduced to 6.5

Adjustment Policy = Watt
output reduced to 5

Figure 6.9: Line chart showing what Percentage Charge is available to a robot task at given
cycle point within the battery lifetime.

6.7. Summary 143

Further development of the AIFH architectural model showed a battery degra-

dation fault can be managed using both the robots System Manager and the Auto-

nomic Manager. The three layers in the Autonomic Manager (Awareness, Analysis

and Adjustment), interacted with the Reactive Control and Proactive Control feed-

back loops to handle the battery degradation fault. Using the Autonomic Manager

Knowledge Base, policies where used to analyze the extent of the fault and to make

adjustments to compensate for the fault. Self-adjustment allows the robot to com-

plete tasks even when operating with reduced power availability. Ultimately the

battery in a degradation state will need replaced. The goal in this Cast Study, was

to allow the robot to function as long as possible until even with operating at low

power.

6.7 Summary

Autonomic Management for Mobile Robot Battery Degradation case study set out

to demonstrate how an Autonomic Management System can be implemented to

handle power management faults in a mobile robot such as the Pioneer P3-DX. The

System Development Life Cycle (SDLC) was implemented as a Research Model to

describe a sequence of activities including requirements, design, implementation,

testing and evaluation. The Research question posed for this case study stated -

if the AIFH architecture (derived from the MAPE-K autonomic model and IMD

model), can be applied to detecting power management faults on a mobile robot

and if possible, compensate for those faults? Can the mobile robot adapt to its

changed environment and continue to function even with a battery fault?

The AIFH architecture was expanded in order to handle power faults within a

mobile robot. In this case study, tests where carried out on how battery degradation

can affect the performance of a mobile robot over time. This type of fault scenario is

predictable compared to the Wheel Alignment Fault and the Sonar Sensor fault case

studies, in which a fault can occur at any time during a mission. Battery degrada-

tion is an unavoidable process and therefore the Autonomic Manager must adapt its

policies to handle this type of disability. The AIFH ’Awareness’ process in this case

6.7. Summary 144

study, is knowing when the battery degradation has begun. This relies on knowl-

edge regarding the DOD that is being adapted (Fig. 6.2) and checking the cycle

count of the lead-acid battery in the robot. The AIFH ’Analysis’ process can cross

referencing the cycle count with the percentage of charge available in the battery to

establish if the tolerance threshold has been exceeded. The data from the ’Analysis’

process is then made available to the AIFH ’Adjustment’ process. The ’Adjustment’

policies can then calculate what power reduction in certain components is required

so therefore reducing battery consumption.

The research carried out in this case study and the previous case studies (Chap-

ter 4 and Chapter 5), provides a valuable experience in gathering knowledge for the

implementation of a Generic Autonomic Architecture for fault handling in a mobile

robot (see Chapter 7).

Chapter 7

Generic Architecture for Fault

Detection (AIFH)

7.1 Introduction

In this Chapter, the final design for the autonomic intelligent fault handling archi-

tecture (AIFH) is presented. In Chapter 3, Section 3.3, the initial concept of the

AIFH architecture was introduced with the notion of a 3-layer architecture. The

initial ideas for the architecture where based on a combination of the MAPE-K and

IMD architectural models. The aim of the generic autonomic architectural design is

to handle various types of component faults within a mobile robot. Through a series

of 3 case studies, the architecture has been refined as experience and insight from

the studies was gained. In Chapter 4, 5 and 6, case studies where employed to ex-

plore how different fault scenarios could be used to develop the AIFH architecture.

The generic autonomic architecture or AIFH, is a triple layer model consisting of

an Awareness Layer, Analysis Layer and Adjustment Layer. These three layers are

controlled by an Autonomic Manager. The Autonomic Manager contains feedback

loops that traverse through each of the layers. The System Manager controls the

flow of data from the robot’s sensors and effectors. The High-Level AIFH architec-

ture is introduced in Section 7.3. The Low-Level detailed architecture is presented

later in Section 7.6. The following Sections explain the roles and responsibilities

of a number of the architectural components prior to seeing them within the overall

7.2. Overview - Generic Architecture (Fault Handling) 146

design architecture (Fig. 7.8). Evaluation of the generic architecture is presented

in Section 7.8, through a further case study which explores the utility of the evolved

AIFH architecture.

7.2 Overview - Generic Architecture (Fault Han-

dling)
The design of software systems requires the ability to describe, create, and evaluate

systems at an architectural level. Designing a reliable system involves integrat-

ing failure responses within the system. Failure responses can be categorized by

stages. It is important that the architectural system design provides a response for

each stage. Stages include Fault Detection, Fault Diagnosis, Recovery and Repair

[113]. Faults occurring in systems often don’t limited themselves to one compo-

nent. Research carried out in [114], incorporates a generic fault tolerance architec-

ture (GFTSA), to handle faults by using error recovery mechanisms in Distributed

Systems. Their architectural fault tolerance proposal is designed so that it can be

re-used at different levels within the Distributed System. This re-usable design is

important within the AIFH architecture. If a fault occurs in the robot’s sensors sys-

tem, drive system or power management system, the AIFH architecture needs to

be adaptive to handle these faults from multiple systems within the mobile robot.

In designing a generic architecture, basic elements need to be incorporated such

as re-usability, adaptive (reacting to requirement changes without the need for re-

structuring) and low complexity (complex systems require more maintenance and

are more difficult to understand and use). Research in Generic Architecture in [115],

proposes their GeRDI (Generic Research Data Infrastructure), that uses policies that

can adapt to shifting requirements. By extrapolating requirements, they in-turn cre-

ate domains that contain features that are self-contained. In designing the AIFH

generic architecture, each fault scenario has its own set of requirements. If a fault is

contained within a particular robot sensor, then the architecture needs to be flexible

in identifying, analyzing and if possible, compensating for the fault. Equally, if the

fault occurs in the ’power’ system of the robot, a new set of requirements needs to

7.3. High-Level AIFH Architecture 147

be processed using the same generic model. During a mobile robot’s lifetime, it

may receive various types of hardware upgrades i.e. new sensors etc. The AIFH

Knowledge Base needs to flexible to incorporate new policies to handle these new

components. Therefore, if a fault occurs in a relatively new component (sensors),

the AIFH can adapt to its changed environment.

7.2.1 Comparative analysis of the architectural model used in

each case study

The case study in Chapter 4 introduced a 3-layer concept to describe the AIFH

architecture. The Awareness Layer would process the sensor data and identify fault

patterns, the Analysis Layer would analyse the data to establish the extent of the

fault, finally, the Adjustment Layer would then determine if a compensation strategy

could be applied to the fault data, so that the robot could continue to function in

some capacity. Chapter 4 also introduced a basic feedback loop, that transported

the data between each layer and to the System Manager. The case study in Chapter

5 introduced the autonomic Knowledge Base, which contains different data types,

that can be used by each of the three layers within the AIFH architecture. Compared

to the previous case study in Chapter 4, the architecture in this case study can call

on policies and historical data to handle faults. When a component failure occurs,

the Autonomic Manager will select the appropriate recovery policy to compensate

for the fault. The Knowledge Base also contains dynamic parameters that can be

adjusted if environmental changes occur. The final case study (Chapter 6), explores

the use of reactive a proactive feedback loops. This allows the Autonomic Manager

the ability to report possible pending faults by comparing historical and real-time

data.

7.3 High-Level AIFH Architecture
When building an Autonomic Architecture, certain characteristics are required to

define the autonomic system. The autonomic system is required to hold self-

knowledge and therefore acquire knowledge of the surrounding environment. The

autonomic system is required to detect and recover from component failure and

7.4. AIFH architectural components 148

therefore, maintain a level of independence. In Figure 7.1, the basic AIFH archi-

tecture consists of an autonomic manager with connections to hardware systems

via the system manager. Within the autonomic manager, the self-healing module is

responsible for initiating the feedback loop that transports data through each of the

AIFH layers. The 3 layers (awareness, analysis and adjustment), all have access to

the knowledge base.
K

n
o

w
le

d
ge

 B
as

e

Awareness

Analysis

Adjustment

AIFH Architecture (High Level)

Ef
fe

ct
o

r
Se

n
so

r

Sy
st

em
 M

an
ag

er

Autonomic Manager

Se
lf

-H
ea

lin
g

M
o

d
u

le

Figure 7.1: AIFH architecture (High-Level view).

7.4 AIFH architectural components

7.4.1 System Manager

The System Manager is responsible for controlling the sensors and effectors of the

mobile robot. The System Manager feeds data from the sensors to the Autonomic

Manager. The Autonomic Manager can then process the sensor data and also update

the Knowledge Base module - see Figure 7.2.

7.4. AIFH architectural components 149

A
u

to
n

o
m

ic
 M

an
ag

e
r

Task Module

Sensors

Effectors

Sensor

Processing

Module

Output

Module

User

Interface

Sy
st

e
m

 M
an

ag
e

r

K
n

o
w

le
d

ge
 B

as
e

Adjustment Policy Operating Policies

Figure 7.2: AIFH architecture - System Manager modules.

The Task Module within the System Manager, is used to process ’task’ data in-

putted from the User Interface and to execute commands taken from the Operating

Policies. The Task Module initiates the robot sensors and sends command opera-

tions to the effectors. Data from the robot’s sensors is processed using the Sensor

Processing Module. The Sensor Processing Module is responsible for sending data

to the Autonomic Manager; this data contains sensor readings accumulated during

the task operations. The Autonomic Manager, if required, can update the System

Manager operating policies via the AM’s adjustment policies. These adjustments

would be in response to a fault status, within the mobile robot. If a fault status is

apparent, then the Autonomic Manager needs to make adjustments to the current

task by changing the behavior of the operating policies within the System Manager.

The System Manager also contains an Output Module which is used to relay data

supplied by the Autonomic Manager’s (Knowledge Base module), to Users or Mis-

sion control, regarding fault diagnosis, symptoms of possible impending faults and

fault recovery information.

7.4.2 Autonomic Manager

The Autonomic Manager implements the feedback loops and makes use of domain-

specific knowledge to process task data supplied by the System Manager [49]. The

7.4. AIFH architectural components 150

Autonomic Manager makes use of monitored data from sensors and combines this

with stored knowledge to plan and implement tasks. The Autonomic Manager, if

required, is responsible for initiating behavioral changes regarding the execution of

tasks. Behavioral changes are usually the result of an environmental change i.e. a

fault status is declared. The Autonomic Manager would then relate these changes

or adjustments, to the System Manager’s operating policies. In terms of fault man-

agement, the Autonomic Manager benefits from using previous experiences or his-

torical data, to identify trends in component behaviours. When a fault occurs within

a component, it may not necessarily be represented as a straightforward fail state.

Some faults within components may not be discernible to begin with, but over time,

the failure gradually becomes more evident. The Autonomic Manager must not only

report (via the Output Module - see Figure 7.2), if a component suffers catastrophic

failure but also report on the behavior of a component that is under performing or

showing a gradual downwards trend.

7.4.2.1 Self-Healing Module

Within the Autonomic Manager, the Self-Healing module is responsible for moni-

toring, detecting and diagnosing system malfunctions. It achieves this by initiating

the feedback controls loops. In the AIFH architecture two control feedback loops

are employed (Reactive and Proactive). Research developed in [116], shows that

coordinated parallel control loops can be used to carry out separate operations as

long as each control loop does not violate the objective of another controller. The

Reactive Control loop passes data between each of the 3 Layers (Awareness, Anal-

ysis and Adjustment). The Reactive Control loop is part of the Autonomic Manager

that immediately identifies a component failure. There is no requirement for adapt-

ing experience or historical data in this instance, as identifying and analyzing the

fault needs to be carried out quickly. The Proactive Control loop operates within

the Awareness and Analysis Layer. The Proactive Control loop will use past experi-

ence and historical data to investigate component anomalies. The Proactive Control

loop is part of the Autonomic Manager that reports any particular trends in a com-

ponent’s performance. The Autonomic Manager also contains the Knowledge Base

7.4. AIFH architectural components 151

module. The Knowledge Base module is available to all 3 Layers within the Auto-

nomic Manager.

7.4.2.2 Knowledge Base Module

The information stored in the Knowledge Base can be used to extend the knowledge

capabilities of an Autonomic Manager. The Knowledge Base Module provides each

layer in the AIFH architecture with tolerance values, polices, historical data, dy-

namic parameters, real-time data and symptoms.

