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Abstract 
Epigenetics is defined as heritable changes in gene expression without a change in the 

underlying DNA sequence. In this thesis I concentrate on DNA methylation and the changes 

that occur in response to different conditions; more particularly, I develop methods to 

analyse methylation data and associated transcriptional and chromatin changes and apply 

this to four different projects. 

The first project focused on the effects of shRNA mediated DNMT1 depletion within 

immortalised human fibroblasts. Here we found four key classes of genes dependent on 

DNA methylation; protocadherins, genes involved in fat homeostasis, olfactory receptors 

and cancer testis antigens. In addition to an interplay with polycomb repressive complexes 

at certain loci. Within this project, I developed tools to examine complex loci and correlate 

methylation with chromatin marks. 

In the second project, we sought to carry out a similar experiment, but this time 

investigated the effects of UHRF1 depletion within the same cell line, as UHRF1 is known to 

recruit DNMT1 to hemi-methylated DNA. Here we found depletion of UHRF1 caused 

demethylation and upregulation of endogenous retroviruses and a subsequent innate 

immune response. When the cells were rescued methylation did not recover but the innate 

immune response and expression of retroviral elements was attenuated. However, rescued 

cells were hypersensitive to SETDB1 and KAP1 inhibition, implicating H3K9me3 in the 

UHRF1-mediated repression in absence of DNA methylation. UHRF1 cell lines which were 

mutated to affect the H3K9me3 binding domain could not repress endogenous retroviral 

expression, confirming the involvement of H3K9me3 here. Here, I aided in the analysis of 

methylation array data for knockdown, rescue and mutant cell lines and developed a tool to 
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analyse repeat elements covered by the Illumina Human Methylation 450k BeadChip and 

MethylationEPIC arrays. 

In the third project, we sought to investigate the effects of folic acid supplementation in the 

second and third trimester on the methylation of the offspring. Folate is a limiting factor of 

one carbon metabolism and as a result, DNA synthesis and DNA methylation. Following 

intervention, cord blood was examined using the EPIC array and we discovered a folate 

sensitive differentially methylated region upstream of the imprint regulator ZFP57 and 

verified the change in an independent cohort and within in vitro models. In this project, I 

helped to develop statistical models with the initial and downstream bioinformatic analysis 

of methylation arrays and refined a tool for the investigation of target loci from methylation 

array data. 

In project 4, we investigated the effects of mental illness on the methylation patterns of 

first year university students. We observed enrichment for genes involved in the immune 

response and the inflammatory skin condition psoriasis, with notable hypermethylation at 

the late cornified envelope gene cluster involved in skin cell differentiation. Results were 

confirmed via wet lab approaches and validated in part in an independent cohort, adding 

an immune component to the aetiology of depression. In this study, I aided with the initial 

and downstream bioinformatic analysis of methylation arrays, including taking advantage 

of their ability to score copy number variation. 

Finally, in project 5, I formalised the tools I had used in project 1-4 into a complete pipeline 

called CandiMeth (available at www.bit.do/candimeth) which can be used by people with 

little bioinformatics training to investigate DNA methylation at candidate genomic features. 

This pipeline is user-friendly, has no installation requirements and runs freely off the Galaxy 

framework (www.usegalaxy.org) to allow users to reproducibly quantify and visualise 
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methylation differences among their samples and how these results correlate with different 

genomic features, such as repetitive elements. 

Overall, in this thesis I have developed novel approaches to analysing methylation data and 

applied these to a range of projects, culminating in the development of a user-friendly 

methylation array analysis tool called CandiMeth. 
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1.0 General Introduction 
In this introductory chapter, I will provide detail regarding current knowledge of DNA 

methylation and its effects on different regions of the genome. In addition to, the various 

methylation-based machinery utilised to maintain and establish these DNA methylation 

marks investigated within this thesis and give a brief background into histone marks as they 

pertain to the work presented. I will also provide background detail into the various 

bioinformatic tools and techniques utilised within this thesis to give insight to those not 

familiar with such techniques. 

1.1 DNA packaging into chromatin 
The DNA of the human genome is approximately 3 billion base pairs long, when measured 

end to end this equates to 2 metres in length. In order to fit this information into a nucleus 

with a 6µm diameter, the DNA must be heavily compacted into a structure known as 

chromatin (Figure 1). First, 147bp of DNA is wrapped around a four-core octamer of histone 

proteins, forming a nucleosome. These consist of two molecules of histone H2A, H2B, H3 

and H4 each containing positively charged lysine or arginine which binds electrostatically to 

the negative charge of the phosphate within nucleotides (Kornberg, 1974). Each 

nucleosome is linked to the next via a 50bp linker DNA wrapped around a lysine rich H1 

histone. This first stage of DNA compression compacts the DNA to approximately one third 

of its original size. The H1 linker proteins of each nucleosome interact with other 

nucleosomes to allow the DNA to coil into spirals of 6-8 nucleosomes, forming a structure 

known as a solenoid – the second stage of DNA compression. Following this, the solenoids 

coil further to form the transcriptionally repressive heterochromatin and subsequently, a 

metaphase chromosome (Fazary et al., 2017). 
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Figure 1: How DNA is packaged into Chromatin. 147bp of DNA is wrapped around a four-core 
octamer of histone proteins, forming a nucleosome. These consist of two molecules of histone H2A, 
H2B, H3 and H4 each containing positively charged lysine or arginine which binds electrostatically to 
the negative charge of the phosphate within nucleotides. Each nucleosome is linked to the next via a 
50bp linker DNA wrapped around a lysine rich H1 histone. This first stage of DNA compression 
compacts the DNA to approximately one third of its original size. The H1 linker proteins of each 
nucleosome interact with other nucleosomes to allow the DNA to coil into spirals of 6-8 
nucleosomes, forming a structure known as a solenoid – the second stage of DNA compression. 
Following this, the solenoids coil further to form the transcriptionally repressive heterochromatin 
and subsequently, a metaphase chromosome. [original figure SJ Thursby] 
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However, as mentioned heterochromatin is the transcriptionally repressive form of 

chromatin and does not allow transcriptional machinery to access the DNA of the cell and 

produce the proteins required. This is facilitated via euchromatin, the transcriptionally 

active form of chromatin, formed via the modification of histone tails which extend from the 

solenoid. These histone tails are targeted by chromatin re-modelling complexes, which using 

ATP, unwind the compressed configuration of the chromatin to enable access of the 

transcriptional machinery to the DNA (Tang et al., 2010). 

1.2 Histone Marks 
Histone Modifications are the regulators of chromatin configuration. They were first 

formally described in 1964 (Allfrey et al., 1964) and predominantly target the previously 

mentioned histone tails which protrude from the solenoid. These modifications occur most 

frequently at the N-terminal tail of the histone and act to alter the binding ability of DNA to 

the histone proteins and thus the chromatin structure, making the chromatin more/less 

accessible to transcriptional machinery (Gates et al., 2017; Rea et al., 2000). Examples of 

histone modifications include, methylation (generally repressive), acetylation (generally 

activating), phosphorylation (involved in DNA repair), ubiquitination (DNA damage 

signaling) and SUMOylation (generally repressive (Shiio and Eisenman, 2003)) – of which 

acetylation and methylation are the most well-characterised (Alaskhar et al., 2018). 

To elicit a histone modification, specialized groups of enzymes are required e.g. histone 

acetyltransferases (KATs) and histone methyltransferases (HMTs) which add acetyl & methyl 

groups to the histone tails respectively and histone deacetylases (HDACs)/demethylases 

(HDMs) which remove these marks making histone marks essentially reversible (Wang et al., 

2018). In terms of gene activity, each histone mark can also be described as activating or 

repressive. For example, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with 
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transcriptional repression as it influences the binding/recruitment of certain proteins to the 

DNA. H3K27me3 is characteristic of the polycomb group of proteins (discussed further in 

1.7.5). Whereas, methylation of histone 3 lysine 4 (H3K4me1) or acetylation of histone 3 

lysine 9 (H3K9ac) has been associated with transcriptional activation (Ernst and Kellis, 2012; 

Gates et al., 2017). Lysine acetylation affects the overall electrical charge of the histone and 

as a result changes how histone interacts with DNA (Alaskhar et al., 2018). An overview of 

histone marks and their transcriptional associations can be found in Table 1. 

In addition to epigenetic writers (HMTs) and erasers (HDMs), epigenetic reader proteins also 

exist. These proteins function to regulate the actions of epigenetic writers and via 

interaction with the histone mark, can determine its function. Examples of epigenetic 

readers include, methyl-binding protein MeCP2 or the histone methyltransferase SETDB1 

(Alaskhar et al., 2018; Biswas and Rao, 2018). 

However, the histone tails are not the only region that can be modified by such groups of 

enzymes, the central globular domains (nucleosomes) also host multiple histone 

modification sites which are involved in histone-histone and histone-DNA interactions. 

(Lawrence et al., 2016). 
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Table 1: Histone modifications and their abbreviations and transcriptional 
associations (Alaskhar et al., 2018; Wang et al., 2008) 
Modification Abbreviation Association 
Histone 3 lysine 4 dimethylation H3K4me2 Activating 

Histone 3 lysine 4 monomethylation H3K4me1 Activating 

Histone 3 lysine 4 trimethylation H3K4me3 Activating 

Histone 3 lysine 9 acetylation H3K9ac Activating 

Histone 3 lysine 9 dimethylation H3K9me2 Repressive 

Histone 3 lysine 27 acetylation H3K27ac Activating 

Histone 3 lysine 27 trimethylation H3K27me3 Repressive 

Histone 3 lysine 36 trimethylation H3K36me3 Activating 

Histone 4 lysine 20 monomethylation H4K20me1 Activating 
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1.3 Epigenetics and DNA Methylation 
Epigenetics can be defined as heritable, reversible changes in gene expression without 

changes in the underlying DNA sequence. Such modifications include histone marks and 

DNA methylation, both critical to regulating gene expression, imprinting, X inactivation and 

maintaining genomic stability. DNA methylation is the more characterised of these marks 

and can be defined as the addition of a methyl group to a cytosine residue within the DNA 

sequence. This results in different effects depending on where the alteration is located 

(Edwards et al., 2017; Johnson and Coghill, 1925). 

1.4 Distribution of DNA Methylation 
1.4.1 Methylation at CpG Islands 
In the mammalian genome, DNA methylation usually exists within CpG sites, that is a C 

sequentially proceeded by a G with the p representing the phosphate group between these 

bases. The idea of CG methylation was first mentioned by Johnson and Coghill in Tulercule 

bacillus (1925). Since then, in the human genome, approximately 28 million CpG sites have 

been identified, distributed throughout 99% of the genome (Deaton and Bird, 2011). The 

CpG dinucleotide has also been found to cluster in large numbers (approximately 200bp), 

termed a CpG Island (CGI) making up 5% of all CpGs and 1% of the human genome. CGI are 

more specifically defined as: longer than 200bp, a C + G content greater than 50% and an 

observed/expected ratio of 0.6 or greater. These CGIs usually reside in an unmethylated 

state, often within promoters, but can also be found within gene bodies and intergenic sites 

throughout the genome – methylation at which has differing effects dependent on island 

location. For example, CGI methylation at transcription start sites (TSS) blocks transcription, 

whereas methylation within the gene body has the opposite effect and methylation at 

repeat regions is essential for genomic stability (Jones, 2012; Vinson and Chatterjee, 2012). 

These characterizations will be explained in more detail in the following paragraphs. 
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Methylation at CpG sites makes these cytosines more susceptible to spontaneous 

deamination. Spontaneous deamination of unmethylated cytosine generates uracil, which is 

removed by base excision repair using uracil-DNA glycosylase. However, spontaneous 

deamination of methylated cytosine results instead in thymine and despite the actions of 

thymine-DNA glycosylase and methyl-CpG-binding protein 4, this results in a C > T mutation. 

CGI are less susceptible to deamination due to their unmethylated state (Pfeifer, n.d.; Walsh 

and Xu, 2006). The CGI are thought to be kept in an unmethylated state by the binding of 

basal transcription factors and also specialized proteins such as CFP1, protecting the TSS 

from mutation. Thus, the high mutability of methyl is thought to have shaped the 

mammalian genome into islands and deserts with respect to CpG and explains the high 

coincidence of CGI and promoters (Schübeler, 2015). 

Over 70% of identified CGI are in promoters, with most unmethylated and within TSS i.e. in 

housekeeping genes as one example (Deaton and Bird, 2011). Although, mammalian 

promoters fall into three categories, high CG content (HCP), intermediate CG content (ICP) 

or low CG content (LCP) with the CG density having varying effects on DNA methylation at 

that area. HCP promoters are generally unmethylated and protected from methylation by 

the presence of positive histone marks such as histone 3 lysine 4 methylation or via the 

presence of TET1 which converts 5mC to 5hmC, CFP1 is also involved in this process (Jones, 

2012; Maunakea et al., 2010; Vinson and Chatterjee, 2012). The methylation state of HCPs 

also correlates well with gene expression. Conversely, LCP tend to be methylated in somatic 

cells as they are a target for de novo methylation. The expression of methylated LCP is 

thought to be tissue-specific and important for the silencing of germline-specific genes, 

imprinting and regulation of retrotransposons (Jones et al., 2015). They have also been 

known to be methylated during development. However, in development and in somatic 
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cells, the methylation status of LCPs does not always correlate with gene expression 

(Illingworth and Bird, 2009; Walsh and Bestor, 1999; Yoder et al., 1997). 

In recent years, ICPs have also been identified as a class of CGI density promoters: although 

these promoters have variable methylation states dependent on gene activity their 

methylation status has been found to correlate well to their expression, as in HCP (Jang et 

al., 2017; Weber et al., 2007). 

However, not all CGI reside within TSS or promoters, as previously indicated (Jones, 2012). 

Those outside of transcriptional units are termed ‘orphan’ CGIs due to the uncertainty over 

their significance (Deaton and Bird, 2011; Meng et al., 2015). These were discovered via 

CXXC Affinity Purification which isolates clusters of unmethylated cytosines. CXXC binds the 

protein CFP1 which recruits H3K4me3 that subsequently blocks methylation to that site. 

Further orphan CGI were discovered via the combination of this technique with next 

generation sequencing (CAP-seq) (Illingworth et al., 2010). 

Orphan CGI exhibit more of a tissue-specific methylation profile than annotated promoters, 

~34% of intragenic CGI are methylated in the brain, possibly to prevent spurious 

transcription (Illingworth et al., 2010); de novo methylation during development has also 

been found to affect orphan CGI more than annotated promoters, indicating that orphan 

CGI may be more tightly regulated than those at TSS or within promoters. 

Methylated orphan CGI have been found marked with H3K4me3, a positive histone mark 

indicative of an active promoter. Alternative reports have revealed evidence of RNA 

polymerase II at these H3K4me3 sites, indicating orphan CGIs may be intragenic or 

alternative promoters that could give rise to novel transcripts and indicate a potential 

regulatory role for orphan CGI. Evidence has also arisen that certain orphan CGI may be 
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alternative promoters for ncRNA that could regulate gene expression – see 1.4.3 for more 

information on gene body methylation (Illingworth et al., 2010; Illingworth and Bird, 

2009; Maunakea et al., 2010). 

1.4.2 Non-CpG Methylation 
Although not investigated in this thesis, methylation at non-CpG sites does exist. It was 

originally discovered in plants in 1975, then later in bacteria, fungi and in human ESC (Cokus 

et al., 2008; Fuso, 2018; Jones, 2012; Lindroth et al., 2001; Rountree and Selker, 1997). Non- 

CpG methylation is usually denoted CpH (were H can stand for A, C or T). In prokaryotes, 

methylation at CpA or CpC sites has been found to aid DNA repair and protect the cell from 

foreign bacterial and viral genomes (Meng et al., 2015). 

In Eukaryotes, a high frequency of CpH methylation has been found in mouse and human 

ESC and in induced pluripotent stem cells (iPS), largely CpA (Lister et al., 2009; Meng et al., 

2015; Ramsahoye et al., 2000a). Approximately a quarter of all methylation found in human 

ESC is non-CpG derived, with the greatest enrichment in the gene body (GB) 

– the function of this methylation is currently not well understood but it is thought to have a

role in developmental gene regulation, such as gene repression during embryogenesis, as 

non-CpG methylation was lost after differentiation of ESCs but recovered after they were 

restored into iPS (Lister et al., 2009). This theory coincides with the work of Ramsahoye and 

colleagues (2000), who discovered that during the early post implantation stage of 

embryogenesis, de novo methylation was observed at many non-canonical sites, but this 

methylation was lost after development. This could be because one of the main enzymes 

known for maintenance methylation, DNMT1, has been shown to have no notable effect on 

non-CpG methylation and therefore the non-CpG methylation is not present in 

differentiated cells (Gowher and Jeltsch, 2001). When methylation at CpG and non-CpG sites 
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of DNMT1 KO mouse ESC were examined, the cells maintained their methylation at non-CpG 

sites but not at CpG sites. However, upon DNMT3L KO, the ESC displayed lower levels of CpA 

methylation, indicating DNMT3 enzymes may be more important for regulation of non-CpG 

methylation. The lower levels of the de-novo methylation enzymes in differentiated cells 

may also explain why non-CpG methylation is rare in such cell types (Jang et al., 2017). 

Moreover, when the level of mCpH is reduced in ESCs the cells display a reduction in 

differentiation capacity. This evidence also concurs with that of Han et al., (2011), who 

suggest that non-CpG methylation aids establishment and maintenance of cell identity. 

Another theory states that at the later stages of development, non-CpG methylation may 

not be required due to additional mechanisms such as chromatin modification systems 

becoming more effective and therefore the non-CpG methylation is no longer required 

(Gowher and Jeltsch, 2001; Jang et al., 2017; Ma et al., 2014). 

In recent years, a high frequency of non-CpG methylation has been found in human skeletal 

muscle, hematopoietic cells and in the brain, in neurons and glial cells – with neural cells 

having a higher level of non-CpG methylation that glial cells. Non-CpG methylation accounts 

for 53% of total 5mC within the brain, it is established and conserved throughout 

development and is one of the most abundant forms of neuronal methylation found within 

this tissue (Fuso, 2018; Lister et al., 2013; B H Ramsahoye et al., 2000). This indicates a 

potential regulatory role for non-CpG methylation in this tissue. Other studies have also 

found evidence suggesting this type of methylation is related to brain pathology and aging 

as the abundance of mCpH in the brain increases with age but mCpG does not (Guo et al., 

2014; Lister et al., 2013; Xie et al., 2012). 
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1.4.3 Gene Body Methylation 
Gene body methylation was first assessed via a genome-wide screen by Zhang (2006) & 

Zilherman (2007) in Arabidopsis thaliana. When assessed in the human genome, it became 

evident that over a third of DNA methylation also occupied intragenic regions i.e. the gene 

body (GB). Within both plants and animals, DNA methylation tends to lie within the GB but 

rarely at the 5’ or 3’ ends of genes (Flanagan and Wild, 2007). Considering that plants and 

animals diverged over 1.6 million years ago, yet the placement of methylation remains 

similar, this would suggest that GB methylation had ancestral function (Suzuki and Bird, 

2008). Subsequent studies revealed GB methylation was correlated with increased 

transcription, as well as possibly with regulation of intragenic promoters and regulation of 

splicing (Yang et al., 2014) and see section 1.4.1 above. 

Although the above paragraph points towards the overall effect of GB methylation, more 

specifically, it depends on the position of the methylation within the GB, CpG density and 

the histone marks present. For example, GB methylation in the first exon is tightly 

correlated with transcriptional silencing but this correlation does not exist for the 

downstream exons and introns (Brenet et al., 2011). At downstream intron and exon 

junctions (where nucleosome occurrence is greater), GB methylation is thought to 

destabilise nucleosome placement, which leads to transcriptional initiation. Therefore, GB 

methylation may indirectly influence splice events (Andersson et al., 2009; Luco et al., 2011; 

Tilgner et al., 2009). Other reports have also inferred an indirect link between intragenic 

DNA methylation and the regulation of splice events. Examples of this include CTCF binding, 

an inhibitory action also regulated by DNA methylation. CTCF binding is known to pause 

RNA Pol II, and since RNA Pol II has a clear role in splicing, DNA methylation may be 
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indirectly linked to splice events (Ehrlich et al., 2016; Lorincz et al., 2004; Maunakea et al., 

2010; Shukla et al., 2011). 

In terms of histone marks within the GB, methylation is inversely correlated with the 

positive histone mark, H3K4me3 (Barski et al., 2007) which is associated with open 

chromatin and particularly enriched at promoters and unmethylated CGI. In the presence of 

methylated H3K4me3, DNMT3A exists in an inhibited state were it cannot effectively bind to 

DNA to induce de-novo methylation. However, in the presence of H3K4me0, DNMT3A 

changes structure and binds to the nucleosome with the help of its H3K4me0 sensing 

accessory protein DNMT3L – a non-catalytically active form of DNMT3 (Ooi et al., 2007; Guo 

et al., 2015; Hashimoto et al., 2010). Also, GB methylation is positively correlated with 

H3K36me3 which represses aberrant transcription following RNA Pol II action (Carrozza et 

al., 2005; Joshi and Struhl, 2005). The PWWP domain of DNMT3A which is involved in 

targeting chromatin has been shown to recognise H3K36me3. This interaction has been 

shown to increase the activity of DNMT3A and elicit de-novo methylation at this mark 

(Dhayalan et al., 2010; Rondelet et al., 2016). Therefore, intragenic DNA methylation may 

regulate intragenic promoters by preventing their spurious transcription (Maunakea et al., 

2010). 

Greater than 45% of the genome consists of repetitive elements which reside primarily in 

CG rich intragenic regions. These intragenic repetitive elements also have intragenic 

promoters thus initiation of their transcription could have a negative effect on genomic 

stability (Yoder et al., 1997). GB methylation is thought to have evolved to protect the 

genome against their transcription via dense de novo methylation of their intragenic 

promoters (Brenet et al., 2011; Maunakea et al., 2010). This coincides with the discovery 
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that housekeeping genes rarely have a downstream CGI but approximately 49% of genes 

with lower and more heavily regulated expression patterns exhibit such downstream 

functional elements (Larsen et al., 1992). 

In CpG poor regions, DNA methylation is inversely correlated with H3K9me3 (Schotta et al., 

2004) and H4K20me3 (Li et al., 2011), repressive chromatin marks involved in compacting 

chromatin and repression of transcription (Hahn et al., 2011). H3K39me3 is thought to have 

the same function as DNA methylation in areas of low CpG density and work with 

H3K36me3 to suppress aberrant transcription. This was observed mechanistically in the 

below study. 

In HCT116 DKO of DNMT1 + DNMT3B 95% of methylation was lost but a specific group of 

genes marked with the positive histone mark H3K36me3 retained intergenic methylation – 

most likely due to the actions of DNMT3A which has been linked to intergenic methylation 

and maintenance activity in previous work investigating the absence of DNMT1 (Taiping 

Chen et al., 2003; Wu et al., 2010). 

In an alternative study, when HCT116 cells were treated with the demethylating agent, Aza, 

similar results are observed. A specific group of genes related to cellular growth and 

metabolic pathways rapidly remethylate, it is thought this was due to the de novo action of 

DNMT3B. However, upon withdrawal of the treatment, some regions displayed sustained 

DNA demethylation and transcriptional activation even in the presence of DNMT1 (Yang et 

al., 2014). This sustained demethylation was suggested to be the result of H3K27me3, the 

repressive histone mark most often associated with polycomb mediated repression, which 

has been found to invade adjacent sites in absence of DNA methylation (Reddington et al., 
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2013). The polycomb complex has also been found to block the access of DNMT3B its target 

DNA (Jin et al., 2009). 

As mentioned, GB methylation is highly correlated with transcriptional activation and RNA 

markers of transcriptional initiation have been correlated with intragenic CGI. However, only 

genes of intermediate level expression exhibit the highest intragenic methylation. Jjingo and 

colleagues (2012) proposed a theory that this occurrence could be due to the RNA Pol II 

levels becoming so high in highly expressed genes that it interferes with the efficiency and 

ability of DNMT1 to access the DNA and maintain methylation. Similar theories have been 

suggested since then (Jjingo et al., 2012; Lorincz et al., 2004; Rountree and Selker, 1997; 

Shukla et al., 2011;). 

However, there are exceptions to the GB methylation and transcriptional activation 

correlation. According to Aran (2011) this correlation is true only for proliferating cells and 

cell lines. Inactive and genes in tissues with little proliferations exhibit similar levels of 

methylation. In their investigation, cells which had an early replication time were correlated 

with high levels of DNA methylation. Whereas, tissues such as the lungs, kidney and brain 

(low proliferative rates) fail to demonstrate a positive correlation between GB methylation 

and expression. Aran et al., (2011) and colleagues also suggested this was a result of low 

levels of DNMT3B in slowly proliferating cells, hinting that, DNMT3B may act as a 

transcription-coupled DNA methyltransferase in somatic tissues. 

In addition to this exception, transcribed regions may contain many functional genomic 

features, including, promoters, enhancers and repeat elements which may require specific 

transcription factors in addition to intragenic DNA methylation to become upregulated 

(Kulis et al., 2012; Maunakea et al., 2010; Varley et al., 2013; Yang et al., 2014). 
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1.4.4 Methylation at Enhancers 
In addition to CpG islands, promoters and the gene body, there is yet another regulatory 

element within the human genome – enhancer regulatory sequences. These are usually 

intergenic regulatory sequences thought to be responsible for cellular specialization via 

regulation of cell- and tissue-specific expression patterns through multiple different 

mechanisms of action (García-González et al., 2016). Enhancers were first described in 

monkey tumor virus studies, when a 72bp repeating sequence was deleted in what is now 

known to be the SV40 enhancer (Banerji et al., 1981). This caused vastly reduced viral 

protein levels and reduced virus viability. In mammals, the first enhancer was found in 

mouse, in the immunoglobin heavy chain gene. In this instance, gene activity was 

dependent on the binding of cellular specific transcription factors (TF) (Gillies et al., 1983). 

The mechanism of action of enhancers is still not fully understood. Currently, there are two 

main theories; the binary model and the progressive model (García-González et al., 2016). 

The binary model suggests that enhancers increase the proportion of molecules that 

activate transcription at that given locus. The progressive model suggests that enhancers 

increase the number of RNA molecules transcribed but not the number of molecules that 

initiate transcription. Overall, enhancers function as TF binding sites that bind then loop 

over to their target sequences approximately one kilobase away, affecting their 

transcription. There are two theories regarding TF binding at enhancers, the 

‘enhanceosome’ model and the bill-board model. The ‘enhanceosome’ model suggests DNA 

is a scaffold for TF binding complexes to form which then influences transcription. The bill- 

board model suggests every bound TF is independent of each other and acts a single unit. 

Either way, most studies agree that the critical protein CTCF found at most enhancers helps 
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to form a loop with cohesin to allow enhancer/target promoter interactions (García- 

González et al., 2016). 

Enhancers are also marked by histones which determine their activity state. Active 

enhancers can be characterised by the presence of H3K4me1, H3K79me3 and H3K27ac. This 

type of enhancer also lacks any DNA methylation. Poised enhancers remain in contact with 

their target DNA but lack the active H3K27ac mark and are usually marked by H3K4me1. 

Repressed enhancers also exhibit H3K4me1, but in addition to the repressive H3K27me3. 

H3K4me1 has been found to stay at active enhancers even after they disengage from their 

target locus, aiding in the protection of the locus from DNA methylation and maintaining the 

chromatin state for future enhancer use: cytosine hydroxymethylation (5hmc) has also been 

found to protect enhancer loci from accumulation of cytosine methylation. However, it is 

difficult to map enhancer/gene pairs using these histone marks and DNA methylation sites, 

as enhancers can be degenerate and some histone marks, such as H3K4me1 are also found 

at alternative regulatory sites i.e. insulators (Benetatos and Vartholomatos, 2018; Smith and 

Shilatifard, 2014). 

It has been suggested that DNA methylation may be required for the deposition of most 

histone marks, with the exception of H3K4me3 which has been found independent of DNA 

methylation states. It is also responsible for the maintenance of repressed or poised 

enhancer states in a tissue specific manner (Ehrlich et al., 2016). It has been proposed that 

DNA methylation is regulated by the binding of DNA-directed TF that encourage DNA 

demethylation via the interaction with promoters/enhancers and the recruitment of TET1 

for active demethylation. This demethylation is thought to be an early stage in the 
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activation of enhancers preceding TF binding, mediator complex conformational alterations 

and recruitment of RNA Pol II (Plank and Dean, 2014). 

Aberrant cytosine methylation at enhancers has been correlated with many different types 

of cancer, imprinting disorders and chronic kidney disease development (Kerr et al., 2019; 

Ko et al., 2013; Qu et al., 2017; Yoon et al., 2005). As mentioned, there is a negative 

correlation between DNA methylation and chromatin accessibility, in addition to TF binding 

and DNA methylation that can activate key cancer drivers (Clermont et al., 2016). Also, as 

enhancers are responsible for cellular specialisation and tissue specific expression patterns, 

aberrant DNA methylation can cause irregularities in these instances. For example, 

erroneous DNA methylation at enhancers related to haematopoiesis results in failure to 

discrimination between foetal, adult erythropoiesis and granulopoiesis through repression 

of enhancers during maturation (Bell et al., 2016; Benetatos and Vartholomatos, 2018). The 

relationship between enhancers and DNA methylation is similarly disrupted in AML, MDS 

and many other types of cancer via abnormal enhancer activity - resulting in anomalous 

gene expression changes that can contribute to tumorigenesis (Benetatos and 

Vartholomatos, 2018; Clermont et al., 2016; Heyn et al., 2016). 

In imprinting, for instance at the H19/IGF2 locus, DNA methylation-regulated CTCF binds to 

multiple sites within the imprint control region (ICR) of this locus. These sites are typically 

unmethylated and vital for the inhibition of the enhancers close to this ICR. Inhibition of 

these enhancers leads to the expression of H19 and repression of maternal IGF2 – irregular 

methylation here can also contribute to the cognate imprinting disorder Beckwith- 

Wiedemann syndrome (García-González et al., 2016; Hark et al., 2000; Plank and Dean, 
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2014). A similar situation can be observed at the RASGRF1 imprinting locus, again regulated 

by the methylation sensitive CTCF (Yoon et al., 2005). 

In one study into enhancer methylation dynamics and cancer plasticity, enhancer 

methylation was found to be indicative of patient outcome with high accuracy (Bell et al., 

2016). This and similar studies have proposed using DNA methylation at enhancers as a 

biomarker of disease (Clermont et al., 2016; Qu et al., 2017). 

1.4.5 Transposable Elements 
Approximately 50% of the human genome is made up of non-coding DNA termed ‘selfish’ or 

‘parasitic’ DNA (Slotkin and Martienssen, 2007). Some of this consists of autonomous 

elements which can make copies of themselves which insert in new locations: these were 

discovered over 50 years ago (McClintock, 1951) and are known as transposable elements, 

as they can move throughout the genome. There are two main types of transposable 

elements, retrotransposons (class I) and DNA transposons (class II). Class I transposable 

elements are termed retrotransposons due to their transposition via reverse transcription, 

these make up the majority of retrotransposons. There are also two main sub-types of 

retrotransposon, those with long terminal repeats (LTRs) and those without (non-LTR). LTR- 

containing transposons are characterised by the presence of direct repeats at the end of the 

repeat element, undergo duplicative transposition and lack envelope proteins required to 

exit the cell. An example of an LTR retrotransposon is LTR10C which is enriched at sub-

telomeric regions (Bourgeois and Boissinot, 2019; Cardoso et al., 2016; Tutton and 

Lieberman, 2017). 

Type II transposable elements constitute 3% of TE and duplicate via a transposon-encoded 

protein termed a transposase (Lander et al., 2001). This protein recognises repeats which 
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flank this type of transposable element, excises the TE sequence from the donor sequence 

and into the acceptor site. The empty donor site remaining can then be filled with the same 

sequence via gap repair or without a replacement sequence – similar to the ‘cut and paste’ 

action. 

The role of TE in the genome is unclear, they are suspected of having a regulatory role in 

gene expression (Chenais, 2015; Drongitis et al., 2019; Trizzino et al., 2018), genome 

evolution and X-inactivation (Cohen et al., 2007; Kapitonov and Jurka, 2005; Zhou et al., 

2004). It is thought that LINE elements boost the spread of silencing away from the X- 

chromosome inactivation centre on the inactive X chromosome in females ensuring 

effective silencing (Lyon, 2006; Pinheiro and Heard, 2017). The movement of TE often has 

deleterious effects however, particularly in affected coding regions – leading to mutation, 

dysregulation and possible loss of gene activity, in addition to possible chromosome 

breakage, illegitimate recombination and genome rearrangement (Chenais, 2015; Kazazian 

et al., 1988; Lin et al., 2009). 

However, eukaryotic genomes have evolved various epigenetic silencing mechanisms to 

inhibit the effects of TE. Such mechanisms include chromatin modifications and DNA 

methylation - with DNA methylation being the most effective (Chenais, 2015; Sotero-Caio et 

al., 2017). Inhibition of DNMT1 using 5’aza-dC in human ESC resulted in activation of LINE1 

elements (Woodcock et al., 1997). In mice, intracisternal alpha particles (IAP) were activated 

in embryos with a hypomorphic mutation in DNMT1 (Walsh et al., 1998). DNMT3L has also 

been found to be required for IAP silencing in premeiotic male germ cells, suggesting 

methylation of TE may also be required during development to maintain silencing, 
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potentially explaining why de novo methylation occurs in newly integrated elements 

(Bourc’his and Bestor, 2004). 

1.4.6 Copy Number Variation 
The human genome is constantly changing, this is how humans evolve and adapt to 

environmental changes. Although single nucleotide polymorphisms and trisomy/monosomy 

have been the centre of evolutionary research for many years, in the last 30 years a new 

intermediate variant has been identified as having a potential causative link to evolution 

and disease – copy number variation (CNV). Within the literature, the definition and limits of 

the term CNV are variable, but the most common definition refers to a DNA segment that is 

1kb in length or longer which occurs at a variable copy number in comparison with a 

reference genome (Zarrei et al., 2015). CNVs belong to the category of structural variants – 

variants of the genome which alter chromosomal structure- this includes balanced changes 

such as inversions and translocations and unbalanced changes i.e. CNVs. CNVs can be simple 

in structure, such as deletions and duplication, or more complex gains/losses of a sequence 

at many different sites throughout the genome. They also fall into the categories of adaptive 

and maladaptive, for example, the CNVs in the alpha-amylase gene which enables the 

digestion of dietary starch is an adaptive CNV (Perry et al., 2007). Maladaptive CNVs are 

usually associated with disease, for example, autism (Pinto et al., 2014), schizophrenia 

(Girard et al., 2011) and Crohn’s disease (Craddock et al., 2010). 

The first casual association of a CNV with a phenotype was over 80 years ago, when it was 

observed that a duplication of the Bar gene in Drosophila Melanogaster was found to cause 

the Bar Eye phenotype (Sturtevant, 1925). Since then, CNVs arising via homologous, non- 

homologous and erroneous replication mechanisms have been found to be associated with 

disease. In a study of CNVs from the HapMap Project, for 80% of cases copy number was 
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correlated with gene expression, with the remaining 20% in negative correlation with gene 

expression. However, greater than 50% of CNV associated with gene expression were not 

located in coding sequences, potentially indicating the mechanisms of CNV action are 

diverse (Stranger et al., 2007). CNVs have been found to alter gene expression via disrupting 

gene interactions through position effects, deleterious genetic changes or altered gene 

dosage e.g. the microdeletion related to Angelman Syndrome (Gamazon and Stranger, 2015; 

Williams et al., 1989). 

Originally, CNV analysis was done via comparative array hybridisation (Ahn et al., 2015; 

Iafrate et al., 2004). This technique involves hybridising test DNA to reference DNA with 

different fluorescence labels and measuring the difference in fluorescence at different 

regions in the genome. Oligonucleotide arrays then became popular due to the ability to 

conduct comparative genomic hybridisation and use SNP-based arrays. However, these 

arrays can lack probes in many areas of the genome and therefore many led to the 

misrepresentation of structural variations (Alkan et al., 2009). The advancement of next 

generation sequencing (NGS) has improved this resolution issue, but now CNVs must be 

identified as benign or maladaptive (Sudmant et al., 2010). Lack of population-based CNV 

data was a limitation for resolving this issue, but now many consortiums- such as The 

HapMap Project (Belmont et al., 2003), Database of Genomic Variants (MacDonald et al., 

2014), DECIPHER (Firth et al., 2009) and The 1000 Genome Project (Altshuler et al., 2012)- 

are working towards generating population-based CNV data via NGS technologies to identify 

further maladaptive structural variants. 

1.4.7 5-hydroxymethylcytosine 
Although not investigated in this thesis, an alternative cytosine modification does exist, 

termed 5-hydroxymethylcytosine (5hmC). This modification was first discovered in T-even 
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bacteriophage (Wyatt and Cohen, 1952) and then at a later date in mammals (Penn et al., 

1972). However, the evidence for 5hmC in mammalian DNA was not successfully 

reproduced for many years and lead to a lack of investigation of that modification until in 

2009, evidence of high levels of 5hmC was found in mESCs (Tahiliani et al., 2009) and 

Purkinje neurons in mouse (Kriaucionis and Heintz, 2009), with later studies elucidating its 

presence in other tissues (Globisch et al., 2010). 

The presence of 5hmC is dependent on the presence of methylated cytosine and occurs via 

TET-catalysed oxidation of methylated cytosine from 5mC to 5hmC. This is also the first step 

in active demethylation – highlighted via the depletion of TET1 in mESCs which lead to 

reduced 5hmC and increased 5mC, resulting in transcriptional repression. 5hmC is then 

further converted into 5-formylcytosine and 5-carboxylcytosine by TETs and converted back 

into unmodified cytosine, most likely via base-excision repair through thymine DNA 

glycosylase (He et al., 2011; López et al., 2017). 

5hmC may also have a role in passive demethylation. The maintenance methyltransferase 

exhibits a poor affinity for 5hmC and therefore during mitosis, 5hmC is not re-established on 

daughter strands and thus not passed on through cell division. After many rounds of cell 

division, this may, in theory, lead to an exponential loss in methylated cytosine and 

subsequently, transcriptional repression. However, as mentioned in previous sections, the 

effects of a loss in methylation depends on the location of the loss (Amouroux et al., 2016; 

Hill et al., 2014). A summary of the roles of DNA methylation can be found in Table 2. 
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Table 2: Effects of DNA methylation at different genomic locations 

Methylation 
Location 

Genomic 
Location 

Examples Effects of 
Methylation 

References 

1) CpG Islands a) Promoter TNF-α Promoter Repressive (Jang et al., 2017; 
Pieper et al., 
2008) 

b) Intragenic STC2 Activating (Yang et al., 
2014) 

2) non-CpG a) Embryogenesis OCT4 Repressive (Fuso, 2018; 
Lister et al., 2009; 
Bernard H. 
Ramsahoye et al., 
2000b) 

b) Neuronal cells RGS9 Repressive (Fuso, 2018; 
Rizzardi et al., 
2019) 

3) Gene Body a) First exon CDKN2B Repressive (Brenet et al., 
2011) 

b) Alternative 
exons 

CDKN2A Activating (Arechederra et 
al., 2018) 

4) Enhancer a) Intragenic TREX2 Repressive (Weigel et al., 
2019) 

5) Repeats a) Promoter LINE1 Repressive (Woodcock et al., 
1997) 

b) 5'-CCGG-3' 
sites 

IAPs Repressive (Walsh et al., 
1998) 

Page 36 of 356



1.5 DNA Methylation Assessment Methods 
1.5.1 Gene Specific 
1.5.1.1 Bisulphite Sequencing 
Before pyrosequencing was available, the most popular way to assess DNA methylation was 

bisulphite sequencing (Figure 2). This process involved using bisulphite to treat DNA, which 

would convert all unmethylated cytosines to thymine and leave methylated cytosines as 

unmodified cytosine. The DNA was then amplified via PCR and cloned into a vector. This 

vector was then ligated and transformed into bacteria such as E-coli and grown over a 

period of 24 hours to form individual colonies with plasmids representing individual PCR 

strands within them. Following this, DNA was extracted from the bacteria and sent for 

sequencing to see the results of the bisulphite conversion. The output sequence then 

showed the presence of cytosine (if protected by methylation) or thymine (if not) at each 

CpG site. By comparing the sequence from the PCR product with the reference genome 

being used, the methylation status of the sequence can be elucidated for each individual 

fragment of DNA. This method is useful for examining not just the methylation state of the 

target sequence but also for assessing the strand-specificity of the methylation, which can 

reveal allele-specific methylation. 
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Figure 2: Example of Bisulphite sequencing. Also known as clonal analysis. This technique can clarify 
the methylation state of genes across many samples. It is particularly useful for checking allele 
specific methylation at imprinted loci. Here, the methylation of an imprint (Snrpn), testis gene 
(FKkbp6) and brain gene (Grin3b) can be observed. The imprint has the typical all-or-nothing 
methylation on each allele as expected of imprints. The Fkbp6 shows a similar spread of methylation 
and the methylation in the brain gene Grin3b is much lower in methylation across samples. Taken 
from (Rutledge et al., 2014). 
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1.5.1.2 Pyrosequencing 
Pyrosequencing has become the standard go-to molecular biology technique for assessing 

site specific methylation. It uses PCR-amplified DNA, a collection of sequence-specific 

primers and DNA polymerase to accomplish a sequencing-by-synthesis reaction. This is 

facilitated via the addition of a biotin tag to either the forward or reverse primer (whichever 

is at the 5’ end) and addition of magnetic beads to the amplified DNA. The magnetic beads 

bind to the biotin tag of the DNA fragments and the cartridge floods the wells with free 

deoxyribonucleotides. Whenever a complementary base binds to the sequencing primer a 

pyrophosphate is liberated. Following this, ATP sulfurylase converts the pyrophosphate into 

ATP in the presence of adenosine 5’ phosphosulfate. The resulting ATP then catalyses the 

reaction of luciferin to oxyluciferin which generates a flash of visible light proportional to 

level of ATP. This flash is recorded by a camera and generates a pyrogram, from which the 

individual nucleotides within the sequence can be determined as well as the methylation of 

the CpG sites of interest (Figure 3). 
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Figure 3: Overview of Pyrosequencing. Magnetic beads within the pyrosequencing cartridge bind to 
biotin labelled DNA fragments. When the wells of the cartridge are flooded with free 
deoxyribonucleotides, apyrase removes the nucleotides not incorporated by RNA polymerase 
enzyme. When a complimentary base binds to the sequencing primer on the DNA fragment, a 
pyrophosphate is liberated. Then, ATP sulfurylase converts the pyrophosphate into ATP. This ATP 
then catalyses the reaction of luciferin to oxyluciferin and a flash of light is generated proportional to 
the level of ATP. The light is recorded by a camera and generated a pyrogram and any nucleotides 
added and the methylation of any CpG sites can be observed. Taken from (England and Pettersson, 
2005) 
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1.5.2 Array-Based 
1.5.2.1 Illumina BeadChip Arrays 
In order to provide a cost-effective method of assessing genome-wide methylation without 

the expense of whole genome bisulphite sequencing (WGBS), Illumina designed an 

oligonucleotide array which uses 850,000 probes to assess over 99% of RefSeq Genes, 95% 

of CpG islands and most enhancer regions discovered through the ENCODE and FANTOM5 

projects (ENCODE Project Consortium, 2004; Kawai et al., 2001). 