• Tolerance Values - task performance is measured against expected result

markers. Tolerance values are used so that tasks are completed within an

established level of accuracy. If a Tolerance value is exceeded, then the task

has failed.

• Policies - an Autonomic System requires a method for defining polices that

allows the Autonomic Manager to make informed decisions [47]. Implement-

ing policies in a standard way, means the whole autonomic system can be

managed using a common set of policies. In the AIFH architecture, aware-

ness, analysis and adjustment policies are stored within the Autonomic Man-

ager. The System Manager stores the operating policies that used for com-

mand routines for the sensors and effectors.

• Historical Data - as each robot task is performed, the sensor data is recorded

into the Knowledge Base. The Autonomic Manager uses historical data to

identify any significant changes in the performance of sensors over time. His-

torical data is also useful for identifying trends within task data.

• Dynamic Parameters - are sets of parameters that are predefined but can be

updated when required. For example, if the battery cycle count (in the mobile

robot), reaches a certain level, then this is compared to the dynamic parameter

value: if they are equal, then an alert message is sent to the AM.

• Real-Time Data - real-time data is information currently being reported by

sensors during a task. The Autonomic Manager may need to react quickly, if

7.4. AIFH architectural components 152

a sensor is reporting irregular data, i.e., a sensor is damaged in a collision.

• Symptoms - this is part of the Knowledge Base that records any possible

impending issues with components. Symptoms can be identified within task

performance data. Even though sensor data is within Tolerance limits, reports

can show a downward trend that might indicate a possible fault in the future.

The Knowledge Base Module is dynamic and is constantly updated with sensor

data supplied by the executing task. Figure 7.3 shows how each attribute within the

Knowledge Base Module is used by each Layer within the AIFH architecture.

Tolerance

Values

Fixed
Dynamic

Awareness Layer

Analysis Layer

Policies Analysis

Awareness

Adjustment

Policy Selector
(Depends on Layer and

component type)

read/write

Historical

Data

Task
Fault

Dynamic

Parameters Power

Sensors

Available to all Layers

Real-time

Data Power

Sensors

Available to all Layers

Symptoms
Awareness

select

Awareness Layer

Kn
o

w
le

dg
e

B
as

e
A

tt
ri

bu
te

s

A
ut

o
no

m
ic

 L
ay

er
 P

ro
ce

ss
es

Updated by Autonomic
Manager

Data fed to the
Autonomic Manager by

Sensors

Autonomic Manager
Reports Symptom's

read write

Awareness Layer

Figure 7.3: Shows how the attributes within the Knowledge Base are used by each Layer
within the AIFH Architecture.

Tolerance values within the Knowledge Base Module can be read by both the

Awareness Layer and the Analysis Layer. The ’tolerance’ value process works on a

number of levels. When a task is being executed by the robot, data from multiple

sensors are being processed by the Autonomic Manager (Awareness Layer). De-

pending on what type of task is being performed and what sensor is being used, will

dictate the type of ’tolerance’ value. In Figure 7.4, tolerance type is described as

7.4. AIFH architectural components 153

(TT). The sensor/historical data is checked using the Check Tolerance Value (CTV)

algorithm. Depending on the value within data, the CTV algorithm will

Awareness Layer

Sensor Data

K
n

o
w

le
d

g
e
 B

a
s
e

CTV

Readings

(yes) Take
Action

CTV = Check Tolerance Values

(no)
Continue

Awareness Layer

Historical Data

CTV

Readings

(yes) Take
Action

(no)
Continue

(a) (b) TT = Tolerance Type

CTV = Check Tolerance Values

TT = Tolerance Type

TT

Dynamic

Tolerances

Fixed

Tolerances

Exceeded
(yes/no)

Exceeded
/Equal

(yes/no)

TT

Dynamic

Tolerances

Fixed

Tolerances

Exceeded
(yes/no)

Exceeded/Equal
(yes/no) K

n
o

w
le

d
g

e
 B

a
s

e

K
n

o
w

le
d

g
e

B
a
s
e

Figure 7.4: (a) - Shows tolerance values compared to real-time sensor data. (b) - tolerance
values compared to historical data.

The tolerance type (TT), can either be ’dynamic’ of ’fixed’. The selected tol-

erance value is then used against the current sensor reading. If the sensor reading

is above the expected tolerance value then action is required, and the sensor data is

’tagged’ for further investigation.

Figure 7.5: Example of ’fixed’ tolerance value - used to identify disabled sonar sensors

An example of a ’fixed’ tolerance value is shown in Figure 7.5. The sonar

sensors on a P3-DX Pioneer robot defaults to a reading of ’5000’ when in a disabled

state. The ’fixed’ tolerance value is also set to ’5000’. If sensor reading equals the

tolerance value, the sensor would be declared as faulty.

Tolerance values can also be used on historical sensor data (see Figure 7.4

(b)). If a robot is performing a repetitive task, the sensor data is recorded into the

7.4. AIFH architectural components 154

Knowledge Base. As part of the self-healing process, the historical data is periodi-

cally monitored. The historical data is then compared with the accepted ’tolerance’

values. If the tolerance value has been exceeded, then that section of historical data

is ’tagged’ and sent for further investigation to establish the extent of the fault.

An example of a tolerance value being used with historical data, is shown in

Figure 7.6. The mobile robot is expected to arrive at its destination point within

a tolerance value (25mm). If the tolerance value is exceeded, then this is flagged

as a possible fault. This tolerance value can be altered if required and is therefore

described as being ’dynamic’.

Figure 7.6: Example of a ’dynamic’ tolerance value for laser sensor distance readings

The Awareness Layer can also update tolerances if a particular tolerance value

is too sensitive. For example, there is a tolerance value used to check if two sonar

sensors are showing the correct distance reading when detecting an object - as the

sonar array on the robot is octadecagon, this tolerance value may need to change

depending on the angle of the robot to the object.

The ’Policy Selector’ process (see Figure 7.7), is used by all 3 layers in the

AIFH architecture. Some policies are used to check if sensors are operating within

tolerance limits. Other polices involve analyzing data to establish the extent of a

fault. Polices are also available that can adjust the behavior of the robot to com-

pensate for a fault. In Autonomic Computing, policies can be described as action,

utility and goal [54], - explained in detail in Chapter 2, Section 2.2.2.2. In the AIFH

architecture, the policy selection process depends on the type of fault that has been

identified. If we take an example for a sonar sensor fault (as investigated in Chapter

5), various policies are required to identify and handle the fault process - see Figure

7.7.

7.4. AIFH architectural components 155

Knowledge Base

Policies

Autonomic Manager

Awareness

Analysis

Adjustment

Action policy

Sonar sensor reports fault

Goal policy

Utility policy

Checks for disparate readings
between sonar sensors

Identifies what sonar sensors
are disabled

Calculate ‘rotation’ angles for
disabled sonar sensors

Adjustment policy to
compensate for disabled sonar

sensors

System Manager

Operating
Policies

Figure 7.7: Policy Selector - Knowledge Base policies for Sonar Sensor Fault.

In Figure 7.7, the Autonomic Manager (Awareness Layer), contains an Action

policy and Goal policy. The Action policy is required as the Autonomic Manager

needs to react to the current state of the system. The sonar sensor has reported a

fault state, therefore, action needs to be taken quickly. The Goal policy is more

measured. In this case, the exact state is unknown, so this policy executes a number

of checks between adjacent sonar sensors to establish if a particular sensor requires

more investigation. The Autonomic Manager (Analysis Layer), contains a Goal pol-

icy to establish what actual sonar sensors are faulty as identified by the Awareness

layer. The Autonomic Manager (Adjustment Layer), uses a Utility policy to calcu-

late the angle of ’rotation’ required by the robot to compensate for each disabled

sonar sensor. Finally, a further Action policy (see Figure 7.7), is used to make

the adjustments to the robot when executing its tasks and therefore compensate for

any disabled sonar sensors. This action will update the Operating Policy within the

System Manager.

The Knowledge Base Historical Data is constantly updated by the Autonomic

Manager with sensor data supplied by the System Manager. When a robot task is

completed, then the results of the task are recorded for reference purposes. For

7.5. Building the AIFH Architecture 156

example, a task that was executed by the robot required 15% of the robot’s battery

charge. If a similar task is required, then historical data is useful in deciding if there

is enough power currently in the batteries to complete the task. Historical data is

also important in order to track behavioral changes within the robot’s components.

Some components may degrade over time and this can have an impact on a robot

while its executing various tasks. Dynamic Parameters are used to aid analysis when

checking values against Real-time data. For example, the battery cycle count is a

dynamic parameter that is updated every time the robot’s battery is charged. The

Knowledge Base Symptoms, records unusual readings from selected components.

Symptoms are only recorded if they are within tolerance limits but are showing

a behavioral pattern that may suggest a future impending fault. An example of

’Symptom’ behaviour - when a robot is asked to conduct a series of tasks leading it

to a particular destination, as it reaches the end of the tasks, the distance it is from the

destination marker is progressively increasing. Even though the robot is operating

within tolerance values, this behavior could indicate a progressive ’drive’ system

failure or minor damage to one of its wheel assembly’s, that, when the tolerance

value is eventually reached, will cause the analysis of the wheel alignment to be

conducted with a view to changing the ’operating policy’ for such tasks.

7.4.2.3 Keeping the Autonomic Manager focused

One of the aims in designing an autonomic architecture is to make sure the auto-

nomic procedures themselves do not overwhelm the system that is being monitored.

If the Autonomic Manager takes on vast amounts of sensor data from the robot, then

it will consume the same volume of CPU time and memory capacity as the System

itself [49]. Therefore, the data drawn in by the Autonomic Manager should be op-

timized in a way that the AM can receive the right enough data, so it can make an

informed decision, if it finds the data is showing anomalous behavior.

7.5 Building the AIFH Architecture
In Chapter 2, attributes from both the MAPE-K and IMD architecture where used

to build the AIFH basic architectural design. In Chapters 4, 5 and 6, the case stud-

7.5. Building the AIFH Architecture 157

Tolerance
Values

Historical
Data

Dynamic
Parameters

Policies

Real-time
Data

Symptoms

S
y

st
e

m
 M

a
n

a
g

e
r

S
e

n
so

rs

E
ff

e
ct

o
rs

K
n

o
w

le
d

g
e

 B
a

se
 M

o
d

u
le

Check data for

unusual readings?

No

Yes

Component Fault

Detected

A
n

a
ly

si
s

La
y

e
r

A
d

ju
st

m
e

n
t

La
y

e
r

Calculate Fault

Parameters

Yes

No

Calculate

Adjustment

Parameters

Select Adjustment

Policy for fault type

Tolerance

Sensitivity

Adjustment?

No Adjustment

Possible

System Manager data

Output data

Reactive Control Loop

Proactive Control Loop

Knowledge Base reads/updates

Component Health

Check

A
w

a
re

n
e

ss
 L

a
y

e
r

Initiate Control

Loops

Select Policy for

fault type

S
e

lf
-H

e
a

li
n

g
 M

o
d

u
le

Report findings to

System Manager

Send Adjustments

parameters to System

Manager (Task Module)

Initiate
self-health

check

Report
Anomalies

Monitoring

Redirect
Resources

A
u

to
n

o
m

ic
 M

a
n

a
g

e
r

Update
Operating

Policies

Figure 7.8: Low-Level AIFH Generic Autonomic Architecture.

ies provided methods for detecting and analyzing faults. There was also methods

to adjust for those faults. These experiments provided a foundation to develop the

AIFH architecture in greater detail. In Fig. 7.8, the Autonomic Manager is pre-

sented with the Knowledge Base module and connection to the System Manager,

as a fully formed Generic Autonomic Architecture. The Autonomic Manager (self-

healing module), controls the timing of the Health Check monitoring and initiates

the feed-back loops that traverse each layer (Awareness, Analysis and Adjustment).

The Knowledge Base is shared by each of the AIFH autonomic layers and includes

policies that can be used to detect and adjust for component faults. In this Section,

each of 3 Layers in the AIFH generic architecture are explored in detail, showing

how they interact with each other and how they interact with the Knowledge Base

module.