The array works via the use of two different types of probe chemistries, Infinium type I 

probes, and Infinium type II probes. Infinium Type I probes utilise two bead types per CpG 

site, one methylated and the other unmethylated, whereas Infinium Type II probes work via 

one bead type with a degenerate R base (see Figure 4 below). In this case, methylation of 

the CpG site is determined at the nucleotide level (Bibikova et al., 2011). 

DNA for assessment is bisulphite converted as above, leading to the conversion of 

unmethylated cytosine to uracil, which is amplified as thymine following PCR amplification. 

Methylated cytosine will not be affected by the treatment. Following this, the fragmented 

DNA is hybridised to the array and, using hapten-labelled dideoxynucleotides, single base 

extension is conducted. After multiple rounds of immunohistochemical assays, the intensity 

of fluorescence is scanned using the Illumina iScan and reported in intensity data files as a 

beta value between 0 and 1, 1 being highly methylated and 0 representing low methylation 

(Morris and Beck, 2015a; Pidsley et al., 2016). 

When originally designed, the array had only approximately 27,000 probes, made with 

Illumina’s Infinium type I probe chemistry. Following this, Infinium Type II probes were 

invented, and the next version of the array had a mixture of two probe chemistries and 
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approximately 450,000 probes. Following further innovation, and re-engineering of over 

2000 probe sequences, the methylation EPIC array was created with over 850,000 probes. 
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Figure 4: Overview of Illumina Infinium Probe Chemistries. The array works via the use of two 
different types of probe chemistries, Infinium type I probes (A), and Infinium type II probes (B). 
Infinium Type I probes utilise two bead types per CpG site, one methylated (M) and the other 
unmethylated (U). Whereas Infinium Type II probes work via one bead type with a degenerate R 
base. This binds to a complimentary hapten-labelled free nucleotide and the methylation of that 
CpG is determined at the nucleotide level following fluorescence scanning. Taken from (Bibikova et 
al., 2011). 
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1.5.3 Sequence-Based 
1.5.3.1 Reduced Representation Bisulphite Sequencing 
Reduced Representation Bisulphite Sequencing (RRBS) was an innovation of sanger 

sequencing that resulted in greater CpG resolution at a more cost-effective price than 

WGBS. RRBS is useful to assess targeted regions of the genome at high resolution. This is 

because high sequencing depths are not often required due to the low input yield of this 

technique. It covers approximately 10-15% of the CpG in the human genome (approximately 

4.2 million CpG) but cannot be used to resolve 5hmC, non-CpG methylation or CpGs in 

regions not covered by the restriction enzyme used (Fouse et al., 2010). 

After DNA extraction, a methylation-insensitive restriction enzyme is used to fragment the 

genome. MspI is usually the most common choice, which cuts at CCGG, but BglII can also be 

used. Following digestion, the 5’ CG overhangs are repaired using deoxyguanosine 

triphosphate and deoxycytidine triphosphate nucleotides and A tails are added, as Illumina 

primers have a 3’-T overhang. The adapters also contain methylated cytosines so they are 

not converted to uracil after bisulphite conversion (Guo et al., 2015; Meissner et al., 2005). 

Once the ends are repaired and adapters ligated, the fragment size is selected from an 

agarose gel and the DNA is bisulphite converted, modifying all unmethylated cytosines to 

uracil and amplifying them as thymine. The bisulphite-converted DNA is then amplified via 

PCR and sequenced using the Illumina platform (most commonly), see figure 5 for a 

schematic. The next step is to align the fragmented sequences and quantify the methylation 

levels on each sequence by comparison with the reference genome (Fouse et al., 2010;  Guo 

et al., 2015; Lee et al., 2015; Meissner et al., 2005). 
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Figure 5: Overview of RRBS. Genomic DNA is fragmented with a methylation insensitive restriction 
enzyme such as MspI or BaIII. This creates fragments of the genome with 5’ overhangs which are 
filed and repaired using complimentary nucleotides. As Illumina adapters have 3’ T overhangs, poly- 
A tails are added to the fragmented genomic DNA to allow adapter ligation. Fragment size is 
calculated from running via gel electrophoresis and DNA is bisulphite converted, converting all 
unmethylated cytosines to uracil and amplifying them as thymine. The converted DNA fragments are 
then amplified using PCR and the quality of the library checked prior to sequencing, most commonly 
on the Illumina platform. Adapted from (Gu et al., 2011) 
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1.5.3.2 Whole Genome Bisulphite Sequencing 
WGBS is the gold standard of genome-wide methylation assessment: it covers all 28 million 

CpG sites within the genome, in addition to any CpH, CHG or CHH sites, where H represents 

A, T or C. Originally, WGBS was ineffective due to the degradation of DNA resulting from 

adapter ligation and bisulphite conversion. Current WGBS techniques solve this issue via the 

use of tagging sequences on the 3’ and 5’ ends of the single-stranded bisulphite converted 

sequence. A polymerase capable of reading uracil nucleotides, plus random DNA primers 

are used to synthesize a complementary DNA strand with a 5’ random hexamer tagging 

sequence. A further random hexamer sequence tag is added to the 3’ end of the sequence, 

this allows Illumina P7 and P5 adapters to be ligated to the tagged sequence via PCR, where 

an index/barcode can be added between the tagging sequence and the adapter in the case 

of multiplexing – to distinguish sample specific sequences. The sequencing template used is 

the complement to the first bisulphite sequence and therefore, Read 1 from the sequencing 

results will be the same as the first strand of bisulphite-treated DNA (Cokus et al., 2008; 

Saxonov et al., 2006). 

WBGS is usually sequenced using a flow cell in a HiSeq or Novaseq sequencer with 75bp 

paired-end reads resulting in approximately 120GB of data per human genome sample. 

Methylation calling, alignment and differential calculations can then be computed using the 

Bismark software (Krueger and Andrews, 2011a). 

1.5.3.3 RNA-sequencing 
RNA-sequencing (RNA-seq) is the process of assessing genome wide transcript levels i.e. the 

transcriptome. The process is highly customisable but generally follows the same basic 

structure of: fragmenting RNA; constructing cDNA; synthesising the second strand of the 

cDNA; ligating adapters; amplifying the fragments using PCR and then sequencing the newly 

Page 46 of 356



created genomic library (Kukurba and Montgomery, 2015). When planning an RNA-seq 

experiment, many things must be considered, for example, the type of RNA to be assessed 

or whether the strandedness of the RNA should be kept. A total RNA extraction includes 

ribosomal RNA (rRNA), pre-posttranscriptional modification messenger RNA (pre-mRNA), 

messenger RNA (mRNA) and non-coding RNA (ncRNA) in addition to many other smaller 

categories of RNA. Although, other library preparation techniques are available, like polyA- 

enrichment. Library preparation procedures will change depending on the RNA subcategory 

of interest e.g. for mRNA, a poly-A enrichment protocol can be followed, as mRNA is usually 

characterised by a poly-A tail. Next to be considered is whether the RNA library should be 

stranded or unstranded (Kirby, 1956; Levin et al., 2010). 

Following traditional cDNA synthesis protocols, using a reverse transcriptase and then a 

DNA polymerase will cause the strand information of the original RNA to be lost. To prevent 

this, the first strand of cDNA is synthesized using a reverse transcriptase, as normal, then 

chemical labels such as dUTP are added prior to synthesizing the second strand of cDNA 

using a DNA polymerase. Adding a dUTP will cause the second strand of cDNA to have many 

uracil bases which can be removed enzymatically before sequencing (Bentley et al., 2008; 

Borodina et al., 2011; Kukurba and Montgomery, 2015; Levin et al., 2010). Following 

adapter ligation, this allows the forward strand to be differentiated from the reverse strand. 

In addition to this, options also exist regarding the primer type for second strand cDNA 

synthesis. Oligo-dT primers (most common) can be used if only fully matured mRNA is 

required (only fully matured mRNA has a poly-A tail), or random primers can be used if all 

maturation states of mRNA is desired (Borodina et al., 2011; Hansen et al., 2010; Kirby, 

1956). 
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The next step in RNA-seq library preparation is the adapter ligation. Adapters are ligated to 

the 5’ and 3’ ends of sequences, such sequences usually consist of a specific sequence that 

allows the fragment to attach to the flow cell and a sequencing primer for the sequencing 

reaction to proceed as desired. A barcode sequence may also be added, within adapter 

sequences if using Illumina technologies, as this will allow different samples to be run on the 

same flow cell lane i.e. multiplexing. This option can also save money when assessing the 

sequences of large-scale RNA-seq libraries (Bentley et al., 2008; Busby et al., 2013; Kukurba 

and Montgomery, 2015). 

The final step in planning an RNA-seq experiment is choosing the appropriate sequencing 

depth for the experimental aims. Sequencing too shallow will result in inaccurate reads, but 

too much depth will result in increased variance/convoluted results. In most cases, 

adequate depth is defined as approximately 30-40 million reads per sample. To assess the 

diversity of a highly complex library, approximately 500 million reads per sample are 

required (Wang et al., 2011). 

However, caution is advised when conducting RNA-seq as low RNA integrity will also result 

in inaccurate sequences. The quality of the RNA should therefore be checked at multiple 

stages throughout the process. Many RNA-seq library preps include ‘spike-ins’ - standard 

reference sequences set by the External RNA Controls Consortium (Jiang et al., 2011), which 

are included at different concentrations at different stages of the library prep procedure to 

assess the quality, sensitivity and coverage of a library preparation protocol (McIntyre et al., 

2011; Raz et al., 2011; Volkin and Carter, 1951). Biological replicates are also favored over 

technical replicates in RNA-seq (unless assessment of the actual technique is desired), this 

provides greater re-assurance when conducting differential gene expression, due to the 
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inclusion of genomic variation between biological replicates (Bullard et al., 2010; Kukurba 

and Montgomery, 2015). 

1.5.3.4 Chromatin Immunoprecipitation sequencing 
Chromatin Immunoprecipitation sequencing (ChIP-seq) is the addition of NGS sequencing 

after the immunoprecipitation of chromatin, for elucidating the binding sites of proteins of 

interest. The basic process is similar to that of the previous sections; after following an NGS- 

compatible ChIP protocol, the resulting sequences are fragmented by either sonication 

(non-histone protein enrichment) or MNase (histone protein enrichment). Next, the 

sequence ends are repaired as in previous sections and sequencing adapters/indexes are 

ligated to the DNA fragments. PCR-based amplification is then conducted and, if using an 

Illumina based sequencer, cluster generation and sequencing is then conducted (Bentley et 

al., 2008; Landt et al., 2012; Park, 2009). 

However, like in RNA-seq in the last section, there are many considerations to be aware of 

when conducting a ChIP-seq experiment. First, ChIP-seq verified antibodies are essential as 

these have been tested to be compatible with NGS sequencing and do not have high levels 

of cross-reactivity with other antibodies or a high level of non-specific binding sites – which 

could adversely affect sequencing results. In addition to this, consideration must be given to 

the type of antibody used i.e. monoclonal or polyclonal, as these will bind to differing 

numbers of epitopes, which will again influence sequencing results. ChIP antibodies are 

quality tested prior to NGS using an RNAi knockdown of the protein of interest, any ChIP 

signal observed will be the result of non-specific antibody binding (Kidder et al., 2011; 

Teytelman et al., 2009). 
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Secondly, the cell count needed to conduct a ChIP-seq experiment needs to be clarified. 

There is a delicate balance between signal intensity and noise after immunoprecipitation 

and NGS. For abundant proteins like RNA Polymerase or histone marks, cell numbers in the 

range of 1 x106 are recommended. If the protein of interest is rare, 10 x106 cells are 

recommended (Adli et al., 2010). Biological replicates are also needed to distinguish signal 

enrichment from that of biological variation (Kidder et al., 2011). In addition to, using a 

control input chromatin sequence or a non-specific immunoglobulin antibody as a reference 

sequence control. This will then allow the user to conduct peak enrichment of the 

sequencing results in MACS2, with greater confidence in their findings. It will also allow 

them to assess the effects of sequence shearing, background noise and antibody cross 

reactivity (Feng et al., 2012; Gaspar, 2018a). 

Thirdly, it is important not to over-amplify the DNA fragments, this can be checked by 

comparing the length of the PCR product with the original size of the adapter-ligated DNA. 

Overamplified DNA will exhibit a 200-300bp drift in PCR product size. PCR overamplification 

can be corrected computationally at the data analysis stage after sequencing, however an 

ideal ChIP-seq protocol would prevent an overamplification prior to sequencing by reducing 

the number of PCR cycles if the quantity of DNA is low (Brinkman et al., 2012; Park, 2009). 

Finally, the last item to consider in a ChIP-seq experiment is the sequencing depth required. 

As mentioned previously, low sequencing depth may result in inaccurate sequence results. 

For a ChIP-seq experiment, the depth of sequencing is determined by the prevalence of 

binding of the protein of interest. For histone marks, deeper sequencing is required to 

determine the point in which sequence levels do not equate to further peak enrichment – as 

histone marks are rather diffuse in their binding and this can be difficult to elucidate from 

Page 50 of 356



background noise. The opposite is true for proteins with less dense binding sites as these 

are more easily clarified from background noise due to the higher sequence abundance at 

enriched sites (Kharchenko et al., 2008; Kidder et al., 2011). 

Additionally, while single end sequencing works well for most ChIP-seq cases, if the desired 

protein falls within a repeating sequence region, paired end sequencing is generally 

preferred. This can provide deeper sequencing, improved alignment efficiency and 

therefore yield more representative sequencing results (Kharchenko et al., 2008; Kidder et 

al., 2011; Landt et al., 2012). 

1.5.3.5 Assay for Transposase Accessible Chromatin sequencing 
Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) is an NGS technique 

used to assess regions of open chromatin. It can also be used to map nucleosome positions 

and study transcription factor occupancy (in collaboration with other NGS techniques) and 

to identify novel enhancers/predict enhancer development (Buenrostro et al., 2015a, 

2015b). The basis of ATAC-seq was originally developed for NGS library preparation but 

since then has been adapted into a quick and efficient technique to assess regions of open 

chromatin without complicated sequencing library preparations (Buenrostro et al., 2015a; 

Meyer and Liu, 2014). 

The theory behind ATAC-seq centres around a mutant hyperactive Tn5 transposase that cuts 

at sites of open chromatin. ATAC-seq uses a process known as tagmentation, the 

simultaneous fragmenting and tagging of genomic DNA with sequencing adapters. An ATAC- 

seq protocol adheres to the following steps: 1)approximately 50,000 cells are harvested and 

lysed to obtain areas of open chromatin; 2)a Tn5 transposase then simultaneously 

fragments the open DNA and tags the fragments with sequencing adapters; 3)following 
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purification, the DNA is amplified using PCR and finally 4)sequenced using paired-end 

sequencing at a depth of approximately 50 million reads per sample for a human genome 

(Buenrostro et al., 2015a). 

As with any NGS protocol, several variables must be considered. The cell numbers optimal 

for ATAC-seq are relatively small in comparison to other NGS library preparations (millions 

for ChIP-seq). The original protocol used 500 – 50,000 cells but the optimum amount 

depends on the aims of the experiment and the species/cell used, the general number of 

cells used is 25,000 to 50,000 cells. Low cell number leads to under transposition and overly 

high cell number leads to over transposition (Buenrostro et al., 2015a; Corces et al., 2017). 

The number of PCR cycles must also be controlled and equate to as few cycles as possible, 

to minimise PCR duplicates and over-amplification. Finally, sequencing depth must be 

carefully calculated. It is dependent on the size of the genome of interest, samples from the 

human genome require at least 50 million reads per sample. More shallow sequencing 

depths are adequate for a smaller genome. Paired-end sequencing is used in ATAC-seq as it 

provides further sequencing depth, more information on where the transpose inserted (this 

can be on the anti-sense strand and single stranded ATAC-seq would not detect this) and it 

allows PCR duplicates to be more easily identified (Buenrostro et al., 2015a, 2015b, 2013a, 

2013b; Heinz et al., 2010; Kharchenko et al., 2008). 

1.6 Bioinformatic Analysis 
1.6.1 R  
The R software platform is a command line environment commonly used for the analysis of 

high dimensional data, like that obtained in genome-wide association studies. After 

downloading R, it comes with a series of default packages for data analysis, data wrangling 

and graphical visualization. The user has the option to install a constantly growing number 
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of community-written R packages. These are sets of scripts and custom functions that can 

be loaded into the R environment and are usually customized to a specific purpose i.e. 

graphing or array analysis. R was originally built from a linux-based format and is built on 

the statistical language S. However, an assortment of computational languages can be used 

in R including, C, C++ and Fortran. Custom functions are also easily be created in R with low 

coding intensity and can be specific to desired data-wrangling requirements (R Core Team, 

2013). To utilise the R environment a basic core graphical user interface (GUI) is provided by 

default with the framework, although most users choose to operate the R console via the 

RStudio Interactive Development Environment (IDE) (RStudio, 2015). This allows them to 

keep track of environmental variables, create custom scripts in the script editor, and view 

any graphical visualisations in the plot window. This IDE also offers debugging capabilities 

and frameworks for interactions with web browsers via the Shiny package (Chang, 2019). 

1.6.2 Array-Based Processing Methods 
1.6.2.1 Pre-processing and Normalisation 
Due to normal genetic variation (polymorphisms), the different types of probe chemistries 

used within the Illumina BeadChip arrays, and the discovery that some Illumina probes exhibit 

non-specific cross reactivity in certain circumstances, it is necessary to process and normalise 

IDAT data prior to conducting any further analysis. 

Pre-processing of array data seeks to remove defective probes that have high detection p 

values - such values are indicative of inadequate fluorescence scanning and therefore may 

provide erroneous results (Roessler et al., 2012). Those at single nucleotide polymorphism 

sites are removed as they could be effects of purely genomic variation and therefore their 

methylation values would be representative of either the intervention or reference WT 

population at that CpG site. Probes that have non-specifically bound to other genomic regions 
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may also give values unrepresentative of the methylation of their actual target loci (Chen et 

al., 2013). 

Following pre-processing of raw IDATs, the subsequent data must be normalized to correct 

for the differences in the design of the two Infinium probe chemistries. The differences in the 

mechanisms of action of the two probe types results in two different β value distributions 

after fluorescence scanning (Dedeurwaerder et al., 2013), see figure 4 for further detail. These 

differences are mostly due to dye bias and differences in background or residual fluorescence 

when recording methylation values in both colour channels. For example, Infinium type I 

chemistry utilises two bead types per CpG site, one that records a methylated signal and one 

that records the unmethylated signal. These bead types are scanned via the same colour 

channel and so are not as affected as type II probes (type II probes use two different colour 

channels due to their degenerate bases) (Bibikova et al., 2011). 

Several normalization procedures to correct for these effects have been proposed, examples 

of the most cited methods include; Subset quantile Within Array Normalisation (SWAN) and 

Beta Mixture Quantile normalisation (BMIQ). The SWAN method (Maksimovic et al., 2012) 

assumes that regions with similar probe coverage will reside in similar genomic regions and 

therefore exhibit similar methylation profiles, which is more than often not true and 

therefore not an accurate representation of the data. It then divides the data on the basis of 

this assumption and attempts to correct the differences in results between the two probe 

types. However, multiple investigations have reported a reduction in data reproducibility 

following SWAN normalisation (Fortin et al., 2017; Wu et al., 2014). 

The BMIQ method (Teschendorff et al., 2013) has no assumptions and splits the raw data 

into 3 types, corresponding to probes which exhibit high methylation, intermediate 

methylation and low methylation. It then utilises quantile normalisation to adjust the values 
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of the type II probes to fit the distribution of the type I profile. This method has been shown 

to improve data reproducibility and data quality (Dedeurwaerder et al., 2013; Fortin et al., 

2017; Teschendorff et al., 2013) and is also the method used to normalise array data within 

this thesis. Additional normalisation strategies, including between-array normalisation are 

also available and have been reviewed here (Heiss and Brenner, 2015; Morris and Beck, 

2015a; Triche et al., 2013) 

However, it is to be noted that background correction of any residual fluorescence prior to 

scanning should be carried out before normalisation, as this has been found to be more 

effective than combination normalisation strategies (Dedeurwaerder et al., 2013, 2011). 

1.6.2.2 Epidemiological Based Correction Methods 
In addition to the unwanted sources of variation present in cell line-based studies (see 

1.7.6), clinical and human intervention-based studies present a different kind of 

experimental variation, due to the use of whole blood and saliva DNA collection methods. 

As mentioned in section 1.4, DNA methylation is highly tissue-specific. Variations in whole 

blood cell composition has been identified as a possible experimental confounder that 

should be corrected for, in order to arrive at a more accurate DNA methylation profile 

independent of intra-cellular immune cascades (Titus et al., 2017). While SVA should correct 

for both known and unknown sources of unwanted variation, cell type composition 

correction algorithms do exist, such as that by Houseman et al., (2012), which uses 

regression-based models to determine the distribution of immune cells and effects on the 

DNA methylation results, benchmarked against validated controls consisting of known 

mixtures of the relevant cell types. A reference-free approach has also been developed for 

cases in which a validated control is not currently available (Houseman et al., 2014). 
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1.6.2.3 Cell-Line Based Correction Methods 
Although sequence and array results have already gone through pre-processing to remove 

variation due to different types of probe chemistries, or PCR-based library bias, alternative 

forms of unwanted variation exist. Examples of such variation include batch effects from 

differing library prep personnel, differences in array readers or flow cells and different 

reagents utilised in prepping for the technique (Price and Robinson, 2018; Tom et al., 2017). 

Therefore, multiple methods have been suggested to correct for this unwanted technical 

variation (Alter et al., 2000; Benito et al., 2004; Leek et al., 2012). One of the most popular 

methods is surrogate variable analysis (SVA) (Leek and Storey, 2007). SVA can remove both 

known and unidentified sources of unwanted variation, in addition to working effectively 

even in small sample sizes. 

The premise of SVA works in four steps, splitting the data into the separate sources of 

variation i.e. batch variables or phenotypic variables- such as age or sex. It then looks to see 

if those variables are exhibiting more variation in the data than they otherwise would by 

chance and tests to see if there is a significant association between the subset of data and 

that variable. It then builds a surrogate variable to model the entire dataset to determine 

what it would look like without that unwanted source of variation. Finally, it corrects for 

that variable in any later regression-based models. SVA has been shown to reduce technical 

variation and improve reproducibility within assessment techniques, improving the 

identification of anomalous differentially expressed features (Leek et al., 2012; Leek and 

Storey, 2007). 

1.6.2.2 R Packages for Illumina BeadChip Array Analysis 
Since the release of both the Illumina HumanMethylation450k BeadChip array and the 

Illumina MethylationEPIC array, many R-based packages for the analysis of methylation 
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array data have been released and an overview of the packages utilised within this thesis 

can be found below. 

1.6.2.2.1 Limma 
Limma stands for LInear Models for MicroArrays and is mostly used to discover differentially 

expressed genes, their associated p-values and for correcting these p values for multiple 

testing. Data can be analysed within limma as an expression set or as a matrix of M values 

(rows indicating probes and columns indicating samples). M values are used here instead of 

β values as they represent a distribution more compatible with the assumptions (normality) 

of a limma-based linear model (Assenov et al., 2014). Following this, the design of the 

experiment is input into limma using a design matrix and any form of hierarchical 

comparison can be elicited via the model design (Smyth, 2004; Wilhelm-Benartzi et al., 

2013). 

Limma uses a moderated t-statistic to conduct differential analysis. This is similar to a t test 

but with an empirical Bayes-based modification – the standard deviations of the samples 

have been shrunk towards a common value. Prior to differential gene analysis, limma fits a 

linear model to each gene to assess the relationship between the genes and the differences 

in the samples. This, and the shrinkage of standard deviations allows limma to borrow 

information across genes to give the analysis greater statistical power for inference of 

information about each gene. From this, limma can then decipher if there are any 

differentially expressed genes (Smyth, 2004). 

1.6.2.2.2 Minfi 
Minfi was one of the earliest developed R packages for the analysis of microarray data. It is 

based on R’s version of object-oriented programming, that is S3 and S4 object classes, and 

allows less coding-intensive manipulation of input data. Minfi provides a full pipeline with all 
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the modules required for preliminary and downstream analysis of array data, including both 

differentially methylated region (DMR) finder, bumphunter and differentially methylated 

position finder, DMP Finder, although the latter is not recommended as a primary way of 

locating differential enrichment. Minfi also provides many forms of normalisation, both 

within- and between-array normalisation, the ability to compare between 450k and EPIC 

array platforms, surrogate variable analysis and cell type correction if using whole blood. It 

can also be easily integrated with limma for differential analysis. However, as versatile as 

this package is, it does not provide an option to run all analysis modules as a start-to-finish 

pipeline. 

1.6.2.2.3 RnBeads 
RnBeads provides a complete analysis pipeline for microarray and NGS bisulphite sequencing 

data and is one of the most comprehensive packages to date. Whether run as one default 

pipeline or using each module separately, RnBeads provides publication-quality graphics and 

displays analysis results in user-friendly HyperText Mark-up Language (HTML) outputs. Within 

the default analysis pipeline, IDATs returned from the EPIC array can be input into R, quality 

control conducted to remove problematic probes or biases and normalisation performed to 

correct against differences between type I and type II Infinium probe chemistries. After this, 

an exploratory analysis of the acceptable methylation values can be carried out including 

comparing global DNA methylation profiles between sample groups and multiple genomic 

regions. Many types of dimensionality reduction like multi-dimensional scaling (MDS) and 

principle component analysis (PCA) can be performed using this package. RnBeads also 

displays heat maps and regional methylation profiles to identify potential experimental 

differences. 
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A differential methylation module utilising limma-based linear models is also included. This 

module outputs multiple types of whole genome methylation analyses, such as scatter and 

volcano plots, displayed in various different forms such as html format as well as the 

accompanying comma separated variable (csv) format. From this, tracks for UCSC genome 

browser can in principle be computed. However, these require an File Transfer Protocol (FTP) 

server to export the resultant data as a UCSC track hub, which is not a resource that the 

majority of biomedical science researchers have access to or experience in operating. In 

addition, within the default pipeline, or if desired in tailored analysis, the differential analysis 

module will also initiate an enrichment analysis of the differential methylation results via 

hypergeometric testing. This will identify gene ontology categories which demonstrate 

differential methylation patterns in comparison to the experimental control which can then 

be further investigated by both wet-lab and dry-lab processes (Assenov et al., 2014; Morris 

and Beck, 2015b). 

Recently, RnBeads has also been updated with a GUI for ease of use and many new features, 

including copy number variation analysis, age prediction and differential region enrichment 

(Müller et al., 2019). 

1.6.2.2.4 ChAMP 
The Chip Analysis Methylation Pipeline is also one of the more popular analysis packages for 

microarray data and, like RnBeads features a complete pipeline in which all modules can be 

conducted via a single “run” command. It was originally created to make minfi and 

associated packages easier to use for beginner R users but has now grown into a fully 

comprehensive analysis pipeline (Morris et al., 2014). 
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ChAMP accepts as input to a beta matrix in addition raw IDATs, which is particularly of use if 

importing results from a different R package. It also offers many different types of 

normalisation and pre-processing options (between-array and within-array) and provides a 

module for investigating and correcting batch effects, as well as methods for cell type 

correction and CNV analysis. 

Unique to ChAMP it offers 3 types of regional differential methylation analysis in addition to 

differential block finders and the option to input results into Gene Set Enrichment Analysis 

(GSEA). GSEA allows the user to assess whether their differentially methylated results are 

related to any biological pathway. The user can also submit their results (from ChAMP) for 

global methylation assessment, in which differentially methylated regions will be 

determined via GSEA processes. Both of these options are highly useful, as GSEA itself is a 

difficult program for new users to work. Moreover, ChAMP provides interactive Shiny-based 

HTML outputs and interactive Plot-ly based graphics – making analysis of resultant graphics 

easy for the end user (Morris et al., 2014; Tian et al., 2017). 
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Figure 6: Overview of methylation array processing pipelines and their capabilities. Methylation 
arrays need to be pre-processed and normalised before conducting differential methylation analysis. 
Methylumi (yellow) capabilities only extend as far as the pre-processing stage. Whereas, ChAMP 
(red), RnBeads (blue) and minfi (orange) provide full packages for the pre-processing and analysis of 
methylation array data. RnBeads and ChAMP even provide deeper copy number variation analysis 
for further insight into methylation array data. Adapted and updated from (Morris and Beck, 2015) 
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1.6.3 Sequence-Based Processing Methods 
All NGS-based techniques produce the same specific file type, FASTQ. These are sequence- 

based files with quality control measurements embedded within them. FASTQ files consist 

of multiple entries for every read on the sequencer. Each entry consists of four lines; A 

sequence identifier with information about that run, the sequence recorded, a plus sign 

which is used as a separator and a base call quality score which can be used for quality 

control and later in the analysis i.e. if variant calling. If single-read sequences are read, one 

entry is recorded for every sample, per flow cell lane. If paired-end runs are desired, two 

files are created, Read 1 and Read 2 for every sample and again for every lane in the flow 

cell. Since FASTQ files can be large in size, they are usually compressed and output as 

*.fastq.gz – most programs can also work with these files in their compressed format to 

save on computational resources. 

As with the analysis of array-based methods, sequence-based methods also have to go 

through quality control and pre-processing prior to mapping and analysis. An outline of the 

general pipeline for NGS analysis is discussed below. 

1.6.3.1 FastQC 
FastQC is a program developed by the Babraham Institute to provide an easy-to-use and - 

interpret method of quality control on sequence reads. It provides HTML and text outputs 

showing basic statistics, such as average sequence read length and per base sequence 

quality, in addition to giving an indication of whether adapters have been removed from the 

sequence using the over-represented sequences module. Furthermore, it provides analysis 

on whether the flow cell used shows any particular tile or sequence bias, as this could alter 

sequence read quality. From here, bad quality samples can be excluded, or the end of lesser 
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quality reads can be trimmed. FastQC is a Java based application and is typically only 

compatible with linux-based OS such as Ubuntu or MAC OS (Andrews, 2010). 

1.6.3.2 Adapter Trimming 
Following quality control, the sequences must have the adapters, which were ligated during 

the library prep, removed prior to downstream analysis, as these could also alter analysis 

results. Illumina provides the sequences for their adapters publicly (Illumina, 2019), but 

some adapter trimming programs such as Trim Galore! (Krueger, 2012) can automatically 

detect the adapter sequence used and remove it. This results in a shortened fastq file which 

is then passed through FastQC again to double check for any quality issues that may have 

been hidden due to the adapters i.e. overrepresented sequences. 

1.6.3.4 Mapping 
The next step in NGS analysis is to map the sequence reads to the genome of interest. This 

can be done using a reference genome-based approach or via a de novo genome build 

(higher sequence depth required). For the reference-based approach, multiple tools are 

available and are dependent on the sequence type i.e. for DNA-based studies such as for 

variant calling, WGBS etc, non-gapped aligners such as BWA (Li, 2013) or Bowtie2 

(Langmead et al., 2009) can be used to map the sequence reads to the genome of interest. 

For RNA-based studies, a gapped aligner such as STAR (Dobin et al., 2013) or HiSAT2 (Kim et 

al., 2015) is required due to the lack of intronic sequences within the reads and alternative 

splice patterns. 

Non-gapped aligners like BWA (Li, 2013) work via the use of an index file of the genome of 

interest. The index file will be converted into an alternative sequence using the Burrow’s 

Wheeler transformation (BWT). This allows frequently occurring sequence to be 

transformed/rotated into different character strings, with only the last column of the 
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transformation being saved due to the reversible nature of the BWT. This equates to a 

highly efficient method of storing sequence read fragments, allows quick searching through 

the sequences thanks to the $ notation. This allows highly repetitive sequences to be 

aligned to their place in the genome with greater ease. For example, the string ‘AGCTAGCT$’ 

would become ‘GCTAGCT$A’ under the first rotation. Then, ‘CTAGCT$AG’ on the second 

rotation, until all rotations of the sequence are calculated. Rotations are then sorted into 

alphabetical order and the last column of characters taken as the transformation i.e. 

‘TT$GGAACC’. This allows the BWT to store 9 sequence rotations which may occur in the 

genome given the limited characters of A, C, G and T as one character string. The first 

column of the transformation is also stored to allow the transformation to be reversed. 

The occurrence of each A, G, C and T Is also indexed in the original sequence allowing the 

transformation to be reversed. These properties permit the BWT to calculate all possible 

sequences of a string of characters, enable it to be fast in terms of searching i.e. compare 

two sequences in accordance to where the dollar sign is, if the dollar sign is not in the same 

place in each sequence, the sequences don’t match and therefore looking at the rest of the 

sequence does not need to occur (Figure 7). Finally, due to the index and sorting of the 

rotations of the original string, the BWT is reversible, allowing the original sequence 

fragment to be obtained and placed in the correct place in accordance to the reference 

genome (Li and Durbin, 2009). 
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Figure 7: Simple representation of the Burrow’s Wheeler Transformation. Original text AGCTAGCT, 
$ added to mark the end of the character string. Text is rotated one character until the $ is reached 
again (Rotations column). Only the first (F) and last (L) columns are saved in the transformation 
process. The rotations are then sorted alphabetically via the F column, the L column is then taken as 
the Burrow’s Wheeler Transformation of that sequence and therefore stores all possible versions of 
the original character string. To reverse the process the sorted rotations in the F column then follow 
the notations in the L column as shown by the arrows and spell out the reverse of the original text 
$T1C1G1A1T0C0G0A0. Subscripts are only for illustrative purposes of the positions of the original 
characters. [original figure SJ Thursby] 
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Gapped aligners like STAR (Dobin et al., 2013) work via a different mechanism due to the 

presence of alternative splice sites. This results in sequences that cannot be mapped 

contiguously to the genome. To combat this, STAR utilises a maximal mappable prefix 

(MMP) approach in which it finds the longest mappable sequence from a sequence 

fragment and aligns that to a donor splice site (figure 8a), these sequences are called seeds. 

Then, MMP is repeated for all unmapped portions of the read, allowing it to identify 

mismatches (figure 8b) and poly-A tails (figure 8c) which are marked for extension or as 

anchor points respectively. STAR uses compressed suffix arrays to elicit binary searches of 

the genome and thus results in computational efficiency even in large genomes. Following 

this, all sequence seeds are stitched together within their applicable genomic region and the 

maximum intron frequency is determined based on the size of that genomic region. Scoring 

penalties are then applied for mismatches, indels, deletions and splice junction gaps and the 

highest scoring stitched combination is chosen as the most suitable alignment for that 

region (Figure 8). 

WGBS and RRBS also require specialized aligners due to the methylation quantification step 

that must be computed prior to alignment. The sequence also must be converted back into 

unmodified genomic DNA to be aligned to the reference genome (Krueger and Andrews, 

2011b). 
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Figure 8: STAR gapped alignment Maximum Mappable Prefix (MMP) search. STAR aligner finds a 
sequence which matches with the first portion of a gene, but because there is a splice junction, this 
read cannot map contiguously to that region. STAR aligner then utilises MMP to mark this position as 
a spot in which this sequence can map to (i.e. a seed, a) which is next to a donor splice site. MMP 
then goes on to see if there are any alternative sites this sequence could map to and scores these 
sites, with penalties given for mismatches (b), indels and polyA-tails (c) which can also be found 
using the MMP principal. Taken from (Dobin et al., 2013) 
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1.6.3.5 Differential Analysis 
After pre-processing and mapping, differential analysis of sequence-based data depends on 

its origin and the aims of the experiment. For whole genome sequencing, variant calling 

using GATK equates to differential analysis, this will allow you to see the differences 

between your samples in terms of SNPs, indels and deletions (McKenna et al., 2010). For 

RNA-seq, the gene-based frequencies should be quantified using HTseq-count (Anders et al., 

2015) and differential analysis computed in DeSeq2 (Love et al., 2014) using a linear model 

based approach similar to the approach used in array analysis. RNA-seq data can also be 

normalised to provide a relative score of enrichment which can be applied across every 

gene examples include; fragments per kilobase of transcript per million mapped reads 

(FPKM), transcripts per million mapped reads (TPM), and reads per kilobase per million 

mapped reads (RPKM), as reviewed in (Evans et al., 2018). However, such techniques should 

not be used to compare across samples as they are relative to that sample and not all 

samples. 

Differential analysis of WGBS or RRBS is computed using Metilene, this segments the 

genome then uses a scoring approach and a 2D Kolmogorov-Smirnov test to assess the 

differences between genomic regions of different samples (Jühling et al., 2016). 

For ChIP-seq data, differential analysis is computed via peak calling through MACS2 (Gaspar, 

2018a). Peak calling will depend on whether the enriched protein is a histone or not. 

Histones, due to their diverse ranges of action, require broad peak calling to elucidate 

enrichment, proteins with more specific binding sites can be quantified via narrow peak 

calling to reveal regions of enrichment. The differences in peak calling procedures are due to 

variable parsing of background noise – this is harder to distinguish with histones so 

alternative peak calling procedures are required (Feng et al., 2012; Gaspar, 2018a; Landt et 
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al., 2012). Further downstream processing can be computed following differential analysis, 

such as chromatin state segmentation algorithms, like CHMM (Ernst and Kellis, 2012). This 

software calculates the frequency of histone marks that occur through a region and from 

this determines the characteristic of that region, such as, active promoter, polycomb 

repressed and others (figure 9). ChIP-seq data from the ENCODE project (Ernst et al., 2011) 

that has been processed through this software has been in used in most investigations 

presented in this thesis. 

Differential Analysis of ATAC-seq data also utilises peak calling but using the Genrich 

software. Peak calling here is needed where the Tn5 transposase cuts, and not directly on 

the nucleosome itself, to see the most accurate view of the chromatin accessible sites and 

aid in the prediction of promoter and enhancer regions (Gaspar, 2018b). An overview of 

common sequence-based processing techniques can be found in figure 10. 
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Figure 9: Frequency calculations in the CHMM algorithm. Chromatin state segmentation algorithms 
such as CHMM (Ernst and Kellis, 2012) utilise ChIP-seq data to calculate the frequency of different 
histone marks in different genomic regions. These programs can then provide an estimate with 
regards to the chromatin state of that region i.e. this region correlates with active promoter histone 
marks (H3K4me2/me3, H3K27ac and H3K9ac). WCE indicates whole cell extract and is used as a 
control. Diagram adapted from (Ernst et al., 2011) 
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Figure 10: Overview of sequence-based processing methods. All sequence-based analysis methods 
are output in the form of a FASTQ file (inputs) these then have to be quality checked and have their 
sequencing adapters removed (pre-processing) prior to mapping to the genome (mapping). Different 
programs are required for genome alignment depending on the type of sequence data, for example, 
RNA-seq requires a gapped aligner due to splice junctions and the lack of introns in this sequence 
type. Most alternative sequences can be mapped to the genome using non-gapped aligners. After 
mapping to the genome, differential analysis can be carried out. Each sequence type has their own 
specified program for differential analysis. Programs listed are examples of popular tools used in the 
analysis of this sequence type, alternative programs also exist. [original figure SJ Thursby]. 
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1.6.4 UCSC Genome Browser 
The UCSC Genome Browser (https://genome.ucsc.edu.com) was created to view sequence 

data in a more effective manner than BLAST or similar formats. It is a freely- available 

bioinformatics resource that provides an intuitive map-based feature for viewing human 

and other genomic builds from the results of the NCBI Reference Sequence and GenBank 

databases. Using UCSC Genome Browser, users can type in a gene of interest, view its 

structure and zoom into and out of the base sequence of that chromosome. Users can also 

load custom or freely-available data on to the genome browser and superimpose it (in the 

form of lines known as tracks) onto the genome build of interest to aid in their loci-specific 

investigations. Examples of such tracks include: CpG island location, SNP locations and 

chromatin segmentation tracks. Custom data can be uploaded on the genome browser via 

file upload or via bioinformatics interfaces such as Galaxy (https://www.usegalaxy.org). For 

example, utilising browser extendible data (BED) format (chromosome, start, end co- 

ordinates and a label) allows the user to generate a track to be viewed on the genome 

browser: visualization parameters including track name and colour can also be specified 

within the track header. However, sequence alignment maps, wiggle files and many other 

formats are also supported by the browser. 