7.5. Building the AIFH Architecture 158

7.5.1 Low-Level AIFH Architecture

In Section 7.3 the High-Level AIFH architecture was presented. In this Section, the

AIFH architecture is explored in greater detail at its lowest level. The Autonomic

Manager is largely independent (self-managing), however, it relies on communica-

tion with the System Manager for incoming sensor data. The Autonomic Manager

will also communicate with the System Manager if changes are required to handle

component faults - see Figure 7.8 - (Update Operating Policies). One of the prop-

erties of an autonomic system is self-healing. Self-Healing is presented in the AIFH

architecture as a module that controls the autonomic feedback loops and controls

the data output that the System Manager requires if changes have to be made to

alter system commands for fault compensation. In autonomic terms, self-healing is

the ability to find, diagnose and react to system malfunction. To discover system

malfunctions or possible future faults, the autonomic system must have knowledge

about its own behaviour and knowledge of the local environment [117]. The self-

healing module monitors for any apparent changes to the local environment. It

monitors systems by initiating self-health checks. The data from the robot sensors

is exposed to the Awareness Layer. However, as discussed in Section 7.4.2.3, this

data is selected at intervals to ensure it does not overwhelm the System. This Layer

will either report back to the self-healing module that no faults have been discov-

ered or it will identify component failures and report this data to the Analysis Layer

for further processing. The AIFH architecture has been designed in such a way, that

each layer within the Autonomic Manager has access to the Knowledge Base and

therefore, using appropriate policies, can make decisions in terms of how to manage

system faults.

7.5.2 Awareness Layer

As the mobile robot executes its tasks, the Autonomic Manager will periodically

check on the health and functionality of the hardware components. We define

Awareness as the ability to detect that the data being processed and monitored may

be indicating a possible fault. The Reactive Control loop initiates a health check on

all components that are to be used for the current robot task - see Fig. 7.8. This

7.5. Building the AIFH Architecture 159

can involve detection sensors, cameras, motor differential drive and power supply.

Tolerance values held in the Knowledge Base Module are used to indicate if there is

a possible issue with a component. If tolerance values are exceeded, then this can

indicate a possible fault. If, for example, a sensor unit is reporting a disabled state,

then the Reactive Control loop will relay this information to the Analysis layer for

further processing. The Awareness layer can also process historical data and com-

pare this with real-time data reported by the current task. The Proactive Control

loop checks this data for patterns that might indicate a possible future fault. For

example, if the robot completes a task that involves traveling from destination A

to destination B, when doing a self-check, it finds that it is not exactly at point B

but is still within tolerance limits. However, if this trend continues in further tasks,

then it might be an indication that a wheel fault is about to occur. The Proactive

Control loop is responsible for reporting unusual data readings to the Self-Healing

module. The Self-Healing module will send these reports via the Output Module (in

the System Manager), to the User Interface or Mission Control. These reports are

vital and could prevent future tasks being compromised. Figure 7.9 shows an UML

Sequence representation of the modules and process routes within the Awareness

Layer.

Figure 7.9: UML diagram showing the relationships within the AIFH ’Awareness’ Layer.

7.5. Building the AIFH Architecture 160

7.5.3 Analysis Layer

Through analysis, we can establish the extent of a fault indicated in the Awareness

Layer. Depending on the type of component identified, the relevant analysis policy

is selected from the Knowledge Base Module - see Fig. 7.8. The analysis policy

(see Policy Selector - Section 7.4.2.2), will then determine the extent of the fault.

Calculations are performed using the analysis policy, which are then passed to the

Adjustment Layer. For example, if a sonar fault has been identified in the Aware-

ness Layer, then an analysis policy can determine how many of the sonar sensors on

the array are disabled. Specialized policies can determine if the sonar sensor is re-

porting the correct distance data by comparing results with adjacent sonar sensors.

Other examples include wheel alignment policies. If the Awareness Layer deter-

mines there is an alignment fault, then a policy can be used to determine how much

the robot’s alignment is from the expected true alignment. The value returned would

be labelled as the offset value. The offset value can then be passed to the Adjustment

Layer.

Another property of the Analysis Layer is the ability to determine if current

tolerance values are too sensitive. If a tolerance value is set too ’high’, then this

can result in the Awareness Layer reporting a fault during the next Autonomic feed-

back loop process. The Analysis Layer can make the necessary adjustment to the

tolerance values if required. For example, if a wheel alignment tolerance value is

set in the Knowledge Base as 10 meters. Then this might need to change if the

terrain the robot is operating in, prevents the robot arriving at a destination with any

significant accuracy. The wheel alignment tolerance value could then be adjusted to

20 meters.

If tolerance adjustment is required, the Reactive Control loop will re-direct

back to the Awareness Layer for re-evaluation. Once the fault calculations are made

in the Analysis Layer, then the fault parameter data is passed to the Adjustment

Layer. Figure 7.10 shows an UML Sequence representation of the modules and

process routes within the Analysis Layer.

7.5. Building the AIFH Architecture 161

Figure 7.10: UML sequence diagram showing the relationships within the AIFH Analysis
Layer.

7.5.4 Adjustment Layer

Using the fault parameter data supplied by the Analysis Layer, the Adjustment Layer

will select the appropriate adjustment policy from the knowledge Base module. Cal-

culations are then performed so that a compensation strategy can be employed to

handle the component fault - see Fig. 7.8. Adjustment calculations may determine

if there can be no resolution to the current fault. For example, if all sonar sensors

are reported as being disabled, then the sonar sensor array cannot be used to detect

objects along the robot’s path. In this case, a message is sent to the System Manager

(output module) to report that no compensation can be made to the reported fault.

However, if an adjustment calculation can be made, i.e., if there is at least one sonar

sensor still operable, then an adjustment policy can be deployed.

When the adjustment policy is deployed, the Reactive Control loop will send

the compensation parameters via the Autonomic Manager to the System Manager

(Operating Policy). The Operating Policy will then update the System Manager

(Task Module), which in turn, will direct the effectors/sensors to operate using the

new ’adjusted’ settings. To test the compensation strategy is successful, the Self-

healing module will then re-initiate the Control Loops in the Autonomic Manager

(Awareness Layer). The Component Health Check module in the Awareness Layer

will check the component against current tolerance limits. If the adjustment pol-

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 162

icy is successful, the Reactive Control loop will send data back to the Self-healing

module in the Autonomic Manager to report that no faults are pending. Figure 7.11

shows an UML Sequence representation of the modules and process routes within

the Adjustment Layer.

Figure 7.11: UML sequence diagram showing the relationships within the AIFH Adjust-
ment Layer

7.6 Applying the Generic AIFH Architecture (Stereo

Vision Camera Fault)

7.6.1 Introduction

The first 3 case studies where employed in order to expand our knowledge and ex-

plore the issues involved. In doing so, the AIFH architecture evolved to the extent

that has been documented in this Chapter. In order to attempt some form of vali-

dation on the AIFH architecture, another case study was made. However, on this

occasion, the intention was primarily to evaluate the completeness and feasibility of

the AIFH architecture, rather than to evolve and refine it (as had been the objective

of the first 3 case studies).

To evaluate the design of the AIFH generic architecture (see Fig. 7.8), we

have applied it to a further case study centred on hardware faulting within a Stereo

Vision Camera sensor. The overall objective was to demonstrate the utility of the

generic architecture to a new fault scenario. The aim was to use all the layers within

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 163

the Autonomic Manager (Awareness, Analysis and Adjustment), to establish if a

fault was occurring and if possible, make policy changes and self-adapt the System

to compensate for the fault and thereby provide a first stage of feasibility check on

our architecture.

7.6.2 Stereo Vision Camera - properties

The Stereo Camera can be used to identify obstacles and evaluate their distance

from the robot. Fig. 7.12 shows a PCI nDepth Stereo Vision camera. This stereo

vision camera and processing PCB board provides depth measurements by using a

pair of sensors and a technology called computational stereo vision.

Figure 7.12: The PCI nDepth Stereo Vision Camera

The stereo camera provides real-time 3D depth data for mobile robot naviga-

tion. Evaluating distances is achieved as follows:

7.6.3 Triangulation

Figure 7.13 (a) shows a PCI nDepth Stereo Vision camera mounted on top of a

Pioneer P3-DX. The basis of the technology is that a single physical point in 3-

Dimensional space projects unique images when observed by two separated cam-

eras. Figure 7.13 (b), shows a position P in 3D space and its projection to a unique

location SL in the left image and SR in the right image. If it is possible to locate

these corresponding points in the camera sensor images, the location of point P can

then be established using Triangulation. The value BL represents the Baseline dis-

tance between the two sensors (in this case 6cm) and f represents the focal length

of the sensors.

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 164

P(x,y,z)

S S L R

X X

f

B
L

Z

Stereo Camera

(a) (b)

l r

Figure 7.13: (a) The PCI nDepth Stereo Camera mounted on a P3-DX mobile robot. (b)
Shows the Triangulation method for finding point P.

7.6.4 Disparity

Disparity is achieved by observing an object from slightly different perspectives.

The position of an object in one image will be shifted in the other image by a value

that is inversely proportional to the object and the stereo camera baseline [118]. As

the distance from the cameras increases, the disparity decreases, this is useful for

depth perception in stereo images. Points that appear in 2D stereo images can be

mapped as coordinates in 3D space. This method was adapted by NASA’s Mars

Exploration Rover for scanning the surrounding terrain for obstacles. The rover

uses its stereoscopic navigation cameras to capture a pair of images. Disparity

calculations are performed in order to detect objects within the rover’s path [119].

7.6.5 Awareness (finding a potential fault)

To calculate the distance between the camera and a known object, the Triangulation

Stereo Vision method can be implemented [120]. The Stereo image pair consists of

two images (left and right) and both images are combined to establish the disparity

values and from that a Z distance value can be calculated from a selected object.

However, this calculation can be affected by faults with the stereo camera sensor.

Figure 7.14 shows the possible faults that can occur for a sensor in a stereo vision

camera setup. If the stereo camera where to lose both sensors, then this could be

picked up as either, no data being received from the camera or the robot ’bumper’

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 165

sensor being triggered by hitting an unseen obstacle, for example.

X

(a)

(b)

(c)

Sensor 1

Sensor 1

Sensor 1

Sensor 2

Sensor 2

Sensor 2

Figure 7.14: Stereo Vision Camera Faults. (a) Sensor shutdown, (b) Impact (pitch/yaw)
and (c) De-focus Blur

In the AIFH architecture (Figure 7.8)), Awareness initiates monitoring and

knowledge-based evaluation in order to establish if there is a potential fault with a

hardware component. In Figure 7.14 (a), sensor 2 on the stereo camera is electron-

ically disabled and cannot produce images for depth calculations. In this instance,

we simply pass the status of sensor 2 to the Analysis process, where it will be la-

belled as disabled. In Figure 7.14 (b), the stereo camera has suffered an impact in

the field; this has resulted in sensor 2 losing pitch/yaw relative to the stereo cam-

era plane. Applying equations calculated by research developed in [121], we can

establish that there is a depth error occurring in sensor 2. This is characterized by

the size of the yaw angle between the two cameras. The greater the yaw angle the

greater the depth error. This error data is then sent to the Analysis process. Fig-

ure 7.14 (c), shows how defocus blur can potentially influence the quality of the

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 166

disparity estimate. Research conducted in [122], explains how defocus can lead to

objects appearing blurry in the image. Therefore, we can apply equations calcu-

lated in [122], to establish if a sensor in the Stereo Camera is exhibiting defocus

error characteristics. If this is the case, we can send the error data to Analysis for

processing. In the real world, fault scenarios shown in Figure 7.14 (b) and (c) will

not indicate what sensor has failed. To establish what sensor has failed, will require

in-depth analysis.

7.6.6 Analysing (establishing what sensor is faulty)

From the Awareness process carried out in Section 7.1.5.5, we need to establish the

extent of the fault that has been discovered. The AIFH Architecture (see Figure

7.8), shows how component analysis is carried out using information gathered from

the Awareness process. The Analysis process has specialized algorithms which can

be used to identify the extent of the component fault.

For the fault indicated in Figure 7.14 (a), there is only a requirement to set the

state of the faulty sensor to disabled and then send this information to the Adjust-

ment process. For the faults discovered in Figure 7.14 (b) and (c), then we need to

carry out a calibration process to establish what sensor on the stereo vision camera

is faulty. To carry out the calibration, we need to establish the actual distance be-

tween the stereo camera and the object. As faults can happen in the field, we need

to use the mobile robot to establish this distance value. We can achieve this by

using the Bumper sensor mounted on the front of the mobile robot. To establish the

distance value, we drive the robot towards the object. We record the distance cov-

ered by the robot as it moves (using wheel encoder values). When the object meets

with the Bumper sensor, the robot will automatically stop. Figure 7.15 shows how

the Pioneer P3-DX robot can be used to measure the distance between the stereo

camera and the object.

1. ed - wheel encoder distance (recorded as the robot drives towards the object).

2. bb - bumper baseline (the distance between the differential drive base line

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 167

and the bumper baseline).

3. sb - stereo camera baseline (the distance between the differential drive base

line and the stereo camera baseline).

4. d - distance to object from stereo camera sensor baseline.

Using equation (7.1) we can calculate distance d.

d = (ed +bb) − sb (7.1)

Bumper Sensor
Stereo Camera
Sensor baseline

Differential Drive
Base line

Bumper Baseline

Base Line S R S L

S R sensor visual coverage

S L sensor visual coverage

sensors visual common area

Centre of robot Stereo Vision
Camera

d

ed

bb

sb

Figure 7.15: The Pioneer P3-DX Bumper can be used to calculate the distance between the
stereo camera and the object

Now we have established the distance between the stereo camera and the ob-

ject, we need to determine what sensor on the camera is faulty. There are a several

scenarios (see Table 7.1).

From the fault scenario establish in Figure 7.14 (b) and (c), we can assume

that both camera sensors are providing data. Therefore, for this experiment we can

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 168

Table 7.1: Fault Scenarios

No. Camera Sensor
(left)

Camera Sensor
(right)

Comments

1 disabled disabled Both camera sensors are
reporting no data

2 disabled data (good) Left camera is disabled,
Right camera is

providing reliable data
3 data (good) disabled Left camera is providing

reliable data, Right
camera is disabled

4 disabled data (bad) Left camera is disabled,
Right camera data is

unreliable
5 data (bad) disabled Left camera data is

un-reliable, Right
camera is disabled

6 data (bad) data (bad) Both cameras are
providing data that is

unreliable
7 data (good) data (bad) Left camera is providing

reliable data, Right
camera data is unreliable

8 data (bad) data (good) Left camera data is
unreliable, Right camera
is providing reliable data

right

concentrate on testing scenarios 6-8, in Table 7.1 only.

To test scenarios (6-8) in Table 7.1, we must evaluate each camera’s sensor

individually. The analysing procedure carried out by the Autonomic Manager in

Figure 7.16, involves using a specialized policy to test each individual camera

sensor. The procedure involves taking a picture with camera sensor SL (see Figure

7.15), then storing this data. We then move the robot so that sensor SL is in the

exact position where sensor SR should be. We then take another picture (current

image). We then apply the Triangulation Stereo Vision method from [120] using

the stored image and the current image to establish the distance to object value.

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 169

1)

2)

3)

4)

(b)

1)

2)

3)

4)

(a)

Left Camera Analysis (SL) Right Camera Analysis (SR)

Figure 7.16: Shows how each camera sensor can be tested by evaluating two images taken
by the same camera sensor from its original position and from the position of
the opposing camera

Steps required for sensor evaluation - see Figure 7.16

1. Take a picture of the object with one camera only (a) or (b) - see Figure 7.16,

then Store image data.

2. Rotate the robot 90°or -90°depending on what camera sensor is being evalu-

ated (Figure 7.16 (a) or (b)).

3. Move the robot forward a distance equivalent to the Stereo Camera Base Line

value between sensor SL and sensor SR - see Figure 7.15.

4. Rotate the robot 90°or -90°depending on what camera sensor is being eval-

uated (Figure 7.16 (a)) or (b)). Take a picture of the object with the same

camera used in Step 1.

We can then compare the distance to object result of each camera sensor with

the known physical distance d between the camera and object (see equation (7.1)).

If one of the camera sensor distance to object results is not within expected tol-

erances, then this sensor is ’tagged’ as being faulty. If none of the camera sensor

7.6. Applying the Generic AIFH Architecture (Stereo Vision Camera Fault) 170

distance to object results are within expected tolerances, then the stereo camera vi-

sion device will be declared as fully disabled and not capable of detecting objects

within its path. No adjustment can be made for this scenario.

7.6.7 Adjustment (compensating for the stereo camera fault)

If during the Analysis evaluation, it is established that there is at least one working

camera sensor, we can implement an adjustment policy to compensate for the other

faulty sensor (see Algorithm 8). The compensation strategy is similar to the strategy

employed to discover what stereo camera sensor was operating correctly during

the analysis stage - (See Figure 7.16). The adjustment policy implemented by

the Autonomic Manager will then send instructions to the operating policy in the

System Manager, which in turn will update the System Manager (Task Module).

ALGORITHM 8: Stereo Vision Camera Fault Adjustment
Input: Enter the identity of the working camera sensor SL (left camera) or SR (right

camera), enter the Baseline Value of Stereo Camera.
Output: Using the one camera, process stored image with current image to establish the

distance value of an object = ObjectDistance
if (cameraEnabled = SL) then

takeImageCameraSensor(SL);
storeImageDataForCamera(SL);
rotateRobotCommand(-90);
moveRobotCommandDistance(BaselineValue);
rotateRobotCommand(90);
takeImageCameraSensor(SL);
ObjectDistance = performImageProcessing(currentImage, storedImage);

end
if (cameraEnabled = SR) then

takeImageCameraSensor(SR);
storeImageDataForCamera(SR);
rotateRobotCommand(90);
moveRobotCommandDistance(BaselineValue);
rotateRobotCommand(-90);
takeImageCameraSensor(SR);
ObjectDistance = performImageProcessing(currentImage, storedImage);

end

7.6.8 Conclusions (compensating for the stereo camera fault)

This case study shows that even with one damaged stereo camera sensor, it is still

possible to locate an object using Stereo Vision processing with the assistance of

suitable adjustments via the AIFH architecture. The AIFH architecture can be em-

7.7. AIFH Autonomic Architecture Summary 171

ployed to evaluate mobile robot hardware components if there are specialized poli-

cies available to the Autonomic Manager. The Awareness process can be used to

establish if there is a possible fault within the Stereo Camera component. We can

then utilize the Analysis procedure to evaluate the extent of the fault. Finally, if

there is one fully functional camera sensor available, we can then use an Adjust-

ment algorithm to compensate for the fault.

As with any compensation procedure, there will be an effect on how well the

mobile robot performs its task. With the Stereo Vision Camera Fault Adjustment

algorithm, detecting an object will take a greater amount of time and processing.

For short term tasks, this may not be an issue but for longer scheduled tasks, this

could affect resources like power management.

7.7 AIFH Autonomic Architecture Summary

The AIFH architecture was initially developed using principles found in the MAPE-

K and IMD architectural models [1] [5]. Further development of the AIFH archi-

tecture was achieved by using the research carried out in the case studies performed

in Chapter’s 4, 5 and 6. The final generic AIFH design is presented in Section 7.5,

Figure 7.8. The generic AIFH architecture contains Autonomic Manager (contain-

ing the 3 layers, awareness, analysis and adjustment), a Knowledge Base module

and a Self-Healing module. Autonomic Manager is linked to the System Manager

which responsible for executing commands to the mobile robot via the effectors

and sensors. The Autonomic Manager provides a mechanism for detecting faults,

analyzing faults and providing policies that can compensate for faults. The ’health

checking’ mechanism is provided by the self-healing module. The ’autonomic in-

telligence’ in the awareness layer, not only flags component faults but also provides

a means of monitoring sensor data and reporting to the User/Mission Control, if a

component’s behaviour may indicate an impending fault. Within the analysis layer,

there are policies that can adjust tolerance thresholds. These policies are important

as an over sensitive tolerance value may lead to faults being reported continuously

within the Reaction Loop (between the Awareness and Analysis layers), and there-

7.7. AIFH Autonomic Architecture Summary 172

fore creating an infinite fault state.

In Section 7.6, we employed a case study (Stereo Vision Camera) and applied

the AIFH architectural model to that study. The purpose was to demonstrate that the

AIFH autonomic architecture can apply to other component fault scenarios that can

occur within a mobile robot. This is the first case study where the AIFH architecture

is used to map out an Autonomic solution.

This architecture attempts to integrate the autonomic principles of self-healing,

self-analyzing, self-aware, self-optimizing, as described in research by [47] [123]

[124]. The goal of the generic AIFH architecture, is to provide an autonomic so-

lution that can be implemented for any mobile robot type that provides component

fault handling without human intervention. The types of parameters associated with

a functioning robot that an autonomic manager can use in order to establish aware-

ness, analysis and adjustment for operational problems are virtually limitless. Robot

developers need to consider these types of problems so that robots in the future will

become better adapted to fault handling. Consideration needs to be given to the

amount of processing time afforded to the Autonomic Manager. Each sensor on a

mobile robot produces a sizable quantity of data and if this data is consumed by the

Autonomic Manager (and not regulated), then the System could be overwhelmed.

7.7.0.1 AIFH versus MAPE-K and IMD

Why would a developer/researcher consider using the AIFH architecture rather than

MAPE-K or IMD?

In this work, research was conducted on the MAPE-K (Autonomic Comput-

ing) and IMD (Robotics) models to adopt key features from those architectures,

to formulate a hybrid generic architecture (Autonomic Robotics) that specifically

focuses on mobile robot fault handling. The MAPE-K design offers a single feed-

back loop that monitors for faults whereas the AIFH offers a dual feed-back loop

(reactive and proactive) - this allows, not only to react quickly to fault situations but

also to investigate sensor data and look for downward trends in component behav-

iors. The IMD model can react quickly to a fault but it lacks the knowledge over

time, to establish if a component is under performing. The MAPE-K the feed-back

7.7. AIFH Autonomic Architecture Summary 173

loop is one-way (Analysis leads to Plan, Plan to Execute etc.); the AIFH (two-way

feed-back loop), can make a decision within the Analysis Layer to return back to

the Awareness Layer (during its fault analysis), and alert the Awareness Layer that

its fault detection process is over-sensitive and needs re-adjusting. In the MAPE-K,

the Execute process simply carries out the polices from the Plan process without

question, however, in the AIFH model, the Adjustment Layer takes the place of

both MAPE-K (Plan and Execute), in regard to decision making and execution of

compensation policies. In comparison to the IMD model, the Adjustment Layer

has a direct route to the effectors, to implement policy changes. If the IMD (Re-

flection Layer), is used to formulate a policy, it must traverse 3 layers before it can

communicate with the effectors.

Chapter 8

Conclusions and Future Work

This chapter outlines the conclusions and future work of the research presented

in this thesis. Section 8.1 discusses a summary of the research and its outcomes.

Section 8.2 presents the conclusions of the research. Finally, Section 8.3 presents

the possibilities for future development of the research conducted within this thesis.

8.1 Overall Summary
The work presented in this thesis highlights the importance of how autonomic ar-

chitecture can play a role in handling component faults within a mobile robot. It

argues that from the original autonomic model presented by IBM [1] and robotics

model (IMD), presented in [5], that there is scope to expand on this architecture

and use an alternate model (AIFH), that focuses on self-awareness, self-analysis

and self-healing. It argues that a generic autonomic architecture can be employed

to handle a variety of component faults that can be applied to any type of mobile

robot. The proposed generic architecture (AIFH), was developed over time using

the SDLC methodology which was applied to a series of case studies. Each case

study contributed to identifying design patterns which in-turn supplied the tools

to build the generic architecture. After the case studies where completed, the re-

sulting insight provided the means to develop a fully-fledged generic autonomic

architecture (AIFH), for handling faults in mobile robots. To evaluate the AIFH

architecture, a further case study was presented that introduced another component

fault scenario. The AIFH architecture was used to identify the fault (awareness),

8.1. Overall Summary 175

process the fault (analysis) and compensate for the fault (adjustment).

• Chapter 2 introduced the origins of autonomic computing and why it was

relevant to the current state of computer systems. This chapter then discussed

the autonomic manager and the properties of the MAPE-K model. The IMD

model was then investigated and how it could be integrated with the MAPE-

K model. This chapter also discussed Organic computing and how it differs

from autonomic computing. Finally, this chapter explains how authors in

this field had incorporated autonomic computing principles into their research

and how they used the MAPE-K architecture as a base to create their own

autonomic model.