Alternative genome browsers such as Integrative Genomics Browser also exist. This browser 

was originally a desktop application before the developers provided a web-based platform. 

It is useful when viewing sequence transcripts as it displays each individual sequence 

fragment onto the browser from SAM files so differences can be visually assessed as well as 

computationally. However, it is harder to work than UCSC Genome Browser and the desktop 

version can be slower. For these reasons and the fact research in this thesis does not focus 
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on sequence heterogeneity, UCSC Genome Browser was used for all subsequent research 

(Robinson et al., 2011). 

1.6.5 Galaxy Bioinformatics Interface 
Galaxy is a web-based environment which provides user-friendly computational architecture 

for the analysis of sequencing data without the need for programming, command line 

knowledge or high specification computational architecture. In addition, it allows the user to 

visualise their data in one of the many available graphics plug-ins or via various genome 

browsers, like UCSC Genome Browser. Galaxy is compatible with a host of file formats and 

supports the analysis of the most popular sequencing technologies. Data can also be 

imported into Galaxy via the UCSC table browser, EBI SRA or NCBI (Børnich et al., 2016). 

Galaxy utilises a traffic light-based system indicating the status of job progress; grey – 

queued, yellow - in progress, green – complete. All jobs will appear in the history column of 

Galaxy at the right-hand side (RHS) of the browser window. One of the most useful features 

within Galaxy is the ability to create workflows – user friendly multi-step processes which 

allow the automation of repetitive tasks, like custom functions in traditional programming 

languages. Only output processes not hidden will show up in the Galaxy History. Workflows 

can also be extracted from already-conducted history jobs. The functions of Galaxy extend 

far beyond the above points and more can be found for the interested reader in the 

following references (Afgan et al., 2016; Giardine et al., 2005; Thiel, 2016). 

1.6.6 Database for Annotation, Visualization and Integrated Discovery 
The Database for Annotation, Visualization and Integrated Discovery (DAVID) provides a 

free- to-use online platform for the functional analysis of genes and results from genome- 

wide assessment studies (https://david.ncifcrf.gov/home.jsp). It provides enrichment 

analysis across over 40 different categorised platforms including Gene Ontology (GO), KEGG 
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and REACTOME. The main functions of DAVID can be split into functional annotation 

summary, functional annotation clustering and Gene ID conversion. Functional annotation 

summary provides a method of converting the gene enrichment list into biological 

categories of interest, it also provides a modified (more conservative) fisher’s exact p value 

of the significance of the enrichment: as with many statistical tests, a smaller p value 

indicates a more significant result. A more recently-developed component is the Functional 

annotation clustering function, which groups the categories from the functional annotation 

summary and clusters them into groups of similar biological meaning (Huang et al., 2009, 

2007; Huang da et al., 2009): thus, if genes are turning up under different categories such as 

tissue-specificity or cellular localisation it will recognise this and bring them under a single 

super-heading, making it easier to see overall patterns and significance. This function was 

particularly useful in one of the MS contained within this thesis (Paper II). 

1.7 Mechanistic Studies 
1.7.1 Cellular Machinery 
Cellular machinery in the context of DNA methylation is complex and involves a variety of 

proteins, many mentioned in section 1.4. These proteins can be divided into those that read, 

those that write and those that erase DNA methylation. 

Reader proteins such as methyl-binding domains read 5mC and have been found to regulate 

transcription. Writer proteins involve those that aid in the establishment of 5mC such as 

DNA methyltransferase (DNMT) enzymes, which add 5mC to naked cytosine at the 

replication fork or via de novo mechanisms. To date, there are 3 known catalytically active 

DNMTs in human: one maintenance methyltransferase, DNMT1, that prefers hemi- 

methylated DNA (Brown and Robertson, 2007) and two de novo methyltransferases 

DNMT3A and DNMT3B, that add 5mC to unmodified naked cytosine. However the activity of 
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the de novo methyltransferases appears dependent upon the activity of their co-factor 

DNMT3L in many tissues (Bestor, 2000; Gowher and Jeltsch, 2018). Reports also suggest 

that DNMT3B may also work in conjunction with DNMT1 at the replication fork, similar to 

that of an auditor. DNMT2 is also known to exist but the literature indicates this is a tRNA 

methyltransferase (Goll et al., 2006; Lyko, 2017). 

Eraser proteins aid in the removal of 5mC from methylated cytosines, such as the TET 

proteins which convert 5mC to 5hmC. 5hmC is then converted into 5-formylcytosine and 5- 

carboxylcytosine and converted back into unmodified cytosine via excision using thymine 

DNA glycosylase and re-synthesis using a repair polymerase (Zhang et al., 2017). 

1.7.2 DNMT1 
The maintenance methyltransferase DNMT1 was the first methyltransferase identified in 

mammals in 1988 due to its resemblance to its bacterial counterpart (Bestor, 1988). It was 

later found to be responsible for the maintenance of methylation marks preferentially at 

hemi-methylated DNA. During cell division, DNMT1 methylates the daughter strand using 

the universal carbon donor S-adenosylmethionine (Hermann et al., 2004). 

In addition to maintenance methylation, DNMT1 has been associated with DNA repair 

pathways (Inano et al., 2000; Loughery et al., 2011). In proliferating cells, DNMT1 is 

ubiquitously expressed due to the role of DNMT1 in maintenance methylation. However, in 

post-mitotic neurons, DNMT1 is also highly expressed, but KO of DNMT1 in such cells does 

not affect DNA methylation (Fan et al., 2001). With this and other studies in mind, it is 

thought that DNMT1 may maintain methylation after DNA repair (Chuang et al., 1997; Ha et 

al., 2011; Mortusewicz et al., 2005). 
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1.7.3 UHRF1 
In order to maintain methylation at the hemi-methylated daughter strands following cell 

division, DNMT1 must be guided to the newly-synthesised strand. This is partly due to the 

PCNA-interaction domain on the protein, but may also be facilitated via interaction with 

another co-factor, ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1), 

also known as NP95, since Uhrf1/Np95 knockout in mouse results in a failure of DNMT1 to 

localise to the nucleus (Bostick et al., 2007; Sharif et al., 2007). UHRF1 is thought to guide 

DNMT1 to the replication fork via recognition of hemi-methylated DNA through its SRA 

domain (Avvakumov et al., 2008; Bostick et al., 2007; Sharif et al., 2007), this involves a 

novel ‘flip-out’ mechanism to stabilise the interaction between the DNA and UHRF1 SRA 

domain (Arita et al., 2008). The RING finger domain, with its E3 ubiquitin ligase activity, 

modifies histone 3 which is recognised by DNMT1 and aids in its recruitment to the 

replication foci (Berkyurek et al., 2014; Liu et al., 2013; Rothbart et al., 2012). The PHD and 

TTD domains then recognise unmodified arginine 2, unmodified lysine 4 and H3K9me2/3 - 

this aids the cementing of DNMT1 onto the correct genomic loci (Cheng et al., 2013; Foster 

et al., 2018; Hu et al., 2011; Rajakumara et al., 2011; C. Wang et al., 2011). Alternatively, 

Rothbart and colleagues (2012) proposed that H3K9me3 binding keeps DNMT1 attached to 

heterochromatin regions when replication was not occurring. 

1.7.4 Hypomorphic States 
DNMT1 is essential for viable embryo development. Embryos that have undergone a 

DNMT1 KO do not survive past embryonic day 6.5 as a result of substantial global DNA 

methylation loss. However, KO of DNMT1 in ESC cells does not result in lethality. DNMT1 KO 

ESCs show the same global loss of methylation but retain their proliferative abilities. 

However, when differentiation is induced these ESCs trigger the DNA damage response and 
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undergo apoptosis (Liao et al., 2015), as for cancer cells with an inducible KO (T. Chen et al., 

2003). Tissue-specific KO of DNMT1 are consistent with a cell-autonomous cell death 

response: in neuroblasts for example, KO results in offspring death after birth due to 

respiratory difficulties, presumably due to the absence of crucial neural signals to initiate 

breathing (Fan et al., 2001) and in foetal pancreatic cells, there is a reduction in 

differentiation and an increase in p53 levels as seen in ESC and cancer cells with KO (Georgia 

et al., 2013). Providing evidence for the necessity of DNMT1 in genomic stability and 

differentiation, and a maintenance role of DNMT3b. 

However, hypomorphic levels of DNMT1 do not result in lethality, although at least a 20% 

level of DNMT1 (truncated or not) must remain in the cells to ensure a lethal phenotype 

does not result (Gaudet, 2003). In adult non-cancerous cells, immortalised via the 

overexpression of the telomerase enzyme, a stable KD of DNMT1 in human fibroblasts 

(hTERT-1604) was established without resulting in lethality by the Walsh lab (K.M. O’Neill et 

al., 2018; Ouellette et al., 2000) – work with these fibroblasts and this model system make 

up the majority of the cellular work within this thesis. 

Similar to DNMT1, UHRF1 KO also results in embryonic lethality but not in ESCs. Conditional 

KO of UHRF1 in oocytes of mice also results in lethality during the blastocyst stage of 

embryonic development (Maenohara et al., 2017; Sharif et al., 2016, 2007). There have 

been a range of studies looking at functional consequences of mutations in the gene, with 

quite diverse results. Mesenchymal- specific UHRF1 KO mice resulted in morphological 

abnormalities due to dysregulation in proliferative and differentiation abilities (Yamashita et 

al., 2018). In cancer cells, hypomorphic levels of UHRF1 resulted in abrupt cell cycle arrest in 

breast cancer cells (X. Li et al., 2011), apoptosis and increased sensitivity to DNA damage in 
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HCT116 cells (Arima et al., 2004; Tien et al., 2011). While these provided evidence for the 

importance of UHRF1 in maintenance methylation, cell cycle regulation and differentiation, 

the lack of identification of a single primary function for the protein was part of the 

motivation for the work carried out as part of Paper V in this thesis. 

1.7.5 Interaction with Polycomb  
First identified as regulators of the Hox gene cluster in Drosophila (Jürgens, 1985) and later 

in eukaryotes (Kuzmichev et al., 2002), the Polycomb repressive complex are transcription 

and chromatin regulatory factors composed of multi-domain binding proteins. The most 

well-characterised of these proteins are Polycomb Repressive Complex 1 (PRC1) and 

Polycomb Repressive Complex 2 (PRC2). 

PRC1 is composed of a RING1 protein, one of the polycomb group ring finger 1-6 proteins, 

and a RANUL protein. It ubiquitinates H2A on lysine 119 to form H2AK119ub1 and can 

compact chromatin independent of ubiquitination via recognition of H3K27me3 and 

interaction with nucleosomes (Chittock et al., 2017; Ku et al., 2008). 

PRC2 is composed of 3 main components, a histone methyltransferase Enhancer of Zeste 2 

(EZH2), the embryonic ectoderm development (Eed) protein and suppressor of zeste 12 

(Suz12). It can also bind with various additional subunits, including nucleosome remodelling 

factors (Nurf55), to function as one complex. PRC2 functions to deposit mono-, di- and 

trimethyl groups onto H3K27 via the SET domain of EZH2 (Ciferri et al., 2012; Laugesen et 

al., 2016; Reddington et al., 2013; Viré et al., 2006). In studies, this histone mark was diluted 

via cell division and recognised via PRC1, which then induced more compacted chromatin 

(Blackledge et al., 2014; Reddington et al., 2013). Following this, PRC2 interacted with TET1 

to block cytosine methylation of the newly polycomb-repressed site. However, 
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PRC2 binding has been found to depend on CpG density. In CpG- rich regions, there is a 

negative correlation between DNA methylation and H3K27me3 observed – most likely to 

due 5mC inhibiting PRC2 binding. In CpG-poor regions, similar levels of 5mC and H3K27me3 

have been reported (Liu et al., 2015). Transcription factors such as OCT4 and SOX2 have also 

been implicated in PRC2 recruitment (Holoch and Margueron, 2017). In addition to this, the 

histone methyltransferase subunit of PRC2, EZH2, has been found interacting with DNMT3A 

and DNMT3B in vitro. Binding of the DNMT enzymes at polycomb-repressed sites was also 

dependent on the presence on EZH2, resulting in EZH2 being reported to regulate DNA 

methylation at certain areas (Viré et al., 2006). 

In the absence of 5mC, H3K27me3 has been found to invade neighbouring regions, which it 

cannot usually bind to (Reddington et al., 2013). This results in a dilution of binding of PRC1 

& 2 at primarily polycomb-repressed sites as observed in hypomethylated mouse ESCs 

(Reddington et al., 2013). Erasure of core PRC2 subunits in mice results in embryonic 

lethality, similar to that of DNMT1 or UHRF1 (O’Carroll et al., 2001). KO of Suz12 or Eed, 

which code for subunits of PRC2, also leads to abnormalities in the formation of 

hematopoietic cells, indicating a crucial role for PRC2 in development (Faust et al., 1995; 

Pasini et al., 2004). Furthermore EZH2, which is highly expressed in ESCs and proliferating 

cells, has been found to be overexpressed in certain tumour types, identifying PRC2 and 

EZH2 as potential oncogenic biomarkers (Kawano et al., 2016; Moritz and Trievel, 2018). 

1.8 Epidemiology Applications 
1.8.1 Dietary Intervention 
1.8.1.1 The Barker Hypothesis 
Approximately 40 years ago, an investigation was published linking foetal malnutrition 

during gestation and coronary heart disease in later life (Barker and Osmond, 1986). 
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Following this, many additional investigations published similar results, indicating a link 

between the foetal environment and later life disease states (Brown et al., 1995; Centers for 

Disease Control, 1992; Czeizel and Dudás, 1993; Department of Health, 1992; Jacob et al., 

1998; MRC Vitamin Study Research Group, 1991; Sohn et al., 2003; Stanner and Yudkin, 

2001). This link and subsequent studies became known as the foetal origins of adult disease 

(FOAD) hypothesis or the Barker hypothesis and suggested that multiple chronic illnesses, 

including Diabetes Mellitus (Liu et al., 2018), may be the result of suboptimal foetal 

environments, e.g. periods of severely restricted calorie intake, which result in 

developmental plasticity to aid and promote survival (Barker, 2004; Barker and Osmond, 

1986). 

The Barker hypothesis states that maternal nutrient alterations will elicit alterations in the 

epigenome of the child (Barker, 2004). Recent research has also highlighted that this is 

particularly true in relation to folic acid supplementation during pregnancy (Irwin et al., 

2019, 2016; Mcgarel et al., 2017; McNulty et al., 2011). 

Studies of the Dutch Famine Winter (1944-1945) revealed that calorie- and nutrient- 

deficient status for mothers during late gestation resulted in low birth weight children. 

These children exhibited indications of an altered methylome and it was suspected that this 

predisposed them to coronary artery disease and insulin resistance later in their lives 

(Schulz, 2010; Stein et al., 2004). 

However mothers of the Leningrad siege, who had undergone similar calorie and nutrient 

restrictions for almost twice as long as that of the Dutch Famine Winter, did not show any 

indications of low birth weight or potentially disadvantageous changes in the methylome 

(Stanner and Yudkin, 2001; Tobi et al., 2015, 2009). The results of these two studies are 
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significantly different, but they and similar studies that have been influenced by the Barker 

Hypothesis serve as an indication of the current interest in the effects of maternal dietary 

variation on offspring birth weight and later life disease states, both in first and subsequent 

generations (Brown et al., 1995; Lumey et al., 2012; Tobi et al., 2015, 2009). 

1.8.1.2 One Carbon Metabolism 
One possible mechanism by which dietary interventions might cause changes in the 

methylome are through alterations in one carbon metabolism. For the establishment and 

maintenance of DNA methylation, a methyl group is required to enable DNMTs to methylate 

an unmodified cytosine base. The universal carbon donor S-adenosylmethionine (SAM) 

provides the carbon for this modification and hails from the metabolism of folate and other 

micronutrients including methionine, vitamin B12 and choline. However, the human body 

cannot produce these substances de novo, therefore they are taken from the diet. Since 

DNA methylation and DNA synthesis are highly active processes during gestation this results 

in folic acid becoming a limiting factor during this period (Farias et al., 2015). 

In one carbon metabolism (figure 11), the addition of a carbon molecule to dietary folate 

from serine or glycine results in the formation of tetrahydrofolate (THF). Further addition of 

a methyl group to THF results in the formation of 5-methyltetrahydrofolate (5-MTHF). 

Following a vitamin B12-catalysed reaction with homocysteine, the 5-MTHF forms 

methionine, the majority of which is converted to SAM, the universal carbon donor (Clare et 

al., 2019; Irwin et al., 2016). 
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Figure 11: Folic acid and one carbon metabolism. Folic acid is converted to dihydrofolate (DHF) then 
tetrahydrofolate (THF) and following the conversion of Serine to Glycine, THF is converted to 5,10- 
methyltetrahydrofolate (5,10MTHF). A portion of this 5,10MTHF is converted to 10- 
formyltetrahydrofolate (10FTHF) to be used in the formation of deoxyribonucleotide triphosphate 
(dNTP). The remainder is then converted into 5-methyltetrahydrofolate (5MTHF) and following a 
conversion of Betaine to dimethylglycine (DMG) the 5MTHF is converted to methionine (MET) and 
then S-adenosylmethionone (SAM) i.e. the universal carbon donor. SAM can then be utilised in DNA 
methylation establishment or converted to S-adenosylhomocysteine (SAH) and then homocysteine 
(HomoCYS) to be used in the Trans-sulfuration pathway. Here, HomoCYS is converted into 
Cystathionine, via the addition of Serine, and then to cysteine (CYS) to be used in glutathione (GSH) 
generation. Image taken from (Rizzo et al., 2018). 
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1.8.1.3 Suboptimal Folate Levels & DNA Methylation-associated Disease 
1.8.1.3.1 The Role of Folate in NTD Prevention 
During the first trimester, DNA synthesis, cell division and growth are the fundaments of this 

developmental period (Yiu and Li, 2015). Therefore it is acknowledged that sufficient in utero 

folate is essential to the correct closure of the neural tube and brain development (Czeizel 

and Dudás, 1993). Incorrect closure of the neural tube can result in spina bifida or 

anencephaly (van Gool et al., 2018). 

During the second and third trimester DNA methylation is being established in parallel to 

neurological development. Although, under current guidelines folic acid supplementation is 

not recommended during the second and third trimester. This is a period of high carbon donor 

requirement. This could affect the establishment of epigenetic marks or lead to restrictions 

in neurological development (Irwin et al., 2016; Mcgarel et al., 2017; McNulty et al., 2011; 

Pentieva et al., 2012). 

1.8.1.3.2 Maternal Folate Supplementation & DNA Methylation in Offspring 
While the Dutch famine Winter and the Leningrad siege do provide epidemiological 

evidence for the Barker hypothesis, recent studies have been more controlled/regimented 

with investigations into the supply of carbon donor rich foods or DNA methylation of the 

offspring designed to attempt to elaborate on the mechanistic side of this hypothesis. 

In the variable yellow agouti mouse (Avy/a) model, supplementation of micronutrients 

related to one carbon metabolism during pregnancy led to alterations expression of the Avy 

gene in the offspring, causing alterations in body mass and a change in the coat colour of 

the mice from yellow to brown (Wolff et al., 1998). Upon further investigation, brown mice 

demonstrated reduced levels of obesity, healthier blood pressure, and lower risk of insulin 

resistance and tumour development (Wolff et al., 1987; Yen et al., 1994). These changes 
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were directly related to changes in the methylation of a newly-arisen regulatory region of 

the gene, which turned out to be a de novo insertion of an endogenous IAP retrovirus. 

Read-through transcription from the IAP LTR was driving ectopic transcription of the Agouti 

gene, leading to obesity and yellow colour: silencing of the IAP was associated with 

methylation of the LTR and concurrent reversion of the Agouti gene to its normal mode of 

regulation and transcription. While a fascinating case study, ERV-driven endogenous genes 

are very rare and such metastable epialleles may represent an evolutionary oddity. 

However, it did support the theory that the mother’s one carbon nutritional status can 

affect the epigenome of the offspring. 

In a study of pregnant mothers and offspring in rural Gambia, the season of conception was 

shown to alter DNA methylation at 9 endogenous genes which showed signs of being 

metastatic epialleles. DNA methylation increased for those born within the rainy season, a 

time of nutritional hardship affecting one carbon levels, in comparison to those born outside 

of that season (Waterland et al., 2010). A similar randomised control trial of the seasonal 

effects of conception in rural Gambia also noted sex-specific effect of one carbon donor 

supplementation. Decreases in methylation at the imprint-related IGF2 locus was found in 

females and the same for GTL2 in males (Cooper et al., 2014). An alternative study into folic 

acid supplementation during the periconception growth period demonstrated epigenetic 

plasticity in the imprinted gene IGF2 within the offspring, dependent on whether the 

mother had had supplementary folic acid (Steegers-Theunissen et al., 2009). 

In the Aberdeen Folic Acid Supplementation Trial, blood samples had initially been collected 

at childbirth (as detailed in, Charles et al., 2005), then analysed for DNA methylation and 

saliva obtained as a follow-up 47 years after the intervention. Results from the follow-up 

samples found a 
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dose-responsive reduction in the DNA methylation of PDGFRA (one singular Illumina array 

probe only), a gene related to the occurrence of NTDs. In addition to this, 46 regions were 

highlighted as differentially methylated between placebo and treatment, including members 

of the HLA cluster and regulators of embryonic development (PAX8) (Cheung et al., 2003; 

Richmond et al., 2018). 

As these studies had a number of limitations, an in-house randomised control trial 

addressing some of these concerns (Pentieva et al., 2012) was conducted to assess the 

effect of folate acid supplementation in the second and third trimester (FASSTT) of 

pregnancy. In particular, the study was a Randomized Controlled Trial and as such, was 

designed to directly test the effects of presence or absence of the nutrient, unlike 

observational studies such as those in the Gambia, and to do so in shorter time periods than 

in the Aberdeen study. Preliminary results were indicative of a reduction in plasma 

homocysteine, a hormone related to premature delivery, pre-eclampsia and low birth 

weight (Wang et al., 2015). When this study was accessed in a follow-up trial, the offspring 

of placebo group mothers demonstrated restricted neurodevelopment and indications of an 

altered methylome and transcriptome (Caffrey et al., 2018). It was suggested this was 

related to nutritional status during pregnancy and the subsequent effects on early life 

development (Irwin et al., 2016). Following assessment at an early post-natal stage, the 

offspring of treatment mothers demonstrated improved cognitive development (Pentieva et 

al., 2012), with similar affects observed again at age six (Mcgarel et al., 2017). A further 

follow-up investigation of the DNA methylation of the children at birth was carried out and 

is the subject of Paper III in this thesis. 
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1.8.1.3.3 In-Utero Exposure to Cigarette Smoke 
In utero exposure to cigarette smoke has been associated with miscarriage, low birth 

weight, and developmental difficulties like congenital heart defects (Alberg et al., 2014; 

Alverson et al., 2011; Blohm et al., 2008). Effects of smoking have also been seen in later 

generations and reports indicate this effect may have an epigenetic component (Magnus et 

al., 2015; Rehan et al., 2013; Spindel and McEvoy, 2016). A study of cigarette smoke 

exposure in pregnant mice noted global DNA methylation alterations in addition to an 

upregulation in the expression of inflammatory cytokines like ERK1 in the offspring (Chen et 

al., 2018). Moreover, in human over 6000 CpG sites were identified in a meta-analysis as 

being differentially methylated in the offspring of smoking mothers. Alterations at some of 

these sites, such as BMP4 (lung development) or PRDM8 (neurological development), were 

also observed in follow-up studies of the offspring many years later (Joubert et al., 2016). In 

a longitudinal study of prenatal exposure to cigarette smoke, MYO1G and CNTNAP2 were 

found to be differentially methylated at birth, during childhood, and 17 years later in 

adolescence, adding further to the evidence for the strong effects of in utero exposure to 

cigarette smoke (Lee et al., 2015; Richmond et al., 2015). 

1.8.2 Mental Health 
1.8.2.1 Intrinsic, Extrinsic Variables & Allostatic Load 
It has been noted that genetic factors influence gene expression but extrinsic variables such 

as major life events, trauma or abuse may also lead to alterations in transcription, potentially 

due to changes in methylation. Such changes could lead for example to the development of a 

mental illness like depression (Boyle et al., 2005; Labonté et al., 2013). This effect is known as 

allostatic load (figure 12) and is defined as chronic or long-term exposure to stress, which 

leads to dysregulation of stress response systems i.e. the hypothalamic-pituitary adrenal axis 
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(HPA) and eventual disadvantageous effects on the brain and body (Juruena et al., 2018; 

Oberlander et al., 2008; Todkar et al., 2016). 
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Figure 12: Allostatic load model of stress. Long term exposure to traumatic events or high stress 
situations (Extrinsic variables) can lead to dysregulation of behavioural responses (Intrinsic 
psychological variables). These changes are dependent on individual genetic differences (biological 
variation) but long-term exposure may lead to changes in physiological responses such as the stress 
response. These changes are termed allostatic load and can have disadvantageous effects on the 
body. Adapted from (McEwen et al., 2015) 
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1.8.2.2 Glucocorticoids and the HPA Axis 
Glucocorticoids such as Cortisol are released following HPA activation and seek to adapt 

physiological systems to potentially hazardous external stimulus, while also inhibiting further 

HPA axis stimulation via negative feedback. To achieve negative feedback, cortisol binds to 

two types of receptors; mineralcorticoid receptors (MR) and glucocorticoid receptors (GR), 

with greater affinity to the former (Burford et al., 2017; Labonte et al., 2012). MR are involved 

in regulating the normal concentrations of cortisol found within blood. However when cortisol 

concentrations are high as a result of repeated HPA axis activation, cortisol binds to GR to 

discontinue its production and cease the stress response (Casavant et al., 2019). 

It is the determinants of HPA axis stimulation which are thought to cause dysregulation e.g. 

traumatic childhood events, genetic profile, or current stress levels (Burford et al., 2017). 

Continuous exposure to cortisol can be extremely hazardous to the body as it alters glucose, 

fat and protein metabolism, in addition to altering immune sensitivity and blood pressure. 

Some studies also suggest (Ising et al., 2008) that such extreme exposure to cortisol may alter 

the epigenetic profile of certain genes including FKBP5 – which regulates the affinity to which 

cortisol can bind to GR and extinguish the stress response. Upregulation of this gene may lead 

to alterations in behaviour, which correlate with symptoms of anxiety, depression and many 

other mental illnesses (Mulder et al., 2017; Paquette et al., 2014). 

1.8.2.3 HPA Overstimulation and Chronic Stress 
Overstimulation of the HPA axis has been linked to suicide in previous studies (Labonté et al., 

2012; Labonté et al., 2013). In a post-mortem investigation of the prefrontal cortex of 53 

major depression-diagnosed suicide completers, considerable hypermethylation was 

observed at some CpG sites in comparison to non-psychiatric controls (Haghighi et al., 2014). 

Aberrant hippocampal DNA methylation has also been observed in suicide completers that 
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were victims of childhood abuse, in addition to decreased levels of hippocampal 

glucocorticoid receptor activity, which as mentioned regulates HPA axis activation (Boyle et 

al., 2005). 

1.9 Conclusion 
DNA methylation plays a major role in regulating gene expression in development and 

disease, accomplishing this goal in collaboration with histone modifications and the 

polycomb complex, as discussed above. In this thesis, I describe cellular, enzymatic and 

human interventions affecting DNA methylation, and try to establish the effects of these 

alterations on genome-wide methylation, developing new tools for analysis in the process. 

This thesis is composed of a number of papers and manuscripts which I was an important 

contributor to: I will preface each with a brief statement of my role and in the General 

Discussion expand a little on this and explain how the transition from one paper to the next 

occurred. 
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1.11 Thesis Aims 

The overall aim of this thesis was to identify the effects of alterations to DNA methylation 

via cell line and human based interventions, in addition to the development of tools and 

pipelines for the processing and analysis of large amounts of data. 

To achieve this aim, the objectives of this thesis were as follows: 

1) Use the R platform for Statistical Computing and Galaxy Bioinformatics Interface to conduct

analysis and quality control of microarray outputs 

2) Use the R platform for Statistical Computing and Galaxy Bioinformatics Interface to develop

more efficient processes for gene target analysis 

3) To examine potential mechanisms in an attempt to explain the differences in methylation

observed within array results e.g. to align array data with ENCODE chromatin configuration 

or tracks available within UCSC 

4) To analyze microarray outputs within human studies as well as in cell lines and to adjust

analysis protocols due to greater variability within human based studies 

5) To improve the downstream analysis of bioinformatic data for those not experienced in the

processing of high-dimensional data 
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2.0 PAPER-I 

Depletion of DNMT1 in differentiated human cells highlights key classes of sensitive gene 

and an interplay with polycomb repression 

Karla M. O’Neill, Rachelle E. Irwin, Sarah-Jayne Mackin, Sara-Jayne Thursby, Avinash Thakur, 

Ciske Bertens, Laura Masala, Jayne E.P. Loughery, Darragh G. McArt, Colum P. Walsh 

The main aims of this paper were to: 

- Develop a non-cancerous differentiated cell line with hypomorphic levels of DNMT1

- To investigate the genome-wide effects of depletion of DNMT1

- To investigate the transcriptional response of DNMT1 depletion and its correlation

with DNA methylation

CONTRIBUTION 

To this paper, I developed an initial simple Galaxy workflow into the CandiMeth prototype to allow 

easier quantification of candidate features and applied it to derive box-and-whisker and other 

quantitative outputs. I then further developed this to allow us to analyse overlap of hypomethylated 

probes with ENCODE chromatin state segmentation data to discover the correlation between 

hypomethylated probes and polycomb-repressed/ heterochromatin/low signal marks. I also 

conducted a similar overlap with ENCODE chromatin state segmentation data with hypermethylated 

probes such as that found at the UGT1A cluster and found a correlation between hypermethylated 

probes and weak/poised promoters. I contributed a number of the final illustrations and commented 

on the MS. 
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Abstract 
Background: DNA methylation plays a vital role in the cell, but loss‑of‑function mutations of the maintenance meth‑ 
yltransferase DNMT1 in normal human cells are lethal, precluding target identification, and existing hypomorphic lines 
are tumour cells. We generated instead a hypomorphic series in normal hTERT‑immortalised fibroblasts using stably 
integrated short hairpin RNA. 
Results: Approximately two‑thirds of sites showed demethylation as expected, with one‑third showing hypermeth‑ 
ylation, and targets were shared between the three independently derived lines. Enrichment analysis indicated sig‑ 
nificant losses at promoters and gene bodies with four gene classes most affected: (1) protocadherins, which are key 
to neural cell identity; (2) genes involved in fat homoeostasis/body mass determination; (3) olfactory receptors and 
(4) cancer/testis antigen (CTA) genes. Overall effects on transcription were relatively small in these fibroblasts, but CTA
genes showed robust derepression. Comparison with siRNA‑treated cells indicated that shRNA lines show substantial
remethylation over time. Regions showing persistent hypomethylation in the shRNA lines were associated with poly‑ 
comb repression and were derepressed on addition of an EZH2 inhibitor. Persistent hypermethylation in shRNA lines
was, in contrast, associated with poised promoters.
Conclusions: We have assessed for the first time the effects of chronic depletion of DNMT1 in an untransformed, dif‑ 
ferentiated human cell type. Our results suggest polycomb marking blocks remethylation and indicate the sensitivity 
of key neural, adipose and cancer‑associated genes to loss of maintenance methylation activity. 
Keywords: DNMT1, EZH2, Protocadherin, Body mass, Cancer/testis antigen 

O’Neill et al. Epigenetics & Chromatin (2018) 11:12 
https://doi.org/10.1186/s13072-018-0182-4 Epigenetics & Chromatin 

Depletion of DNMT1 in differentiated 
human cells highlights key classes of sensitive 
genes and an interplay with polycomb 
repression 
Karla M. O’Neill1,5†, Rachelle E. Irwin1†, Sarah‑Jayne Mackin1, Sara‑Jayne Thursby1, Avinash Thakur1,6, 
Ciske Bertens1,2, Laura Masala1,3, Jayne E. P. Loughery1, Darragh G. McArt4 and Colum P. Walsh1* 

Background 
DNA methylation is an important mechanism for epige- 
netic regulation of genes in both mouse and human [1]. It 
occurs mainly at the CpG dinucleotide, and methylation 
at this symmetrical site is efficiently maintained during 
replication by the action of the DNA methyltransferase 
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1 (DNMT1) enzyme [2]. Methylation is known to play 
an important role in regulating imprinted loci [3], genes 
on the inactive X chromosome [4] and germline-specific 
genes [5] in mouse. 

Where methylation occurs at the promoter of a gene, it 
is strongly associated with the silencing of transcription, 
particularly if there is a high density of CpGs, a so-called 
CpG island (CGI). However, studies have shown that 
most CGI are intrinsically protected from methylation [6, 
7] and only a small number shows dynamic changes dur- 
ing development, mostly in the three classes mentioned
above [5, 8], though there may be others which have not
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yet been clearly defined. As you move outward from an 
island, the shores and shelves show higher levels of meth- 
ylation and greater dynamic response [9], though here the 
link to changes in gene activity is less clear [10]. Methyla- 
tion is also associated with larger regions of inert chro- 
matin, such as the inactive X, pericentromeric repeats 
and regions rich in transposable elements [1], generally 
consistent with a repressive role. Recent genome-wide 
surveys have also indicated that high levels of methyla- 
tion are found in the bodies of active genes, where they 
may facilitate transcription [11, 12]. In keeping with this, 
we and others recently showed that artificially decreasing 
intragenic methylation levels reduced steady-state tran- 
script levels, consistent with a positive role for methyla- 
tion in the gene body [11–13]. 

Another major system for epigenetic repression is via 
histone modification, particularly by the polycomb group 
of proteins, with EZH2 being one of the main enzymes 
involved [14]. A number of studies suggest an interplay 
between polycomb- and DNMT-mediated repression, 
with a generally negative correlation between DNA meth- 
ylation and the H3K27me3 mark deposited by EZH2 [15, 
16]. Supporting this, a loss of DNA methylation caused 
a reshaping of the histone landscape and derepression of 
some polycomb targets in mouse ES cells [17], suggesting 
that DNA methylation helps to determine where poly- 
comb marks are deposited. 

While DNMT1 is the main maintenance methyltrans- 
ferase, there also appears to be an important role for the 
de novo enzymes DNMT3A and DNMT3B in comple- 
menting that activity at some loci [18, 19]. In order to 
clarify which genes are most sensitive to DNMT1 loss 
in human, a number of studies have been carried out 
using mutations within the gene to assess the effects of 
loss of methylation [19–22]. While this has been a fruitful 
approach in mouse embryonic stem (ES) cells, where null 
mutants are tolerated, differentiation of the mouse cells 
leads to cell death [20, 22, 23], whereas DNMT1 disrup- 
tion in human ES cells is not tolerated even in undifferen- 
tiated cells [24]. Genetic ablation in adult differentiated 
cells also leads to cell death within a few cell cycles, 
before passive demethylation of the genome can occur 
[23, 25]. One of the best-studied systems in humans con- 
sists of HCT116 colon cancer cells carrying a hypomor- 
phic allele in the DNMT1 gene together with a DNMT3B 
knockout (HCT116 DKO cells) [26–28]. Blattler et al. 
[29] found that there was widespread and relatively uni- 
form demethylation across the genome in the DKO cells,
with small effects at CGI (most of which are normally
unmethylated anyway) and relatively few genes showing
derepression. There was no enrichment by gene ontol- 
ogy (GO) analysis, but some effect at enhancers: how- 
ever, this is complicated by the presence of the DNMT3B
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knockout alleles. Acute depletion of DNMT1 using an 
siRNA-mediated approach in embryonal carcinoma cells 
also found regions of low CpG density (open sea, shelf) to 
be the most affected by loss of methylation [70]. Among 
the small number of dysregulated genes, there was some 
enrichment for cell morphogenesis and phosphorylation 
pathways. 

Neither of these cancer cell lines, however, are a good 
model for the normal differentiated cell as they are trans- 
formed, aneuploid, hypermethylated, and contain a 
number of different mutations in key regulatory genes. 
Additionally, acute depletion of DNMT1 results in cell 
cycle delay, triggering of the DNA damage response and 
increased rates of cell death [24, 25, 30], making it diffi- 
cult to separate acute and chronic effects. 

To circumvent some of the difficulties outlined above, 
we generated a series of isogenic human cell lines derived 
from the hTERT-immortalised normal fibroblast line 
hTERT1604 as previously described [30]. These are nor- 
mosomic and non-transformed, and by using a stably 
incorporated plasmid with an shRNA targeting DNMT1 
we were able to isolate a number of clonally derived lines 
to allow identification of any cell line-specific effects. 
While these showed initially the range of shared features 
indicative of a global response to the loss of this criti- 
cal regulator, including cell cycle delay, demethylation 
of imprinted genes and others, they could be cultured 
for longer under selection [30], allowing identification 
of loci with particular sensitivity for decreased main- 
tenance methyltransferase activity. Here we set out to 
completely characterise the methylation changes seen in 
the cell lines using the Illumina Infinium HumanMeth- 
ylation450 BeadChip (450k) array platform [31] and sub- 
sequent analysis using the RnBeads pipeline [32]. These 
approaches were chosen due to their high reproducibil- 
ity and low inter-operator variability, ensuring the reli- 
able and sensitive detection of alterations in methylation. 
A sample of the observations was then further verified 
using locus-specific assays. In addition and for the same 
reasons, we used the HT-12 Expression v4 BeadChip 
array, to assay changes in transcription in our cell lines. 

Methods 
Cell culture 
The parental or wild-type (WT) adherent hTERT1604 
lung fibroblast cell line [33] was cultured in 4.5 g/l glu- 
cose DMEM (Thermofisher, Loughborough, UK) sup- 
plemented with 10% FBS and 2× NEAA (Gibco/ 
Thermofisher).  Generation  of  the  hTERT1604  cell lines 
stably depleted of DNMT1 using a pSilencer construct 
(Thermofisher) has been previously described [30]. 
Knockdown (KD) cells were maintained as for WT, but 
medium was supplemented with 150 μg/ml hygromycin 
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B (Invitrogen/Thermofisher, Paisley, UK), which was 
removed at least 48 h before any experimental procedure. 
Treatment of cells with siRNA for 24 h was as previously 
described [34]: for the pulse-chase experiment cells were 
afterwards allowed to recover in normal media and pas- 
saged as required for up to 36 days. The siRNA (Dhar- 
macon ON-TARGETplus  SMARTpool) for DNMT1  and 
DNMT3B,  as  well  as  scrambled  control,  was obtained 
from Invitrogen/Thermofisher. HCT116 and double 
knockout (DKO) cells [27] were cultured in 1 g/l glucose 
DMEM  (Gibco)  supplemented  with  10%  FBS  and 1× 
NEAA (Gibco). DZNeP (Sigma-Aldrich, Dorset, UK) was 
used at a final concentration of 1 μM. 

DNA extraction and bisulphite conversion 
Genomic DNA was harvested from cells in log phase of 
growth. Samples were incubated overnight at 55 °C in 
lysis buffer [50 mM Tris pH 8, 0.1 M EDTA (both Sigma- 
Aldrich), 0.5% SDS, 0.2 mg/ml proteinase K (Roche, 
West Sussex, UK)], with rotation, and DNA was subse- 
quently isolated using the standard phenol/chloroform/ 
isoamyl alcohol (25:24:1 pH8, Sigma-Aldrich) extraction 
method. DNA quality was verified using gel electropho- 
resis and UV absorbance measurements at 260/280 and 
260/230 nm using a Nanodrop UV spectrophotometer 
(Labtech International, Ringmer, UK). Bisulphite conver- 
sion of 500 ng of DNA was carried out using the EpiTect 
bisulphite kit (Qiagen, Crawley, UK) according to the 
manufacturer’s instructions. 