• Chapter 3 described the goals put forward for this thesis and what research

methods would be employed to achieve the specified goals. This chapter

also discussed the concept of a generic architecture and how ’awareness’ (in

autonomic terms), plays a significant role in fault detection in mobile robots.

Finally, this chapter explained the use of SDLC as a methodology and how it

was applied to each case study in the thesis.

• Chapter 4 presented a case study describing how autonomic concepts can be

used to handle a ’wheel alignment’ fault in a mobile robot. This chapter also

described the early development of the generic autonomic architecture for

detecting faults in mobile robots. The concept of ’awareness’ was explored

in how a fault can be detected or, by examining current and historical data,

a fault can be anticipated. Finally, this Chapter presented how an adjustment

strategy can be employed to compensate for the fault.

• Chapter 5 presented a case study that examined the effect faulty sonar sen-

sors would have on a mobile robot being able to detect an object. In this

Chapter, the concepts of Awareness, Analysis and Adjustment where used to

detect, process and compensate for a sonar sensor fault. This Chapter also

highlighted the importance of using a Knowledge Base for manipulating Tol-

erance values, analyzing Historical data and making the use of Policies to

8.1. Overall Summary 176

perform analysis. Finally, this Chapter concluded with testing and evaluating

the adjustment policy, in order to prove the mobile robot could still detect

objects even with faulty sonar sensors.

• Chapter 6 presented a case study to describe how battery degradation can

affect the performance of a mobile robot. Using a simulated battery model,

analysis was performed on how a mobile robot performs with (1), a fully

charged battery and (2), a battery exposed to degradation. In this Chapter,

the use of self-awareness, self-analysis and self-healing concepts (to handle

the battery fault), aided the further development of the generic autonomic

architecture. Finally, this Chapter described how the adjustment policy (algo-

rithm), improved the performance of the mobile robot while using a degraded

battery.

• Chapter 7 describes the fully-fledged generic autonomic architecture for han-

dling faults in mobile robots (AIFH). This Chapter presented a ’high-level’

overview of the AIFH architecture: this includes

(1) - the role played by the System Manager.

(2) - the role played by the Autonomic Manager.

(3) - how both the System Manager and Autonomic Manager interact.

The Chapter then describes the elements found within the Autonomic Man-

ager. These elements include the self-healing module and the knowledge base

module. Further description of the knowledge base module, explains the roles

that polices, tolerance values and historical data play in handling ’fault’ data.

The Chapter then describes the ’low-level’ detail of the AIFH architecture.

The ’low-level’ architecture shows how the Reactive and Proactive feedback

loops transport data through each layer (awareness, analysis and adjustment).

Further description of each layer shows how ’fault’ data is manipulated and

how each layer interacts with the knowledge base module. Finally, this Chap-

ter concludes with describing how a further case study is presented to demon-

strate the AIFH generic architecture and how it handles a new fault scenario.

8.2. Conclusions 177

8.2 Conclusions

Although autonomic computing has been around since the beginning of the millen-

nium, it is still a relatively new concept. The research in this thesis has offered an

opportunity to investigate an area of computing science that is still evolving and

which possess more questions than answers. Fault handling in mobile robots is not

a new concept and much research has been conducted over the years using fault

tolerance techniques. However, the nature of the autonomic computing offers re-

searchers a fresh approach to dealing with faults in mobile robots.

In this thesis, one of the main goals was to take existing ’autonomic and ’in-

telligent machine’ models and combine them to create a new generic architecture.

This goal was attained by developing case studies that centred around component

faults within a mobile robot. As each case study progressed, ’design patterns’ where

identified that had shared common elements within the case studies. These com-

mon ’elements’ where then grouped together to form 3 layers within the generic

autonomic architecture (AAA - Awareness, Analysis and Adjustment). Building on

design, evaluation and experience, each case study provided further structural con-

tent to the generic architecture. When the case study process was completed, all the

insights gathered from this process, formed the design and implementation of the

final generic autonomic architecture.

The question is - how can this generic autonomic architecture (AIFH), make

a difference to the current research carried out in this area? The AIFH architecture

has been designed so that multiple types of robots (with varied sensors), can be self-

managed. Through developing the AIFH architecture, the research in this thesis

identified autonomic ’awareness’ as one of its goals. This ’awareness’ not only

monitors incoming data but uses intelligent monitoring. If a fault occurs within a

component and it becomes disabled, then a basic standard of monitoring would be

sufficient to alert the system to the fault. However, a component that is exhibiting

slight behavioral changes but is still operating within tolerances, is more difficult

to implicate. Using the autonomic knowledge base in the AIFH architecture, real-

time and historical data can be periodically investigated to check for any anomalies

8.3. Future Work 178

within a component. If anomalies are discovered in a component, then a report can

be sent to indicate an impending fault for that particular component.

The development of the generic architecture highlighted limitations in the re-

search in terms of the use of third-party robotic hardware. When attempting to com-

pensate for component faults, not all access is afforded the developer to manipulate

parameters within these components. This can restrict the developer or researcher’s

ability to fully-restore the robot’s functionality if a fault has occurred. There are of

course certain security implications if all access to systems is unrestricted, so there

may have be a requirement to restricted access. However, organizations like NASA,

can allow ’all access’ for their own developers without compromising security.

In this Thesis, a generic autonomic fault architecture is proposed in order to

address deficiencies in identifying not only current faults but more importantly, im-

pending faults. Detailed analyses of real-time and historical data can indicate a

downward trend in a components behavior which can lead to early detection of an

impending fault. However, there are limitations, like handling multiple fault scenar-

ios and the amount of band-width that can be afforded to the Autonomic Manager

to process fault data.

8.3 Future Work
Although the research in this thesis answered the questions that where proposed in

Chapter 3, other questions have emerged. There is also scope for further research

in adding functionality to the generic architecture. The following is a summary of

possible directions for this research:

• Software implementation of the AIFH architecture: the AIFH architecture

has provided a template for autonomic ’fault handling’ in mobile robot sys-

tems but further investigation is required to develop the software that will ’re-

alise’ the AIFH model in practical terms. Although a considerable amount of

software was developed during this research programme, (in terms of manip-

ulating the mobile robot and handling component faults in each case study),

it would require considerable effort and further research to apply the AIFH

8.3. Future Work 179

model to an actual ’mobile robot’ system.

• Autonomic Data Filtering: one of the questions that emerged as the research

in this thesis developed (Chapter 7), was how to limit the amount of sensor

data afforded to the Autonomic Manager. If the Autonomic Manager was

simply allowed to consume all the data from the sensors, then system could be

overwhelmed with the amount of processing time required to analyse the data.

Further investigation is required in the development of a ’autonomic’ filter

that can be ’aware’ of the limitations of its environment and therefore regulate

the amount of data taken from the sensors. This would be an interesting

experiment, although complex, in terms of assessing the amount of processing

available in the system against the needs of an Autonomic Manager when

detecting anomalies within the system components.

• Multi-Agent Architecture: the research conducted in this thesis centred on

a single managed robotic unit. Future development could focus on imple-

menting multiple robotic units. If a robot using the AIFH architecture had

been operating in the field for sometime, it would have accumulated a con-

siderable amount of knowledge. This knowledge would include fault history

and polices that where used to process the fault. This knowledge could be

shared with other neighbouring robotic units. Future research could look at

implementing the AIFH model as a multi-tier or multi-dimensional design.

• Further case studies: although a total of four component types within mo-

bile robots where investigated in this research (drive system, sonar sensors,

stereo vision cameras and power supply), further research could be conducted

on alternative complementary components. These components could include

laser sensors, robotic arms, infrared sensors and pan and tilt servos. case stud-

ies conducted around ’faults’ in these components would broaden knowledge

for further enhancement of the AIFH architecture.

Appendix A

Case Study Reference: Wheel

Alignment Fault

A.1 Pioneer P3-DX Robot laser alignment readings

ID Test Type Test Time Start End Distances Batch Diff.

44 Alignment 4/21/2015 3:11:30 PM 422 420 250 1001 2

45 Alignment 4/21/2015 3:12:17 PM 418 409 250 1001 9

46 Alignment 4/21/2015 3:13:04 PM 418 427 250 1001 -9

47 Alignment 4/21/2015 3:13:52 PM 417 413 250 1001 4

48 Alignment 4/21/2015 3:14:39 PM 415 410 250 1001 5

49 Alignment 4/21/2015 3:15:26 PM 419 426 250 1001 -7

50 Alignment 4/21/2015 3:16:13 PM 415 437 250 1001 -2

51 Alignment 4/21/2015 3:17:00 PM 414 407 250 1001 7

52 Alignment 4/21/2015 3:17:47 PM 412 418 250 1001 -6

53 Alignment 4/21/2015 3:18:34 PM 418 423 250 1001 -5

-0.2

mm

A.1. Pioneer P3-DX Robot laser alignment readings 181

ID Test Type Test Time Start End Distance Batch Diff.

54 Alignment 4/22/2015 10:22:04 AM 420 428 250 1002 -8

55 Alignment 4/22/2015 10:22:51 AM 413 426 250 1002 -13

56 Alignment 4/22/2015 10:23:38 AM 418 431 250 1002 -13

57 Alignment 4/22/2015 10:24:25 AM 415 426 250 1002 -11

58 Alignment 4/22/2015 10:25:12 AM 416 430 250 1002 -14

59 Alignment 4/22/2015 10:25:59 AM 416 420 250 1002 -4

60 Alignment 4/22/2015 10:26:46 AM 418 431 250 1002 -13

61 Alignment 4/22/2015 10:27:33 AM 412 410 250 1002 2

62 Alignment 4/22/2015 10:28:20 AM 413 419 250 1002 -6

63 Alignment 4/22/2015 10:29:07 AM 412 418 250 1002 -6

-8.6

mm

ID Test Type Test Time Start End Distance Batch Diff.

64 Alignment 4/22/2015 11:30:52 AM 425 422 250 1003 3

65 Alignment 4/22/2015 11:31:40 AM 417 438 250 1003 -21

66 Alignment 4/22/2015 11:32:27 AM 417 429 250 1003 -12

67 Alignment 4/22/2015 11:33:14 AM 415 425 250 1003 -10

68 Alignment 4/22/2015 11:34:01 AM 415 411 250 1003 4

69 Alignment 4/22/2015 11:34:48 AM 411 421 250 1003 -10

70 Alignment 4/22/2015 11:35:35 AM 417 408 250 1003 9

71 Alignment 4/22/2015 11:36:22 AM 415 426 250 1003 -11

72 Alignment 4/22/2015 11:37:09 AM 416 420 250 1003 -4

73 Alignment 4/22/2015 11:37:56 AM 416 437 250 1003 -21

-7.3

mm

A.1. Pioneer P3-DX Robot laser alignment readings 182

ID Test Type Test Time Start End Distance Batch Diff.

77 Alignment 4/22/2015 2:35:56 PM 415 390 250 1004 -25

78 Alignment 4/22/2015 2:36:43 PM 422 392 250 1004 -30

79 Alignment 4/22/2015 2:37:30 PM 420 387 250 1004 -33

80 Alignment 4/22/2015 2:38:17 PM 422 378 250 1004 -44

81 Alignment 4/22/2015 2:39:04 PM 421 376 250 1004 -45

82 Alignment 4/22/2015 2:39:51 PM 413 393 250 1004 -20

83 Alignment 4/22/2015 2:40:38 PM 415 382 250 1004 -33

84 Alignment 4/22/2015 2:41:25 PM 411 372 250 1004 -39

85 Alignment 4/22/2015 2:42:13 PM 415 393 250 1004 -22

86 Alignment 4/22/2015 2:43:00 PM 410 351 250 1004 -59

-35

mm

ID Test Type Test Time Start End Distance Batch Diff.

87
Alignment

4/22/2015 5:21:35 PM 423 389 250 1005 -34

88
Alignment

4/22/2015 5:22:23 PM 420 382 250 1005

-38

89
Alignment

4/22/2015 5:23:10 PM 421 369 250 1005

-52

90
Alignment

4/22/2015 5:23:57 PM 418 375 250 1005

-43

91
Alignment

4/22/2015 5:24:44 PM 417 370 250 1005

-47

92
Alignment

4/22/2015 5:25:31 PM 415 370 250 1005

-45

93
Alignment

4/22/2015 5:26:18 PM 414 360 250 1005

-54

94
Alignment

4/22/2015 5:27:05 PM 411 356 250 1005

-55

95
Alignment

4/22/2015 5:27:52 PM 410 341 250 1005

-69

96
Alignment

4/22/2015 5:28:39 PM 412 355 250 1005

-57

-49.4

mm

A.1. Pioneer P3-DX Robot laser alignment readings 183

ID Test Type Test Time Start End Distance Batch Diff.

97 Alignment 4/22/2015 5:52:44 PM 419 378 250 1006 -28

98 Alignment 4/22/2015 5:53:31 PM 420 392 250 1006 -49

99 Alignment 4/22/2015 5:54:18 PM 418 369 250 1006 -45

100 Alignment 4/22/2015 5:55:05 PM 414 369 250 1006 -55

101 Alignment 4/22/2015 5:55:52 PM 409 354 250 1006 -64

102 Alignment 4/22/2015 5:56:40 PM 416 351 250 1006 -54

103 Alignment 4/22/2015 5:57:27 PM 415 361 250 1006 -20

104 Alignment 4/22/2015 5:58:14 PM 412 392 250 1006 -51

105 Alignment 4/22/2015 5:59:01 PM 410 359 250 1006 -69

106 Alignment 4/22/2015 5:59:48 PM 413 344 250 1006
-48

-48.3

mm

Appendix B

Case Study Reference: Sonar Sensor

Fault

B.1 Pioneer P3-DX Robot - sonar sensor fault states

and compensation rotation values

R + 60°

R + 20°

R + 40° and R + 40°

R + 20° and R + 20 ° + R + 20 °

R - 20° and R + 60°

R - 20° and R + 60°

R - 20° and R -20°

R - 40°

R - 20° and R - 20°

R - 20° and R -20°

R - 20° and R -20° and R -20 °

R + 20°

R + 20°

R + 40°

R + 20°

R + 20°

R + 40°

R + 20°

R + 20°

R + 20° and R + 20°

R + 40°

R + 40° and R - 20°

R + 40° and R - 60°

R + 20°

R + 20°

R + 20°

R + 20° and R + 20°

R + 20°

R + 20°

R + 20° and R - 40°

R - 40°

R + 20° and R - 40°

R + 20° and R - 40°

R + 20° and R + 20°

R + 20° and R - 60°

R + 20° and R + 20° and R + 20°

R + 20° and R + 20° and R - 60° and R - 20°

R + 20° and R + 20° and R + 20° R + 20° and R + 20°

Using positive rotation as first priority

R - 20°

R - 20° and R + 40°

R - 20°

R - 20°

R - 20° and R + 40°

R - 20° and R + 40° and R +20°

R - 20°

R - 20° and R + 60°

Using negative rotation as first priority

R - 20°

R - 20° and R + 60°

R - 20° and R + 40°

R - 20° and R - 20° and - 20°
R - 20° and R + 40° and +20° (x3)

R - 40° and R + 60°

R - 20° and R - 20° and - 20°

R - 40° and R + 80°

R - 20° and R - 20° and + 60°

R -20° and R -20° and R +60° and R +20° and R +20°

R - 60°

R - 40° and R -20° and R + 80°

R -20° and R -20° and R -20 ° and R + 80° and R -20°

R -40° and R -40°

R -20° and R -20° and R -20° and R -20° + and R -100°

R - 20° and R -20° and R -20° R -20° and R -20°

B.2. Sonar Sensor Fault - Compensation experiment 185

B.2 Sonar Sensor Fault - Compensation experiment
Experiment 1: (software written by author) - Sonar Transducers 2, 3, 4 and 5 are

disabled. The remain-

ing sonars have readings greater than the object detection threshold (set at 350 mm).

Using the rotation formula, the lowest position of a disabled transducer is -10

(Sonar 4), the next available transducer is 50 (Sonar 6). If the signs are equal then

simply subtract 10 from 50. The rotation required is +40°

Experiment 2:

The reading for Sonar 6 shows 326, which is below the Threshold and would

indicate that an object has been found. Likewise, the opposite enabled sensors

could be used for detection. In this case the robot would have been rotated

anti-clock wise (-40°).

Bibliography

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Com-

puter, vol. 36, pp. 41–50, Jan 2003.

[2] E. Rutten, N. Marchand, and D. Simon, “Feedback Control as MAPE-K loop

in Autonomic Computing,” Research Report RR-8827, INRIA Sophia An-

tipolis - Méditerranée ; INRIA Grenoble - Rhône-Alpes, Dec. 2015. draft

soumis à LNCS.

[3] “Artificial intelligence: A new synthesis,” in Artificial Intelligence: A New

Synthesis (N. J. Nilsson, ed.), p. iv, Oxford: Morgan Kaufmann, 1998.

[4] A. Sloman, “Evolvable architectures for human-like minds,” in Affective

Minds, pp. 169–181, Elsevier, 2000.

[5] D. A. Norman, A. Ortony, and D. M. Russell, “Affect and machine design:

Lessons for the development of autonomous machines,” IBM Systems Jour-

nal, vol. 42, no. 1, pp. 38–44, 2003.

[6] H. Shualib, R. Anthony, and M. Pelc, “A framework for certifying autonomic

computing systems,” in The Seventh international Conference on Autonomic

and Autonomous Systems, pp. 122–127, 01 2011.

[7] J. Branke, M. Mnif, C. Mller-Schloer, H. Prothmann, U. Richter, F. Rochner,

and H. Schmeck, “Organic computing addressing complexity by controlled

self-organization,” in Conference: Leveraging Applications of Formal Meth-

ods, Second International Symposium, pp. 185–191, 11 2006.

Bibliography 187

[8] B. Jakimovski, M. Litza, F. Mosch, and A. El-Sayed-Auf, “Development

of an organic computing architecture of robot control,” in Informatik 2006

Workshop on Organic Computing, vol. 1, pp. 145–152, January 2006.

[9] C. C. Insaurralde, “Autonomic management capabilities for robotics and au-

tomation,” vol. 1, no. 1, pp. 518–523, 2013.

[10] A. Hernando, R. Sanz, and R. Calinescu, “A model-based approach to the

autonomic management of mobile robot resources,” in ADAPTIVE 2010, The

Second International Conference on Adaptive and Self-Adaptive Systems and

Applications, pp. 33–39, November 2010.

[11] C. Pahl and P. Jamshidi, “Software architecture for the cloud – a roadmap

towards control-theoretic, model-based cloud architecture,” in Software Ar-

chitecture, pp. 212–220, Springer International Publishing, 2015.

[12] T. A. Nguyen, M. Aiello, T. Yonezawa, and K. Tei, “A self-healing frame-

work for online sensor data,” in 2015 IEEE International Conference on Au-

tonomic Computing, pp. 295–300, July 2015.

[13] M. Viroli, A. Bucchiarone, D. Pianini, and J. Beal, “Combining self-

organisation and autonomic computing in cass with aggregate-mape,” in

2016 IEEE 1st International Workshops on Foundations and Applications

of Self* Systems (FAS*W), pp. 186–191, Sept 2016.

[14] S. Karapinar, D. Altan, and S. Sariel-Talay, “A robust planning framework for

cognitive robots,” in In Proceedings of the AAAI-12 workshop on cognitive

robotics (CogRob), pp. 102–108, 2012.

[15] M. Doran, R. Sterritt, and G. Wilkie, “Autonomic wheel alignment for mobile

robots,” in 11th IEEE International Conference and Workshops on the Engi-

neering of Autonomic and Autonomous, (Laurel, Washington, USA), p. 6,

September 2014.

Bibliography 188

[16] Y. B. LTD, “Np series np7.5-12 data sheet,” 2008. [Online]. Avail-

able: http://www.yuasabatteries.com/np-industrial-literature.php. Last ac-

cessed, December 10th, 2017.

[17] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. S. G. Lee, “A case study of mobile robot’s

energy consumption and conservation techniques,” in ICAR ’05. Proceed-

ings., 12th International Conference on Advanced Robotics, 2005., pp. 492–

497, July 2005.

[18] B. Kuipers, E. A. Feigenbaum, Edward, P. E. Hart, and N. Nilsson, “Shakey:

From conception to history,” Ai Magazine, vol. 38, pp. 88–103, 03 2017.

[19] Robotics-Industrial-Association, “Industrial mobile robot safety standards on

the forefront,” 2017. [Online]. Available: https://www.robotics.org/content-

detail.cfm/Industrial-Robotics-Industry-Insights/Industrial-Mobile-Robot-

Safety-Standards-on-the-Forefront/contentid/6710. Last accessed, July 20th,

2019.

[20] A. C. Leite, B. Schafer, and M. L. de Oliveira e Souza, “Fault-tolerant con-

trol strategy for steering failures in wheeled planetary rovers,” Journal of

Robotics, vol. 2012, pp. 1–15, 2012.

[21] C. Leger, A. Trebi-ollennu, J. Wright, S. Maxwell, R. Bonitz, J. Biesiadecki,

F. Hartman, B. Cooper, E. Baumgartner, and M. Maimone, “Mars exploration

rover surface operations: Driving spirit at gusev crater,” vol. 2, pp. 1815–

1822, 11 2005.

[22] NASA, “Six things about opportunity’s recovery efforts,” 2018. [Online].

Available: https://mars.nasa.gov/news/8360/six-things-about-opportunitys-

recovery-efforts/?site=insight. Last accessed, July 20th, 2019.

[23] A Dictionary of English (12th Edition). HarperCollins Publishers, 2014.

Collins COBUILD.

Bibliography 189

[24] R. Sterritt and M. Hinchey, “Autonomic computing - panacea or poppy-

cock?,” in 12th IEEE International Conference and Workshops on the En-

gineering of Computer-Based Systems (ECBS’05), pp. 535–539, April 2005.

[25] M. Parashar and S. Hariri, “Autonomic computing: An overview,” in Uncon-

ventional Programming Paradigms, vol. 3566, (Berlin, Heidelberg), pp. 257–

269, Springer Berlin Heidelberg, 2005.

[26] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing

era,” IBM Systems Journal, vol. 42, no. 1, pp. 5–18, 2003.

[27] R. Sterritt and M. Hinchey, “Why computer-based systems should be auto-

nomic,” in 12th IEEE International Conference and Workshops on the Engi-

neering of Computer-Based Systems (ECBS’05), pp. 406–412, April 2005.

[28] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouff, “Au-

tonomous and autonomic systems: a paradigm for future space exploration

missions,” IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 36, pp. 279–291, May 2006.

[29] D. Crestani, K. Godary-Dejean, and L. Lapierre, “Enhancing fault tolerance

of autonomous mobile robots,” Robotics and Autonomous Systems, vol. 68,

pp. 140 – 155, 2015.

[30] G. K. Fourlas, G. C. Karras, and K. J. Kyriakopoulos, “Sensors fault diagno-

sis in autonomous mobile robots using observer based technique,” in 2015

International Conference on Control, Automation and Robotics, pp. 49–54,

May 2015.

[31] O. Zweigle, B. Keil, M. Wittlinger, K. Haussermann, and P. Levi, Recogniz-

ing Hardware Faults on Mobile Robots Using Situation Analysis Techniques,

pp. 397–409. Springer, 2013.

[32] A. Almeida, J. Briot, S. Aknine, Z. Guessoum, and O. Marin, “Towards au-

tonomic fault-tolerant multi-agent systems,” in In The 2nd Latin American

Bibliography 190

Autonomic Computing Symposium (LAACS2007), Petropolis, RJ, Brsil, 01

2007.

[33] A. Paz and H. Arboleda, “A model to guide dynamic adaptation planning in

self-adaptive systems,” Electronic Notes in Theoretical Computer Science,

vol. 321, pp. 67 – 88, 2016. CLEI 2015, the XLI Latin American Computing

Conference.

[34] S. Seshachala, “Cloud computing architecture: Front end and back

end,” 2015. [Online]. Available: https://cloudacademy.com/blog/cloud-

computing-architecture-an-overview. Last accessed 03 June 2018.