Hybridisation to 450K array and bioinformatic analyses 
Three samples from each cell line were used to pre- 
pare DNA, with at least one biological repeat in each 
set. DNA was assessed for purity and integrity as above 
prior to quantification using the Quant-iT PicoGreen 
dsDNA assay kit (Thermo Fisher Scientific) as per man- 
ufacturer’s instructions. In total, 500 ng of high-quality 
bisulphite-converted (Zymo Research) DNA was checked 
for purity and fragmentation on a bioanalyser and then 
loaded on the Infinium HumanMethylation450 BeadChip 
[31] and imaged using an Illumina iScan (Cambridge
Genomic Services). Output files in IDAT format were
processed using the RnBeads [32] methylation analysis
package (v1.0.0) which carries out all the analysis from
import to differential methylation within the R platform
(3.2.0). Briefly, quality control used the built-in probes
on the array and included filtering out of probes contain- 
ing SNPs, and checking for hybridisation performance.
Normalisation was then carried out using the SWAN
method in minfi [35] after background subtraction with
methylumi.noob. The exploratory analysis module was
used to generate probe density distributions and scatter
graphs. The differential methylation analyses was based
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on a combined ranking score, which combined absolute 
effect size, relative effect sizes and p-values from statisti- 
cal modelling into one score where rank is computed as 
the most conservative value among mean difference in 
means, mean in quotients and combined p value across 
sites in the region: the enrichment analysis used the com- 
bined rank among the 1000 best-ranking regions and a 
hypergeometric test to identify GO terms in the AmiGO 
2 database [36]. Pairwise comparison of triplicate samples 
from each cell line against WT hTERT was also made to 
determine change in beta value and associated combined 
p-value, adjusted for multiple comparison using false dis- 
covery rate (FDR). Some tailored analyses were also car- 
ried out using custom scripts in R. Additional GO studies
were performed using DAVID (v6.7) [37].

We  used  the  GALAXY  platform  [38]  to  map sites 
showing highly reproducible changes (FDR < 0.05) against 
the locations of RefSeq genes or ChromHMM regions 
on the UCSC genome browser [39] for each cell line. GO 
category genes which showed changes in methylation at 
multiple sites in more than one KD cell line were scored 
as true hits (Yes in the FDR column), while GO catego- 
ries with few or no sites reproducibly altered across rep- 
licates (FDR > 0.05) or where methylation changes were 
small (< 0.1 β), inconsistent in direction, or not found in 
more than one KD cell line, were scored as false positives. 
Absolute β levels were used to measure median methyla- 
tion across genes of interest using custom workflows in 
GALAXY, with further statistical analyses in Statistical 
Package for the Social Sciences software (SPSS) version 
22.0 (SPSS UK Ltd). 

Locus‑specific methylation analysis 
Amplification was carried out using the PyroMark PCR 
kit (Qiagen) with 2 μl bisulphite-converted DNA, 12.5 μl 
MasterMix, 2.5 μl CoralLoad Concentrate, 1.25 μl each 
primer (10 μM) and 5.5 μl nuclease-free H2o using the 
following conditions: 15 min at 95 °C followed by 45 
cycles of 94 °C for 30 s, 56 °C for 30 s, 72 °C for 30 s and a 
final elongation step of 72 °C for 10 min. Pyrosequencing 
was carried out on the PyroMark Q24 System, accord- 
ing to the manufacturer’s instructions (Qiagen). Most 
assays were designed in-house using the PyroMark Assay 
Design software 2.0 (LEP, MAGEA12, OR10J5, OR51E2, 
OR2AG1, PCDHA2, PCDHC4, UGT1A1, UGT1A4)  prior 
to synthesis (Metabion, Germany): see Additional file 1: 
Table S1 for details: DAZL, SYCP3, D4Z4 and NBL2 
were as described [34, 40]. In some cases, pre-designed 
pyrosequencing primers were obtained from Qiagen 
(GABRQ  PM00133483,  GHSR  PM00014350,  SNRPN 
PM00168252). Clonal analysis was carried out as previ- 
ously described [30]. 
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Hybridisation to HT‑12 microarray and bioinformatic 
analyses 
Total RNA was extracted using the RNeasy minikit 
(Qiagen) as per manufacturer’s instructions, including a 
DNase step. RNA integrity was verified via gel electro- 
phoresis, and quality and quantity were verified using a 
SpectroStar (BMG Labtech, Aylesbury, UK) and a bioana- 
lyser (Agilent Technologies, Cheadle, UK). Two hundred 
nanograms of total RNA underwent linear amplification 
using the Illumina TotalPrep RNA Amplification  Kit  
(Life Technologies/Thermofisher, Paisley, UK) follow- 
ing the manufacturer’s instructions. Microarray experi- 
ments were performed at Cambridge Genomic Services, 
University of Cambridge, using the HumanHT-12 v4 
Expression BeadChip (Illumina, Chesterford, UK). After 
scanning the data were loaded in GenomeStudio (Illu- 
mina) and then processed in R (version 3.2.2). The data 
were filtered to remove any non-expressed probes using 
the detection p-value from Illumina, transformed using 
the variance stabilization transformation (VST) from lumi 
and normalised using the quantile method. Com- parisons 
were made using the limma package with results corrected 
for multiple testing using false discovery rate (FDR) 
testing. 

RNA and protein analysis 
Transcriptional assays at individual loci using RT- and 
RT-qPCR were carried out essentially as in [34]: primer 
sequences are listed in Additional file 1: Table S1. Pro- 
tein was extracted from cells growing  in  log  phase 
using protein  extraction  buffer  (50  mM   Tris–HCl,  
150 mM NaCl, 1% Triton-X, 10% glycerol, 5 mM EDTA; 
all Sigma-Aldrich) and 0.5 µl protease inhibitor mix 
(Sigma-Aldrich). For Western blotting, 30  μg  protein  
was denatured in the presence of 5 μl 4× LDS sample 
buffer (Invitrogen) and 2 μl 10× reducing agent (Invitro- 
gen) in a total volume of 20 μl nuclease-free water (Qia- 
gen) via incubation at 70 °C. Proteins were separated by 
SDS-PAGE and then electroblotted onto a nitrocellulose 
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membrane (Invitrogen) and blocked in 5% non-fat milk 
for 1 h at room temperature (RT). Membranes were incu- 
bated with anti-DNMT1 (a kind gift from Guoliang Xu) 
and anti-β-actin (Abcam ab8226) overnight at 4 °C, fol- 
lowed by HRP-conjugated secondary antibody incuba- 
tion at RT using ECL (Invitrogen). 

Statistical analysis 
Statistical analysis was performed by the RnBeads pack- 
age, or separately in Excel (Microsoft Office Professional 
Plus 2013), Prism (Graphpad) or SPSS (v22.0). Experi- 
ments were carried out in triplicate and included at least 
one biological replicate. PCR results were analysed using 
Student’s paired t-test. Pyrosequencing results were ana- 
lysed by ANOVA within representative runs and using 
Student’s t-test on the average of multiple runs.  Error 
bars on all graphs show standard error of the  mean 
(SEM) or in the case of HT12 array data, 95% confi- 
dence interval (CI), unless otherwise stated. Asterisks are 
used to represent probability scores as follows: *p < 0.05; 
**p < 0.01; ***p < 0.005 or n.s. not significant. 

Results 
Generation of isogenic hTERT1604 fibroblast cell lines 
Isogenic lines carrying an shRNA construct targeting 
DNMT1 were generated by transfecting the hTERT- 
immortalised human lung fibroblast cell line hTERT-  
1604 with pSilencer  plasmid  containing  an  shRNA 
(Fig. 1a). The generation and initial characterisation of 
these isogenic cell lines have been previously described 
[30]. Here we took two sublines typical of the intermedi- 
ate levels of knockdown (KD) seen (d8 and d10) as well 
as one line (d16) with relatively low levels of mRNA, with 
good agreement between reverse transcription quanti- 
tative PCR (qPCR) and array results (Fig. 1b; all p < 0.05 
except d8 array). We also confirmed knockdown at the 
protein level using Western blotting, with HCT116 cells 
mutated in DNMT1 and DNMT3B [27] as controls 
(Additional file 3: Fig. S2A). 

mon sites is largest in each case, with close to twice as many sites commonly losing methylation in comparison with those gaining 
levels of methylation (arrow). f Numbers of sites (×104) showing significant changes in methylation (FDR < 0.05) compared to WT: the set of com‑

(See figure on next page.) 
Fig. 1 Cell line generation and overall changes seen in methylation levels. a Experimental approach: WT hTERT1604 fibroblasts were transfected 
with shRNA‑containing plasmid and grown in selective medium; colonies of resistant cells were expanded, and three (d8, d10, d16) showing 
reduced DNMT1 levels were then analysed using genome‑wide methylation and transcription arrays on the Illumina platform. b Levels of DNMT1 
mRNA in cell lines from array and qPCR: error bars represent 95% confidence intervals around median, and standard error of the mean (SEM), 
respectively. All three knockdown (KD) lines were significantly depleted at p < 0.05 for both assays (except d8 array). c Overall methylation levels in 
WT and KD cells as measured by 450K: a β value of 1 equates to 100% methylation. Median values are indicated by the line, and whiskers represent 
interquartile range. The positions of the medians are also indicated at right (arrowheads). d The difference in median β value between each KD cell 
line and WT is shown first for all sites assayed (see c above) and then for each type of genomic element. CGI, CpG island; shore, region adjacent to 
CGI; shelf, adjacent to shore; sea, all other. See also Additional file 3: Fig. S2B. e Probe density distributions; in KD there is a decrease in the number of 
fully methylated sites (β closer to 1) and an increase in the number of unmethylated sites (β closer to 0), as well as in probes showing intermediate 
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Characterisation of overall changes in absolute 
methylation levels in depleted lines 
Using the 450K array [31] and processing in RnBeads [32] 
to assess methylation levels across the genome (Fig. 1c), 
there was still a wide range of methylation values (given 
for the array as a value β ranging from 0 to 1) in KD 
lines as compared to WT, but the median values were 
decreased as expected in all three with d8 being compa- 
rable to d10, while d16 was lower (arrowheads at right). 
Principle components analysis and examination of the 
sites showing greatest differences in methylation between 
the stable lines confirmed that d8 and d10 were most 
similar (Additional file 2: Fig. S1). Probes on the array 
were annotated by location relative to genomic features, 
and while all regions showed a decrease in methylation, 
the difference in median values was smallest for CGI, 
which were unmethylated anyway in parental cells (β < 0.1 
in WT), while the separation in medians was greatest at 
shelves and shores, where methylation levels were higher 
(Additional file 3: Fig. S2B). This can most clearly be seen 
by plotting the difference in medians (Fig. 1d). Both WT 
and the KD cell lines showed the typical bimodal probe 
density distribution pattern reported in most cell types 
[31] (Fig. 1e). Overall, there was an increase in the num- 
bers of less methylated probes (β < 0.25) in the KD cell
lines and a decrease in the numbers of highly methyl- 
ated probes (β > 0.65). For individual regions CGI again
showed the smallest change, while gene bodies (genes)
appeared most altered (Additional file 3: Fig. S2C).

To determine whether methylation was lost stochasti- 
cally in each KD cell line given the variation seen (Addi- 
tional file 2: Fig. S1), or was more targeted, we determined 
the degree to which affected sites were shared between 
the three cell lines (Fig. 1f ). The largest set of sites los- 
ing methylation (17.2 × 104) was that shared between all 
three KD lines, supporting a non-random loss. A spike in 
numbers of probes showing intermediate levels of meth- 
ylation (β ~ 0.50) in KD cell lines in the density profile 
plot (Fig. 1e, arrow) had indicated that a possible gain in 
methylation might also be occurring at some sites. Analy- 
sis showed that a substantial number (9.1 × 104) of sites 
gaining methylation are shared between all three KD 
lines, indicating reproducible gains in methylation at par- 
ticular CpGs. 

Overall pattern of sites showing significant differential 
methylation on DNMT1 depletion 
We compared WT cells to all three KD lines using the 
RnBeads package in R and combined rank scoring (see 
methods). This confirmed that d16 has the greatest num- 
ber of demethylated sites using a false discovery rate 
(FDR) cut-off of p < 0.05, but at p < 0.001 all three lines 
have comparable numbers of hypo- and hypermethylated 
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sites (Additional file 4: Fig. S3A), with more sites losing 
than gaining. An analysis of the 1000 best-ranking sites 
highlights sites common to all three KD lines (Additional 
file 4: Fig. S3B), confirming that there are large numbers 
of sites which respond in the same way in each KD, with 
an excess of probes showing loss over gain. 

We then looked to see whether shared probes were 
enriched in any particular gene region. As we were inter- 
ested in changes which might cause altered transcrip-  
tion, we focussed on CGI, promoters and gene bodies 
(hereafter genes) rather than shores, shelves or open sea, 
where correlations with transcriptional output are harder 
to assess. Using a hypergeometric test in RnBeads, both 
promoters and genes, but not CGI, showed significant 
enrichment in demethylated probes for particular gene 
ontology (GO) terms. Table 1 indicates the top 3 ontol- 
ogy classes under biological process (BP) and molecular 
function (MF). For loss of methylation, examining com- 
mon genes and processes suggested that three classes of 
genes were common to the enriched GO terms, which  
we grouped as follows: (1) genes involved in neuroepi- 
thelial differentiation; (2) genes involved in fat homoe- 
ostasis/body mass (FBM); and (3) olfactory receptor 
genes (groups 1–3 in Table 1), all of which will be dealt 
with below. The only orphan GO  term  whose  mem- 
bers had multiple high-confidence demethylated  sites 
was GO:0007506 gonadal mesoderm formation, which 
largely consists of members of the TSPY gene family on 
the Y chromosome. For gain of methylation, the same 
was true in that a relatively small number of histone 
modifier genes (group 4), represented under several GO 
terms, were responsible for many of the hits.  In addi- 
tion, the GO terms for glucuronosyltransferase activity 
(GO:0015020) and for regulation of megakaryocyte dif- 
ferentiation were also represented (Table 1). These were 
then curated by looking for sites showing reproducible 
changes (FDR < 0.05) in all KD lines (described more fully 
in “Methods” section), which indicated strong support 
[Yes (Y) in confirm column, Table 1] for all GO categories 
showing loss, but only in two showing gain (GO:0015020 
and GO:0004984). We then set about verifying these 
targets. 

Loss of methylation at the protocadherin gamma gene 
cluster particularly affects the A and B class variable genes 
A main contributor to the enrichment of neuroepithelial 
genes are the protocadherin genes. Protocadherin  α,  β 
and γ (PCDHA, PCDHB and PCDHG) genes are located 
in three linked clusters on chromosome 5 and give rise to 
neural cell–cell adhesion proteins, with significant loss of 
methylation across the whole region in all three cell lines 
(Additional file 4: Fig. S3C). The α and γ proteins have a 
variable extra-cellular recognition domain, either A, B 
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Table 1 Gene ontology analysis for differentially methylated sites 

Type GO FID P OR Ex Obs Total GO Term Grp confirm 

Loss 
Promoter  

BP 0098609 0.0011 3.0454 4.2148 12 189 Cell–cell adhesion 1 Y 
0007156 0.0011 3.4722 3.0998 10 139 Homophilic cell adhesion via plasma membrane 1 Y 
0010982 0.0015 88.2036 0.0669 2 3 Regulation of high‑density lipoprotein particle clearance 2 Y 

MF 0004888 0.0001 1.9709 24.2681 44 1055 Transmembrane signaling receptor activity 3 Y 
0005509 0.0001 2.2488 14.3768 30 625 Calcium ion binding 1 Y 
0004871 0.0003 1.7441 33.6302 54 1462 Signal transducer activity 3 Y 

Gene 
BP 0007506 0 130.3775 0.1339 5 7 Gonadal mesoderm development Y 

0032375 0.0001 25.9783 0.2295 4 12 Negative regulation of cholesterol transport 2 Y 
0045409 0.0001 77.705 0.0956 3 5 Negative regulation of interleukin‑6 biosynthetic process 2 Y 

MF 0008083 0.0009 3.5742 3.0015 10 158 Growth factor activity 3 Y 
0004984 0.0014 2.5939 6.136 15 323 Olfactory receptor activity 3 Y 
0038023 0.0014 1.7776 22.9102 38 1206 Signalling receptor activity 3 Y 

Gain 
Promoter  

BP 0035574 0 443.1106 0.4729 14 15 Histone H4‑K20 demethylation 4 N 
0045653 0 147.6833 0.5359 14 17 Negative regulation of megakaryocyte differentiation N 
0016577 0 26.4022 1.0404 15 33 Histone demethylation 4 N 

MF 0035575 0 452.3692 0.4637 14 15 Histone demethylase activity (H4‑K20 specific) 4 N 
0032451 0 21.0879 1.1747 15 38 Demethylase activity 4 N 
0015020 0 10.1109 0.8965 7 29 Glucuronosyltransferase activity Y 

Gene 
BP 0035574 0 280.0725 0.4039 14 16 Histone H4‑K20 demethylation 4 N 

0045653 0 140.0181 0.4544 14 18 Negative regulation of megakaryocyte differentiation N 
0006335 0 31.0869 0.8078 14 32 DNA replication‑dependent nucleosome assembly 4 N 

MF 0035575 0 287.2955 0.3942 14 16 Histone demethylase activity (H4‑K20 specific) 4 N 
0032451 0 24.654 0.9856 15 40 Demethylase activity 4 N 
0004984 0 4.4768 7.9586 31 323 Olfactory receptor activity 3 Y 

BP biological process, MF molecular function, GO FID gene ontology family identification code, P probability value, OR odds ratio, Ex expected number of hits, Obs 
observed number, Total total number of genes in that family, Grp-see below; confirm Y/N, confirmation given by FDR tracks Yes/No 

Groups (Grp): 1 = neuroepithelium; 2 = Fat homoeostasis/body mass (FBM); 3 = olfactory receptor; 4 = histone modifier 

or C-type, attached to a constant transmembrane and 
intracellular domain. This is achieved at the gene level by 
alternative 5′ exons encoding the variable region being 
spliced to the constant region exons. Figure 2a shows 
the tracks containing sites with significant (FDR < 0.05) 
methylation differences between KD and WT cells for the 
PCDHG cluster. These reveal loss of methylation (in red 
in Fig. 2a) at most A and B class variable exons in all three 
KD cell lines, but not at the C class variable or the con- 
stant exons. Array probes were present in this region, and 
examination of the absolute rather than relative methyla- 
tion (amber, top track in Fig. 2a) confirmed high levels 
of methylation in WT, where median β values were high 
for all variable exons (Fig. 2b). Methylation decreased 
in all three KD lines, with d10 showing the least effect 

(Fig. 2b). Methylation was substantially altered at all A 
and B class variable exons, but not at the C class (Fig. 2c). 
We could experimentally verify the loss of methylation at 
A2 (Fig. 2d), and no change at C4 (Fig. 2e), using pyrose- 
quencing assays (pyroassay). 

Some demethylation of other neuroepithelial genes in 
this GO category was also seen from the array, such as 
S100P, ROBO1 and PAX6, with significant (p < 0.05) dem- 
ethylation of S100P in two-thirds of KD cell lines con- 
firmed by pyrosequencing (not shown). 

Loss of methylation at other targets including fat 
homoeostasis/body mass (FBM) genes 
Another class of genes  showing  enrichment  all  appear 
to be involved in some aspect of triglyceride processing, 
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energy homoeostasis  and  body  weight  regulation 
(Table 1), including leptin (LEP), ghrelin/growth hor- 
mone secretagogue receptor (GHSR) and genes encoding 
the very low density lipoproteins APOC1, APOC2 and 
APOC3. Median levels of methylation in the gene bod- 
ies were approximately 45% in WT (β = 0.45) and showed 
significant (p < 0.05) decreases in the KD lines (Fig. 3a). 
Most individual genes also showed substantial loss, with 
the exception of the ANXA genes (Fig. 3b). Loss of meth- 
ylation at the LEP and GHSR promoters was confirmed 
using pyroassay (Fig. 3c). 
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Olfactory receptor (OR) genes appeared in a number 
of GO categories as having lost methylation, though 
some gains in the gene body were also indicated  
(Table 1). ORs encode G protein-coupled receptor pro- 
teins and are members of a large gene family, many of 
which are grouped into  major  clusters,  particularly 
on chromosome 11 [41]. To buffer against stochastic 
effects due to the large gene family involved, we car- 
ried out a second analysis starting instead with sites in 
promoters showing reliable methylation loss compared 
to WT (FDR < 0.05) in the triplicates of each KD line 

Fig. 2 Loss of methylation at the protocadherin γ (PCDHG) cluster of neuroepithelial identity genes. a Structure of the PCDHG cluster showing the 
5′ variable exons (A, B and C classes) which are spliced to the 3′ constant exons (right). The top track (amber) shows absolute β values in the WT 
fibroblast cells from the 450K array, which range from 1(fully methylated) to zero (unmethylated). Only the sites showing significant differences 
from WT (FDR < 0.05) in each cell line are shown in the three tracks below, with decreases in red representing loss of methylation, and gains in blue. 
The size of the bar is proportional to the magnitude of change: maxima and minima are indicated on the scales at left. The locations of CpG islands 
(CGI) are also shown. Pyroassay locations are boxed. b Median β values for all variable exons. Significant differences (Mann–Whitney U) are indicated: 
*p < 0.05; **p < 0.1; n.s., not significant. c Methylation at each exon in WT and d16 cells obtained by taking the median of the absolute β value for all
probes at that exon. The variable class C exons are underlined. d Average methylation values in WT and KD cells obtained from a pyrosequencing 
assay (pyroassay) designed to cover CpGs in the A2 exon. Bars represent SEM; ***p < 0.001, t‑test. e Methylation at the C4 variable exon by pyroassay,
shown as a control

Page 128 of 356



O’Neill et al. Epigenetics & Chromatin (2018) 11:12 

and then overlapping these (Fig. 3d) to see which sites 
were common to all  three  KD  cell  lines  (Additional 
file 5: Table S2). Ontology analysis of these common 
sites using DAVID independently highlighted signal- 
ling receptor genes and more particularly olfactory 
receptors (n = 21). This group of OR genes also showed 
significant demethylation compared to WT (Kruskal– 
Wallis, p < 0.05) across the genes when median meth- 
ylation at all available probes was analysed (Additional 
file 4: Fig. S3D). We chose three of these genes— 
OR10J5, OR51E2 and OR2AG1—located on different 
chromosomes and could verify loss  of  methylation  in 
all KD lines (Fig. 3e). 

The final GO category of genes (GOFMID:0007506) 
showing loss of methylation (Table 1) consists largely of 
the TSPY gene family (TSPY1-4, 8 and 10) located on 
the Y chromosome and thought to be implicated in both 
normal gonadal development and in gonadoblastoma 
[42]. These also showed clear evidence of demethylation 
(Fig. 3f ). 
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Gains in methylation affect the UGT1A locus 
As indicated above, with respect to gains in methylation 
only two of the GO classes identified in the genome-wide 
screen (Table 1) contained multiple sites showing signifi- 
cant gains in methylation (FDR < 0.05, > 0.1 gain in β). One 
of these was the olfactory genes, discussed above: the other 
GO term GO:0015020 was largely comprised of mem- 
bers of the UGT1A family. This gene family has a similar 
structure to the  PCDHG cluster,  where unique alternate  
5′ exons splice to common 3′ exons, but in this case codes 
for a series of nine UDP-glucuronosyltransferase enzymes 
(UGTs). Substantial gains in methylation can be seen at 
the upstream promoters controlling the 5′ exons (Fig. 4a), 
most of which lack CGI. Median methylation levels also 
showed clear increases overall in the KD lines (Fig. 4b), 
though these did not reach significance. Most individual 
exons also showed a sharp increase (Fig. 4c), with A1 being 
a clear exception in all lines. We confirmed a significant 
gain in methylation in each cell line at A4 (Fig. 4d) but no 
alteration at A1 (Fig. 4e). In contrast to the clear gains in 

tool. e Pyroassays designed for the three olfactory receptor genes from (d) confirmed methylation was consistently reduced across all KD cell lines. f 
Browser view showing loss of methylation (red) at the CGI‑containing promoters for members of the TSPY family on the Y chromosome 

of sites common to all three KD cell lines (n = 1185) was found to be enriched for olfactory receptors (such as the three indicated) using the DAVID

Fig. 3 Loss of methylation at fat homoeostasis/body mass (FBM) genes, olfactory receptors and the TSPY genes. a Median β values for all FBM 
genes (following curation) in WT and KD cell lines; significant differences (Mann–Whitney U) are indicated. b Median methylation values at each 
FBM gene in WT and d16 cells. c Average methylation levels obtained from pyroassays at the Leptin (LEP) and Ghrelin/growth factor receptor secre‑ 
tagogue (GSHR) promoters. d CpG located in promoters which showed highly reproducible loss of methylation (FDR < 0.05) were identified. The set 
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all three lines for UGT1A, the histone modifier group also 
identified as gaining methylation (Table 1, group 4) con- 
tained few FDR-supported sites and these often did not 
overlap between cell lines, with median β levels also not 
differing significantly (Additional file 4: Fig. S3E). 

A cluster of loci showing gain of methylation on the X 
chromosome 
Given that there were considerable numbers of probes 
showing gain in methylation, but few of the GO classes 
from the RnBeads analysis contained testable targets by 
our criteria, we tried an alternative analysis as for the  
OR above. Sites associated with promoters and which 
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showed reliable (FDR < 0.05) gains were identified in each 
KD line, and then the lists of cognate genes were com- 
pared to find those which were common to all three cell 
lines (Fig. 5a). Examination of the 201 promoters from 
this analysis (Additional file 5: Table S2) failed to show 
any significantly enriched terms in DAVID. However, sev- 
eral of the genes showing the greatest gain in methylation 
were located on the X chromosome, including GABRQ 
and members of the MAGE family of cancer/testis anti- 
gens such as MAGEA12. Mapping of FDR sites to the X 
chromosome showed that adjacent domains could vary 
in methylation level by more than 80% in either direction 
(Fig. 5b). Pyroassays for GABRQ and the neighbouring 

Fig. 4 Gains in methylation at the clustered UGT1A locus. a Structure of the UGT1A cluster showing the 5′ variable exons (UGT1A1–UGT1A10) which 
are spliced to the 3′ exons (right). Key to tracks as before; pyroassay locations (UGT1A1 and UGT1A4) are boxed. b Median β values for all first exons: 
though medians are higher in KD lines these failed to reach statistical significance. c Median absolute β values at individual first exons in WT and 
d16 cells. d Average methylation values in WT and KD cells obtained from a pyrosequencing assay (pyroassay) designed to cover CpGs in the A4 
exon. e Methylation by pyroassay at the A1 exon, shown as a control 
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MAGEA12 gene confirmed significant gains in methyla- 
tion at the GABRQ promoter and in the MAGEA12 gene 
body (Fig. 5c). Clonal analysis for GABRQ indicated a 
uniform increase in methylation (78 vs. 16%) across all 
adjacent CpG at this locus (Fig. 5d). Both direction and 
degree of change in methylation were highly correlated 
between pyrosequencing and the 450K array across all 
sites which were covered by both types of assay (r = 0.916 
for loss of methylation r = 0.818 for gain in methylation). 

Transcriptional changes are enriched at cancer/testis 
antigen genes on X and Y 
To see whether methylation changes were accompanied 
by large-scale changes in transcription, we carried out a 
genome-wide screen using the HT12 array which assays 
most RefSeq genes. Figure 7a shows the distribution of 
changes comparing d8 and WT: genes which showed > 2 
fold change (FC) and with scores of p < 0.05 are high- 
lighted, with the  greater  spread  to  the  right  indicat- 
ing a greater tendency to derepression. Relatively small 
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numbers of genes were  affected  (Fig.  6b),  particularly 
at higher stringency (FDR < 0.01), and d16 showed few- 
est dysregulated genes. To determine  common  targets, 
we looked for shared genes (Fig. 6c). DAVID analysis on 
the genes common to all three (n = 70; Additional file 6: 
Table S3) indicated significant enrichment for genes cod- 
ing for MAGE domains (Fig. 6d). MAGE genes on the  
X chromosome were previously identified as showing 
large changes in methylation (Fig. 5): also appearing here 
was a TSPY family member (Table 1, Fig. 3f ). Upregula- 
tion of members of these gene classes could be verified 
by RT-PCR (Fig. 6e) and showed similar direction of 
change to the array, and greater magnitude, by RT-qPCR 
(Fig. 6f ). Consistent with the transcriptional upregula- 
tion, median methylation levels at the promoters of these 
genes were lower than WT (Fig. 6g). Interestingly, there 
was an overall increase in intragenic (as opposed to pro- 
moter) methylation in the larger group of transcription- 
ally dysregulated genes common to d8 and d10 (n = 764, 
see Fig. 6h and Additional file 6: Table S3), which may 

those common to all three KD lines (n = 201). Some of these sites showing the greatest change in methylation were located on the X chromo‑ 
some including MAGEA12 and GABRQ. b Schematic showing the locations of the two genes adjacent to each other on X in a region showing gain 
in methylation. Tracks indicate the locations of all 450K probes and CGI; the positions of the pyroassays are also indicated; the scale bar pertains to 
the bottom part of the schematic; ∆β, change in beta value. c Methylation as determined by pyroassay at the two genes indicated in a, b. d Clonal 
analysis of GABRQ in WT and d8. Filled circles represent methylated sites, open circles unmethylated. The CpG which were also analysed by the 
pyroassay (pyro) and the 450K array (asterisk) are indicated 

Fig. 5 Gains in methylation on the X chromosome. a Sites reliably showing gain in methylation and located in promoters were analysed to identify 
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Fig. 6 Transcriptional dysregulation of genes on the X and Y chromosomes correlates with methylation changes. a Volcano plot showing log fold 
change (FC) in transcription as measured by HT12 array versus FDR‑corrected significance values: genes with > 2FC and FDR < 0.05 are highlighted 
in red. b Numbers of dysregulated genes at different FDR thresholds for the different KD lines. c Genes common to more than one KD line at 
FDR < 0.05; total numbers in each cell line are indicated in brackets. d Ontology enrichment output from DAVID for the genes common to all KD 
lines. e RT‑PCR analysis of the three MAGE genes on X and a member of the TSPY gene family on Y highlighted in DAVID analysis (C). ACTB is a load‑ 
ing control; ve, negative control lacking cDNA. A 100‑bp ladder is shown at left with the 200‑bp band indicated by an arrowhead. f Transcrip‑ 
tion levels of indicated MAGE genes from the HT12 array or by qPCR. Error bars are 95% CI for the array, SEM for qPCR; fold change was significant 
(p < 0.05) in all cases. g Median β values on 450K array for probes at MAGE promoters were decreased, though failed to reach significance. h Gene 
body methylation was increased in transcriptionally upregulated genes 
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reflect increasing gene body methylation accompanying 
transcription. 

Regions hypomethylated in shRNA lines correlate 
with polycomb repression 
To investigate why losses in methylation occurred at the 
same positions in all KD lines, we used ENCODE data to 
look at chromosomal distribution, replication timing and 
chromatin features which might be important, since the 
DNMTs have no DNA sequence specificity themselves. 
Of these, the chromatin marks were most informative, 
in particular the ChromHMM dataset on lung fibro- 
blasts which partitioned the genome into different types 
of chromatin based on a set of distinguishing histone 
marks and other features [43]. This indicated that probes 
significantly losing methylation in our shRNA lines are 
most densely distributed across regions which are nor- 
mally polycomb-repressed or are heterochromatic/low- 
signal regions in lung fibroblasts (Fig. 7a). Specifically, 
many regions show a striking correlation between poly- 
comb marking and methylation loss, such as the LEP 
and neighbouring PRRT4 genes (Fig. 7b): in contrast,  the 
intervening MGC27345 and RBM28 genes at that locus, 
which are highly methylated in WT cells (top track), 
show little or no loss of methylation and have chromatin 
marks associated with transcription. 

These data suggested that polycomb-repressed regions 
might be more susceptible to demethylation than oth- 
ers. To test whether these regions lost methylation more 
readily than others, we treated hTERT1604 with siRNA 
for 72 h, which led to acute depletion of the DNMT1 
mRNA (Fig. 7c). We found, however, that there was lit- 
tle difference between polycomb-repressed and other 
regions in terms of demethylation in the siRNA-treated 
lines (Fig. 7d), in contrast to the shRNA lines where 
losses were concentrated at the former (Fig. 7d). This 
could also be seen at the LEP locus, where MGC27345 
and RBM28 now showed loss of methylation following 
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siRNA treatment (Fig. 7b, siRNA track). Also of note, 
almost no probes showed gains in methylation relative to 
WT in the siRNA cells (Fig. 7e), indicating that this effect 
is associated exclusively with chronic treatment. These 
results suggested that gains of methylation had occurred 
only in shRNA lines and had effectively restored methyla- 
tion to near WT levels at most regions outside of those 
marked as polycomb-repressed. 

Since transcriptional analysis did not highlight dys- 
regulation of polycomb regions in shRNA cells (Fig. 6d), 
we tested to see whether polycomb-mediated repression 
was being maintained there in the absence of DNA meth- 
ylation. To do this, we treated with DZNep, an inhibitor 
of EZH2, and confirmed the upregulation of a positive 
control gene SLCA4 (Fig. 7f) as previously reported [44]. 
Likewise, HOXC13—a known polycomb target—showed 
derepression (Fig. 7f ). The FBM genes marked by poly- 
comb including LEP showed reactivation to a compara- 
ble degree to SLCA4, whereas the MAGEA12 gene which 
is in a heterochromatic region not marked by polycomb 
showed little effect (Fig. 7f ). 

To further investigate the difference between acute and 
chronic DNMT1 depletion in these cells, we first exam- 
ined the effects of acute depletion by siRNA on the loci 
identified in the stable lines: this confirmed  that  loci  
such as the clustered protocadherins and the fat/body  
mass genes also lose methylation on short-term deple- 
tion by siRNA (Fig. 7g). Following treatment, cells were 
then allowed to recover in the absence of siRNA for an 
extended period (36 days). DNMT1 levels returned to 
normal rapidly (Fig. 7h). Examination of the  methyla- 
tion response at various gene classes was very instructive. 
Germline genes (SYCP3, DAZL), which are known to 
become de novo methylated to high levels during somatic 
differentiation [5, 34], showed initial loss versus a scram- 
bled control (Scr), followed by remethylation over time 
to near WT levels (Fig. 7i), confirming that the hTERT 
cells possess sufficient de novo activity to remethylate 

active (full colour key at top right). c DNMT1 mRNA levels by qPCR following treatment with siRNA (+) for 72 h compared with scrambled control
(Scr). ACTB is shown as a control; ladder as above. d Median β values for all regions (WT) compared to medians for polycomb‑repressed regions 
(Polycomb), or all other regions (Other) in the cell lines indicated at top; remeth, remethylated. e Numbers of probes showing loss and gain in 
methylation in hTERT cells following treatment with siRNA for 72 h compared with the shRNA lines (averaged); #, number. f mRNA levels for the 
indicated genes in shRNA lines treated with the EzH2 inhibitor DZNeP; UNT, untreated; bars represent SEM, experiment carried out in duplicate. g 
Median β values for all variable exons at the PCDHG locus (left) and for fat/body mass genes (FBM, right): compare d16 shRNA lines with cells treated 
with siRNA. h DNMT1 mRNA levels in WT cells exposed to siRNA for 48 h, then allowed to recover in normal medium; comparisons were made to a 
scrambled siRNA negative control (Scr). i Methylation levels by pyroassay at the loci indicated during the transient KD and recovery shown in (h); 
timepoints are in days. All loci showed significant loss of methylation: LEP and SNRPN showed no significant gain versus lowest methylation level, 
while PCDHGA2 showed no significant gain between d22 and d36 

(See figure on previous page.) 
Fig. 7 Methylation loss is concentrated at regions normally repressed by polycomb. a Distribution of probes showing significant loss per chromatin 
state—numbers of probes are shown at left, chromatin states below: tcn, transcription; heterochrom/Lo, heterochromatin or low signal; repeti‑ 
tive, repeat DNA. b Region around the LEP gene: tracks as before, with the addition of data from cells treated with siRNA for 72 h (top). A track 
showing ChromHMM chromatin states from NHLF foetal lung fibroblasts is shown at bottom: grey, polycomb‑repressed; green, transcriptionally 
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the genome, as already suggested (Fig. 7b–e). Imprinted 
genes are normally unable to regain methylation somati- 
cally [45], and we could confirm that the SNRPN imprint 
control region failed to remethylate (Fig. 7i). The poly- 
comb-marked genes LEP and PCDHGA2 were also 
refractory to de novo methylation, either showing no 
gain (LEP) or reaching a plateau at an intermediate level 
of recovery only (PCDHGA2) (Fig. 7i). 

Gain in methylation is associated with poised promoters 
in shRNA lines 
Having established that loss of methylation in shRNA 
lines is linked to polycomb repression, we wished to 
determine what features are associated with gains in 
methylation in these chronically depleted cell lines. As 
indicated, gains were not seen genome-wide following 
acute depletion using siRNA (Fig. 7e) and specific loci 
such as UGT1A showed instead loss of methylation on 
acute treatment (Fig. 8a, siRNA track), suggesting that 
hypermethylation is associated with longer-term culture 
of the shRNA-containing cell lines. To investigate what 
features might be associated with such loci, we looked 
to see which chromatin states in shRNA lines showed 
the highest median β for probes which gained methyla- 
tion and the largest difference in methylation (Fig. 8b). 
This identified weak and poised promoter categories, and 
comparing shRNA lines to WT (Fig. 8c), the median val- 
ues were more different for poised than for weak promot- 
ers (0.4 vs. 0.2, Cohen’s D test). These results suggested 
that poised promoters attract de novo methylation par- 
ticularly strongly. Consistent with this, hypermethylation 
in the shRNA lines is centred around the UGT1A pro- 
moters and not the common 3′ exons (Fig. 8a). A hetero- 
chromatic location may contribute to over-methylation, 
since genes in adjacent active chromatin show restora- 
tion of normal methylation (Fig. 8a, compare siRNA to 
d10, d16 for DGKD), but not hypermethylation.  While 
UGT1A transcription levels were very low compared to 
expressing cells by RT-qPCR (not shown), available HT12 
array data showed a consistent decrease in transcription 
in all three shRNA lines (Fig. 8d, left), correlated with 
gains in methylation at the cognate promoters (Fig. 8d, 
right). 

Further analysis confirmed that while gains in meth- 
ylation were seen across all the UGT1A exons in all 
shRNA lines (Fig. 8e), all of these exons showed a loss of 
methylation following acute depletion with siRNA. We 
took advantage of our transient depletion and recovery 
experiment (Fig. 7h, i) to examine levels of methylation 
at UGT1A4 using pyrosequencing: this showed that while 
the region indeed loses methylation on acute depletion,  
it undergoes steady de novo methylation following recov- 
ery and at day 36 was the only gene examined whose 
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methylation exceeded that seen in the scrambled control 
(32.4 vs. 31.3%), suggesting that these genes are indeed 
susceptible to hypermethylation. 

One possible reason for the gains in methylation seen 
in the shRNA lines could be over-expression of a de novo 
enzyme. Previous reports have indicated that between 
them, DNMT3B and DNMT1  account  for  the  major-  
ity of methylation in cultured  adult  human  cells  and 
that there may be a role for DNMT3B in maintenance as 
well as de novo methylation [27]. We saw little change in 
DNMT3B levels in the DNMT1 KD lines from the HT12 
transcriptional array (Additional file 7: Fig. S4A) or RT- 
PCR (not shown), indicating that gains  in  methylation 
are not due to DNMT3B over-expression.  To  investi- 
gate a possible role in maintenance methylation, we car- 
ried out a transient siRNA treatment and could achieve 
robust knockdown of DNMT3B in the cells (Additional 
file 7: Fig. S4B). While some germline genes showed little 
effect, loci previously shown to require DNMT3B includ- 
ing D4Z4 and NBL2 did show loss of methylation (Addi- 
tional file 7: Fig. S4C), confirming that we had achieved 
a functional depletion. Examination of the loci identified 
in our DNMT1 shRNA clones showed that these loci also 
showed loss of methylation in DNMT3B KD cells (Addi- 
tional file 7: Fig. S4C), suggesting that loci which remain 
hypomethylated in the shRNA clones also require input 
from DNMT3B to retain WT methylation levels. 

Discussion 
Summary and model 
We and others have previously shown that acute deple- 
tion of DNMT1 using siRNA triggered the DNA dam- 
age response and cell cycle perturbations  in  human 
cell lines, making it difficult to identify genes which are 
directly controlled by methylation. Here we used iso- 
genic shRNA-containing derivatives of a normosomic 
lung fibroblast cell line to look at the effects of chronic 
depletion of the protein. We characterised the altera- 
tions in methylation and transcription using microar- 
rays in three different cell lines, processing them using a 
highly reproducible pipeline, and verified changes using 
locus-specific pyrosequencing or RT-qPCR assays. Addi- 
tionally, we compared the effects on methylation of this 
chronic depletion to the effects of acute depletion using 
siRNA, as well as investigating possible contributions 
by DNMT3B. Finally, we investigated the correlations 
between chromatin state and DNA methylation and 
showed a role for polycomb-mediated repression at some 
of the loci. 