[35] O. Selma, S. Boulehouache, and S. Mazouzi, “A survey of uncertainties in

mape-k control loop,” in Conference: International Conference on Advanced

Technologies, Computer Engineering and Science (ICATCES18), May 11-13,

2018., At Safranbolu, Turkey, 05 2018.

[36] D. Weyns, S. Malek, and J. Andersson, “Forms: A formal reference model

for self-adaptation,” in Proceedings of the 7th International Conference on

Autonomic Computing, ICAC ’10, (New York, NY, USA), pp. 205–214,

ACM, 2010.

[37] R. Sterritt, G. Wilkie, G. Brady, C. Saunders, and M. Doran, “Autonomic

robotics for future space missions,” in 13th Symposium on Advanced Space

Technologies in Robotics and Automation (ASTRA 2015), p. 7, May 2015.

[38] M. Doran, R. Sterritt, and G. Wilkie, “Autonomic self-adaptive robot wheel

alignment,” in Proceedings of the 7th International Conference on Autonomic

Computing, pp. 27–33, IARIA, March 2016.

[39] M. Doran, R. Sterritt, and G. Wilkie, “Autonomic sonar sensor fault manager

for mobile robots,” in 19th International Conference on Autonomic Comput-

ing and Computer Engineering, London, UK. WASET, vol. 11, pp. 621–628,

May 2017.

Bibliography 191

[40] M. Doran, R. Sterritt, and G. Wilkie, “Autonomic management for mo-

bile robot battery degradation,” in 20th International Conference on Auto-

nomic Computing and Computer Engineering, London, UK. WASET, vol. 12,

pp. 273–279, May 2018.

[41] P. Horn, “Autonomic computing: Ibms perspective on the

state of information technology,” 2001. [Online]. Available:

http://www.research.ibm.com/autonomic/manifesto/ autonomic com-

puting.pdf. Last accessed, March 20th, 2016.

[42] IBM, “Ibm: Autonomic computing: The solution,” 2001. [Online]. Avail-

able: http://www.research. ibm.com/autonomic/overview/solution.html. Last

accessed, May 5th, 2016.

[43] R. Murch, “Introducing autonomic computing,” 2004. [Online]. Available:

http://www.informit.com/articles/article.aspx?p=333858seqNum=2. Last ac-

cessed, May 5th, 2018.

[44] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, “Fulfilling the vision of

autonomic computing,” Computer, vol. 43, pp. 35–41, Jan 2010.

[45] A. Banafa, “what is autonomic computing,” 2016. [Online]. Available:

https://www.bbvaopenmind.com/en/what-is-autonomic-computing/. Last ac-

cessed May 7th, 2018.

[46] R. Sterritt, M. Parashar, H. Tianfield, and R. Unland, “A concise introduction

to autonomic computing,” Adv. Eng. Inform., vol. 19, pp. 181–187, July 2005.

[47] “An architectural blueprint for autonomic computing,” June 2005. [On-

line]. Available: https://www-03.ibm.com/autonomic/pdfs/AC-20Blueprint-

20White-20Paper-20V7.pdf. Last Accessed, March 9th, 2018.

[48] M. Hamblem, “Ibm launches self-healing tools,” 2005. [Online].

Available: https://www.computerworld.com/article/2560448/enterprise-

Bibliography 192

applications/ibm-launches-self-healing-tools.html. Last accessed, May 20th,

2018.

[49] P. Lalanda, J. A. McCann, and A. Diaconescu, Autonomic Computing - Prin-

ciples, Design and Implementation. Undergraduate Topics in Computer Sci-

ence, London: Springer-Verlag London, 2013.

[50] B. Miller, “The autonomic computing edge: The role of

knowledge in autonomic systems,” 2005. [Online]. Available:

https://www.ibm.com/developerworks/library/ac-edge6/index.html. Last

accessed, May 10th, 2018.

[51] E. Eryilmaz, F. Trollmann, and S. Albayrak, “Conceptual application of the

mape-k feedback loop to opportunistic sensing,” in 2015 Sensor Data Fu-

sion: Trends, Solutions, Applications (SDF), pp. 1–6, Oct 2015.

[52] B. A. Caprarescu and D. Petcu, “A self-organizing feedback loop for au-

tonomic computing,” in 2009 Computation World: Future Computing, Ser-

vice Computation, Cognitive, Adaptive, Content, Patterns, pp. 126–131, Nov

2009.

[53] A. Farahani, G. Cabri, and E. Nazemi, “Self-* properties in collective adap-

tive systems,” in Proceedings of the 2016 ACM International Joint Confer-

ence on Pervasive and Ubiquitous Computing: Adjunct, UbiComp ’16, (New

York, NY, USA), pp. 1309–1314, ACM, 2016.

[54] J. O. Kephart and W. E. Walsh, “An artificial intelligence perspective on auto-

nomic computing policies,” in Proceedings. Fifth IEEE International Work-

shop on Policies for Distributed Systems and Networks, 2004. POLICY 2004.,

pp. 3–12, June 2004.

[55] H. A. Simon, “Motivational and emotional controls of cognition,” Psycho-

logical review, vol. 74, pp. 29–39, 02 1967.

Bibliography 193

[56] C. Rouff, M. Hinchey, J. Rash, W. Truszkowski, and R. Sterritt, “Autonomic-

ity of nasa missions,” in Second International Conference on Autonomic

Computing (ICAC’05), pp. 387–388, June 2005.

[57] K. M. Lee, K. I. Kim, and J. Yoo, “Autonomicity levels and requirements

for automated machine learning,” in Proceedings of the International Con-

ference on Research in Adaptive and Convergent Systems, RACS ’17, (New

York, NY, USA), pp. 46–48, ACM, 2017.

[58] Microsoft, “Windows system resource manager,” vol. 1, Autgust 2003. Mi-

crosoft White Paper.

[59] C. A. Rouff, M. G. Hinchey, J. L. Rash, W. F. Truszkowski, and R. Ster-

ritt, “Towards autonomic management of nasa missions,” in 11th Interna-

tional Conference on Parallel and Distributed Systems (ICPADS’05), vol. 2,

pp. 473–477, July 2005.

[60] A. Kumar, A. Tayal, K. R. K. Senthil, and B. S. Bindhumadhava, “Multi-

agent autonomic architecture based agent-web services,” in 2008 16th

International Conference on Advanced Computing and Communications,

pp. 329–333, Dec 2008.

[61] R. Buyya, R. N. Calheiros, and X. Li, “Autonomic cloud computing: Open

challenges and architectural elements,” in 2012 Third International Confer-

ence on Emerging Applications of Information Technology, pp. 3–10, Nov

2012.

[62] J. Kinsella, “why the future is cloud autonomics,” 2015. [Online].

Available: https://www.cloudcomputing-news.net/news/2015/may/14/why-

future-cloud-autonomics/. Last accessed, June 1st, 2018.

[63] X. Long, X. Gong, X. Que, W. Wang, B. Liu, S. Jiang, and N. Kong, “Auto-

nomic networking: Architecture design and standardization,” IEEE Internet

Computing, vol. 21, no. 5, pp. 48–53, 2017.

Bibliography 194

[64] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci,

P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of autonomic

communications,” ACM Trans. Auton. Adapt. Syst., vol. 1, pp. 223–259, Dec.

2006.

[65] N. Hussain, H. H. Wang, and C. Buckingham, “Policy based generic auto-

nomic adapter for a context-aware social-collaborative system,” in 2018 In-

ternational Conference on Intelligent Systems and Computer Vision (ISCV),

pp. 1–9, April 2018.

[66] R. Strader, “Why we’re working with autonomic to create a plat-

form that can power future cities,” 2018. [Online]. Available:

https://medium.com/cityoftomorrow/why-were-working-with-autonomic-

to-create-a-platform-that-can-power-future-cities-96700c2824e6. Last

accessed, June 2nd, 2018.

[67] Car-Magazine, “Autonomous car levels, driver-less technology levels

explained,” 2018. [Online]. Available: https://www.carmagazine.co.uk/car-

news/tech/autonomous-car-levels-different-driverless-technology-levels-

explained. Last accessed 07 July 2017.

[68] C. Müller-Schloer, C. von der Malsburg, and R. P. Würt, “Organic comput-

ing,” Informatik-Spektrum, vol. 27, pp. 332–336, Aug 2004.

[69] C. von der Malsburg, The Organic Future of Information Technology,

vol. 2008, pp. 7–24. Springer-Verlag Berlin Heidelberg, 10 2008.

[70] L. David, “How wheel damage affects mars rover curiosity’s mission,”

2014. [Online]. Available: https://www.space.com/26472-mars-rover-

curiosity-wheel-damage.html. Last accessed, February 9th, 2018.

[71] N. A. Melchior and W. D. Smart, “Autonomic systems for mobile robots,”

in International Conference on Autonomic Computing, 2004. Proceedings.,

pp. 280–281, May 2004.

Bibliography 195

[72] P. Krzyzanowski, “Distributed systems - fault tolerance - deal-

ing with an imperfect world,” 2009. [Online]. Available:

https://www.cs.rutgers.edu/ pxk/rutgers/notes/content/ft.html. Last ac-

cessed, May 20th, 2018.

[73] C. Rouff, J. Rash, and W. Truszkowski, “Overcoming robotic failures

through autonomicity,” in Engineering of Autonomic and Autonomous Sys-

tems, 2007. EASe ’07. Fourth IEEE International Workshop on, pp. 154–162,

March 2007.

[74] M. Visinsky, J. Cavallaro, and I. Walker, “Robotic fault detection and fault

tolerance: A survey,” Reliability Engineering and System Safety, vol. 46,

no. 2, pp. 139 – 158, 1994.

[75] Y. Tohma, “Incorporating fault tolerance into an autonomic-computing envi-

ronment,” IEEE Distributed Systems Online, vol. 5, pp. 3/1–3/12, Feb 2004.

[76] R. Sterritt and D. Bustard, “Autonomic computing - a means of achieving

dependability?,” in 10th IEEE International Conference and Workshop on

the Engineering of Computer-Based Systems, 2003. Proceedings., pp. 247–

251, April 2003.

[77] D. Crestani and K. Godary-Dejean, “Fault Tolerance in Control Architectures

for Mobile Robots: Fantasy or Reality?,” in CAR: Control Architectures of

Robots, (Nancy, France), May 2012.

[78] M. Scheutz and J. Kramer, “Reflection and reasoning mechanisms for fail-

ure detection and recovery in a distributed robotic architecture for complex

robots,” in Proceedings 2007 IEEE International Conference on Robotics

and Automation, pp. 3699–3704, April 2007.

[79] E. Khalastchi, M. Kalech, L. Rokach, Y. Shicel, and G. Bodek, “Sensor

fault detection and diagnosis for autonomous systems,” in 23rd International

Workshop on Principles of Diagnosis (DX 2012), 2012.

Bibliography 196

[80] N. Tcholtchev and R. Chaparadza, “Autonomic fault-management and re-

silience from the perspective of the network operation personnel,” in 2010

IEEE Globecom Workshops, pp. 469–474, Dec 2010.

[81] B. Jakimovski, B. Meyer, and E. Maehle, “Self-reconfiguring hexapod robot

oscar using organically inspired approaches and innovative robot leg amputa-

tion mechanism,” Institute of Computer Engineering, University of Luebeck,

Germany, January 2009.

[82] J. a. P. Barraca, R. Sadeghi, and R. L. Aguiar, “Collaborative relaying strate-

gies in autonomic management of mobile robotics,” Wirel. Pers. Commun.,

vol. 70, pp. 1077–1096, June 2013.

[83] J. Eger, “The city of the future-the role of telecommunications,” March 1994.

[84] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 1995.

[85] S. G. Tzafestas, “14 - generic systemic and software architectures for mobile

robot intelligent control,” in Introduction to Mobile Robot Control (S. G.

Tzafestas, ed.), pp. 589 – 633, Oxford: Elsevier, 2014.

[86] R. Chatila, E. Renaudo, M. Andries, R.-O. Chavez-Garcia, P. Luce-Vayrac,

R. Gottstein, R. Alami, A. Clodic, S. Devin, B. Girard, and M. Khamassi,

“Toward self-aware robots,” Frontiers in Robotics and AI, vol. 5, p. 88, 2018.

[87] R. Kwiatkowski and H. Lipson, “Task-agnostic self-modeling machines,”

Science Robotics, vol. 4, no. 26, 2019.

[88] E. N. Skoundrianos and S. G. Tzafestas, “Finding fault - fault diagnosis

on the wheels of a mobile robot using local model neural networks,” IEEE

Robotics Automation Magazine, vol. 11, pp. 83–90, Sept 2004.

Bibliography 197

[89] P. Sundvall and P. Jensfelt, “Fault detection for mobile robots using redundant

positioning systems,” in Proceedings 2006 IEEE International Conference

on Robotics and Automation, 2006. ICRA 2006., pp. 3781–3786, May 2006.

[90] G. K. Fourlas, S. Karkanis, G. C. Karras, and K. J. Kyriakopoulos, “Model

based actuator fault diagnosis for a mobile robot,” in 2014 IEEE Interna-

tional Conference on Industrial Technology (ICIT), pp. 79–84, Feb 2014.

[91] O. Hrizi, B. Boussaid, A. Zouinkhi, M. N. Abdelkrim, and C. Aubrun, “Ro-

bust adaptive observer based on multi wheeled mobile robot cooperation al-

gorithm,” Automatika, vol. 57, no. 4, pp. 982–995, 2016.

[92] N.-I. of Open-Schooling, “Phases of system development life cycle,” 2005.

[Online]. Available: http://oer.nios.ac.in/wiki/index.php/Phases-of-System-

Development-Life-Cycle. Last accessed, June 24th, 2018.

[93] Adept-Mobile-Robots, “Pioneer p3-dx mobile robot,” 2011. [Online]. Avail-

able: http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-

P3DX-RevA.sflb.ashx. Last accessed, June 17th, 2018.

[94] K. Johns and T. Taylor, Professional Microsoft Robotics Developer Studio.

Birmingham, UK: Wrox Press Ltd., 2008.

[95] J. S. Cepeda, L. Chaimowicz, and R. Soto, “Exploring microsoft robotics

studio as a mechanism for service-oriented robotics,” in 2010 Latin American

Robotics Symposium and Intelligent Robotics Meeting, pp. 7–12, Oct 2010.

[96] J. Lawton, “Rass: Resilient autonomic software systems,” 2018. [Online].

Available: https://cs.gmu.edu/ menasce/rass/. Last accessed, November 15th,

2018.

[97] E. Khalastchi and M. Kalech, “On fault detection and diagnosis in robotic

systems,” ACM Comput. Surv., vol. 51, pp. 9:1–9:24, Jan. 2018.

[98] A. Burguera, Y. Cid, and G. Oliver, “Sonar sensor models and their applica-

tion to mobile robot localization,” vol. 9, pp. 10217–43, 12 2009.

Bibliography 198

[99] E. Tunstel and A. Howard, “Sensing and perception challenges of planetary

surface robotics,” in SENSORS, 2002 IEEE, vol. 2, pp. 1696–1701 vol.2, June

2002.

[100] D. P. Miller, T. Hunt, M. J. Roman, S. Swindell, L. L. Tan, and A. Win-

terholler, “Experiments with a long-range planetary rover,” in Proceedings

of the International Symposium on Artificial Intelligence, Robotics and Au-

tomation in Space, 2003.

[101] T. Huntsberger, “Fault tolerant action selection for planetary rover control,”

in In Proc. Sensor Fusion and Decentralized Control in Robotic Systems,

SPIE, pp. 150–156, 1998.

[102] T. Khler, E. Berghfer, C. Rauch, and F. Kirchner, “Sensor fault detection

and compensation in lunar/planetary robot missions using time-series predic-

tion based on machine learning,” in In Acta Futura, ESA Advanced Concepts

Team, ESTEC., vol. 9, pp. 9–20, May 2014.

[103] M. K. Habib, “Real time mapping and dynamic navigation for mobile

robots,” International Journal of Advanced Robotic Systems, vol. 4, no. 3,

p. 35, 2007.

[104] Power-Thru, “Lead acid battery working - lifetime study,” 2010. [Online].

Available: http://www.power-thru.com/documents/. Last accessed, March

10th, 2019.

[105] D. C. C. Freitas, M. B. Ketzer, M. R. A. Morais, and A. M. N. Lima, “Life-

time estimation technique for lead-acid batteries,” in IECON 2016 - 42nd An-

nual Conference of the IEEE Industrial Electronics Society, pp. 2076–2081,

Oct 2016.

[106] American-Scientific, “American scientific: Could battery ad-

vances mean better robots?,” 2017. [Online]. Available:

https//www.scientificamerican.com/article/robot-battery-technology-life-

spa/. Last accessed, August 20th, 2018.

Bibliography 199

[107] L. Nestor, C. Cosmin, T. Hirth, J. G, and F. Dressler, “Robm2: Measure-

ment of battery capacity in mobile robot systems,” in System Software for

Persuasive Computing, pp. 13–18, October 2005.

[108] A. Sweet, G. Gorospe, M. Daigle, J. Celaya, E. Balaban, I. Roychoudhury,

and S. Narasimhan, “Demonstration of prognostics-enabled decision making

algorithms on a hardware mobile robot test platform,” vol. 5, pp. 142–150,

August 2014.

[109] Yuasa, “Np serires np7.5-12 data sheet,” 2008. [Online]. Available:

http://www.yuasabatteries.com. Last accessed, March 10, 2019.

[110] A. G. Ritchie, B. Lakeman, P. Burr, P. Carter, P. N. Barnes, and P. Bowles,

Battery Degradation and Ageing, pp. 523–527. Boston, MA: Springer US,

2001.

[111] P. Dynamics, “Battery basic,” 2011. [Online]. Available:

https://www.progressivedyn.com/service/battery-basics/. Last accessed,

March 10th, 2019.

[112] Omron, “Pioneer 3 operations manual, version 5,” 2007. [Online]. Available:

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx. Last ac-

cessed, December 15th, 2017.

[113] D. P. Siewiorek and P. Narasimhan, “Fault-tolerant architectures for space

and avionics applications,” First International Forum on Integrated System

Health Engineering and Management in Aerospace, pp. 1–19, November

2005.

[114] L. Yuan, J. S. Dong, J. Sun, and H. A. Basit, “Generic fault tolerant software

architecture reasoning and customization,” IEEE Transactions on Reliability,

vol. 55, pp. 421–435, Sep. 2006.

[115] N. T. de Sousa, W. Hasselbring, T. Weber, and D. Kranzlm”uller, “Design-

ing a generic research data infrastructure architecture with continuous soft-

Bibliography 200

ware engineering,” in Software Engineering Workshops 2018, vol. Vol-2066

of CEUR Workshop Proceedings, pp. 85–88, CEUR-WS.org, March 2018.

[116] A. N. Sylla, M. Louvel, E. Rutten, and G. Delaval, “Design framework for

reliable multiple autonomic loops in smart environments,” in 2017 Interna-

tional Conference on Cloud and Autonomic Computing (ICCAC), pp. 131–

142, Sept 2017.

[117] S. S. Laster and A. O. Olatunji, “Autonomic computing: Towards a self-

healing system,” in Proceedings of the Spring 2007 American Society for

Engineering Education Illinois-Indiana Section Conference, 2007.

[118] N. Raajan, M. Ramkumar, B. Monisha, C. Jaiseeli, and S. P. venkatesan,

“Disparity estimation from stereo images,” Springer, vol. 38, pp. 462–472,

2012. INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZA-

TION AND COMPUTING.

[119] NASA, “The computer vision laboratory.” NASA Jet Propul-

sion Laboratory, 2003. [Online]. Available: https://www-

robotics.jpl.nasa.gov/facilities/facilityImage.cfm?Facility=13-Image=335/.

Last accessed, May 28th, 2019.

[120] W. Song, G. Xiong, L. Cao, and Y. Jiang, “Depth calculation and object

detection using stereo vision with subpixel disparity and hog feature,” in

Advances in Information Technology and Education, pp. 489–494, Springer

Berlin Heidelberg, January 2011.

[121] W. Zhao and N. Nandhakumar, “Effects of camera alignment errors on

stereoscopic depth estimates,” Pattern Recognition, vol. 29, no. 12, pp. 2115

– 2126, 1996.

[122] C. C. Yang, S. K. Huang, K. T. Shih, and H. H. Chen, “Analysis of disparity

error for stereo autofocus,” IEEE Transactions on Image Processing, vol. 27,

pp. 1575–1585, April 2018.

Bibliography 201

[123] S. Poslad, Autonomous Systems and Artificial Life, ch. 10, pp. 317–341. John

Wiley & Sons, Ltd, 2009.

[124] K. Bertels and M. R. Nami, “A survey of autonomic computing systems,”

in Autonomic and Autonomous Systems, International Conference on(ICAS),

vol. 00, p. 26, 06 2007.

	Introduction
	Research Context
	Research Problem
	Research Objectives
	Chapter Outline
	Overview of Publications

	Literature Review
	Introduction
	Autonomic Computing
	Origins and Motivations
	Autonomic Model
	Autonomic Developments
	Organic Computing

	Autonomic Fault Handling in Mobile Robots
	Fault classification
	Fault Tolerance in Autonomic Computing
	Autonomic Management for fault handling
	Organic Computing - fault handling in robots

	Generic Autonomic Fault Architectures
	Using and Adapting the Autonomic Model: MAPE-K

	Summary

	Research Hypothesis and Method
	Goals
	Design Patterns

	Research Method
	Case Study Methodology
	Generic Architecture (awareness)
	Generic Autonomic Fault Architecture (Creation Phase)
	SDLC Methodology

	Summary

	Self-Adaptive Mobile Robot Wheel Alignment - Case Study
	Introduction
	Introducing the basic AIFH model
	Research Method

	Conceptual Requirements
	Research Question
	Resources required

	Conceptual Design
	Developing the AIFH Architecture for wheel alignment fault handling
	State Machine
	Knowledge Base - applied to AIFH

	Implementation
	Robot Task Data Evaluation
	Wheel Alignment Error Evaluation
	Wheel Alignment Error Compensation
	Wheel Alignment Data Trending

	Demonstration (testing)
	Using intervals in the fault compensation policy

	Evaluation
	Summary

	Autonomic Sonar Sensor Fault Management for Mobile Robots - Case Study
	Introduction
	Research Method
	Conceptual Requirements
	Problem Definition
	Resources required

	Conceptual Design
	Developing the AIFH Architecture for sonar sensor fault handling
	State Machine

	Implementation
	Sonar sensor fault Scenarios
	Sonar Sensor Failure States
	Detecting Sonar Fault - Awareness
	Processing Sonar Fault - Analysis

	Demonstration (testing)
	Compensation for Sonar Fault - Adjustment

	Evaluation
	Summary

	Autonomic Management for Mobile Robot Battery Degradation - case study
	Introduction
	Research Method

	Conceptual Requirements
	Research Question
	Resources required
	Simulated Battery Performance
	Simulated Battery setup task

	Conceptual Design
	Autonomic Battery Management

	Implementation
	Autonomic Battery Power Management

	Demonstration (testing)
	Robot Task Three - Motion Management (with battery degradation) - applying a compensation policy
	Battery Degradation Compensation Algorithm

	Evaluation
	Summary

	Generic Architecture for Fault Detection (AIFH)
	Introduction
	Overview - Generic Architecture (Fault Handling)
	Comparative analysis of the architectural model used in each case study

	High-Level AIFH Architecture
	AIFH architectural components
	System Manager
	Autonomic Manager

	Building the AIFH Architecture
	Low-Level AIFH Architecture
	Awareness Layer
	Analysis Layer
	Adjustment Layer

	Applying the Generic AIFH Architecture (Stereo Vision Camera Fault)
	Introduction
	Stereo Vision Camera - properties
	Triangulation
	Disparity
	Awareness (finding a potential fault)
	Analysing (establishing what sensor is faulty)
	Adjustment (compensating for the stereo camera fault)
	Conclusions (compensating for the stereo camera fault)

	AIFH Autonomic Architecture Summary

	Conclusions and Future Work
	Overall Summary
	Conclusions
	Future Work

	Appendices
	Case Study Reference: Wheel Alignment Fault
	Pioneer P3-DX Robot laser alignment readings

	Case Study Reference: Sonar Sensor Fault
	Pioneer P3-DX Robot - sonar sensor fault states and compensation rotation values
	Sonar Sensor Fault - Compensation experiment

	Bibliography