Our results show that while both siRNA and shRNA- 
treated cells lose methylation overall as would be 
expected, only the latter show gains in methylation, most 
likely reflecting selection against the deleterious effects 
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of hypomethylation during clonal expansion and cul- 
ture. Figure 8e shows what we propose to have occurred: 
shRNA treatment gave initial widespread demethylation 
in all three clonal lines, since each line shows the pres- 
ence of some highly demethylated sites distributed across 
the genome, but methylation seems to have recovered 
at most CpGs (Fig. 8e red line). Comparison to normal 
chromatin patterns in human lung fibroblasts indicated 
that remaining hypomethylation in the expanded cells 
was concentrated at regions normally marked for repres- 
sion by polycomb (Fig. 8e purple line), while the smaller 
number of regions becoming hypermethylated relative to 
the parental cell line are associated with poised promot- 
ers (green line). TET expression was not detected, and 
the cells had little or no 5-hydroxymethylation (5hmC; 
data not shown), in keeping with other reports [46], sug- 
gesting that the hypermethylation does not represent 
5hmC. Likewise, no over-expression of DNMT3B was 
detected. 

In terms of what type of gene was particularly affected 
by chronic DNMT1 KD, the enrichment analyses and 
laboratory verification consistently pointed at the same 
small group of gene categories, namely (1)neuroepi- 
thelial genes, and in particular the protocadherins; (2) 
fat homoeostasis/body mass genes; (3) olfactory recep- 
tors; (4) the cancer/testis antigens; and (5) the UGT1A 
complex. 

Protocadherins are major targets of DNA methylation 
in human cells 
Emerging evidence suggests that the clustered proto- 
cadherin genes may be central to specifying individual 
neural cell identity [47, 48] and they have been shown to 
become heavily methylated during embryonic develop- 
ment in mouse [49], suggesting that stable repression of 
non-transcribing copies is a programmed event during 
development. Recent work has shown that DNMT3B is 
important for de novo methylation at these loci and sug- 
gested that dysregulated expression may contribute to the 
phenotype in immunodeficiency, chromosome abnor- 
malities and facial anomalies (ICF) syndrome [50], where 
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DNMT3B is frequently mutated [51], and we found that 
depletion of DNMT3B was accompanied by loss of meth- 
ylation at PCDHGA2. The PCDHA and PCDHB loci are 
heterochromatic and show persistent loss of methyla- 
tion, as does the 5′ end of the PCDHG locus which is 
polycomb-repressed, but not the 3′ end which shows lit- 
tle loss of methylation and has instead chromatin marks 
associated with weak transcription (Additional file 3: Fig. 
S2B). Meehan and co-workers recently showed that long- 
term loss of DNA methylation in mouse Dnmt1 −/− ES 
cells led to spreading of polycomb marks (in particular 
H3K27me3): their analyses singled out the Pcdh genes, 
which were heavily methylated in WT but not mutant 
ESC,  as  also  shown  by  others  [52].  Reddington  et  al. 
[17] also showed an increase in H3K27me3. A similar
sequence of events in our human cells would cause an
increase in H3K27me3 on PCDH genes and potentially
help block remethylation. The sensitivity of the proto- 
cadherin cluster to methylation changes may explain
why these genes are frequently identified in screens for
differentially methylated loci in cancer [53]. The lack of
derepression in our stable fibroblast cells is unsurpris- 
ing here since expression of these genes is restricted to
neurons [54]: they are also, with the exception of part of
the PCDHG complex, heterochromatic rather than poly- 
comb-repressed and may as such be harder to reactivate.

Fat/body mass genes can be repressed by DNA 
methylation and polycomb 
Currently, there is much interest in the possibility that 
altered diet, folate status or exposure to environmental 
toxins may lead to stable changes in the human methyl- 
ome which particularly affect metabolic processes, as this 
offers an attractive mechanism by which it may be possi- 
ble to partly explain the foetal origins of adult disease [55, 
56]. Enrichment analysis in our cells identified the FBM 
genes involved in the common processes of lipid storage 
and body mass homoeostasis, including LEP, GHSR and 
the APOC cluster.  These loci are readily demethylated 
on acute DNMT1 depletion and remain demethylated 
in chronically depleted cells where many other loci have 

(See figure on previous page.) 
Fig. 8 Methylation gain is concentrated at poised promoters. a UGT1A locus showing siRNA treatment data (top), shRNA lines (middle) and chroma‑ 
tin states (bottom); grey, heterochromatin/low signal; green, transcriptionally active (for full key see previous fig). b Median β levels for probes gain‑ 
ing and losing in shRNA lines (bottom) and median changes in methylation (∆β) versus WT for different chromatin states. c Boxplots of methylation 
values for probes falling within weak and poised promoter chromatin regions in WT or shRNA lines (averaged). d Transcription at the UGT1A3 and 
UGT1A6 genes decreases (relative to WT, set to 1) in all three shRNA lines as methylation (β value) increases, as indicated by HT12 and 450K arrays, 
respectively. e Median methylation (β) across all UGT1A exons decreases in siRNA‑treated cells, but shows gains in all shRNA lines. f Methylation at 
UGT1A2 during the transient KD and recovery experiment shown in Fig. 7h, i; differences are significant between control (Scr) and d4, but not Scr 
versus d36. g Model for methylation changes which occurred over time following chronic (shRNA) depletion of DNMT1: while polycomb‑marked 
regions (purple) resisted remethylation, most regions (“other”, red) regained normal or near‑normal levels, while poised promoters (green) tended to 
become hypermethylated 

Page 137 of 356



O’Neill et al. Epigenetics & Chromatin (2018) 11:12 

recovered methylation. These loci are heavily marked by 
polycomb in normal fibroblasts, rather than being het- 
erochromatic, which can potentially explain both their 
resistance to remethylation and their lack of transcrip- 
tional depression in the stable lines. In keeping with this, 
inhibition of the polycomb repressor EZH2 which gener- 
ates H3K27me3 marks could reactivate these genes, as 
well as the canonical polycomb targets the HOX genes. 
These results suggest that in cells which have both DNA 
methylation and polycomb-mediated repression, both 
layers of repression must be removed to achieve gene 
activation. Interestingly a recent report by Hajkova and 
colleagues showed that reprogramming of germ cells in 
mouse also required both removal of DNA methylation 
and alteration of polycomb marks [57]. 

Olfactory genes are methylated and largely inert 
Olfactory receptors are also involved in specification 
of neural cell identity, where individual receptors are 
expressed in only a small group of cells in the olfac- 
tory epithelium [58]. They are largely monoallelically 
expressed, and methylation has been implicated as play- 
ing a role in their control [59, 60]. The OR gene fam- 
ily is the largest in the genome, with approx. 380 active 
members, many organised into “gene factories” where 
they are flanked by many more pseudogenes and repeats, 
such as the large cluster on chr11 [41]. These regions are 
often transcriptionally inert and heterochromatic, which 
together with the requirement for tissue-specific factors 
may explain their lack of derepression. 

Cancer/testis antigen genes are particular  targets 
for demethylation and activation 
The  TSPY  and  MAGE  genes  fall  into  a  function- 
ally defined group known as the cancer/testis antigen 
(CTA) genes ([61, 62]; http://www.cta.lncc.br/) which 
are expressed during testis development normally, but 
which are aberrantly expressed in some tumours, such 
as melanoma and gonadoblastoma (e.g. TSPY2). This 
latter property makes them of particular interest for 
cancer immunotherapy, and monoclonal antibodies 
against some CTA members have already gained clinical 
approval [63]. CTA genes have been shown previously 
to lose methylation and become derepressed in several 
cancer cell types after treatment with the methyltrans- 
ferase inhibitor 5′aza-2-deoxycytidine (Aza) [64–66] 
and in the HCT116 DNMT1 mutant line [66, 67] using 
locus-specific approaches. Our study (1) shows in an 

Page 18 of 21 

unbiased genomic screen that CTA genes are the genes 
most affected by loss of maintenance activity, (2) shows 
this for the first time in a normal, differentiated cell 
line and (3) highlights the subset of CTA genes which 
are particularly dependent on maintenance activity to 
keep them repressed. It is noteworthy that the majority 
of these genes are on the X chromosome, which shows 
major fluxes in methylation in our stable lines. The genes 
are largely associated with heterochromatin, rather than 
polycomb repression, and do not respond to EZH2 inhi- 
bition, but rather directly to loss of methylation, which 
may reflect some difference in heterochromatin mark- 
ing on the X. Strategies to demethylate and turn on these 
genes in tumour cells (e.g. with Aza) to facilitate cancer 
vaccine development may be worthwhile to pursue, given 
that these genes are the most responsive to loss of meth- 
ylation in our cell lines. 

UGT1A genes and other poised promoters are susceptible 
to hypermethylation 
From the enrichment analysis, the UGT1A gene clus- 
ter was highlighted in terms of genes gaining methyla- 
tion. These genes are known to be highly expressed in 
skin fibroblasts postnatally, and to be repressed in non- 
expressing tissues by methylation [68, 69]. The WT cells 
already had substantial levels of methylation but the 
increased methylation in the stable cell lines led to small 
but consistent decreases in transcription on the HT12 
array, though levels were so low these could not be con- 
firmed by Taqman qPCR (data not shown). It may be that 
the particular marks associated with a recent inactivation 
of the UGT1A cluster in the fibroblasts during adaptation 
to cell culture led to an increased de novo activity here, 
and in our transient KD experiment we saw the greatest 
gains in methylation at UGT1A4. Consistent with this, 
hypermethylation relative to the WT cells was associated 
with weak and poised promoters genome-wide, and the 
latter showed the greatest tendency to gain methylation 
above normal WT levels in the shRNA-containing lines. 

Lack of transcriptional changes in part due to polycomb 
It is notable that while there was widespread changes in 
methylation in the KD cell lines, this was not accompa- 
nied by large-scale transcriptional derepression,  with 
only a few hundred genes showing  dysregulation,  and 
the fold change in transcription being small. Of the four 
gene classes identified as most affected in terms of meth- 
ylation, only one—that containing the TSPY and MAGE 
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genes—showed robust transcriptional derepression. A Additional files 
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lack of global changes in transcription, also reported by 
others [29, 70], is likely due to in part to the absence of 
transcription factors in fibroblasts needed to transcribe 
neural or adipocyte genes at high levels. However, many 
of the regions showing most persistent hypomethylation 
are polycomb-marked and this is likely to be sufficient 
in itself, as it is for example in Drosophila, to main- 
tain repression of these genes. However, we could show 
that in the presence of an EZH2 inhibitor, polycomb- 
marked loci which lacked DNA methylation, such as 
those involved in fat homoeostasis/body mass regulation, 
became upregulated, along with canonical polycomb tar- 
gets such as the HOX genes. Our results therefore indi- 
cate both that the polycomb system is sufficient in itself 
to repress and also that polycomb-repressed regions 
appear to be refractive to remethylation, which may be 
due to the action of FBXL10 [71]. It has previously been 
proposed that the two systems work in parallel, with their 
own sets of targets and a degree of mutual exclusivity 
[15–17]: our results would support such a conclusion. 

Comparison to other recent work 
Two recent studies have also examined the effects of 
DNMT1 mutation on DNA methylation and gene 
transcription in human, albeit in cancer cells [29, 70]. 
Acute depletion of DNMT1 using an siRNA-mediated 
approach found, as we did, regions of low CpG density 
(open sea, etc.) to be most affected, but differed in find- 
ing more evidence for cell morphogenesis and phospho- 
rylation pathways being affected [70]. This might reflect 
differences between acute and chronic depletion and the 
high levels of cell death during acute depletion. Blattler 
and colleagues [29] also found that relatively few genes 
were dysregulated in DNMT1/3B double KO HCT116 
cells, but some cancer/testis genes (the related GAGE 
genes) were upregulated, along with Krüppel-associated 
box genes, while chaperonins figured prominently among 
down-regulated genes. The latter two gene classes may 
therefore be more dependent on DNMT3B, or the com- 
bination of DNMT1 and 3B, for their maintenance; alter- 
natively the differences may be due to the experiment 
being carried out in colon cancer cells rather than,  as 
here, in non-transformed fibroblasts. 

Conclusions 
In conclusion, our study sheds new light on the loci 
which are most sensitive to sustained loss of mainte- 
nance activity in humans and shows an interplay between 
polycomb and DNA methylation-mediated repression in 
these differentiated cells. 

Additional file 1: Table S1. Details of the primers used in this study. 

Additional file 2: Figure S1. Variation between shRNA clonal lines. (A) 
Relative similarities between cell lines based on principal component 
analysis (PCA) of the 450K data; three independent cultures of each line 
were analysed. Note the clustering of lines d8R and d10R. The fraction of 
total variance explained by each component is indicated in brackets. (B) 
The 1000 sites most variably methylated between cell lines were used for 
hierarchical clustering. The location of sites with respect to CpG island is 
indicated at left. Beta values are depicted as shades from red (low) to blue 
(high). 

Additional file 3: Figure S2. Changes in methylation levels by genomic 
element. (A) Protein levels in knockdown lines by western blotting. As a 
control HCT116 colon cancer cells which are WT or have a homozygous 
mutation in DNMT1 (KO) are shown: the DNMT1‑specific top band is 
indicated by the arrowhead at right. (B) Median levels of methylation are 
shown for each genomic element (listed at top). The positions of medians 
are also indicated at right (arrowheads). The differences between WT and 
KD medians were used to plot Fig. 1d. (C) Density distribution of methyla‑ 
tion at the three main elements involved in gene regulation, shown by 
cell line. Demethylation seems most marked at gene bodies (Genes), 
indicated by increased density of probes at low methylation (β) values. 

Additional file 4: Figure S3. Further analysis of enriched genes. (A)Total 
numbers of sites showing significant changes in methylation at different 
false discovery rates (FDR). Some sites showing gain were found in each 
KD cell line alongside the more numerous sites showing loss. (B) Differen‑ 
tial methylation between WT and all KD lines using the 1000 best‑ranking 
sites as identified by RnBeads (red). The majority of high‑scoring sites 
common to all three lines lost methylation, but approx. one‑third showed 
gain. (C) Methylation changes at neural identity genes on chromosome 
5. Protocadherins in the α and γ families (PCDHA and PCDHG genes) 
have a clustered arrangement, while genes for the β family members are 
arranged individually. Tracks are as in Fig. 3. The position of the C class 
variable exons in the PCDHA and PCDHG clusters are also shown: gain in
methylation relative to the siRNA‑treated cells can be seen in the boxed 
regions, which includes the PCDHG constant exons, corresponding to
transcriptionally active chromatin (green). (D) Median β values for gene 
bodies for olfactory receptors identified by DAVID: differences were signifi‑ 
cant by Mann‑Whitney U (MWU). (E) Median β values for the promoters
of genes in the histone modifier group identified by enrichment analysis 
in Table 1. No significant differences between WT and KD were found by 
MWU.

Additional file 5: Table S2. Details of the hypomethylated and hyper‑ 
methylated genes from Figs. 3d and 5a, respectively. 

Additional file 6: Table S3. Details of the genes showing transcriptional 
changes in KD cell lines from Fig. 6c. 

Additional file 7: Figure S4. Role of DNMT3B in hTERT1604. (A) DNMT3B 
mRNA levels from the HT12 transcription array (3 probes) did not differ 
substantially in DNMT1 shRNA cell lines from WT cells. (B) Successful 
depletion of DNMT3B mRNA using siRNA for 48hr, versus a scrambled 
control (Scr). (C) Methylation levels by pyroassay at the indicated loci: KD, 
knockdown. Methylation levels at 72hr were similar (not shown). 
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The main aims of this paper were to: 

- Establish a non-cancerous cell line depleted in UHRF1

- Investigate the genome wide effects of UHRF1 depletion on DNA methylation

- To compare the effect on DNA methylation of UHRF1 depletion to that of DNMT1

depletion
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Abstract 

While epigenetic mechanisms are known to be important for suppression of Class I 

transposable elements (TE), relatively little is still understood about the proteins which regulate 

these mechanisms, and cellular responses to their absence. The UHRF1 protein can interact 

with both DNA methylation and repressive chromatin marks and has been linked to a range of 

possible functions. To determine its primary role in adult tissues we first established stable 

knockdowns in normal human lung fibroblasts. While these showed the expected genome-wide 

loss of DNA methylation, transcriptional changes were instead dominated by a single response, 

namely activation of innate immune signalling, consistent with de-repression of TEs. We 

confirmed using mechanistic approaches that 1) TEs were demethylated and transcriptionally 

activated, producing double-stranded RNA; 2) activation of interferons and interferon-

stimulated genes was crucial to the cellular response and 3) that this pathway was conserved in 

a number of other adult cell types. Restoring UHRF1 in either transient- or stable knockdown 

systems could abrogate TE reactivation and interferon response. Interestingly, UHRF1 could 

impose TE repression in the absence of DNA methylation, but not if the protein contained point 

mutations affecting H3K9me3 binding. To look at conservation of this pathway we introduced 

similar point mutations in the mouse Uhrf1:  homozygous mutants died by mid-gestation with 

severe developmental delay and failed both to establish DNA methylation and to fully maintain 

suppression of TEs post-implantation. Our results therefore point to a conserved role for 

UHRF1 as a key regulator of retrotransposon suppression in differentiated tissues even in the 

absence of DNA methylation.  
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Introduction 

DNA methylation is known to play an important role in mice in maintaining suppression at 

many genes which are transcriptionally inactivated during development and differentiation 

(Smith and Meissner, 2013), such as those on the inactive X chromosome (Beard et al., 1995), 

silent alleles of imprinted genes (Li et al., 1993), inactive olfactory receptor genes (McClintock, 

2010), some protocadherins (Kawaguchi et al., 2008), and certain germline genes (Weber et 

al., 2007). These roles have largely been established by introducing mutations or deletions in 

the genes encoding the DNA methyltransferases either in the whole embryo, or in specific 

tissues such as the brain or germ line. DNA methylation has also been known for some time to 

be important for suppression of endogenous retroviruses (ERV) in mice, as hypomorphic 

mutations in the maintenance methyltransferase DNMT1 result in widespread derepression of 

Intracisternal A Particles (IAP), a young and mobile class of ERV specific to rodents (Walsh 

et al., 1998).   

Less is known about the transcriptional response to loss of DNA methylation in human, 

where developmental models are lacking. Studies there have been hampered by a strong cell-

autonomous DNA damage response which occurs even in undifferentiated cells lacking 

DNMT1, and acute loss of the enzyme results in cell death within a few cell generations 

through triggering a DNA damage response (Chen et al., 2007; Liao et al., 2015; Loughery et 

al., 2011). To circumvent this, we recently generated a hypomorphic series in human by 

selecting for integration of an shRNA in a normosomic, untransformed normal lung fibroblast 

cell line hTERT-1604 (O’Neill et al., 2018). Here we found that chronic depletion of DNMT1 

resulted in loss of methylation at some targets known from mice, such as protocadherins and 

olfactory genes, but also at some gene classes specific to human such as the cancer/testis 

antigen (CTA) genes. In fact, the transcriptional response in these cells was dominated by up-
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regulation of the CTA genes, the bulk of which are clustered on chromosomes X and Y 

(Almeida et al., 2009; Simpson et al., 2005).  ] 

Early work with pan-DNMT inhibitors (DNMTi) such as 5-azacytidine (5-AZA) or 5-

aza-2’-deoxycytidine (5-AZA-CdR) also showed that CTA genes were one of the major direct 

targets of methylation-mediated repression in adult human tissues (James et al., 2006; 

Samlowski et al., 2005). These genes are normally expressed to varying levels in testis, but 

repressed elsewhere in the body in a methylation-dependent manner. Tumour cells often show 

spontaneous genome-wide hypomethylation and derepression of CTA genes, with presentation 

of fragments of these proteins as neo-antigens on the cell surface (Karpf, 2006).  Recent studies 

have shown that, as well as acting on CTA, DNMTi treatment led to demethylation and 

transcriptional up-regulation of endogenous retroviruses (ERV) (Chiappinelli et al., 2015; 

Roulois et al., 2015). ERV are a type of Class I transposable element (TE) which transpose 

using a copy-and-paste mechanism going through an RNA intermediate, whereas Class II 

elements use cut-and-paste. The presence of double-stranded RNA (dsRNA) from ERV in the 

cytoplasm was recognised by the dsRNA sensors DDX58 (RIG1) and MDA5 (IFIH1), which 

triggered IRF7 signalling through the mitochondrial protein MAVS. IRF7 translocated to the 

nucleus and up-regulated interferons (IFN) and interferon-stimulated genes (ISG) which 

include dsRNA sensors and other upstream components in a feedback loop, triggering an innate 

immune response including presentation of antigens at the surface and cell-cell signalling 

(Chiappinelli et al., 2015; Roulois et al., 2015).  The extent to which these effects are due to 

loss of DNA methylation only, or to secondary effects of the inhibitors is currently unclear, 

since viral mimicry has not been fully characterised in cells carrying DNMT1 mutations (Cai 

et al., 2017; Chiappinelli et al., 2015) and 5-AZA-CdR is known to affect levels of the histone 

methyltransferase G9a (Wozniak et al., 2007), while Aza is mainly incorporated in RNA not 

DNA (Stresemann et al., 2006).  
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While the effects of DNMTi in humans and studies using mouse mutants have 

implicated DNA methylation in TE suppression, other mechanisms are also at work to ensure 

transcriptional suppression and avoid genomic disruption during periods of DNA 

hypomethylation in germ and stem cells, principally H3K9 trimethylation (Hajkova et al., 

2002; Hill et al., 2018; Lees-Murdock et al., 2003). Consistent with this, loss of H3K9me3 

leads to up-regulation of TEs and TE-neighbouring genes in mouse stem cells (Karimi et al., 

2011). Recent work in human leukaemia has also shown that SETDB1, a H3K9 

methyltransferase, was required for repression of both long terminal repeat (LTR)-containing 

TEs such as ERV, and non-LTR TEs such as the long interspersed nuclear elements (LINEs) 

(Cuellar et al., 2017). However H3K9me3 levels decrease in differentiated human cells, where 

DNA methylation is thought to take over as the primary suppressive mechanism (Kassiotis and 

Stoye, 2016; Mikkelsen et al., 2007).  

Mutations in the Ubiquitin-like with PHD and ring finger domains 1 (Uhrf1) gene (aka 

Np95) were initially characterised as phenocopying loss of DNMT1 in mouse and resulted in 

widespread hypomethylation of the genome and dysregulation of imprinted genes, as well as 

TE such as IAP and LINE-1 (Bostick et al., 2007; Sharif et al., 2007). In cells lacking UHRF1 

the DNMT1 protein did not localise correctly to the nucleus and the paired tandem tudor 

(TTD)- plant homeodomain (PHD) region of UHRF1 has been proposed to allow interaction 

with chromatin even during mitosis by binding to histone 3 lysine 9 trimethylation (H3K9me3) 

(Rothbart et al., 2012, 2013).  Reports regarding the role of UHRF1 and more specifically 

H3K9me binding in DNA methylation have varied. Mutations in the TTD-PHD region that 

affect H3K9me3 binding by UHRF1 have been shown in human to decrease DNA methylation 

at ribosomal DNA repeats in HeLa cells (Rothbart et al., 2012), but effects at single-copy genes 

and other regions of the human genome are unknown. In mouse, mutations in the same region 

gave only a 10% decrease in DNA methylation, which was genome-wide and not just restricted 
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to repeats (Zhao et al., 2016). Other studies in mouse suggested that UHRF1 mutations caused 

widespread loss of methylation, but that it only played a minor role in TE suppression (Sharif 

et al., 2016). In contrast, mutations in the zebrafish homologue were reported to result in ERV 

derepression in the developing embryo and activation of the innate immune system 

(Chernyavskaya et al., 2017) as for DNMTi in human, but through double-stranded DNA rather 

than dsRNA signalling. Conversely, a recent report by the same group indicated that UHRF1 

KO in mouse liver was not sufficient in itself to de-repress TE (Wang et al., 2019).   

There is therefore a lack of clarity regarding the role of UHRF1, what the cellular 

response to loss of this important epigenetic regulator would be, what genes would be most 

affected, and what the dependence, if any, of DNA methylation on the TTD-PHD domain 

would be. As complete ablation of UHRF1 caused cell death in mouse ES cells once 

differentiated (Bostick et al., 2007; Sharif et al., 2007), as well as in differentiated human cells 

(REI, MS, GLX, CPW data not shown), we used the same approach we recently took with 

DNMT1 (O’Neill et al., 2018) and generated a hypomorphic series using shRNA in a hTERT-

immortalised normal fibroblast cell line as before. An unbiased genome-wide screen showed 

widespread loss of methylation across most regions, but the major transcriptional response was 

consistent with viral mimicry, including upregulation of innate immune and CTA genes. This 

appeared to be triggered by demethylation of TE and the appearance of dsRNA in the 

cytoplasm. Rescuing the cells with intact UHRF1 could restore TE repression and switch off 

the viral response. Interestingly, this occurred even in the absence of DNA methylation. 

Blocking H3K9me3-mediated silencing via knockdown of KAP1, SETDB1 or mutation of the 

binding pocket on UHRF1 prevented ERV suppression, suggesting this is upstream of DNA 

methylation. Consistent with this, the same binding pocket mutations cause loss of methylation 

at ERV in mice post-implantation, with concomitant derepression of ERV and innate immune 

genes.   
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Results 

Widespread DNA demethylation in cells depleted of UHRF1 is accompanied by a specific 

innate immune response 

We used our previously-described approach to generate human differentiated cells lacking 

UHRF1 (Fig.1A). Briefly, normal human fibroblasts which have been immortalised using 

hTERT (hTERT-1604) were transfected with a construct containing shRNA and individual 

integrants selected for. Two rounds of experiments were carried out using shRNA targeting the 

main body (prefix U e.g. U5) or 3’UTR (prefix UH e.g. UH4, UH5) of the gene, results were 

indistinguishable: those for the index line UH4 are shown here as an example, results from 

other clones were similar. Initial screening was using reverse transcription-polymerase chain 

reaction (RT-PCR): cells showing depletion were further expanded and UHRF1 mRNA levels 

checked by quantitative RT-PCR (RT-qPCR; Fig.1B, Fig.S1A) as well as checking protein 

levels by western blotting (Fig.1C, Fig.S1B). Lines showing depletion were further analysed 

using HT12 arrays for transcription, which verified low UHRF1 levels (Fig.1C), as well as 

450K array for DNA methylation. Median methylation levels, expressed as a β value between 

1 (fully methylated) and 0 (no methylation) were lower than WT in UH4 (Fig. 1D), and were 

comparable to the levels seen in our most severe hypomorph for DNMT1 (d16, Fig.1D), 

generated using shRNA in a similar manner and previously described in detail (O’Neill et al., 

2018). Notably, multiple UHRF1 hypomorphs with accompanying lower methylation were 

more readily isolated (Fig.S1C) than DNMT1 hypomorphs, suggesting a more severe effect of 

the latter on cell viability.  

Examination of the transcription profile using the HT12 array indicated that more probes 

showed significant differences between UH4 and WT than for d16 versus WT (>8000 UH4 vs 

<500 d16 using a false discovery rate (FDR) of 0.05, Fig.1E).  DNA demethylation was 
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widespread across the genome in UH4, with over half of all promoters (n=18,826), yellow 

circle Fig.1F) showing significant (>0.1) decreases in β value. When these were compared with 

genes showing up-regulation from the set of dysregulated transcripts the majority of genes 

(82.5%) showed demethylation but no derepression, which may reflect either no effect, of the 

absence of cell type-specific transcription factors required to activate them. A relatively small 

percentage (10.7%) were both demethylated and upregulated, consistent with a direct role for 

DNA methylation in their suppression in this cell type (Fig.1F). This included several 

previously-characterised gene categories known to be regulated, at least in part, by DNA 

methylation, such as Cancer/Testis antigen (CTA) genes and olfactory receptors (OR), as we 

described previously in DNMT1 hypomorphs like d16 (O’Neill et al., 2018). Interestingly a 

third group of genes (6.8%) showed no demethylation but were nevertheless up-regulated 

(Fig.1F): this suggests an indirect response of genes in this category to loss of DNA 

methylation.  

To investigate transcriptional response more closely, we then carried out gene ontology (GO) 

analysis of all up-regulated transcripts (not just those which are demethylated) from UH4 cells 

using the DAVID clustering tool (Huang et al., 2009).  Top hits in this analysis (Fig.1G) 

included several sub-classes of CTA genes (GAGE SPANX, MAGE). The other enriched gene 

categories included Type I interferon (IFN) signalling, antiviral response and MHC antigen 

presentation (Fig.1G). In fact, all 10 of the top 10 categories are related to the so-called “viral 

mimicry” state previously noted in cells treated with DNA methyltransferase inhibitors 

(Chiappinelli et al., 2015; Roulois et al., 2015).  

Innate immune signalling is crucial to the cellular response following loss of UHRF1 

The viral mimicry state induced by methyltransferase inhibitors was a response to the presence 

of dsRNA in the cell, which is detected by specific sensors in the cytoplasm (Fig.2A). These 
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signal through the MAVS complex in the mitochondrion, releasing transcription factors (TFs) 

which turn on both interferons (IFN) and interferon-stimulated genes (ISG) in the nucleus 

(Jensen and Thomsen, 2012). Some of these latter are themselves components of the pathway 

such as the sensors DDX58 and OAS1 and the TF STAT1, leading to positive feedback-

mediated amplification (broken arrows, Fig.2A). Consistent with this, a profile consisting of 

genes detected as up-regulated in our GO analysis, combined with previously reported viral 

defence genes, showed a clear up-regulation in UH4, but not d16 cells, compared to WT 

(Fig.2B). Profiling of the transcriptional response from the HT12 array (Fig.2C) showed 

activation of components from several parts of the pathway shown in A. Changes in 

transcription level were most marked for ISG which are at the bottom of the cascade (Fig.2C, 

right-hand side), including genes with anti-viral and cell death effects, whereas transcriptional 

changes were least marked or absent for TFs and sensors (Fig.2C, left  -hand side), as 

previously reported for this innate immune pathway (Cuellar et al., 2017). Notably, three of the 

genes unique to our profile and not previously reported are linked to T-cell signalling (Fig.2C, 

RHS). We verified sample genes from various parts of the pathway using RT-qPCR (Fig.2D), 

with results consistent in direction, though not always in magnitude, between the array and the 

RT-qPCR. Notably, there was no evidence for up-regulation of components of the dsDNA 

response pathway from our array analysis, consistent with findings in cells exposed to DNA 

methyltransferase inhibitors. There was also a poor correlation between methylation and 

transcription for the IFN and ISG genes (not shown), as reported previously for DNMT 

inhibitor treatment (Roulois et al., 2015), confirming the response is indirect.  

In order to investigate the dependence of cellular response on the activation of this innate 

immune pathway, we tested our model mechanistically. Inhibition of MAVS with siRNA in 

UH4 caused significant down-regulation of downstream ISG such as IFI27 (Fig.2E). This 

included OAS2 (Fig.2A), which although it is activated by dsRNA and therefore a sensor 
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(Donovan et al., 2015), is also an ISG and up-regulated transcriptionally by anti-viral signalling 

(Fig.2C,D) in a feedback loop. Our GO analysis of transcriptional response in UH4 highlighted 

enrichment for genes involved in type I IFN signalling (Fig.1D), which included IRF9 and 

STAT1 (Fig.2C). Type I IFN binding at the cell surface can activate JAK kinases, which 

phosphorylate STAT1 and STAT2, causing them to dimerise (Ivashkiv and Donlin, 2014): 

IRF9 can then associate with these dimers, forming a complex termed the ISGF3 transcription 

factor, which enters the nucleus and upregulates IFNs and ISGs (Fig.2A). To test if this was 

happening, we treated cells for 4-7d with Ruxolitinib (RUX), a small-molecule inhibitor of 

JAK kinases and indeed found a significant down-regulation of target ISGs (Fig.2F).  

Our analysis so far suggested that components of the innate immune response were upregulated 

by depletion of UHRF1 in the UH4 cells, including type I interferons (Fig.1G) as well as other 

cell surface and secreted signalling factors such as CCL5 and LY6E (Fig.2C). To test for cell-

cell signalling, we transferred media from tissue plates containing UH4 cells to plates with WT 

cells (Fig.2G): this resulted in up-regulation of ISG including OAS2 and IFI27.  All of the 

results above are consistent with an up-regulation of the dsRNA sensing pathway in the cells, 

presumably in response to the presence of dsRNA in the cytoplasm of UH4 cells (Fig.2A). 

Treatment of WT cells with polyI:C, a form of dsRNA, but not with dsDNA, caused up-

regulation of the same genes as seen in the UH4 line, confirming that the transcriptional 

response is consistent with exposure to dsRNA (Fig.2H).  

The presence of dsRNA correlated with transcriptional derepression and loss of DNA 

methylation at transposable elements (TE)  

Type I interferon response can be triggered in cells when dsRNA is detected in the cytoplasm: 

this normally only occurs on infection of cells with viruses which produce dsRNA during their 

replication cycle, but can also occur if endogenous retroviruses and other Class I TE are 
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derepressed (Chiappinelli et al., 2015; Cuellar et al., 2017; Roulois et al., 2015). Staining of 

cells with the J2 monoclonal antibody is a sensitive and specific test for the presence of dsRNA 

(Weber et al., 2006) and gave a clear positive response in UH4, but not WT cells (Fig.3A). To 

test for derepression of TEs we used RT-qPCR (Fig.3B) for family members previously shown 

to be most active in response to epigenetic inhibitors (Cai et al., 2017; Cuellar et al., 2017), as 

transposable elements are not covered on the HT12 array. This indicated that members of 

several HERV families were transcriptionally up-regulated, including elements of the HERV-

F (HERV-FC2), HERV-H (HERV-H) and HERV-W (HERV-W1) families (Fig.3C). As the 

fold change was small for a number of the HERVs, but J2 staining was much stronger than 

seen using polyI:C, suggesting the presence of large amounts of dsRNA, we considered that 

other Class I TE besides the HERV group might also be up-regulated in UH4. We therefore 

examined LINE-1 elements, a non-LTR TE which can stimulate an IFN response and which 

are present at much higher copy number than HERV in the genome (Cuellar et al., 2017). RT-

qPCR was again consistent with up-regulation of some of these elements (L1-PBA, L1P1) in 

UH4 compared to WT controls (Fig.3B, D). Although small in magnitude (~2-fold), the 

absolute amount of dsRNA generated would be larger due to the greater copy number of the 

elements involved.  

Having established that specific elements were activated in UH4 cells, we examined 

control regions in these genes (Fig.3B), where methylation has been shown to act in a 

repressive capacity. Using pyrosequencing assays (pyroassays) covering multiple CG 

dinucloetides, we found consistent and significant demethylation of the TE showing 

derepression, including HERV-FC2, HERV-H and LINE-1 (Fig.3E). Examination of individual 

CG in these regions confirmed significant demethylation across the entire region assayed 

(Fig.3F). While the 450K array was not designed to assay repetitive elements, a substantial 

number of probes overlap with regions labelled as TE on the RepeatMasker track in UCSC. 
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Using in-house scripts and a GALAXY workflow we assayed methylation across all TEs in the 

genome, which showed a significant decrease in median methylation (p<2.2x10-16, Kruskal-

Wallis test) and greater variability in UH4 cells (Fig.3G). For regions with sufficient probe 

coverage (Fig.3H), we also found evidence of substantial demethylation of several individual 

TE families (HERV-FC2, HERV-H, LINE-1, HERV-3), but not for all elements (HERV-K22).  

While the analyses above have concentrated on the UH4 cell line, we confirmed demethylation 

and up-regulation for TE and ISG for a number of other independently-derived clones from the 

two rounds of transfection (Fig.S1 C-E).  

A conserved interferon response follows TE demethylation in multiple cell types 

Our results so far strongly supported a role for UHRF1 in methylation and repression of TE in 

the hTERT-1604 normal fibroblast line and showed that stable depletion resulted in a robust 

innate immune response targeted against the dsRNA. We then wished to examine the timing 

of these events, both in the non-transformed hTERT1604 and in different transformed cells to 

determine whether loss of UHRF1 triggers the same transcriptional response. Further, we 

wished to determine whether cells could recover from the loss of the protein and re-establish 

repression. To this end we carried out a transient or “hit-and-run” experiment (Fig.4A) where 

we exposed cells to siRNA against UHRF1 for 48hrs, then switched the cells to normal medium 

without siRNA and allowed them to recover for up to three weeks. RT-qPCR showed that 

UHRF1 levels were effectively depleted to ~25% by 96hrs, after which point they steadily 

recovered, reaching and even slightly exceeding levels seen in scrambled controls (SCR) by 14 

days (14D-Fig. 4B). Consistent with observations in our stable knockdown clones, HERV-H 

mRNA levels were increased versus scrambled controls, starting already at 96hrs, and climbed 

steadily until 14D, at which point they started to decrease and were back at levels seen in SCR 

control by 21D (Fig.4B). The ISG gene IFI27 showed comparable dynamics, increasing from 
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7D and then decreasing to normal levels or below by 21D. Examination of methylation levels 

at TE by pyroassay showed loss of methylation at the promoter regions already at 3D (Fig.4C). 

Interestingly, methylation showed only a modest gain (difference vs 3D not significant by T-

test) during the recovery period and remained significantly lower than WT out to 21D, beyond 

the period during which transcription of the TE and ISG had already normalised (Fig.4C). This 

was true for both average methylation and levels at individual sites across the promoters 

(Fig.4D, differences between 7D and 21D not significant except CG2, p<0.05).  

We then sought to determine if similar transcriptional responses would be seen in tumour cells. 

To this end, we performed an identical transient KD and recovery experiment in SKMEL 

melanoma cell lines, which have a more epithelial character. While transient KD was less 

efficient in these cells, UHRF1 levels were depleted to ~50% by 7D, then rapidly recovered to 

levels seen in scrambled controls by 14D (Fig.4E). This was accompanied by activation of TE 

and ISG, peaking between 14D-21D, after which point transcription started to decrease again 

for the ERV, while the ISG was still on but more variable (Fig.4E).  

Additionally, we reanalysed a publicly-available dataset (Cai et al., 2017) where UHRF1 was 

depleted in HCT116 colon cancer cells using adenovirus-mediated transfection of shRNA and 

where a limited analysis of ISG by RT-qPCR had been reported. Analysing instead the whole 

RNA-seq dataset using GO analysis, we found that the top enriched gene class was indeed 

Type I interferon response, with CTA activation accounting for two more of the top 5 categories 

(Fig.4F). An additional category among the top 7 was piRNA/meiotic silencing (Fig4E). Taken 

together with the results above, this confirmed that UHRF1 depletion led to reproducible TE 

demethylation and derepression in multiple cell types, evoking a strong innate immune 

response.  
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Rescuing stable KD clones with UHRF1 can restore TE repression without re-

establishing normal DNA methylation levels 

The transient experiments above suggested, importantly, that TE repression could be re-

established without full remethylation (Fig.4C,D). In order to confirm this in a more stable 

system, we undertook to rescue UHRF1 expression in UH4 cells by transfecting them with full-

length cDNA lacking the 3’UTR which is targeted by the shRNA in UH4 (Fig.5A). Western 

blotting confirmed the presence of the full-length, FLAG-tagged protein in rescues, termed 

WT10 (Fig.5A). The WT10 cells showed clear restoration of repression (Fig.5B) at HERVs 

(HERV-FC2) and LINE-1 elements (L1PBA). Reinforcing this, normalisation of ISG levels 

was also seen in WT10 cells by RT-qPCR (Fig.5C). Analysis of overall transcription by HT12 

array confirmed widespread shut-down of the innate immune response, with genes from most 

components of the pathway returning to normal or near-normal levels (Fig.5D, black columns), 

with the exception of a few genes (GTSF1, BST2).  In contrast, examination of the methylation 

levels using 450k arrays showed that, despite the presence of WT UHRF1 protein, median 

methylation levels in WT10 were indistinguishable from UH4 (Fig.5E).  There was no increase 

in methylation (β) in WT10 vs. UH4 over HERV elements, as confirmed by both array and 

pyroassay analysis (Fig.5F,G). The same was true of LINE-1 TEs, where methylation at 

individual sites across the promoter also showed no significant change (Fig.5F,G). These 

results, taken together with the transient experiments in Figure 4 above, indicate that UHRF1 

can restore TE repression even when DNA methylation levels cannot be fully re-established.  

Hypomethylated cell lines rescued using mutated proteins implicate the Histone 3 tail 

binding domain of UHRF1 in TE repression 

Since wild type unmutated UHRF1 protein was able to restore TE repression in WT10 cells 

despite DNA methylation remaining low on these elements, we reasoned that there might 
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remain another epigenetic mark on the retrotransposons which could be recognised by the 

protein (Fig.6A). The repressive chromatin mark H3K9me3 is also associated with TE and can 

be read by UHRF1 through its paired tandem-tudor domain/plant homeodomain (TTD-PHD) 

(Rothbart et al., 2012, 2013). Western blotting with an antibody to H3K9me3 indicated that 

levels of this modification were not substantially affected in UHRF1 KD cells (UH4) versus 

WT (Fig.6B), suggesting that the cells retain this mark. Levels were also not markedly 

increased in the UH4 cells rescued with full-length intact URHF1 (WT10), indicating that the 

reestablishment of repression see there was not a result of greatly increased H3K9me3 levels 

(Fig.6B). As a control, even transient depletion of the SETDB1 enzyme responsible for 

trimethylating H3K9 was using siRNA in WT cells was sufficient to give marked loss of 

H3K9me3 (Fig.6B).  These results suggest that TE repression tracks more with UHRF1 levels 

than H3K9me3, but that H3K9me3 is retained at TE in the absence of DNA methylation and 

so could potentially act as a cue for repression when UHRF1 was restored. 

The UHRF1 protein has been previously shown, through both crystallographic and 

binding studies, to engage the histone 3 tail through its TTD-PHD region (Fig.6C) with key 

residues including D334/E335 (PHD) which holds the tail in place, and Y188 (TTD) which 

interacts with H3K9me3 (Rothbart et al., 2012, 2013). We used the same constructs as before 

to rescue UH4 cells and isolate clones expressing FLAG-tagged UHRF1 proteins containing 

these mutations in either the TTD (TTD9) or PHD (PHD1, PHD4, PHD10) domains (Fig.6D). 

As expected, these expressed the rescued protein to readily-detectable levels, with the variation 

normally seen with clones (Fig.6D). Unlike cells rescued with intact protein however (WT10, 

WT18), the cell lines containing mutated UHRF1 showed poor and variable repression of TE 

(Fig.6F). Furthermore, cells with the point mutations were positive for dsRNA in the cytoplasm 

using J2 staining (Fig.6G). In this respect they resembled cells with no UHRF1 (UH4), whereas 

cells rescued with WT protein (WT18) showed little or no staining (Fig.6G). In keeping with 
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the failure to repress ERV, there remained a robust ISG response (Fig.6H) in the UH4 cell lines 

rescued with the point-mutated UHRF1 (PHD1, PHD4, PHD10, TTD9), but not when the same 

UH4 cells were rescued with intact protein (WT10,WT18).  

Mutations in the PHD domain of mouse UHRF1 cause hypomethylation and 

transcriptional derepression of TE in developing embryos  

While our results so far implied that UHRF1 can potentially bind the H3K9me3 mark on TE 

leading to repression of transcription from these elements, we did not see marked de novo DNA 

methylation in either the stable (Fig.6) or transient (Fig.5) experiments in human. Since we 

have previously shown de novo methylation activity in these cells is sufficient to restore 

methylation to WT at some genes (O’Neill et al., 2018), we considered that these adult cells 

may instead lack other factors required for de novo DNA methylation which are only found 

earlier in development. To examine the dependence of de novo methylation and TE repression 

on an intact H3K9me3 binding domain in UHRF1, we generated mouse embryos containing 

mutations in the PHD domain matching those used in human (Fig.7A). To do so, we crossed 

C57BL/6 and DBA/2 mice to generate 1-cell embryos, which we then injected with a single-

guide RNA targeting the region around the DE amino acids in the PHD domain, together with 

an oligo containing the desired replacement nucleotides as well as an mRNA for the CAS9 

enzyme. The first round of injections (n=306) and embryo transfers (n=11) resulted in no pups, 

suggesting that mutations were leading to embryonic lethality (Fig.7A).  

Consistent with this, homozygous mutant embryos (-/-) harvested at embryonic days 

8.75 (e8.75) from round 2 of injections showed developmental delay and hypomethylation of 

IAP compared to WT (Fig.7B, top). Both the retardation and the hypomethylation were more 

severe by e9.5 compared to WT (+/+) or heterozygous (+/-) embryos (Fig.7B, lower panels). 

A further round of injection gave one heterozygous founder animal which survived (#13); this 
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animal was then back-crossed for one generation before intercrossing the heterozygous 

offspring to generate litters containing all three genotypes (Fig.7A). Examination of DNA 

methylation at IAP LTR showed highly significant decreases in homozygous embryos (HOM) 

compared to WT or heterozygous (HET) littermates (Fig.7C). This decreased methylation was 

seen across the whole promoter region assayed (Fig.7D). Highly significant decreases in DNA 

methylation compared to WT was also seen both in 5’UTR regions of both IAP and LINE-1 

elements assayed (Fig.7E).  

We also examined transcription of TE in the homozygous (HOM) embryos. These 

showed significant derepression of IAP and musD ERV as assayed by RT-qPCR (Fig. 7F), 

although increases were very variable across individual embryos. Analysis of both ERV and 

ISG transcription results from RT-qPCR confirmed that retroviral elements belonging to 

several classes, as well as interferon alpha and a number of ISG, were all generally more active 

in HOM mutants than in HET or WT (Fig.7G). Uhrf1 mRNA levels were even across all 

embryos assayed, consistent with a point-mutated transcript (Fig.7G).  

Discussion 

We showed here that depletion of UHRF1 protein in differentiated human cells, either 

transiently or using stable models, causes loss of DNA methylation, up-regulation of TEs and 

an innate immune response. This was linked to the presence of dsRNA in the cytoplasm, likely 

originating from derepressed TE, since in rescued cells where the TE have been silenced the 

dsRNA disappeared. Notably this rescue effect can occur without reintroducing DNA 

methylation, suggesting a separate mechanism for TE repression independent of methylated 

cytosine, but still dependent on UHRF1. Mutation in the PHD/TTD domain strongly implicated 

H3K9me3 as the signal which allowed UHRF1 to bind to TE and repress them in demethylated 

cells. Consistent with this, mutating the H3K9me3 binding pocket of UHRF1 in mouse 
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prevented the protein from recruiting DNA methylation to mouse TEs post-implantation, 

concomitant with embryonic lethality, TE up-regulation and an innate immune response. 

UHRF1 plays a conserved role in TE suppression 

The data we present here therefore strongly supports an important role for UHRF1 in 

suppressing TEs which is conserved across species. We showed this here in four different 

systems using a variety of approaches: 1)stable knockdown in normal human lung fibroblasts 

2)transient knockdown in human skin cells 3)bioinformatic analysis of published data on colon

cancer cells and 4)mutations in the endogenous gene in mouse embryos. In 3/4 of these cases, 

we found depletion or mutation of UHRF1 gave up-regulation of TEs and in all four, that it 

induced an innate immune response targeted against dsRNA. Demethylation was seen at most 

HERV classes examined in our human cell lines, as well as at the more numerous LINE-1 

elements in the genome, and we could detect transcriptional activation of several young 

HERVs and LINE-1 subtypes which have been reported to be recently active and can be 

derepressed in response to DNMTi treatment (Cai et al., 2017; Chiappinelli et al., 2015; 

Roulois et al., 2015) or loss of H3K9me3 (Cuellar et al., 2017). In mouse, demethylation was 

seen at IAP and LINE-1 elements, and derepression detected for the young TE IAPez-GAG 

and musD, previously seen to be reactivated in response to DNA demethylation (Bourc’his and 

Bestor, 2004; Hata et al., 2006; Sharif et al., 2016; Walsh et al., 1998). 

The demethylation and activation of TEs on loss of UHRF1 was consistent with 

previous reports from zebrafish (Chernyavskaya et al., 2017) and mouse (Sharif et al., 2007) 

embryos, the former also reporting innate immune activation. TE activation and demethylation 

have also previously been reported in mouse embryonic (Sharif et al., 2007)  and neural 

(Ramesh et al., 2016) stem cells. There have also been some studies which have only detected 

low-levels of activation of TEs on loss of UHRF1 (Sharif et al., 2016; Wang et al., 2019), 
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which may be in part due to epigenetic compensation, whereby spreading of repressive histone 

marks from neighbouring repressed regions can compensate for loss of DNA methylation 

(Reddington et al., 2013; Wang et al., 2019). However given the derepression of TEs and strong 

immune response seen by ourselves and others in whole embryos and differentiated cells from 

three different species, the bulk of the evidence clearly points to a conserved role for the protein 

in maintaining suppression. UHRF1 is likely to be most important in differentiated tissues, 

since Uhrf1-/- ESC are viable until differentiated in vitro whereupon they die (Bostick et al., 

2007; Sharif et al., 2007), and our mouse mutant showed lethality at around mid-gestation, 

consistent with a post-implantation defect. Likewise, mutations in adult stem cell populations 

in mouse were not lethal until the cells began to differentiate (Ramesh et al., 2016; Wang et 

al., 2019). It is notable that, despite the many roles attributed to UHRF1, the transcriptional 

response in our fibroblast cells was dominated by the innate immune activation triggered by 

the dsRNA, indicating that this is the main cellular response to loss of the protein. However 

complete loss of function of the gene was lethal in differentiated human cell lines as well as 

mouse (CPW, REI, data not shown), so we cannot exclude other roles for the protein below the 

viability threshold. Responses in cell lines (SKMEL, HCT116) with a more epithelial character 

also showed a strong but less dominant innate immune response, suggesting that responses may 

show some variation by cell type, which would be consistent with differences in innate immune 

signalling abilities (Barlow et al., 1984; Kassiotis and Stoye, 2016). However, in all cases TE 

reactivation and some degree of interferon signalling was seen.  

A novel function for UHRF1 in TE repression in the absence of DNA methylation 

While some previous work had therefore indicated a role for UHRF1 in TE suppression, this 

had been tightly coupled with its role in assisting the DNA methyltransferases to localise to the 

nucleus (Bostick et al., 2007; Sharif et al., 2007, 2016). In contrast, we show here that 

repression can occur in the absence of DNA methylation. This was shown in i)transient 
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experiments, where endogenous UHRF1 levels were allowed to recover to normal, and ii)in 

stable KD experiments, where multiple cell lines were derived from UH4 by rescuing with a 

wild-type version of the protein (WT10, WT18). In both cases, suppression of both LTR- and 

non-LTR TEs was seen, as well as switch-off of the innate immune response to viral infection, 

with the disappearance of dsRNA from the cytoplasm in the case of the stable lines. However 

neither the transient or stable cell lines showed any significant restoration of DNA methylation 

at TEs, as assessed using both arrays and pyrosequencing.  These results strongly suggest that 

the presence of UHRF1 alone is sufficient to restore repression, at least in these fibroblast cell 

lines. These results have three important implications: 1)that DNA methylation in itself is not 

necessary to repress TEs, at least to a level low enough not to trigger the innate immune 

response, in these cells; 2)that the UHRF1 protein can mediate repression of the 

retrotransposons through a mechanism independent of DNA methylation and 3)that there must 

remain some epigenetic information associated with the TE that allowed UHRF1 to recognise 

and repress them once protein levels were restored.  

It is known from many different studies that TEs can be transcriptionally suppressed by 

a number of methods, including H3K4 deacetylation, H3K27me3 and- most commonly seen- 

H3K9me3 (Kassiotis and Stoye, 2016).  While it may seem initially surprising that repression 

of TE was seen in cells where UHRF1 levels were restored to normal but DNA methylation 

remained low, the addition of DNA methyl groups to the TE DNA is thought to be a relatively 

late stage in repression (Rowe et al., 2013). Studies in mouse ESC lacking all DNA methylation 

showed that TE derepression was modest (<5-fold) (Matsui et al., 2010), but in differentiating 

mouse embryos or adult cells IAP derepression was orders of magnitude higher (Matsui et al., 

2010; Walsh et al., 1998). In contrast, loss of SETDB1 in ESC gave robust derepression of TE 

(Matsui et al., 2010). There is also considerable overlap in TE which are labelled with both 

H3K9me3 and DNA methylation (Karimi et al., 2011), suggesting that this dual marking may 
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represent a defence-in-depth against inadvertent activation of these deleterious elements. 

Consistent with this, H3K9me3 levels remain high on TE in germ cells during the crucial 

window during development when DNA methylation is reprogrammed to allow resetting of 

genomic imprints and the histone mark is required at that time for suppression (Hill et al., 

2018).  

H3K9me3 binding was required for UHRF1-dependent TE suppression 

Given a)the tight linkage between H3K9me3, DNA methylation and TE suppression; b)that 

UHRF1 had been shown to bind H3K9me3, and c) that it could re-establish TE suppression in 

UH4 cells where there was little DNA methylation, we speculated that the protein might still 

be able to recognise and bind H3K9me3 marks to facilitate repression. This hypothesis was 

supported by three lines of evidence here. Firstly, the UH4 cells which lacked DNA 

methylation and showed TE and innate immune activation nevertheless retained H3K9me3 at 

levels similar to those in the parental cell line. Secondly, point mutations in the H3K9me3 

recognition component of UHRF1 prevented the protein from repressing TE in multiple 

independent clones with at least two different mutations. Finally, introduction of the TTD 

mutation into the mouse homologue prevented the accumulation of DNA methylation at TE 

post-implantation, resulting in TE derepression, innate immune activation and embryonic 

lethality.   

Since loss of UHRF1 is concomitant with loss of DNA methylation in the cells, 

derepression could be due to either alone, or a combination of both. It is well-established that 

mutations in mouse DNA methyltransferases can cause derepression of TEs (Bourc’his and 

Bestor, 2004; Hata et al., 2006; Walsh et al., 1998), while treatment with DNMTi have the 

same effect in mouse and human (Chiappinelli et al., 2015; Roulois et al., 2015). Interestingly 

however mutations in human DNMTs have given more equivocal results, with only a partial 
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signal of TE reactivation reported by Chiapinelli and colleagues (Chiappinelli et al., 2015). We 

also saw no evidence of an innate immune signal in our isogenic DNMT1-depleted cells (this 

study and (O’Neill et al., 2018)), or in the cells when treated with 5-AZA-CdR (Mackin et al., 

2018), despite hypomethylation of many TE (not shown). However there are limitations to our 

previous experiments, since a substantial degree of remethylation had occurred in the DNMT1 

KD lines (which may be necessary for the survival and outgrowth of clones (Chen et al., 2007; 

Liao et al., 2015; Loughery et al., 2011)) and this may have targeted young TE which could 

induce an innate immune response. Likewise, 5-AZA-CdR treatment may not have been 

sufficiently prolonged or at too high a dose to detect the relatively slow onset of innate immune 

activation (Chiappinelli et al., 2015; Roulois et al., 2015). Nevertheless, the absence of any 

clear TE reactivation or innate immune response in those experiments may indicate that loss 

of UHRF1 is less tolerated than loss of DNMT1 due to its repressive effects on TE which are 

independent of DNA methylation. Given current interest among cancer biologists in the use of 

hypomethylating agents to boost tumor cell response to immunotherapy (Jones et al., 2019), 

further work to tease apart the relative roles of DNMT1 and UHRF1 in TE suppression and 

innate immune activation among different human cell types would seem warranted.  

The UHRF1 protein has several functional domains, including the SRA domain, which 

binds to hemi-methylated DNA (Arita et al., 2008; Hashimoto et al., 2008) and the RING and 

UBL domains, which catalyse the transfer of ubiquitin to histone 3 (DaRosa et al., 2018; Foster 

et al., 2018). We showed here that there was a failure to repress TEs and turn off the innate 

immune reaction in our cell lines when the PHD or TTD domains were mutated, highlighting 

the essential role of these regions that cannot be compensated for by other domains. From 

crystallographic (Xie et al., 2012) and binding studies (Rothbart et al., 2012) it has been shown 

that the TTD mutation used decreased the protein’s ability to interact with H3K9me3, while 

the PHD mutations interfered with the protein’s ability to the hold the H3 tail in position and 
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abrogated binding completely (Rothbart et al., 2013). In our mouse model containing the same 

mutation in the PHD domain, DNA methylation levels did not increase after implantation at 

TEs as it normally does (Jahner and Jaenisch, 1985; Okano et al., 1999). This may indicate a 

failure to efficiently recruit the protein to these elements following the wave of de novo 

methylation which occurs mid-gestation.  In terms of phenotype and timing, the PHD mutation 

resembles the Dnmt1N/N mutation in mice (Li et al., 1992) rather than the more severe Dnmt1S/S 

or Dnmt1C/C (Lei et al., 1996) or Uhrf1-/- mutants (Bostick et al., 2007; Sharif et al., 2007), all 

of which died at earlier stages, suggesting we have generated a hypomorphic mutation which 

decreases rather than abrogates function. TE derepression and innate immune signalling were 

variable among mouse embyros homozygous for our EA=>DD mutation in Uhrf1. This may 

reflect segregation of background alleles in the cross, or a degree of stochasticity in TE 

activation (Kazachenka et al., 2018) and/or immune response (Barlow et al., 1984). The 

roughly inverse relationship between embryos positive for TE transcripts and those with innate 

immune activation may also suggest that embryos showing strong immune signalling are 

successfully clearing cells showing TE upregulation and vice versa. Loss of DNA methylation 

in mouse embryos is also known to have multiple effects on imprinting (Li et al., 1993), X-

inactivation (Beard et al., 1995) and repression of germline genes (Borgel et al., 2010), which 

are likely to contribute to variability. Notwithstanding the inter-embryo differences in 

transcription, a highly consistent and reproducible decrease in DNA methylation at TE was 

seen in all homozygous mutant embryos tested, firmly establishing the requirement for H3 tail 

binding by UHRF1 for successful recruitment of DNA methylation to these selfish DNA 

elements during development.  

Conclusions 

We have confirmed here using a variety of approaches in both human cells and in mouse 

embryos that UHRF1 is required to suppress TE expression, consistent with some earlier 
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reports in mouse and zebrafish. Additionally, we have shown that suppression of TE can be 

achieved by UHRF1 in the absence of DNA methylation, uncovering a novel mechanism for 

suppression of these elements. This pathway appears to rely on H3K9me3 binding by UHRF1 

as mutation of the cognate binding domain on the protein prevents TE suppression in mouse 

and human cells. Further work is required to determine exactly how UHRF1 can repress these 

selfish DNA elements and what other components of the cellular machinery are required.  

Materials and Methods 

Cell culture and transfections 

The wild-type (hTERT1604) lung fibroblast cell line (Ouellette et al., 2000) and derivatives 

were cultured in 4.5g/l glucose DMEM with 10% FBS and 2× NEAA (all Thermo-Fisher 

Scientific, Loughborough, UK). SK-MEL-28 cells (kind gift of Paul Thompson) were cultured 

in 4.5g/l glucose DMEM supplemented with 10% FBS. The hTERT1604 cell lines stably 

depleted of DNMT1 have been previously described (Loughery et al., 2011; O’Neill et al., 

2018). Stable depletion of UHRF1 in hTERT1604 (U5/U10/UH4 lines) for this study used 

pGIPz Lentiviral shRNAmirs (Horizon/Dharmacon), see Table S5 for sequences, used 

according to the manufacturer’s instructions. Briefly, overlapping primers incorporating 

siRNA sequences to target UHRF1 were made and ligated into pGIPz. The vector was 

linearized using XhoI and MluI, then 1µg transfected into WT cells using Lipofectamine 2000 

(Thermo-Fisher Scientific) prior to selection in puromycin (Sigma-Aldrich, Dorset, UK) to 

isolate single colonies, which were then expanded; selection was removed 24 hours (24hrs) 

prior to any experimental analysis. Rescue cell lines (UH+R10/18, PHD1/4/10, TTD9) were 

generated by transfecting UH4 cells with pCMV plasmids containing full length UHRF1 

cDNA which was either intact (WT) or contained functional mutations in either the PHD or 
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TTD domains as previously described (Rothbart et al., 2013); individual colonies were selected 

in G418 (Sigma-Aldrich) and expanded as above. 

For transient knock-down experiments, 1x106 cells/well were seeded in 6-well plates 

prior to reverse transfection basically as before (O’Neill et al., 2018) using 100nM ON-

TARGETplus SMARTpool siRNA (Table S6) or scrambled control (all ThermoFisher 

Scientific). Post-transfection, cells were cultured in complete medium to allow recovery, with 

extraction of RNA and DNA up to 28 days after addition of siRNA. For drug treatment (see 

Table S7) Ruxolitinib (Absource, München, Germany) was dissolved in DMSO and added to 

culture media at a final concentration of 2µM; negative controls contained just DMSO. For 

analysis of dsRNA and dsDNA sensing pathways, cells were treated at a final concentration of 

10µg/ml Poly(I:C) or sonicated salmon sperm DNA (Agilent, Stockport, UK) for 72hrs, with 

fresh media and drug every 24hrs; the nucleic acids were dissolved in sterile phosphate-

buffered saline (PBS), heated at 50°C and cooled on ice to achieve re-annealing into double 

strands prior to treatment. For the media transfer test, UH4 cells were seeded and grown for 

72hrs, then media transferred onto the wild type hTERT1604 cells, which were grown for 

another 72hrs. 

Immunohistochemical staining 

Cells were seeded onto glass slides pre-sterilized with 100% ethanol and UV light and allowed 

to attach overnight. Cells were then fixed in 4% paraformaldehyde in PBS, 10mins before 

quenching with 0.1M glycine (Sigma-Aldrich), then permeabilized with 0.1% Triton X-100, 

15mins and preblocked with 2% BSA (Sigma-Aldrich) for 1hr, room temperature (RT). Slides 

were incubated with J2 primary antibody (Scicons, Szirák, Hungary, see Table S4 for 

antibodies) at 1:200 in 2% BSA overnight at 4°C.  The next day, slides were washed and 

incubated with anti-mouse IgG AlexaFluor 546 (Invitrogen, Paisley, Scotland) antibody at 

1:1000, 1hr, RT before washing and adding DAPI mounting media (Santa Cruz Biotechnology, 
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Heidelberg, Germany).  Fluorescent images were taken with a Nikon Eclipse E400 phase 

contrast microscope and processed using Adobe Photoshop (Maidenhead, UK). 

DNA analyses 

Genomic DNA was extracted from cells growing in log phase, with each cell line done in 

triplicate, including one biological replicate. DNA preparation, bisulfite conversion and array 

hybridization was essentially as previously described (Mackin et al., 2018; O’Neill et al., 

2018). Briefly, DNA was isolated using the QIAmp DNA Blood Mini Kit (Qiagen, Crawley, 

UK), assessed for integrity and quality using a range of measures including agarose gel 

electrophoresis, UV absorbance and Quant-iT PicoGreen dsDNA assay (Thermo Fisher 

Scientific). Purified DNA was sent to Cambridge Biological Services where bisulfite 

conversion was performed using the EZ DNA Methylation kit (Zymo Research, California, 

USA) and samples were loaded onto the Infinium HumanMethylation450 BeadChip (Bibikova 

et al., 2011) and imaged using the Illumina iScan.  

For pyrosequencing, DNA (500ug) was bisulfite-converted in-house as above, then 

PCR-amplified using the PyroMark PCR kit using Qiagen’s pyrosequencing primer assays or 

those designed in-house (see Table S1) via the PyroMark Assay Design Software 2.0 (Qiagen). 

Reaction conditions were as follows: 95°C, 15mins; followed by 45 cycles of 94°C, 30secs; 

56°C, 30secs and 72°C, 30secs; final elongation 72°C, 10mins, with products verified on 

agarose gels prior to pyrosequencing using the PyroMark Q24 (Qiagen). 

RNA analyses 

RNA was extracted from cells growing in log phase using the RNEasy Mini Kit (Qiagen, 

Crawley, UK), including a DNAse step, according to manufacturer’s instructions. 

Complementary DNA (cDNA) was reversed transcribed in a reaction containing 250-500ng 

total RNA, 0.5uM dNTPs, 0.25ug random primers (Roche, UK), 1x reverse transcriptase buffer 
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and 200U RevertAid reverse transcriptase in a total volume of 20ul. Reaction conditions were 

as follows: 25°C, 10 minutes (mins); 42°C, 60mins; 70°C, 10mins. cDNA was stored at -80°C 

until use. Each RT-PCR reaction contained 1ul cDNA from the above reaction, 1x buffer, 

0.4mM dNTPs, 1uM primers (Table S2), MgCl2 concentration specific to the primers and 0.01 

U Taq polymerase. Reaction condition were as follows: 94°C, 3mins; followed by cycles of 

94°C, 30 seconds (secs); gene-specific annealing temperature for 1min; 72°C, 1min; with final 

elongation at 72°C, 5mins. RT-qPCRs were performed using 1× LightCycler 480 SYBR Green 

I Master (Roche), 0.5 μM primers (Table S3) and 1μl cDNA. Reactions were run on the 

LightCycler 480 II (Roche), with an initial incubation step of 95°C, 10mins; followed by 50 

cycles of 95°C, 10secs; 60°C, 10secs and 72°C,10 secs. Expression was normalised to HPRT, 

and relative expression was determined using the ΔΔCT method. 

Array work was carried out essentially as previously described (Mackin et al., 2018; O’Neill 

et al., 2018): briefly, total RNA was extracted from each cell line growing in log phase in 

triplicate, including at least one biological replicate, and was assessed for integrity and quantity 

using a SpectroStar (BMG Labtech, Aylesbury, UK) and bioanalyser (Agilent Technologies, 

Cheadle, UK) prior to sending to Cambridge Analytical Services for linear amplification using 

the Illumina TotalPrep RNA Amplification Kit (Life Technologies/Thermofisher, Paisley, UK) 

followed by hybridization to the HumanHT-12 v4 Expression BeadChip. 

Bioinformatics and statistical analysis 

Output files in IDAT format were processed and bioinformatic analysis was carried out using 

the RnBeads (Assenov et al., 2014) methylation analysis package (v1.0.0) as previously 

described (Mackin et al., 2018). In order to map CpG sites showing highly reproducible 

changes (FDR < 0.05) against the locations of RefSeq genes on the UCSC genome browser 

(Karolchik et al., 2003) for each cell line, we employed a bespoke workflow termed CandiMeth 
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(Thursby, Irwin, Walsh, submitted) on the Galaxy platform (Giardine et al., 2005). 

Absolute β levels were used to measure median methylation across genes of interest using 

CandiMeth, with further statistical analyses in Statistical Package for the Social Sciences 

software (SPSS) version 22.0 (SPSS UK Ltd). 

Agilent arrays GSE93142 and GSE93135 from SuperSeries GSE93136 from (Cai et 

al., 2017) were processed using the R package GEOquery (2.46.15), annotation package 

hgug4112a.db (3.8) and annotation table for Agilent-014850 Whole Human Genome 

Microarray 4x44K G4112F (Probe Name version) from GEO to obtain log2 normalized fold 

changes (FC) per probe. Gene Ontology analysis through DAVID (Huang et al., 2009) was 

then computed using the top 500 genes with greater than 1.5 FC.  

Statistical analysis for pyrosequencing and RT-qPCR data using Student’s paired t-test 

employed Microsoft Excel (Microsoft Office Professional Plus 2016). Experiments were 

carried out at least in triplicate and included at least one biological replicate in all cases except 

Supp. Fig.1, one biological repeat only. Error bars on all graphs represent standard error of the 

mean (SEM), or in the case of HT12 array data, 95% confidence interval (CI), unless otherwise 

stated. Asterisks are used to represent probability scores as follows: *p < 0.05; **p < 0.01; 

***p < 0.001 or n.s. not significant.  

Protein analysis 

Cells growing in log phase were harvested for protein extraction using the protein extraction 

buffer (50 mM Tris–HCl, 150 mM NaCl, 1% Triton-X, 10% glycerol, 5 mM EDTA; all Sigma-

Aldrich) and 0.5 µl protease inhibitor mix (Sigma-Aldrich). Western blotting was carried out 

essentially as before (O’Neill et al., 2018): in brief, 30μg protein was denatured at 70°C in the 

presence of 5μl 4× LDS sample buffer and 2μl 10× reducing agent (Invitrogen) in a total 

volume of 20μl nuclease-free water (Qiagen). Proteins were separated by SDS-PAGE and 
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electroblotted onto a nitrocellulose membrane (Thermo-Fisher Scientific), then blocked in 5% 

non-fat milk for either 1h at RT or overnight at 4°C. Membranes were incubated with the 

primary antibody overnight (Table S4) overnight at 4 C, followed by HRP-conjugated 

secondary antibody incubation at RT using ECL (Thermo-Fisher Scientific). 

Generation of the UHRF1 PHD D334/E335AA mutant mice 

B6D2F1 female mice (5 weeks old) were super-ovulated by intraperitoneal injection of 

pregnant mare’s serum gonadotropin (PMSG, 5 IU). Mice were injected with human 

chorionic gonadotropin (hCG, 5 IU) 48h later and mated with B6D2F1 males overnight. 

Zygotes were collected from the oviducts of female mice at embryonic day (E) 0.5. The 

cumulus cells were removed by incubation in 1% hyaluronidase/M2 medium before washing 

with fresh M2 medium and recovery for 6h at 37°C in a 5% CO2 incubator. SpCas9 mRNA 

(100ng/μl), Uhrf1-crRNA (50ng/μl) and a 112-bp single-stranded oligodeoxynucleotide 

(ssODN, 10ng/μl) which was flanked by homologous arms corresponding to exon 7 of Uhrf1 

(see Table S8 for sequences) were mixed immediately before microinjection using a FemtoJet 

microinjector, set to Pc = 10-15 hPa, and Pi = 40-50 hPa. Successfully microinjected zygotes 

were incubated in KSOM at 37 °C in a 5% CO2 incubator for 72h until they reached the 

blastocyst stage and transferred into the uteri of pseudopregnant B6D2F1 females. To 

investigate CRISPR/Cas9-mediated mutation in the Uhrf1 gene, genomic DNA was prepared 

from 3wk-old mouse tails. The genomic regions flanking the gRNA target were amplified by 

PCR using specific primers (Supplementary Table X). The PCR amplicons were ligated into 

the pClone007 vector and sequenced. 
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Figure Legends 

Figure 1. Loss of DNA methylation in UHRF1-deficient human fibroblast cells indirectly 

triggered a viral defence response 

A) Schematic overview: normal fibroblasts (hTERT1604) were stably transfected with shRNA,

then single cells expanded and evaluated for genome-wide transcription (HT12) and 

methylation (450K) using microarrays: hits were verified using pyrosequencing and RT-qPCR. 

(B) Decreased UHRF1 mRNA levels in the index UH4 line from HT12 array and RT-qPCR;

error bars are 95% confidence interval and standard error of the mean, respectively, *** 

p<0.001. (C)Western blot showing levels of UHRF1 protein and GAPDH as a loading control 

(D) Boxplot showing median and inter-quartile range of DNA methylation (β) values across

all probes from the 450K array in parental (WT) and UHRF1-depleted (UH4) cells; difference 

between samples significant at p<2.2x10-16 (Kruskal-Wallis test). The same cell type depleted 

of DNMT1 (d16) from our previously published study are shown for comparison. (E) Number 

of probes on transcription (HT12) array showing greater than 2-fold changes at the indicated 

false discovery rate (FDR) values, comparing UHRF1- (UH4) and DNMT1-depleted (d16) 

cells  (F) Comparison of genes showing >10% (0.1 β) demethylation and those showing 

transcription changes >2-fold. Most upregulated genes are not demethylated, with exceptions 

being the cancer/testis antigens (CTA), some histones (HIST) and olfactory receptors (OR). 

(G) Gene Ontology (GO) analysis on genes showing the most transcriptional derepression

regardless of methylation. The top 10 categories from DAVID functional annotation clustering 

with enrichment scores are shown and are all related to an innate immune viral defense 

response. The x-axis represents group enrichment score, the geometric mean (in –log scale) of 

the p-values of the individual subcategories. IFN, interferon; MHC, major histocompatibility 

complex; different subclasses of CTA are shown in brackets.  
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Figure 2. Interferons and interferon-stimulated genes (ISG) involved in dsRNA detection 

were crucial to the cellular response to loss of UHRF1 

(A) Model for possible pathway triggering ISG response in UH4 based on GO analysis and

literature. Signalling from the dsRNA sensors would converge on the MAVS complex if 

dsRNA was detected, leading to release of transcription factors (TFs) which trigger 

upregulation of both interferons (IFN) and ISG. Many ISG are also part of the pathway, leading 

to positive feedback (dashed arrows). Signalling to other cells can also occur (dashed red 

arrows). Inhibition of the pathway using siRNA against MAVS and the STAT inhibitor RUX 

are indicated. (B) Average fold change (FC) versus WT cells (set to 1) for viral defence genes 

from HT12 transcription array. (C) Many components of the signalling pathway are 

upregulated on the transcriptional array: actual FC for IFI27 was 118. (D) Verification of 

selected array targets from different parts of the pathway using RT-qPCR. (E) An siRNA was 

used to knock down (KD) MAVS for the indicated period before assaying the named genes 

using RT-qPCR. (F) UH4 cells were treated with the JAK/STAT inhibitor RUX for the 

indicated time before carrying out RT-qPCR on the named targets. (G) Schematic (left) of 

experiment where media which had been exposed to UH4 cells was transferred to WT cells 

(WT+UH4 media), before assaying transcription by RT-qPCR (right).  (H) Exposure of WT 

cells to dsRNA (poly I:C), but not dsDNA, results in up-regulation of the same ISG as seen in 

UH4, measured here by RT-qPCR. Error bars in all experiments represent standard error of the 

mean (SEM); *p<0.05; **p<0.01, Student’s T-test.  

Figure 3. Transposable elements were demethylated and transcriptionally activated by 

depletion of UHRF1 

(A) WT and UH4 cells were stained with J2 monoclonal antibody (red), used for detection of

viral dsRNA; nuclei were counterstained with DAPI (blue). (B) Locations of primers used to 
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assay methylation (pyro) at the promoters and transcription (qPCR) relative to the transposable 

elements (TE) indicated. LTR, long terminal repeat; UTR, untranslated region; ORF, open 

reading frame. (C) RT-qPCR for the indicated HERV elements showing fold-change over WT. 

Asterisks as in Fig.1; n.s., not significant. (D) RT-qPCR for the LINE-1 retrotransposon 

elements indicated. (E) Percentage DNA methylation (% meth) at the promoters of the 

indicated retrotransposons was determined using pyroassay. (F) Methylation across individual 

CG dinucleotides in the pyroassays indicated in E. ***p<0.001, Student’s T-test. (G) 

Methylation values (β) at all probes overlapping HERV elements from the 450K array, 

difference significant at p<2.2x10-16 (Kruskal-Wallis test). (H) Methylation at the indicated 

retroviral elements using probes from the 450K array; LINE-1 difference significant at 

p<2.2x10-16 (Kruskal-Wallis test), others n.s. but with lower probe numbers. Error bars indicate 

SEM (C-F) or 95% confidence interval (G, H).  

Figure 4. Demethylation of TEs precedes reactivation and an interferon response in 

multiple cell types depleted of UHRF1 

(A) A “hit-and-run” strategy was employed to establish timing of events: indicated cell types 

were exposed to small interfering RNA (siRNA) targeting UHRF1, or a scrambled control 

(SCR), for 48hrs, then fresh medium without siRNA added and cells allow to recover before 

sampling. (B) RT-qPCR showing initial loss of UHRF1 is followed by recovery to above initial 

levels by 14 days (14D). Levels of transcript for a representative ERV (HERV-H) and ISG 

(IFI27) are shown. FC, fold-change; error bars and statistics as above. (C) Average methylation 

levels at representative TE as determined by pyroassay; error bars are SD. Methylation 

recovery by 21days, when transcription is already repressed, is still not significant. (D) 

Differences at the most highly-methylated individual CG sites for the LINE-1 assay compared 

to WT, error bars are SD; 7d vs 21d n.s. except CG2, p<0.05 (E) RT-qPCR analysis of SKMEL 

melanoma cells treated as in B. (F) GO analysis of genes showing transcriptional upregulation 
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in HCT116 colon cancer cells following 90% KD of UHRF1 (Cai et al, 2018). Enrichment 

scores etc as above. Cells were analysed 7days after adenoviral delivery of shRNA; raw data 

were obtained from GEO (GSE93136).  

Figure 5. Rescuing cells with UHRF1 could abrogate TE reactivation and interferon 

response without restoring DNA methylation 

(A) Schematic (top) showing rescue strategy: a plasmid containing a selectable marker and a

full-length UHRF1 cDNA lacking the 3’UTR targeted by the shRNA was transfected into UH4 

cells and resistant colonies expanded. Western blot (bottom) detected the presence of the full-

length FLAG-tagged UHRF1 in index daughter cell line WT10 (B) RT-qPCR of the indicated 

retrotransposons showing repression in the WT10 cell line derived from UH4 by introducing 

full-length cDNA; UH4 vs the original hTERT1604 (WT) is shown for comparison; error bars 

are SEM. (C) RT-qPCR showing repression of the ISG IFI27 in WT10 cells; error bars are not 

visible for WT10. (D) HT12 array results for WT10 confirm most ISG involved in the response 

pathway are down-regulated again with 1-2 exceptions (e.g. BST2, GTSF1).  (E) 450K analysis 

indicated in contrast that genome-wide methylation (β) levels were largely unchanged from the 

parental UH4 cells in the WT10 derivatives (F) Methylation across all HERV and all LINE-1 

elements assessed by 450K (G) Confirmation of array results using pyrosequencing; there was 

no significant gain in methylation in WT10 vs UH4 cells; error bars are SD.  

Figure 6. Knockdown cells cannot be rescued with UHRF1 proteins containing mutations 

known to affect H3K9me3 binding 

(A) Model showing possible differences between original WT cells and WT10 rescues, which

may retain another chromatin mark in the absence of DNA methylation; TE are known to have 

repressive H3K9me3 chromatin marks added by the SETDB1 enzyme. (B) Western blot 

showing levels of H3K9me3 are indeed largely unchanged in hTERT1604 (WT), the UHRF1 
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KD (UH4) and its rescue line (WT10); actin was used as a loading control (ACTB). Levels in 

HeLa and SETDB1 knockdown (KD) cells are shown as positive and negative controls, 

respectively. (C) Model of the paired PHD-TTD domain of UHRF1 interacting with H3K9me3, 

showing the location of point mutations in the PHD (D334, E335) and TTD (Y188) domains 

previously shown to affect H3K9me3 binding. (D) Schematic showing approach; UH4 cells 

were transfected with cDNA as before, but containing the point mutations, and colonies 

expanded. (E) Example western blot of rescued lines testing for FLAG-tagged proteins. (F) 

RT-qPCR for individual retrotransposons in the various rescued lines indicated; though 

variable, repression was generally seen in cells rescued with intact wild-type UHRF1 (WT10, 

WT18) but not in those containing point mutations in the PHD-TTD region (PHD1, PHD4, 

PHD10, TTD9); error bars represent SEM. (G) Rescuing UH4 cells with UHRF1 protein 

caused a shut-down of dsRNA production (WT18) as detected by J2 antibody (red), but not if 

the protein contained point mutations affecting H3K9me3 binding (PHD1); nuclei were 

counterstained with DAPI (blue). (H) ISG response to dsRNA is still seen in UH4 cells rescued 

with point-mutated UHRF1 (PHD1, PHD4, PHD10, TTD9), but not in cells rescued with intact 

protein (WT10, WT18).  

Figure 7. A conserved role for the PHD domain of UHRF1 in TE methylation and 

repression in mouse 

(A) Strategy used to generate mutant mice containing point mutations in the PHD domain.

Inter-strain hybrid zygotes were injected with: (i) a donor molecule for Homologous 

Recombination (HR) containing the mutations to match the D334A/E335A in human; (ii) a 

single-guide RNA for the targeted region in Uhrf1 and (iii)an mRNA for Cas9. Round 1(Rd.1) 

of injections gave no mice, so pregnant females from Rd.2 were sacrificed at e8.75 and e9.5 to 

examine embryos (see B). Further injections (Rd.3) resulted in a single heterozygous (HET) 

pup (#13), who was back-crossed once, then offspring inter-crossed (F1) to generate 
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homozygous (HOM) as well as heterozygous embryos. (B) Embryos from Rd.2 injections: at 

e8.75 homozygous mutant (-/-) mutants showed developmental delay (left); methylation 

differences by pyroassay at the 5’UTR of IAP elements did not reach significance (right) 

compared to WT (+/+). By e9.5 delay was more marked (left) and methylation differences 

significant (right). Heterozygotes were indistinguishable morphologically from WT at both 

e8.75 and e9.5 (e.g #1). (C) Overall methylation (% meth) at the IAP LTR is lower, as assessed 

by pyroassay, in homozygous mutant embryos derived by breeding as shown above from the 

HET founder in Rd.3; error bars represent SEM, n=number of embryos. (D) Methylation was 

significantly decreased across each CG site in the IAP LTR. (E) Methylation differences at 

LINE-1 elements and in IAP 5’UTR were also significantly decreased in mutants. (F) RT-qPCR 

of individual ERVs, though variable, showed significant derepression overall in homozygous 

mutant (HOM) embryos compared to WT or HET embryos. (G) Heat map showing differences 

in expression of the transposable elements (TE), ISG and IFN (indicated at top) across embryos 

of the genotypes shown at left. Individual embryos and genes are indicated at right and bottom, 

respectively. Uhrf1 mRNA levels are also indicated as a control.  
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Supplementary Materials 

Figure S1. Independent UHRF1 KD lines show similar phenotypes 

(A) RT-qPCR of UHRF1 mRNA levels in U5 and U10 cell lines independently derived from

hTERT1604 by integration of shRNA; error bars are SEM. (B) Western blot showing levels of 

UHRF1 protein in U5 and U10; the index cell line UH4 is shown for comparison; GAPDH is 

a loading control. (C) DNA methylation (β) levels from 450K array analysis of the three 

UHRF1 KD lines compared to WT; the DNMT1 KD line d16 is shown for reference. (D) RT-

qPCR showing derepression of the indicated ERV in all three lines; due to high variability not 

all differences reached significance. (E) Transcription of the indicated ISG genes was 

significant in all three lines.  
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Table S1: Pyrosequencing primers 

Human pyrosequencing primers 

Gene Primer Modification Oligo sequence (5’-3’) 

HERV-FC2 FW TTTGGTTTTTTTTGTTAGGATTAGTGA 

RV biotin AAATCTCCTCCCCAATTTTAACACCA 

SEQ TTTTTGTTAGGATTAGTGAATT 

HERV-H FW AGGGTTTGTGTGAGTAATAAAGTT 

RV biotin ACTCCTACCCCCCAAAAAACAAACT 

SEQ AGTTTTTAATTATTTGGGTGT 

LINE-1 FW GGGAGGAGTTAAGATGGT 

RV biotin ATAAACCCCATACCTCAA 

SEQ GGGAGGAGTTGGATGGT 

Mouse pyrosequencing primers 

Gene Primer Modification Oligo sequence (5’-3’) 

Iap 5-UTR FW GGGTTGTAGTTAATTAGGGAGTGATA 

RV biotin ACAATTAAATCCTTCTTAACAATCTACTT 

SEQ ATTTTGGTTTGTTGTGT 

Iap LTR FW biotin GGTTTTGGAATGAGGGATTTT 

RV CTCTACTCCATATACTCTACCTTC 

SEQ ATACTCTACCTTCCCC 

Line-1 FW GTAGAAGTATAGAGGGGTTGAGGTA 

RV biotin ACAATTCCCAAATAATACAAACTCT 

SEQ AGTATTTTGTGTGGGT 
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Table S2: RT-PCR primers 

Gene Primer Oligo sequence (5’-3’) 

ACT-B FW GGACTTCGAGCAAGAGATGG 

RV AGCACTGTGTTGGCGTACAG 

UHRF1 FW TGAGGACATGTGGGATGAGA 

RV GTCCCTGGAGTTCATCTGGA 
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Table S3: RT-qPCR primers 

Human RT-qPCR primers 

Gene Primer Oligo sequence (5’-3’) 

IFI27 FW TCTGTCCACCCTCTGCTTCT 

RV GGCATGGTTCTCTTCTCTGC 

OAS2 FW AGGAAGGTAGCGCATCTTGA 

RV CACCTCTGTCCGACTTGGTT 

STAT1 FW CCCACTCTGATCAACTTTTGC 

RV GGCCTGTTGAAGATGCTTGT 

ISG15 FW ACCTACGAGGTACGGCTGAC 

RV GGTGGAGGCCCTTAGCTC 

HERV-FC2 FW TTTCCCACCGCTGGTAATAG 

RV AGGCTAAGGATTCGGCTGAG 

HERV-H FW TTCACTCCATCCTTGGCTAT 

RV CGTCGAGTATCTACGAGCAAT 

HERV-W1 FW AAGAATCCCTAAGCCTAGCTGG 

RV GCCTAATTAGCATTTTAGTGAGCTC 

L1PBA FW CTTTGCAGACACTCCCCAGT 

RV GGTCTAGCCACCCAGCAG 

L1P1 FW TGCCCTAAAAGAGCTCCTGA 

RV TGTTTTTGCAGTGGCTGGTA 

UHRF1 FW TGAGGACATGTGGGATGAGA 

RV GTCCCTGGAGTTCATCTGGA 

HPRT FW AGCCCTGGCGTCGTGATTAGT 

RV CCCGTTGAGCACACAGAGGCCTA 

Mouse RT-qPCR primers 

Gapdh FW CAACTACATGGTCTACATGTTC 

RV CTCGCTCCTGGAAGATG 

IAPez-gag FW CACGCTCCGGTAGAATACTTACAAAT 

RV CCTGTCTAACTGCACCAAGGTAAAAT 

MusD FW GAATATGTCTAATACGCTAGCCTTTCC 

RV GTAATGTCTGCCCCTAGTATCTTGTT 

Ifn-alpha FW CTGCTGGCTGTGAGGACATA 

RV AGGAAGAGAGGGCTCTCCAG 
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ERV-K10C 
gag 

FW ATGTGAGCTAGCTGTTAAAGAAGGAC 

RV CTCTCTGTTTCTGACATACTTTCCTGT 

ERV-K10C FW CCAAATAGCCCTACCATATGTCAG 

RV GTATACTTTCTTCTTCAGGTCCAC 

ERV-L gag FW TTCTTCTAGACCTGTAACCAGACTCA 

RV TCCTTAGTAGTGTAGCGAATTTCCTC 

Line1-ORF2 FW GACATAGACTAACAAACTGGCTACACAAAC 

RV GGTAGTGTCTATCTTTTTCTCTGAGATGAG 

Ifi27 FW TAACTGGTCCTCATGGCGTT 

RV CCCCTTCGAACCAGCTAGAA 

Uhrf1 FW AAAACGCCCTGAGTTTTCGC 

RV CCGATGTACTCTCTCACGGC 

Isg15 FW AGCAATGGCCTGGGACCTAA 

RV  AGACCCAGACTGGAAAGGGT 

Ifit2 FW CTGGGGAAACTATGCTTGGGT 

RV ACTCTCTCGTTTTGGTTCTTGG 

Irf7 FW CCCATCTTCGACTTCAGCAC 

RV TGTAGTGTGGTGACCCTTGC 
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Table S4.  Antibodies 

Target Supplier Cat. 

number 

Raised 

in 

Clonality Dilution Size 

(kDa) 

Application 

Primary antibodies 

UHRF1 SC 373750 Mouse Mono 1:100 90 WB 

GAPDH CST 14C10 Rabbit Mono 1:10000 36 WB 

FLAG SA F1804 Mouse Mono 1:1000 120 WB 

dsRNA SCICONS 10010200 Mouse Mono 1:200 X IF 

Secondary antibodies 

AR-IgG SC sc-2004 Goat Poly 1:10000 X WB 

AM-IgG SA A9044 Rabbit Poly 1:5000 X WB 

AM-IgG Invitrogen A10036 Donkey Mono 1:1000 X IF 

SC (Santa Cruz Biotechnology); CST (Cell Signalling Technologies); SA (Sigma-Aldrich); Mono 

(monoclonal); Poly (polyclonal); kDa (Kilodaltons). 

Table S5.  shRNA 

Target Supplier Cat. number Mature antisense sequence Cell lines 

UHRF1 Dharmacon V3LHS_ 353720 TGACATTGCGCACCACCCT U prefix (U5, 

U10) 

UHRF1 Dharmacon V3LHS_413692 AACGTTATATCTTTCTTGG UH prefix 

(UH4, UH5) 

Table S6.  siRNA – ON-TARGETplus Human - SMARTpool 

Target Supplier Cat. number 

KAP1 Horizon Discovery L-005046-00-0005

SETDB1 Horizon Discovery L-020070-00-0005

UHRF1 Horizon Discovery L-006977-00-0005

MAVS Horizon Discovery L-024237-00-0005
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Table S7.  Pharmacological Inhibitors 

Target Supplier Cat. number 

Ruxolitinib 
 (INCB018424) 

Selleckchem S1378 

5-Aza-2′-deoxycytidine Sigma A3656 

Table S8.  Mouse CRISPR guide/oligo sequences 

Target Oligo sequence (5’-3’) FW Oligo sequence (5’-3’) RV 

sgRNA sequence 

UHRF1 

exon 3 

GTTGTGTGATGAGTGTGACA AAAAAAGCACCGACTCGGTG 

PHD mutant HDR oligo sequence 

UHRF1 

exon 7 

GTGCCTGCCATGTGTGTGGTGGGCGCGAGGCTCCTGAGAAACAGCTGTTGT

GTGCTGCGTGCGATATGGCCTTCCACCTGTACTGCCTGAAGCCACCGCTCA

CCTCTGTCCC 
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4.0 PAPER-III 
 
A Randomised controlled trial of folic acid intervention in pregnancy highlights a putative 

methylation-regulated control element at ZFP57 

Rachelle E. Irwin, Sara-Jayne Thursby, Miroslava Ondicova, Kristina Pentieva, Helene 
 

McNulty, Rebecca Richmond, Aoife Caffrey, Diane J. Lees-Murdock, Marian McLaughlin, 

Tony Cassidy, Matthew Suderman, Caroline L. Relton and Colum P. Walsh 

The aims of this paper were to: 
 

- Assess the effects on the DNA methylation of the offspring of mothers of the FASSTT 

trial 

- Elucidate whether there are any gene class specific effects from this RCT 
 

- Investigate whether the results obtained align with those of observational studies 

into folic acid supplementation throughout all of gestation 

 
 
 
CONTRIBUTION 

For this paper, I independently conducted EPIC array analysis of the data in RnBeads and Limma, 

conducted tissue type correction and SVA analysis and carried these alterations through to 

differential analysis. I made absolute beta and delta beta tracks for UCSC genome browser from the 

results of the array. I computed the Manhattan plot of the suspected fDMR upstream of ZFP57 and 

assessed the methylation of selected imprints in placebo and treatment groups using the updated 

Galaxy pipeline, now being called CandiMeth. I also generated a QQ plot with the EPIC array data 

from this study to test for population stratification effects and compared and computed comparison 

statistics of our results to that of the AFAST trial in Aberdeen. 
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RESEARCH Open Access 

Abstract 

Background: Maternal blood folate concentrations during pregnancy have been previously linked with DNA 
methylation patterns, but this has been done predominantly through observational studies. We showed recently in  
an epigenetic analysis of the first randomized controlled trial (RCT) of folic acid supplementation specifically in the 
second and third trimesters (the EpiFASSTT trial) that methylation at some imprinted genes was altered in cord 
blood samples in response to treatment. Here, we report on epigenome-wide screening using the Illumina EPIC 
array (~ 850,000 sites) in these same samples (n = 86). 
Results: The top-ranked differentially methylated promoter region (DMR) showed a gain in methylation with folic 
acid (FA) and was located upstream of the imprint regulator ZFP57. Differences in methylation in cord blood 
between placebo and folic acid treatment groups at this DMR were verified using pyrosequencing. The DMR also 
gains methylation in maternal blood in response to FA supplementation. We also found evidence of differential 
methylation at this region in an independent RCT cohort, the AFAST trial. By altering methylation at this region in 
two model systems in vitro, we further demonstrated that it was associated with ZFP57 transcription levels. 
Conclusions: These results strengthen the link between folic acid supplementation during later pregnancy and 
epigenetic  changes and identify a novel mechanism for regulation of ZFP57. This trial was registered 15 May 2013  
at www.isrctn.com as ISRCTN19917787. 
Keywords: Folic acid, DNA methylation, Cord blood, Offspring, Imprinting, ZFP57 

Irwin et al. Clinical Epigenetics (2019) 11:31 
https://doi.org/10.1186/s13148-019-0618-0 

A randomized controlled trial of folic acid 
intervention in pregnancy highlights a 
putative methylation-regulated control 
element at ZFP57 
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Background 
Folate is an essential B vitamin required for viable embry- 
onic and fetal development and as an important dietary 
constituent throughout life, fundamental in cellular biosyn- 
thesis and DNA methylation pathways [1, 2]. Folic  acid 
(FA) is the oxidized, and more stable, synthetic form of fol- 
ate which is exclusively found in supplements and fortified 
foods [3]. Well-established evidence from randomized 

controlled trials [4, 5] has led to recommendations, in place 
globally, that women should consume 400 μg/d FA from 
prior to conception until the end of the first trimester  in 
order to protect against neural tube defects (NTDs) [6, 7]. 
Despite the identification of a relationship between mater- 
nal folate status and NTDs as early as 40 years ago, infor- 
mation on the mechanism behind the benefit of FA 
supplementation with respect to NTDs remains to be fully 
elucidated (reviewed in [8]), as does the relationship of FA, 
NTDs, and DNA methylation [9]. There is however little 
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dispute in regards to the protective effect of folic acid sup- 
plementation before and in early pregnancy, which was 
proven in clinical trials to reduce NTDs by approximately 
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70% [10]. Furthermore, there remains a lack of evidence as 
to whether it is beneficial to mother and/or child to con- 
tinue this supplementation throughout the entire preg- 
nancy [11, 12]. FA supplementation during pregnancy has 
been associated with health benefits such as reduced risk of 
low birth weight [13], language delay [14], autism [15] and 
reduced risk of psychosis and other pediatric problems [16, 
17]. In addition, observational studies have indicated that 
FA supplement use by mothers during pregnancy is associ- 
ated with better cognitive health and brain development in 
the child [14, 18, 19], possibly related to the fact that there 
is a brain growth spurt at the end of the second trimester 
[20, 21]. However, there may also be potential adverse ef- 
fects from excess folate in later pregnancy, an aspect which 
would also benefit from further exploration [12]. 

At a molecular level, there is some evidence in human  
that epigenetic changes could be the mechanism underpin- 
ning some of the effects of folate,  both in the first  trimester 
[8] in the prevention of NTDs, and also in the second and
third trimester, as reviewed elsewhere [2]. Folate is essential
for the production of S-adenosylmethionine (SAM), which
provides the methyl group to the DNA methyltransferases
(DNMTs), which carry out DNA methylation. DNA methy- 
lation is an essential means of maintaining transcriptional
silencing at many different classes of genes when it occurs
at promoter and enhancer elements, including endogenous
retroviruses,  genes  on the  inactive  X,  and imprinted genes
[22] but can also facilitate transcription when occurring in
the gene body [23–25]. DNA methylation is vital for em- 
bryonic survival and development, as mice carrying
mutations in the DNA  methyltransferases  die  in  utero
or shortly after birth [26, 27]. Some DNA methylation
marks are inherited from the parents in the form of dif- 
ferential methylation on the paternal or maternal copy.
This includes both the  canonical imprinted loci, as well
as some germline and neuronal genes [25, 28, 29], at all
of which methylation plays a direct role in controlling
transcription. Both animal and human studies have in- 
dicated that the fetal epigenome is vulnerable to envir- 
onmental exposures, such as methyl group availability
from the maternal diet [30–36].

Imprinted genes are a paradigm for the transmission of 
epigenetic information across generations. Methylation 
differences between the paternal and maternal copies of 
imprinted genes are established in the germ cells and are 
known to be important for transcriptional regulation. Ac- 
cordingly, inappropriate loss or gain of methylation at im- 
print control regions (ICR) is a diagnostic feature for 
several human disorders. These regions are protected 
from the wave of demethylation which occurs prior to im- 
plantation by several factors, such as PGC7/STELLA [37] 
and ZFP57, a Krueppel-associated box (KRAB) domain 
zinc finger protein [38, 39]. Several studies to date have 
centered on analyzing the effects of nutrition in particular 

on imprinted genes [31–33, 40] and have shown that not 
only can altered diet result in an altered epigenotype, but 
it can also affect phenotype and predisposition to child- 
hood and adulthood disease [41]. 

We have previously reported data from a  random- 
ized controlled trial of Folic Acid Supplementation in 
the Second and Third Trimester (The FASSTT Trial; 
ISRCTN19917787) where we found supplementation 
led to significant protection against folate depletion in 
mothers and offspring [42] and more recently that this 
led to differences in DNA methylation at some 
imprinted loci by using a candidate gene  approach  
[43]. Here, we used the Infinium Methylation EPIC 
Beadchip Array to profile genome-wide DNA methyla- 
tion levels in cord blood in an unbiased screen for re- 
gions susceptible to DNA methylation changes in 
response to altered FA levels. We report here that the  
top candidate region affected is a differentially methyl- 
ated region (DMR) upstream of the gene encoding 
ZFP57. We verified our finding using pyrosequencing in 
cord blood and  also  show  that  the region responds to 
FA supplementation in maternal blood. Addition-  ally, 
we confirm that altering methylation results in changes 
in ZFP57 transcription. 

Results 
Maternal FA supplementation significantly improves 
folate status in mother and baby 
For the current analysis, the same 86 cord blood samples 
from the FASSTT trial (outlined in Fig. 1) which had been 
analyzed previously for candidate gene methylation [43] 
were used: a summary of the most pertinent characteris- 
tics are given in Table 1 for convenience. At baseline (ges- 
tational week 14 (GW14)), there were no detectable 
differences between the treatment and placebo groups in 
maternal characteristics, dietary folate intakes, serum or 
red blood cell (RBC) folate concentrations, or in MTHFR 
status, as expected following randomization. There were 
also no significant differences in neonatal characteristics 
such as weight, length, and head circumference(Table 1). 
However, as a result of treatment with FA during tri- 
mesters 2 and 3, maternal serum and RBC folate be- 
came significantly different between placebo and 
treated group, as previously reported from  this  trial. 
The normal decline in maternal folate biomarkers pre- 
viously reported from observational studies during 
pregnancy is mirrored in the placebo group where 
serum folate decreased from 48.8 to 23.6 nmol/L be- 
tween GW14 and GW36 (Table 1). FA supplementa- 
tion served to protect the mothers in the treatment 
group, where folate concentrations remained stable  
over the course of pregnancy (i.e., serum folate 45.8 
nmol/L at GW14 and 46.5 nmol/L at GW36). Cord 
serum and RBC folate concentrations were also 
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Fig. 1 FASSTT study outline for samples used in this study. Eligible pregnant women (n = 226) were randomized into two groups: placebo (n = 
94) and folic acid (n = 96). Women withdrew (n = 25) or were excluded from the intervention for the reasons indicated. A total of 119 women
completed the trial. Blood samples were taken at gestational weeks (GW) 14 (pre-intervention) and 36 (post-intervention). Cord 
blood samples (n= 86) were taken at birth 
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significantly higher in infants of the mothers supple- 
mented with FA compared with those from the  pla- 
cebo mothers (Table 1). RBC folate concentrations in 
mothers and offspring were strongly correlated (r = 0.619; 
p = < 0.001, Additional file 1: Figure S1). 

Widespread alterations to DNA methylation levels in cord 
blood in response to late gestation maternal FA 
supplementation 
DNA was purified from cord blood and  quantified  
prior to bisulfite conversion and hybridization to the 
Infinium Methylation EPIC Beadchip Array, which 
covers more than 850,000 CpG sites distributed across 
the genome. Methylation values are expressed as a 
decimal value β between 0.0 (no methylation) and 1.0 

(fully methylated). Data were analyzed and visualized 
using the RnBeads package in RStudio (see methods 
section). As a control, a quantile-quantile (QQ) plot of 
observed versus expected chi-squared values was gen- 
erated and showed no evidence of population sub- 
structure  effects  (Additional  file  2: Figure  S2). 
Figure 2a is a scatterplot showing mean β value  for 
each CpG site analyzed in treated versus placebo sam- 
ples. Overall, methylation at individual CpG remains 
closely correlated (ρ = 0.998) between the two groups  
as expected, with most sites falling along the diagonal. 
Sites which differed in methylation between placebo 
and treatment groups were automatically ranked by 
RnBeads, which uses a combination of the change in 
mean methylation, the quotient of mean methylation 
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Table 1 General characteristics of participants from the EpiFASSTT trial 
Characteristic Placebo (n=45) Folic acid (n=41) P value 

N = 45 N = 41 
Mean SD Mean SD 

Maternal characteristics (GW14) 

Age (years) 28.9 3.5 29.4 3.9 0.513 

BMI (kg/m2) 25.2 3.9 24.9 4.6 0.768 

Smoker n (%) 8 (18) 6 (15) 0.693 

Alcohol n (%) 3 (7) 1 (2) 0.618 

Parity (n) 1 (1.1) 1 (1.0) 0.915 

MTHFR 677TT genotype n (%) 5 (11) 2 (5) 0.291 

Dietary intakes 

Energy (MJ/d) 8.170 1.717 7.732 1.595 0.280 

Dietary folate equivalents (μg/d) 364 172 387 152 0.582 

Vitamin B12 (μg/d) 4.1 1.9 3.9 1.8 0.791 

Neonatal characteristics 

Gestational age (weeks) 40.1 1.3 40.0 1.1 0.540 

Sex, male n (%) 22 (49) 22 (54) 0.659 

Birth weight (g) 3610 475 3557 465 0.601 

Birth length (cm) 51.5 2.6 51.1 2.2 0.499 

Head circumference (cm) 34.9 1.2 34.8 1.4 0.907 

Apgar score at 5 min 8.4 0.4 9.0 0.3 0.220 

Caesarian n (%) 11 (24) 10 (24) 0.995 
B-vitamin biomarkers 

Maternal pre-intervention (GW14)

Serum folate (nmol/L) 48.8 19.8 45.8 19.5 0.469 

RBC folate (nmol/L) 1185 765 1181 649 0.978 
Serum B12 (pmol/L) 224 79 217 79 0.601 

Maternal post-intervention (GW36) 

Serum folate (nmol/L) 23.6 17.9 46.5 24.8 < 0.001* 

RBC folate (nmol/L) 991 404 1556 658 < 0.001* 

Serum B12 (pmol/L) 168 51 157 60 0.229 

Cord blood 

Serum folate (nmol/L) 68.3 24.8 91.7 36.7 0.004* 

RBC folate (nmol/L) 1518 597 1877 701 0.024* 

Serum B12 (pmol/L) 276 155 251 107 0.776 
Statistical comparisons by independent t test (continuous variables) or χ2 test (categorical variables) 
GW gestational week, BMI body mass index, RBC red blood cell 
*p < 0.05

and the combined p value, and the 1000 top-ranking 
sites are highlighted in red in Fig. 2a. This metric was 
developed to take into account not only p value but the 
magnitude of the change in methylation and in our experi- 
ence is a more reliable indicator of biologically meaningful 
differences than p value alone. Sites falling along either side 
of the diagonal, representing gains and losses in methyla- 
tion after treatment, can both be seen, with a tendency to 
greater numbers of sites losing. Consistent with this, a 

methylation density distribution plot shows that after treat- 
ment there was a clear decrease in the numbers of sites in 
the top quartile for methylation (β = 0.75–1.00; Fig. 2b). 
Taking the top 1000 ranking sites overall, approxi- 
mately 2/3 (n = 658) lost and 1/3 (n = 342) gained 
methylation (Fig.  2c).  However,  the  magnitude  of 
these changes was generally modest, with  only  302  
(193 + 109) losing or gaining more than 5%  methyla- 
tion, the minimum change which we could potentially 
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Fig. 2 Widespread alterations to DNA methylation levels in cord 
blood in response to late gestation maternal folic acid 
supplementation. a Scatterplot comparing mean methylation levels  
(β values 1 = 100%; 0 = 0% methylation) at individual probes in 
placebo and treated groups. The 1000 top-ranking sites between 
groups are highlighted in red: ρ = correlation value. b Probe 
methylation density plot comparing the distributions of methylation 
values per sample group. In the treatment group, there is a decrease 
in the number of fully methylated sites (β > 0.75). c Split in top 1000 
ranking sites losing or gaining methylation overall. Also shown are 
numbers of sites showing changes greater than 5% or 10%. d Top 5 
differentially methylated sites overall, sorted by combined rank, the 
value being computed as the maximum (i.e., worst) value among   
the mean quotient log, mean difference in methylation and p value 
(P). No., number; Chr, chromosome; Position, coordinates in hg19 
human genome release; CG probe, identity number of the 
CpG probe on the EPIC array; % change, difference in mean β value 
expressed as %; Gene, nearest gene; P, probability (uncorrected); 
Rank, RnBeads computed ranking value (lowest being best) 
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verify using pyrosequencing, and  only  76  sites  losing 
or gaining more than 10% (Fig. 2c). 

We examined the top-ranking sites as identified by 
RnBeads (Fig. 2d): of these, the CpG site in the ATP11A 
gene contained a single nucleotide polymorphism (SNP) 
missed by the quality control routines; the same was true 
of the CpG at the MAGI2 gene. The presence of the SNPs 
at these CpGs leads to the erroneous appearance of a 
change in methylation, so these were discounted. Two of 
the other top-ranked sites were at the PRKAR1B locus, 
which encodes a regulatory subunit of cyclic AMP- 
dependent protein kinase A, and one was at NXN, a mem- 
ber of the thioredoxin superfamily; however, all three were 
listed as located in the respective gene body and so are 
less likely to contribute to transcriptional control. Never- 
theless, to verify these, we used a second method utilizing 
commercial pyrosequencing methylation assays (pyroas- 
says) designed to query the same CpGs. These reported 
smaller average differences in methylation between treated 
and placebo groups than seen with the array of 6.6% for 
cg08104960 at NXN, and 4.2% (cg06242242) and 2.2% for 
(cg05729249) for the sites at PRKAR1B: only the site at 
NXN was significant (p = 0.002, t test). 

Identification and verification of a differentially 
methylated region upstream of ZFP57 
Given that single sites are more susceptible to con- 
founders such as the presence of SNPs and show only 
moderate accuracy on verification, and to maximize our 
chances of finding biologically significant changes, we 
also looked for genomic intervals showing coherent al- 
terations in methylation across  multiple  neighboring 
sites [44], rather than isolated CpGs. Figure 3a lists the 
top 5 differentially methylated regions (DMR) found at 
promoters, ordered by RnBeads ranking which is here 
computed by combining measures at adjacent sites 
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Fig. 3 Top ranking promoter regions included imprint regulator gene ZFP57. a Top 5 differentially methylated regions (DMR) at promoters, sorted 
by combined RnBeads rank (smallest to largest) as for Fig. 2d above, except combining values across all the CpG sites in the DMR as detailed in 
the “Methods” section. Abbreviations as above except # probes, number of probes on EPIC array included in DMR. b Top: genome browser tracks 
showing the region around the DMR upstream of ZFP57, genomic coordinates in hg19 human genome release, and scale as shown. EPIC array 
probes showing differential methylation (blue, gain; red, loss) are indicated, with size indicating the magnitude of change. The start of the ZFP57 
gene and the position of the pyrosequencing assay (Pyro) are also shown. Δβ, mean difference in β value between placebo and FA-treated 
groups; maximum gain and loss also shown (+ 0.09 β = 9% methylation). Bottom: Loess plot of β values across the region, with CpG identification 
numbers from array below; those forming the DMR defined by RnBeads are indicated, as well as sites analyzed by pyroassay. Each dot represents 
β value in an individual sample, with lines representing smoothed averages; color code is indicated at left. c Results of pyroassay covering the six 
sites indicated in b. Sample groups: cord blood DNA from placebo (n = 45) and FA-treated (n = 41). Mean, average of the individual means in that 
group; Max., largest of the mean methylation values in that group; Min, lowest mean in group; SD, standard deviation for the means; Change, 
difference in % methylation seen between groups; P, probability (Student’s t test) 
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using a linear hierarchical model as described in the 
“Methods” section: uncorrected p  value  and  %  change 
in methylation are also shown for  comparison.  For the 
top 5 regions, ZFP57 was of particular interest and is dealt 
with below. Two others (CES1, a liver carboxylesterase, and 
ANKRD20A11P, a pseudogene) showed less than 5% 
change in methylation and so could not be verified: 
DUSP22 which has a larger change is also a pseudogene. 
The last DMR is located at a microRNA cluster 
MIR4520A/B and loses approximately 7.22% overall in the 
treatment group, averaged over a number of well-spaced 
CpG. Due to pyrosequencing assay design constraints, we 
could only cover one site (cg08750459) from the array at 

this locus but that site showed  reasonable  concordance  
(loss of 12.24% (p = 0.008) in array and 9.45% (p = 0.006) by 
pyroassay). The function of these microRNAs remains ob- 
scure however. 

Of more interest in the context of this cohort was the 
highest ranking promoter DMR identified  using 
RnBeads [45], which was located on chromosome 6, the 
closest gene being the known regulator of genomic im- 
printing ZFP57. The identified DMR consisted of 15  
CpG sites and mapped approximately 3 kb upstream of 
the first exon of the gene, a region containing  add-  
itional adjacent sites also gaining methylation. Figure 3b 
shows a genomic map of the first exon of ZFP57 and 
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the upstream region, overlaid with a track showing the 
locations of EPIC probes and whether  they  gained  or 
lost methylation. Also shown is a graph of averaged 
methylation values at the numbered CpG  probes  from 
the array in placebo and treatment groups, showing  a 
clear difference in methylation extending beyond the 
DMR. To confirm these results using a second method, 
we designed a pyrosequencing methylation assay (pyr- 
oassay) to cover some of these CpG sites, as shown in 
Fig. 3b. Due to the CpG density of this region, thus dif- 
ficulty in pyrosequencing primer design, our pyroassay   
is not directly overlapping all CpGs identified by 
RnBeads as the DMR but is inside the area showing 
methylation differences. We then carried out PCR and 
pyrosequencing for all the samples. The overall gain in 
methylation at the CpGs covered by the pyroassay (n = 
6) was very similar in magnitude and direction to that
seen over the neighboring CpG by the array (+ 5.44% vs
+ 6.23%, respectively—Fig. 3a, c).

Demethylation of the upstream region was accompanied 
by increased ZFP57 transcription 
Having established that methylation differences at the up- 
stream DMR are evident between FA-supplemented and 
placebo-treated controls, we wished to test  mechanistically 
if such differences could impact on transcription from the 
downstream gene. To do this, we first used a well-estab- 
lished model, the paired colorectal cancer lines  HCT116 
and its derivative HCT116 DKO (double knockout), which 
carries mutations in two of the methyltransferase genes 
DNMT1 and DNMT3B and is known to be hypomethy- 
lated at many loci [46]. Methylation array data available in-
house showed differential methylation between the par- ental 
or wild type HCT116 (WT) and paired DKO cells at the 
same region upstream of ZFP57 found in the FASSTT 
cohort, indicated by red colored bars whose height is pro- 
portional to the loss of methylation (Fig. 4a); this indicates 
that DNMT1 and DNMT3B are  required  for methylation  
at this locus. We confirmed these results using our pyr- 
oassay, which showed > 80% methylation in WT 
HCT116 cells and a drop to < 20% in DKO cells (p 
= < 0.001) (Fig. 4b). 

To determine if methylation at this  upstream  region 
can regulate transcription at the ZFP57 gene 3 kb down- 
stream, we designed primers to cover part of the tran- 
script as shown in Fig. 5a (FW/RV) and carried out 
reverse transcription on mRNA from the cells followed 
by polymerase chain reaction (RT-PCR). While minimal 
transcript could be detected in the HCT116 WT cells, 
which are heavily methylated, signal was readily apparent 
in the demethylated DKO cells (Fig. 4c). We confirmed 
this expression pattern quantitatively using RT-qPCR 
(Fig. 4d). While these results show that the gene can be 
de-repressed in response to loss of methylation, it is 

normally not expressed in colon cells, from which 
HCT116 were derived, so we used  the  neuroblastoma 
cell line SH-SY5Y to test the effect of methylation 
changes on transcription in a neural cell type. ZFP57 is 
normally transcribed in neural tissue as well as early 
embryo [47], but shows some methylation in the SH-
SY5Y cells, which may be due to differences among 
neural cell types, or reflect accumulation of methylation 
during culture; however, these cells are likelier than 
HCT116 to  contain  neural-specific   transcription 
factors. Here, we used a second method to perturb 
methylation, namely treatment with the DNA methyl- 
transferase  inhibitor  5′aza-2′deoxycytidine  (5-aza-dC). 
Exposure of the cells to this small molecule inhibitor 
caused loss  of  methylation  at  the  upstream  region 
(Fig. 4e). RT-PCR confirmed that ZFP57 was de-
repressed upon treatment with 5-aza-dC (Fig. 4f). 
Quantification of mRNA levels with RT-qPCR again in- 
dicated a substantial increase in transcription from the 
gene in response to loss of methylation (Fig. 4g). 

Greater variability at imprinted DMR in folate-treated 
samples 
These results suggest that the  increased  methylation 
seen at the ZFP57 upstream region will lead to de- 
creased transcription. Since ZFP57 plays a role in main- 
taining methylation specifically at imprinted genes, we 
examined methylation levels at these regions using data 
from the EPIC array. We used germline differentially 
methylated regions as defined by [48] and assessed 
average methylation across all probes which fell within 
these intervals. We excluded DMR which were flagged 
as acquiring methylation differences somatically and  
also germline DMR where methylation as  assessed  by 
the array fell outside the 35–65% methylation range de- 
fined as normal in that study. This left 15 imprinted 
germline DMR for which the median methylation level 
fell within the normal range in the placebo group 
(Additional file 3: Figure S3A). Comparing the samples 
from the folate supplemented group,  only  the  
maternally imprinted neuronatin  gene  (NNAT)  showed 
a small but significant loss of methylation in the 
treatment group (p = 0.022, Mann-Whitney U test 
(MWU)) but there was no significant difference be- 
tween placebo and treatment for any other DMR. How- 
ever, it was notable that 11/15 DMR showed a 
significantly greater variability in methylation in treated 
participants (p = < 0.001, chi-squared  test),  which  can 
be seen from the greater interquartile range (IQR—see 
Additional file 3: Figure S3A). Along with this greater 
variability in the treatment group, the median methy- 
lation levels  trended  lower  than  the placebo  group  
for almost all imprinted genes (Additional  file  3: 
Figure S3A). We repeated this analysis using 
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Fig. 4 ZFP57 upstream region is a methylation-dependent regulator of transcription at this locus. a Schematic as in Fig. 3 above but showing 
difference in methylation (Δβ) between HCT116 WT cells vs HCT116 DKO cells. The intron/exon structure and positions of the forward (FW) and 
reverse (RV) primers for RT-(q)PCR on the ZFP57 gene are also shown. b Methylation levels at individual CpG covered by the pyrosequencing assay in 
WT (HCT116) and knockout (DKO) cells. Values are shown as mean +/− SD for each site: *p < 0.05; **p < 0.01; ***p < 0.001. c RT-PCR showing 
upregulation using the primers indicated in a, key as above. CTRL, positive control (human reference total RNA); NTC, negative control (no template 
control); 100 bp, size standards ladder; ACTB, β-actin loading control. d Confirmation of upregulation by RT-qPCR using the same primers, values 
normalized to HPRT; FC, fold change. e Methylation levels using pyroassay as in B but in 5-aza-dC treated SH-SY5Y cells (5-aza-dC), as compared to 
untreated (UT). f RT-PCR for 5-aza-dC treated cells from e. g RT-qPCR confirmation of ZFP57 upregulation in 5-aza-dC-treated SH-SY5Y cells 
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imprinted DMR as  defined  by  Court  et  al.  [49], 
which defines slightly larger DMR based on an  ana- 
lysis of Illumina 450 K data. After applying similar 
criteria as above, this left 14 DMR suitable for com- 
parison. Using these genomic intervals, again, only 
NNAT showed a significantly different level of methy- 
lation in treated samples (p = 0.022, MWU;  Add- 
itional file 3: Figure S3B), although PLAG1 was also 
close to significant (p = 0.072, MWU). Again, the IQR 
for the imprints showed greater variability  in  the 
treated than placebo groups (p < 0.001,  chi-squared  
test) and medians tended to  be  lower  in  the  FA-
treated group (Additional file 3: Figure S3B). 

Increased ZPF57 methylation in response to FA in 
maternal blood samples 
In order to investigate the effects of FA in maternal tis- 
sue, and to elucidate if this differentially methylated re- 
gion upstream of ZFP57 was directly responsive, we 
carried out pyrosequencing on matched maternal buffy 
coat samples at GW14 (n = 24) and GW36 (n= 24) (i.e., 

comparing the same mother’s blood sample taken  be-  
fore and after intervention). Pyrosequencing analysis 
confirmed that FA-supplemented  mothers  show  a 
5.51% increase in DNA methylation levels at this DMR 
after late gestation supplementation (p = 0.609), in con- 
trast to non-supplemented mothers, whose methylation 
levels decreased 1.51% at GW36 (p= 0.826) (Table 2). 

Effect of FA at the ZFP57 DMR in a second cohort 
In order to test the generality of the effect of folic acid 
intervention on this genomic region, we examined data 
from a second randomized-controlled trial. The Aber- 
deen Folic Acid Supplementation Trial (AFAST) was an 
RCT using two doses of folic acid (0.2 and 5 mg/day vs 
placebo) during  pregnancy,  with  intervention  starting 
at antenatal booking at < 30 weeks gestational age [50]. 
The study was conducted in the late 1960s, and re-  
cently, Richmond and colleagues [35]  followed  up  on 
the offspring born to the mothers who had participated  
in the trial, mean present age of 47 years. Saliva samples 
were collected from those who could be identified and 
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Fig. 5 Comparison of AFAST and EpiFASSTT data for the DMR. a Effect size (Cohen’s d) at each CpG in the ZFP57 DMR was calculated by 
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consented, with subsequent 450 k array analysis con- 
ducted using modeling approaches to correct  for  hid-  
den variables such as cell counts [35].  Examination  of 
the CpG in the ZFP57 DMR which we had identified in 
the EpiFASSTT cohort showed the same trends in the 
AFAST high-folate  cohort versus placebo, with change 
in a positive direction across the whole region (Fig. 5a), 
although effect size was lower at each  site  in  the 
AFAST study (Fig. 5b). 

Discussion 
We have previously reported DNA methylation differ- 
ences at imprinted loci using cord blood from the Epi- 
FASSTT trial of folic acid (FA) supplementation in later 
pregnancy by using a candidate gene approach. Here, we 
used the same samples to carry out an unbiased 

genome-wide screen for methylation differences using the 
EPIC array. The top hit was a differentially methylated re- 
gion upstream of the imprint controller ZFP57, and we 
separately verified methylation differences by pyroassay. 
This region responded to FA supplementation in maternal 
blood as well as in cord blood and showed differences be- 
tween FA-treated and untreated in an independent cohort 
[50]. Altered methylation at ZFP57 was associated with in- 
creased variation in methylation at imprinted loci in cord 
blood. We also showed using two separate cell line models 
that altering methylation at the ZFP57 upstream region 
can affect transcription, indicating a potential feedback 
mechanism may be operating here. We were also able to 
identify and verify methylation changes at a number of 
other individual CpG sites including some in the gene 
bodies of the NXN and PRKAR1B genes and at the start 

Page 211 of 356



Irwin et al. Clinical Epigenetics (2019) 11:31 Page 10 of 16 

Table 2 ZFP57 methylation in maternal blood pre- and post-intervention. DNA methylation levels of ZFP57 DMR in maternal blood 
samples at GW14 and GW36. 
Sample group Gestational week (GW) Mean methylation (%) Standard deviation (SD) Change in methylation (%) p values 
Treatment GW14 57.47 15.37 + 5.51 0.609 
(n = 24) GW36 62.98 14.94 
Placebo GW14 64.36 6.58 −1.51 0.826 
(n = 24) GW36 62.85 7.13 
GW gestational week, SD standard deviation 

of the MIR4520A/B gene, but these were less likely to 
have functional consequences. It is notable also that we 
found more decreases  in  methylation  genome-wide 
than increases, which may seem counter-intuitive; how- 
ever, we and others have  reported  similar  response  to 
FA previously [43, 51]. It is has been suggested that FA 
may cause feedback inhibition by altering the SAM to 
SAH ratio and therefore the intracellular methylation 
potential [52]. 

Uncovering a DMR at a region controlling ZFP57 tran- 
scription as the top hit in an unbiased screen was particu- 
larly striking in the EpiFASSTT randomized controlled 
trial, where we have already shown, using a candidate gene 
approach, that methylation levels were perturbed at some 
imprinted loci. The primary importance of ZFP57, as de- 
scribed in the literature from mechanistic work, is in 
maintaining imprinting, and it is currently the only pro- 
tein known to be dedicated solely or largely to this epigen- 
etic process [53]. ZFP57 was discovered as a maternal- 
zygotic effect gene which was required in mice for es- 
tablishing methylation at some imprints in the  oocyte, 
and for maintaining all imprints, both maternal and pa- 
ternal, in the preimplantation embryo [38]. It does this   
by binding to a conserved hexamer consensus sequence 
(5′-TGCme5CGC-3) found at all imprinting control re- 
gions (ICRs) [54, 55], recognizing the  methylated CpG  
in this motif, as shown in a crystallographic study [56]. 
Deletion of mouse Zfp57 causes a loss of methylation 
from the modified parental allele by mid-gestation, with 
subsequent dysregulation of transcription at imprinted 
loci and embryonic lethality [55]. Importantly, muta- 
tions in the human homolog ZFP57 are also associated 
with hypomethylation of multiple imprinted loci, indi- 
cating a conserved role in human for this gene in main- 
taining imprints [39]. 

Although this is the first report, to our knowledge, from a 
randomized controlled trial of FA intervention which impli- 
cates methylation changes at ZFP57, it was previously re- 
ported from a small observational study (n = 23) that 
maternal folate concentrations in the third trimester were 
associated with changes at a DMR at the same genomic lo- 
cation [51] when cord blood DNA methylation levels at 
birth were profiled. While that study reported a loss rather 
than gain of methylation, it was not an RCT but an 

observational study, and so could not test the effects of fol- 
ate supplementation directly in a controlled fashion: there 
were many other differences in study design, numbers of 
participants, and analysis methods. It should also be noted 
that the high folate group in that study had levels of serum 
folate almost twice those seen in our treated samples (74.59 
+/− 6.1 nmol/L Amarasekera et al. vs 46.5 +/− 19.5 nmol/L 
GW36 treated group in this study), highlighting that we are 
protecting normal folate levels rather than elevating them. 
Although the largest-to-date observational study, com- 
prising a meta-analysis of the MoBa (n= 1275) and 
Generation R (n= 713) cohorts, did not identify this re- 
gion as a top hit, they could confirm that five CpG sites 
within this 923 bp region were significantly altered, 
though not the direction of change [57]. These two pa- 
pers reporting changes from different observational 
studies nevertheless lend considerable support to this 
being a true folate-sensitive DMR. We could also verify 
using a separate biological assay the magnitude and dir- 
ection of change in methylation, a gain of 5.44% in the 
treatment group, at the DMR in cord blood by using 
pyrosequencing (p = 0.172). Furthermore, by comparing 
the mother’s pre- and post-intervention, we could show 
that this region also gained methylation in the treated 
mothers, but lost methylation in the placebo group, 
providing a further degree of validation. 

To extend our findings, we also used data from one of 
the few other RCTs testing the role of folic acid during 
pregnancy, the AFAST study [50]. We found a small effect 
(Cohen’s d < 0.2) at all the CpG across the ZFP57 DMR, 
whereas there was a medium effect (Cohen’s d < 0.5) seen 
at the same region in the EpiFASSTT study. The effect in 
AFAST was only seen with the high dose of FA (5 mg/ 
day) vs placebo, rather than the lower dose (200 μg/day) 
which was closer to that used in EpiFASSTT (400 μg/day), 
and the effect size was smaller than that seen in Epi- 
FASSTT. There may be a number of reasons why effect 
size was smaller in AFAST: (1) the time between exposure 
and measurement is much greater, with median age 47 
years in AFAST, vs newborns in EpiFASSTT; (2) the 
AFAST participants used were recruited significantly later 
than other groups (20.2 weeks for high dose vs 16.3 for 
low dose), meaning that there was less time spent exposed 
to the additional FA while in the womb; (3) the AFAST 
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DNA samples were derived from saliva, while the Epi- 
FASSTT DNA samples are from cord blood; and (4) the 
final numbers for the AFAST comparisons were very low 
(5 mg/day n = 23; placebo n = 43). Notwithstanding these 
limitations, the AFAST study showed a similar effect in 
terms of direction and magnitude at the same region up- 
stream of ZFP57, providing further evidence that this is a 
bona fide FA sensor. 

Given the role of ZFP57 in imprint maintenance, we 
also took advantage of the array to examine imprinted 
genes in our samples. Of these, only the maternal imprint 
NNAT (neuronatin) showed a small but significant loss of 
methylation in the treatment group, consistent with other 
evidence [58]. NNAT is highly expressed in the brain and 
placental tissue and functions during brain  development 
to regulate ion channels and maintain hindbrain and pitu- 
itary segment identity [59]. ZFP57 is essential for the 
maintenance of this imprint [38]. Induction of increasing 
mRNA levels of NNAT commences at midgestation in as- 
sociation with neurogenesis and peaks upon neuroepithe- 
lial proliferation and neuroblast formation [60], which 
would coincide with when folate concentrations increased 
in the treated group. Although we previously reported sig- 
nificant differences overall at IGF2, and at some CpG for 
GRB10, in our candidate gene approach using these sam- 
ples [43], that was based on pyroassays which covered 
smaller regions of the imprinted DMR, whereas the 
probes from the array are more dispersed and cover a lar- 
ger area. It was also notable that, while there was little 
change at other imprinted DMR as assessed by the array, 
there did appear to be an increase in the variability of 
methylation at these regions, an effect which was small 
but statistically significant and consistent with findings 
from a mouse model where FA supplementation increased 
variance in methylation levels across generations [61]. 
Given that ZFP57 has a role in maintaining imprints, in- 
creased methylation at the upstream controller as seen in 
our FA-treated samples should lead to decreased tran- 
scription of ZFP57, which could potentially lead to re- 
duced ability to maintain imprints and increased 
variability in methylation at the ICR. These possibilities 
can be further explored using our in vitro cell models. 

It remains to be established from mechanistic studies 
in mouse whether ZFP57 plays any role in maintaining 
methylation in vivo in the post-implantation embryo. It 
is also possible that methylation of the DMR in human 
blood may not reflect the methylation levels seen at earl- 
ier stages, or in tissues which normally express the gene, 
which includes oocytes and some neural cells. It may be 
that methylation levels at the ZFP57 DMR reported here 
reflect changes which have occurred in the cord and ma- 
ternal bloods independently of what is occurring in the 
germline, and this would need to be assessed. It is also 
quite likely, given that imprints are thought to be 

established much earlier during development, that it  
would not be until the next generation that effects at 
imprinted germline DMRs could be seen. In this context, 
several studies have pointed to transgenerational rather 
than intergenerational effects at imprinted loci  [62, 63].  
It should also be noted that methylation levels varied 
substantially across the ZFP57 DMR and between indi- 
viduals (max = 94.97, min = 20.95), unlike the imprinted 
DMR which vary much less and may be buffered against 
methylation changes by multiple mechanisms. 

In addition to its well-established role in imprinting, 
ZFP57 has also been proposed to act as a transcriptional 
repressor in Schwann cells, which comprise the principal 
glia of the peripheral nervous system [47]. Recent work 
from our group has indicated children  born  from 
mothers supplemented with FA in late gestation have 
psychosocial developmental benefits, scoring signifi- 
cantly higher for emotional intelligence and resilience in 
comparison with children not exposed to FA supple- 
mentation in later pregnancy  [64].  Further  work  needs 
to be carried out to check if there are any other novel 
targets of ZFP57 which may be affected in later child- 
hood and adulthood. 

We sought to clarify whether an increase in methyla- 
tion at the ZFP57 DMR as seen in this RCT would have  
a substantial effect on the production of the protein. In 
order to explore whether changes in methylation can  
alter transcription, we utilized cell lines where the only 
variable was the presence or absence of DNA methyla- 
tion. Our results from these two systems (HCT116 cells 
with methyltransferase deficiency and SH-SY5Y cells 
treated with an inhibitor) showed that altering methyla- 
tion alone can cause changes in transcription at  the 
ZFP57 locus and that this is linked to changes in 
methylation at the DMR. Our results therefore support  
the hypothesis that the DMR represents an upstream 
control element for the gene, which we  have  shown 
from the RCT is sensitive to methyl donor status in the 
diet. Little is currently known about the factors control- 
ling ZFP57 transcription. Interestingly, the region con- 
taining the DMR does not appear to be  conserved  in 
mice and so may represent a human-specific element. 
However, it has features characteristic of a control 
element, as from examining publicly available datasets  
on the UCSC genome browser, there are DNAse I 
hypersensitive sites present here and data suggesting 
transcription factors may bind. We are currently ex- 
ploring these aspects of the work further. 

Conclusions 
Despite the limitations discussed above, we have never- 
theless shown conclusively that a region upstream of the 
imprint controller ZFP57 shows changes in methylation 
in mothers in response to intervention during later 
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pregnancy with FA, a methyl donor, and that  this effect  
is also evident in the cord blood in their offspring. Our 
findings are borne out by other observational studies as 
well as an independent RCT [50]. We have also clearly 
demonstrated that altering methylation is sufficient in it- 
self to cause changes in transcription of the gene. These 
results have implications for the control of imprinting by 
environmental inputs and uncover a novel transcrip- 
tional control element which may be involved in this 
process. 

Methods 
Study design and sample collection 
Samples were acquired from the FASSTT (folic acid sup- 
plementation in the second and third trimester) study 
cohort, a previously conducted double-blinded, random- 
ized controlled trial in Northern Ireland described in full 
previously [42, 43]. To summarize in brief, women with 
singleton pregnancies were recruited  at  approximately  
14 weeks of gestation from antenatal clinics at the 
Causeway Hospital, Coleraine (n = 226; Fig. 1). Women 
were excluded from participation if they were taking 
medication known to interfere with B-vitamin metabol- 
ism or if they had any vascular, renal, hepatic, or gastro- 
intestinal disease, epilepsy, or had a previous NTD-
affected pregnancy. Prior to randomization, n= 36 
women withdrew from the study. The remaining eligible 
participants at the end of their first trimester were ran- 
domized into two groups; one group received 400 μg/d 
folic acid (n = 96) and the other a placebo in pill form (n 
= 94) until the end of their pregnancy.  Randomization 
was done on a double-blind basis. Maternal non-fasting 
blood samples were taken at gestational week 14  
(GW14), prior to intervention commencement, and at 
GW36, towards the end of the intervention.  The study 
was completed by 119 women, as 71 participants were 
excluded during the study (see Fig. 1). A total of n= 37 
women were excluded from the folic acid group for the 
following reasons: participant withdrawal n= 11, preg- 
nancy complications n= 13, prescribed folic acid n= 6, 
fetal  death  n=  6,  non-compliance  n= 6.  A  total  of n 
= 34 women were excluded from the placebo group for 
the following reasons: participant withdrawal n= 14, 
pregnancy  complications  n= 8,  prescribed  folic  acid n 
= 5, fetal death n= 2, non-compliance n= 3, hospital 
transfer n= 2. Umbilical cord blood samples were col- 
lected after the expulsion of the placenta at delivery,  
along with birth weight, length, head circumference, 
mode of delivery, and Apgar score. 

Blood sample processing and B-vitamin biomarker 
determination 
Blood samples were collected in EDTA-lined tubes, kept 
refrigerated, and processed within 4 h (excepting cord 

blood, processed within 24 h). Blood samples were ana- 
lyzed for serum and red blood cell folate  and vitamin 
B12 via microbiological assay as previously described 
[65, 66]. The buffy coat was used for methylenetetrahy- 
drofolate reductase (MTHFR) 677C > T genotyping as 
described [67]. Quality control was affirmed by repeated 
analysis of stored batches of pooled samples. Intra- and 
inter-assay CVs were ≤ 8.2% for serum and RBC folate 
and ≤ 10.4% for serum vitamin B12. 

Maternal dietary analysis 
Dietary data was collected using a 4d food diary in com- 
bination with a food-frequency questionnaire during the 
second trimester of pregnancy, with particular emphasis 
on a B-vitamin-fortified food intake. Dietary analysis was 
carried out using WISP version 3.0 (Tinuviel Software, 
UK) modified to segregate naturally occurring folate in 
foods versus folic acid fortification of foods; these were 
combined to enable calculation of dietary folate 
equivalents. 

Cell culture 
HCT116 and double knockout (DKO) cells [46] were 
cultured in 1 g/L glucose DMEM supplemented with 
10% FBS and 1× NEAA (Thermo Scientific, Loughbor- 
ough, UK). SH-SY5Y cells were cultured in DMEM/F12 
medium supplemented with 10% FBS (Thermo Scien- 
tific).     For     treatment     with     5′aza-2-deoxycytidine 
(5-aza-dC) (Sigma-Aldrich, Dorset, UK), SH-SY5Y cells 
were seeded onto a 90-mm plate in complete medium, 
and the following day medium was replaced and supple- 
mented with 5-aza-dC at a final concentration of 1 μM, 
which was renewed at 24-h intervals up to 72 h. Cells 
were then harvested for DNA and RNA extraction. 

Transcriptional analysis 
RNA was extracted using the RNeasy Mini kit (Qiagen, 
Crawley, UK) according to manufacturer’s instructions. 
Complementary DNA (cDNA) was synthesized and RT-
qPCR/RT-PCR were carried out as previously [29]. 
Primer sequences are listed in Additional  file  4:  Table 
S1. Human reference total RNA was used as a positive 
control for expression (Clontech, UK). 

DNA extraction, bisulfite conversion, and Infinium 
MethylationEPIC Beadchip Array 
Genomic DNA was extracted from cultured cells as pre- 
viously described [25] and from cord blood using the 
QiAMP DNA Blood Mini kit (Qiagen), according to 
manufacturer’s instructions. Purity and integrity of DNA 
were assessed by agarose gel electrophoresis and using 
the Nanodrop 2000 spectrophotometer (Labtech Inter- 
national, Ringmer, UK). DNA quantification was deter- 
mined using Quant-IT PicoGreen dsDNA Assay Kit 
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Additional file 1: Figure S1. Correlation between folate levels in cord 
blood and mother. Scatterplot shows log-converted red blood cell folate 
(RCF) levels in nanomoles per liter (nmol/l) at gestational week 36 (GW36) 
for mothers (post-intervention) and matched cord blood. The line of best  
fit shows significant correlation between mothers and offspring (r = 0.619; 
p = < 0.001). (PDF 460 kb) 
Additional file 2: Figure S2. QQ plot shows no evidence of population 
substructure effects. The observed Chi-squared (χ2) values (open circles), 
plotted as –log10 of the p value for both sample groups, fit tightly to the 
expected χ2 values (red line), indicating little evidence of association due 
to population substructure effects and  that the top hits which deviate  
from the line (right-hand side) are likely to represent true differences due 
to loci with large effects. (PDF 332 kb) 
Additional file 3: Figure S3. Median methylation levels at imprint 
control regions. Methylation levels at imprint control regions (ICR) were 
assessed by matching EPIC array probes to the imprint germline DMR 
intervals defined by [48] (A) or [49] (B) then taking the average (median) 
across each. The identities of each ICR and number of probes are indicated 
below. Boxes show the median and interquartile range for the individual 
averages from each group (Placebo n = 45, Treated n = 41), whiskers 
represent the range of values, dots indicate outliers. (PDF 1518 kb) 
Additional file 4: Table S1. Pyrosequencing and transcriptional primer 
sets used in this study. Pyroassay primers are given as bisulfite converted 
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(Invitrogen, Paisley, UK). The DNA at a concentration  
of 50 ng/μl was sent to Cambridge Genomic Services 
(Cambridge, UK), who bisulfite converted the DNA in-
house using the EZ DNA Methylation Kit (Zymo Re- 
search, California, USA) prior to hybridization to the 
Infinium Human Methylation EPIC BeadChip Array and 
scanning with the Illumina iScan according to manufac- 
turer’s instructions (Illumina, Chesterford, UK). 

Bioinformatic analysis 
GenomeStudio (Illumina v3.2) was used for initial data 
processing. Subsequently, idat files were imported into 
the RnBeads package (version 1.6.1) [45] in the freely 
available statistical software platform R (version 3.1.3) 
using the R Studio interface (Version 0.99.903). Samples 
were quality control checked including removal  of 
probes with missing values, containing SNPs, or of poor 
quality using the greedycut algorithm, then sex chromo- 
somes were removed from the analysis. Background cor- 
rection was carried out using methylumi.noob and the 
methylation values of the remainder probes were nor- 
malized using bmiq [68]. Initial data exploration in 
RnBeads used principal components analysis (PCA) to 
explore potential correlations between the groups and 
known confounders such as BMI, smoking, and gender. 
In addition, in order to account for any hidden con- 
founding variables in the dataset, surrogate variable ana- 
lysis was carried out using the sva package with the Buja 
and Eyboglu algorithm from (1992) [69] Briefly, potential 
surrogate variables such as age, sample plate, Sentrix ID, 
and Sentrix Position were tested for association with the 
target variable sample group using PCA and any surro- 
gate variable with a high correlation to  sample  group  
was adjusted for and incorporated into  the  making  of  
the limma based linear model. The methylation inten- 
sities for each probe, each representing a CpG site, were 
represented as β values (ranging from 0, unmethylated,  
to 1, fully methylated), and these were plotted against 
genomic loci (based on hg19-Human Genome Build 19) 
using GALAXY software (https://usegalaxy.org/) [70] in 
order to visualize changes in DNA methylation on the 
University of California at Santa Cruz genome browser 
(https://genome.ucsc.edu/) as described previously [71]. 

Bisulfite pyrosequencing 
Primers spanning the probes of interest from the array 
were designed using the PyroMark Assay Design Soft- 
ware 2.0 and bisulfite-treated DNA PCR-amplified using 
the PyroMark PCR kit prior to analysis on a PyroMark 
Q24 according to manufacturer’s instruction (Qiagen). 
The primer  sequences  are   summarized   in   Add- 
itional file 4: Table S1. Amplification was carried out as 
follows: 95 °C for 15 min, followed by 45 cycles of 95 °C 
for 30 s, 56 °C for 30 s, and 72 °C for 30 s, with a final 

elongation step at 72 °C for 10 min. Products were veri- 
fied via gel electrophoresis prior to pyrosequencing 
analysis. 

Statistical analysis 
Statistical analysis was performed using the Statistical 
Package for the Social Sciences software (SPSS) (Version 
22.0; SPSS UK Ltd., Chertsey, UK). The results are 
expressed as mean ± SD, except where otherwise stated. 
For normalization purposes, variables were log trans- 
formed before analysis, as appropriate. Differences be- 
tween treatment groups for participant characteristics 
were assessed using an independent t test for continuous 
variables or chi-square for categorical variables. Pyrose- 
quencing data and RT-qPCR data were analyzed using 
Student’s t test to identify statistical differences between 
intervention groups. A p value < 0.05 was considered 
significant. Differential methylation analysis was con- 
ducted in RnBeads (see above) on a site and region level. 
The normalized β values were converted into M values 
(M = log2(β/(1-β)) and differential methylation between 
samples (placebo vs. treatment) was estimated with hier- 
archical linear models using limma. Ranking was auto- 
matically carried out in RnBeads and was based on the 
combination of the average difference in means across  
all sites in the promoter  regions of the sample groups,  
the mean of quotients in mean methylation, and the 
combined p value, which was calculated from all site p 
values in the region using a generalization of Fisher’s 
method [72]. The smaller the combined rank for a re- 
gion, the more evidence for differential methylation it 
exhibits. 
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Supplementary Table 1 

Primer sequences used for pyrosequencing and transcriptional analysis 
 
 

Application Gene Primer Sequence 5’-3’ 
 
 
 
 
 
Pyrosequencing 

 
ZFP57 

FW GGGATTTTTTTTAGTTATTGTTTTGTAT 
RV – 5’Btn ACTAACAAACCCCTACTTTACCAAAC 
Seq ATTGTTTTGTATTTATTTATTAGA 

 
NXN 

FW – 5’Btn TAGTAAAGTTTGGGGAAGG 
RV ACACCATAAAACTAAAACCAATCTAT 
Seq CCATAAAACTAAAACCAATCTATC 

 
PRKAR1B 

FW TTTAGGGGTAGGTTTAGGTTTATAGT 
RV – 5’Btn CCAACCTACCTACTAAACCTTATC 
Seq GGTAGGTTTAGGTTTATAGTT 

 
MIR4520A/B 

FW GTTTAAATTTTTTTTTGATTTGGATAGAAA 
RV – 5’Btn AAAACATACCCTCAATTCCAAAAAAAT C 
Seq TTTTTTTTGATTTGGATAGAAAATA 

 
 

RT-qPCR/RT- 
PCR 

ZFP57 FW CCCAAACACAGAAGGCCTTT 
RV GGTCCTGTCCATAGTCCCAG 

ACTB 
FW GGACTTCGAGCAAGAGATGG 
RV AGCACTGTGTTGGCGTACAG 

HPRT 
FW AGCCCTGGCGTCGTGATTAGT 
RV CCCGTTGAGCACACAGAGGCCTA 

 
Based on Human Genome Build 19; all primers listed 5’ to 3’. 
Abbreviations: Btn, Biotinylated 
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5.0 PAPER-IV 

Methylome profiling of young adults with depression supports a link with immune 
response and psoriasis 

Coral R. Lapsley, Rachelle Irwin, Margaret McLafferty, Sara-Jayne Thursby, Siobhan M. 
O’Neill, Anthony J. Bjourson, Colum P. Walsh, Elaine K. Murray 

The main aims of this paper were to: 

- Assess the genome wide effects of depression and self-harm or suicide attempt on

the DNA methylation profiles of registering first year university students

- Investigate whether there are any gene classes preferentially effected by this

disorder

- Compare the results obtained to that of similar studies into depression and DNA

methylation

CONTRIBUTION 

For this paper, I independently conducted EPIC array analysis of the data in RnBeads, Limma and 

ChAMP. I created absolute beta and delta tracks of the EPIC array results of this study on UCSC 

genome browser. Further, I conducted the candidate gene analysis of the LCE cluster using the 

improved CandiMeth workflow. I also computed the CNV analysis for each subject per chromosome 

to check for deletions or variation in copy number. Here too, I computed a QQ plot for the study 

from the results of the EPIC array to check for population stratification effects. Finally, I compared 

the array results of this study to that of (Murphy et al., 2017) using effect size and Cohen’s D test. 
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Methylome profiling of young adults with
depression supports a link with immune
response and psoriasis
Coral R. Lapsley1†, Rachelle Irwin2†, Margaret McLafferty1,3, Sara Jayne Thursby2, Siobhan M. O’Neill3,
Anthony J. Bjourson1, Colum P. Walsh2 and Elaine K. Murray1*

Abstract

Background: Currently the leading cause of global disability, clinical depression is a heterogeneous condition
characterised by low mood, anhedonia and cognitive impairments. Its growing incidence among young people,
often co-occurring with self-harm, is of particular concern. We recently reported very high rates of depression
among first year university students in Northern Ireland, with over 25% meeting the clinical criteria, based on DSM
IV. However, the causes of depression in such groups remain unclear, and diagnosis is hampered by a lack of
biological markers. The aim of this exploratory study was to examine DNA methylation patterns in saliva samples
from individuals with a history of depression and matched healthy controls.

Results: From our student subjects who showed evidence of a total lifetime major depressive event (MDE, n = 186)
we identified a small but distinct subgroup (n = 30) with higher risk scores on the basis of co-occurrence of self-
harm and attempted suicide. Factors conferring elevated risk included being female or non-heterosexual, and
intrinsic factors such as emotional suppression and impulsiveness. Saliva samples were collected and a closely matched
set of high-risk cases (n = 16) and healthy controls (n = 16) similar in age, gender and smoking status were compared.
These showed substantial differences in DNA methylation marks across the genome, specifically in the late cornified
envelope (LCE) gene cluster. Gene ontology analysis showed highly significant enrichment for immune response, and
in particular genes associated with the inflammatory skin condition psoriasis, which we confirmed using a second
bioinformatics approach. We then verified methylation gains at the LCE gene cluster at the epidermal differentiation
complex and at MIR4520A/B in our cases in the laboratory, using pyrosequencing. Additionally, we found loss of
methylation at the PSORSC13 locus on chromosome 6 by array and pyrosequencing, validating recent findings in brain
tissue from people who had died by suicide. Finally, we could show that similar changes in immune gene methylation
preceded the onset of depression in an independent cohort of adolescent females.

(Continued on next page)
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Conclusions: Our data suggests an immune component to the aetiology of depression in at least a small subgroup of
cases, consistent with the accumulating evidence supporting a relationship between inflammation and depression.
Additionally, DNA methylation changes at key loci, detected in saliva, may represent a valuable tool for identifying at-
risk subjects.

Keywords: Depression, Suicide, DNA methylation, Inflammation, Epidermal differentiation complex, Psoriasis

Background
Depression is a highly prevalent, complex mental health
disorder characterised by a range of debilitating symp-
toms. It affects over 300 million people globally [1] and
is responsible for more years lost to disability (YLD)
than any other condition, with a total of 76.4 million
YLD [2]. Mental health problems, including depression,
often emerge before age 18 with the period from 18 to
25 having been highlighted as a susceptible time in a
person’s life [3]. In particular, high prevalence rates of
mental health problems and suicidality have been found
among university students [4, 5]. Northern Ireland (NI)
has one of the highest incidences of mental illness in
Western Europe [6] and the highest rate of suicide in
the UK, a rate which continues to increase [7]. The
trans-generational impact of the years of conflict in NI
have been mooted as one potential contributor to this
[8]. We recently reported on prevalence rates of mental
health disorders, self-harm and suicidality in a large co-
hort (n = 739) of first year NI university students [9] and
found that, consistent with the other recent studies [10–
13], rates were high, with more than 50% of new under-
graduate students reporting any lifetime mental disorder.
Rates of depression and suicidal ideation were particu-
larly high (24.2% and 31.0% respectively). Consistent
with other studies suggesting that self-harm is the stron-
gest predictor of suicidal behaviour [14–17], 122/155 in-
dividuals who self-harmed (78.7%) reported suicidal
ideation in our cohort [7]. These results highlighted the
high incidence of co-occurring depression, self-harm
and suicide amongst young people entering university in
our study population.
The aetiology of depression is very complex, but epi-

demiological studies indicate that genetic and environ-
mental interactions are both implicated in disease
pathology [18–20]. There is a genetic component to the
aetiology of psychiatric disorders, including depression,
which has been demonstrated in twin and family studies
[21] indicating up to 40% heritability. The most recent
meta-analysis of genome-wide association studies
(GWAS), including 246,363 cases of depression and 561,
190 controls, identified 102 independent regions reach-
ing genome-wide significance associated with depres-
sion, including genes and pathways involved in synaptic
structure and neurotransmission [22]. In terms of

environmental causes, severe childhood adversity and
trauma including both verbal and physical abuse, neglect
and parental mental disorders are also major contribut-
ing factors to the development of mood disorders and
suicidal behaviours [23–25]. Other childhood adversities
of varying severity, e.g. parental loss, bullying and socio-
economic status are all associated with increased inci-
dence of depression in later life [24, 26].
There are several well-discussed theories of depression

including the monoamine theory [27], HPA axis dysreg-
ulation in response to stress [28], and in particular the
emerging role of inflammation [29, 30]. Epidemiological
research indicates that up to 70% of individuals with
autoimmune and inflammatory diseases, such as
rheumatoid arthritis and heart disease, experience de-
pression [31]. Chronic stress, a major risk factor for de-
pression, can activate inflammatory response in both the
periphery and CNS through the hypothalamic pituitary
adrenal (HPA) axis [32]. Impaired negative feedback in
the HPA axis resulting in high levels of cortisol lead to
the production of pro-inflammatory cytokines, chemo-
kines and acute phase proteins from macrophages
through the activation of NF-kB [33, 34]. Peripheral in-
flammatory signals are detected by microglia in the
brain, which then initiate their own inflammatory cas-
cade through the activation of CNS cytokines, reactive
oxygen species (ROS) and reactive nitrogen species
(RNS) [35], ultimately leading to alterations in serotonin
signalling and changes in mood.
Peripheral levels of pro-inflammatory cytokines IL-6

and TNF-α are elevated in depression patients who were
SSRI resistant compared to patients with depression, but
in remission whose cytokine levels were similar to
matched healthy controls [36, 37]. In addition, IL-12 and
IL-4 were found to decrease in patients receiving a
course of sertraline treatment [38]. C-reactive protein
(CRP) is elevated in peripheral blood from depressed pa-
tients and significantly decreased from baseline following
successful treatment with the SSRI, sertraline [37], fur-
ther support for the link between inflammation and de-
pression and the potential use of immune markers to
stratify patients.
Our understanding of these mechanisms on a molecu-

lar level however remains poor. The genes implicated in
each of these are different. For example, polymorphisms
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in components of the serotonin system such as the
serotonin-transporter-linked 5-HTTLPR involved with
monoamine levels affect predisposition to anxiety and
depression [39, 40]. In contrast, polymorphisms in
stress-related genes such as 5-HT transporter and CRF
may instead modify susceptibility to depression accord-
ing to HPA axis models. More recently, there has been
great interest in possible epigenetic rather than genetic
changes to components in either the HPA axis, such as
glucocorticoid receptor (GR), or the inflammation
pathway.
Epigenetic modifications such as DNA methylation, in

contrast to DNA polymorphisms, can be influenced by
environmental factors and provides a potential mechan-
ism through which life events such as childhood trauma
and stress, major risk factors of depression, can lead to
the biological, and ultimately behavioural, changes asso-
ciated with depression [41]. Epigenetic mechanisms
could therefore be a key mediator of the interplay be-
tween biological vulnerability and life events leading to
the behavioural changes seen in depression. In this con-
text, there has been much recent interest in methylation
changes at the glucocorticoid receptor (GR) and at genes
related to corticotropin releasing hormone action, all
with potential roles of an HPA axis model [42–44]. In
contrast, a recent study from Murphy and colleagues
using the Illumina 450K Beadarray chip uncovered in-
stead significant association between self-reported de-
pression and methylation changes at genes related to
immune function in peripheral blood samples, particularly
the LTB4R and TRIM39-RPP21 loci, [45]. An earlier study
by the same team found significant methylation changes
at the PSORC13 gene, involved in the inflammatory skin
condition psoriasis, in completed suicide cases [46]. Given
the differing targets implicated in these studies, further
work in additional cohorts could help to clarify the main
pathways showing epigenetic changes and afford greater
insight into potential mechanisms involved.
As indicated above, we reported high rates of depres-

sion as well as co-occurring self-harm and suicide risk in
a cohort of university entrants [7, 9]. In this study, we
wished to (1) investigate the potential external and in-
ternal drivers of depression with and without experience
of self-harm and a suicide attempt in this cohort; (2)
conduct and initial genome-wide screen for DNA
methylation differences in a subset of cases with highest
levels of risk; (3) verify methylation changes at top-
ranking loci using a second method and (4) compare our
findings to other recent work in the area.
We were able to confirm that a set of shared risk fac-

tors greatly increased the chances of co-occurring de-
pression, self-harm and suicidal ideation. In an initial
comparison of saliva samples from students displaying
all three conditions and a closely-matched set of

controls, we identified significant enrichment for im-
mune response genes among those showing differential
methylation. Closer examination highlighted genes in-
volved in psoriasis, including several novel targets (LCE
and MIR4520A/B). All regions could be verified by pyro-
sequencing. With due consideration of the limitations of
the study, these findings nevertheless suggest a signifi-
cant link between psoriasis and depression, self-harm
and suicidal risk that can be detected in peripheral
tissues.

Results
Risk factors in the student population
In order to determine associations between socio-
demographic variables and depression, suicidality and
self-harm, logistic regression analysis was undertaken
(Table 1). Of the total N=739 students who completed
the survey, 24.2% (n = 186) showed evidence of a life-
time Major Depressive Event (MDE). We attempted to
identify discrete groups within these MDE sufferers
using stratification on the basis of risk factors. Several
demographic risk factors were significantly correlated
with depression, self-harm or suicide attempt, or a com-
bination of these three. In particular, females were more
likely to develop depression with comorbid suicide at-
tempt and self-harm (OR = 3.082, p < 0.05), in compari-
son with males. Older students (>21 years old) were
nearly twice as likely to have depression (OR = 1.921, p
< .05), compared to students under the age of 21. In
contrast to heterosexual students, those who stated they
were non-heterosexual were nearly four times more
likely to have experienced depression with comorbid sui-
cide attempt and self-harm (OR = 3.384, p < 0.05). Inter-
estingly, none of the extrinsic factors examined
including finances, bullying or maltreatment, were sig-
nificantly correlated with depression, self-harm and/or
suicidality. However, in relation to intrinsic factors such
as emotional regulation, students who indicated suppres-
sion were more likely to have depression with co-
occurring suicide attempt and self-harm (OR = 1.128, p
< 0.01), compared to those who reported reappraisal,
which was a protective factor (OR = 0.924, p < 0.01).
All values represent odds ratio; SH self-harm; signifi-

cant results in bold; *p < 0.05, **p < 0.01

Selection of cases and controls
The logistic regression results suggested a particularly
high-risk subpopulation within our study, namely stu-
dents reporting depression, self-harm and suicidal idea-
tion, which might display epigenetic differences from
healthy controls. Of the 739 fully completed Student
Wellbeing survey responses a total of only 30 partici-
pants reported depression, self-harm and a suicide at-
tempt. As age, gender and smoking status are known
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confounders in DNA methylation analyses [47, 48], we
chose 16 cases for which we could identify closely
matched controls based on these criteria, where controls
had no life-time history of mental health problems
(Table 2). The average age in both groups was 23 years
(± 5.4), and they contained equal numbers of males (4)
and females (12) each, as well as an identical spread of
smoking status (Table 2). All cases had also experienced
MDE in the 12 months prior to the survey. The average
age of onset of depression was 14, average age of suicide
attempt and onset of self-harm was 16 years. On aver-
age, cases had experienced a MDE for at least two weeks
for an average of 7 years since onset. Saliva samples
from these participants were collected and DNA isolated
from the samples using standard protocols as described

under methods below. Following quality control checks
on the DNA, it was then subjected to genome-wide
methylation analysis using the Infinium Methylation
EPIC 850K Beadchip array.

Gains in methylation at immune response genes
Principal component analysis of the methylation status
of all 32 samples using the RnBeads analysis package
[49] in RStudio demonstrated separation by gender
which confirmed established sex differences in methyla-
tion (Fig. 1a), but not by smoking status or age (not
shown), which indicated that these latter are not major
confounding factors in this study. As a control, a
quantile-quantile plot was carried out, which showed no
evidence of stratification effects among the samples

Table 1 Logistic regression analyses of correlates of depression

Demographics Depression only
(no SH/attempt)

Dep and self-harm
and attempt

Dep and self-harm
with no attempt

Dep and attempt with
no self-harm

N = 739 (n = 92) (n = 30) (n = 51) (n = 13)

Demographic risk factors

Gender

Female 1.127 3.082* 1.635 1.188

Male 1.0 1.0 1.0 1.0

Age

21 and over 1.921* 1.161 0.796 3.996

Under 21 1.0 1.0 1.0 1.0

Sexuality

Non-heterosexual 1.164 3.384* 1.076 1.872

Heterosexual 1.0 1.0 1.0 1.0

Extrinsic risk factors

Finances

Enough 0.638 0.939 1.014 1.363

Comfortable 0.816 0.540 0.618 0.000

Well to do 0.308 1.049 1.024 4.438

Poor 1.0 1.0 1.0 1.0

Bullying

Physical bullying 1.023 1.172 0.825 1.454

Verbal bullying 1.134 1.169 1.319 1.037

Ignoring bullying 1.100 1.033 1.409 1.000

Cyber bullying 0.811 0.961 0.983 1.253

Maltreatment

Physical Abuse 0.642 0.879 0.883 0.394

Emotional Abuse 1.334 1.540 1.195 1.588

Intrinsic risk factors

Impulsivity 1.111 1.659** 1.129 0.892

Emotion regulation

Reappraisal 1.010 0.924** 0.973 0.986

Suppression 1.074** 1.128** 1.016 1.043
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(Suppl. Fig.1). Among the female participants, there was
also reasonable separation between cases and controls
(Fig. 1a), with female cases clustered in the negative
quartiles of the PCA and female controls towards the
positive quartiles.
Given that females are at higher risk of co-occurring

depression, self-harm and suicide attempt (Table 1) and
the separation of cases and controls among females in
the PCA (Fig. 1a), we concentrated further bioinformat-
ics analysis on female samples. RnBeads used a combin-
ation of the difference in mean methylation (beta value),
the quotient of mean methylation and the p value to
rank the sites showing differential methylation, which
we and others have found to be a more reliable indicator
of biologically significant differences than p value alone,
which often highlighted sites showing very small differ-
ences in methylation unlikely to be of functional signifi-
cance. A scatterplot of the top 1000 ranked CpG sites
with differential methylation between cases and controls
in females displayed predominantly gains of methylation
in the cases sample group (Fig. 1b).
In order to determine common features between the

top ranking differentially methylated sites, gene ontology
(GO) analysis for genes gaining methylation was carried
out using DAVID software [50] which indicated strong
enrichment scores for immune response terms (Fig. 1c).
Common GO term for both promoters and genes in-
cluded immune system process (GO:0002376), immune
response (GO:0006955), cell activation (GO:0001775)
and regulation of immune system process (GO:
0002682), with very low predicted false discovery rates

Table 2 Characteristics of samples analysed by EPIC array

Demographics Controls
(n = 16)

Cases
(n = 16)

Age, mean (range ± SD) 23 (18–32 ± 5.4) 23 (18–32 ± 5.0)

Gender

Male (%) 4 (25) 4 (25)

Female (%) 12 (75) 12 (75)

Smoking status

Past (%) 1 (6.2) 1 (6.2)

Daily (%) 6 (37.6) 6 (37.6)

Occasional (%) 1 (6.2) 1 (6.2)

Never (%) 8 (50) 8 (50)

Physical health

Infectious (%) 0 (0) 0 (0)

Blood or immune (%) 0 (0) 1 (6.2)

Endocrine (%) 0 (0) 0 (0)

Eye or ear (%) 1 (6.2) 0 (0)

Neurological (%) 0 (0) 0 (0)

Heart or circulatory (%) 0 (0) 0 (0)

Respiratory (%) 0 (0) 2 (12.5)

Digestive (%) 0 (0) 2 (12.5)

Skin (%) 0 (0) 5 (31.3)

Musculoskeletal (%) 0 (0) 2 (12.5)

Fig. 1 Methylation gains at immune response genes in stratified cases. a Principal component analysis (PCA) for all methylated sites of the 32
samples from subjects showing comorbid depression, self-harm and suicidal attempt compared to healthy controls. This indicated clear
separation by gender, but also between cases (orange) and controls (green) for females. b Scatterplot of differential methylation, with the top
1000 probes in red. c Gene ontology analysis of the top differentially methylated gene bodies shows significant enrichment for immune system
response terms. d Reanalysis of array data using an in-house Galaxy workflow. Differentially methylated probes whose coordinates matched
genes from the top two ranks in c (relating to immune system response) were identified. Median methylation levels were assessed and again
showed a significant difference between cases and controls (**p < 0.01)
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(FDR). Promoters and genes which showed loss in
methylation were instead enriched for GO categories re-
lated to epidermal and keratin genes, but with higher
FDR rates indicating lower likelihood of being true hits,
most likely due to the smaller number of genes showing
loss (data not shown).
To verify gains in methylation using a different bio-

informatic approach, gene names common across the
GO categories related to immune response were com-
piled (Table S1). We used an in-house developed work-
flow in Galaxy termed CandiMeth (Thursby and Walsh,
in prep) to map differentially methylated probes to the
human genome map, as previously described [51], found
those which fell within promoters (defined as starting
500 bp 5’ of the first exon) of these immune genes, and
extracted the mean methylation values in cases and con-
trols. Comparison of the average methylation across
these genes between the two groups confirmed signifi-
cant (p < 0.01) gains in mean methylation levels in the
cases relative to the controls (Fig. 1d).

Top-ranking regions include several loci linked with
psoriasis and skin conditions
To examine more closely the immune response targets
identified by the genome-wide scan, and to identify

those where methylation differences could be verified in
the laboratory, we ranked the top hits showing gains in
methylation by the magnitude of the difference in
methylation (Δβ), both at gene bodies (Fig. 2a) and pro-
moters (Fig. 2b). The Late Cornified Envelope-3C
(LCE3C) and -3B (LCE3B) loci featured at the top of
both lists and showed substantial gains in methylation (>
10%) in cases versus controls (Fig. 2a, b). These genes
are part of a family which encode components of the
stratum corneum of the skin and are thought to play a
role in skin differentiation. The LCE3 genes in particular
have been linked to the development of psoriasis, a
chronic inflammatory skin disease characterised by
hyperproliferation of the epidermis and changes to kera-
tinocyte differentiation [52]. Many of the LCE family
members are clustered together on chromosome 1q21.3
in a region known as the epidermal differentiation com-
plex (EDC) which contains multiple other genes
expressed in the upper layers of the skin. A small dele-
tion encompassing LCE3B and part of LCE3C (LCE3C_
LCE3B-del) is found in a substantial fraction of psoriasis
sufferers [52–54]. As hemizygosity would affect methyla-
tion ratios, we checked for copy number variation
(CNV) at this locus in our participants using the R pack-
age DNAcopy. No evidence for a CNV on chromosome

Fig. 2 Top-ranking regions are linked to the immune condition psoriasis. a The top gene body regions identified from the differential
methylation analysis listed by percentage change in methylation (% change). Absolute levels of methylation in % for cases and controls are also
shown. The associated gene names from the array manifest file are listed at left and include three with links to psoriasis (LCE3C, LCE3B, MIR4520A/
B). b Promoters with the largest delta beta gain in methylation levels: DEFB104B is also linked to psoriasis c Map of part of the Epidermal
Differentiation Complex on chromosome 1 from UCSC (GRCh37/hg19 human assembly) showing some of the LCE gene cluster (RefSeq track at
bottom). The track at top shows the locations of probes from the EPIC array in black (EPIC probes). Below, sites showing differential methylation
between cases and controls have been mapped: sites gaining are above the line (blue) and losing below the line (red), with size proportional to
change. A scale with maximum and minimum change (Δ) is shown at left. Clusters of probes gaining methylation are seen across LCE3A-3C (left)
and at LCE1D (right). A scale bar is shown at top; kb, kilobase
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1q21 was found using this method, despite successfully
detecting an isolated CNV in one patient on chromo-
some 5 (Fig.S2).
We mapped the differentially methylated sites identified

in the screen to the human genome (hg19) and found clus-
ters of sites comprising a differentially methylated region
(DMR) not only at the LCE3A-3B locus, but also further
along in the cluster at the LCE1D-1C locus (Fig. 2c), further
supporting the association of depression with methylation
changes at the LCE genes in this region. In order to confirm
methylation differences at promoter regions, we used a
commercially-available pyrosequencing assay to assess a site
~ 700 bp upstream of the LCE3A transcriptional start site
(Fig. 3a). This site showed a gain of methylation of 18.2% in

cases compared to controls (42.2 vs 24.0), identical to that
seen using the array (18.2% gain: 43.6% vs 25.4%).
Interestingly another locus the microRNA cluster

MIR4520A/B on chromosome 17 (Fig. 2a), which was
identified as a top hit by the genome-wide assay, has also
been linked to psoriasis [55]. We also used a pyrose-
quencing assay (Fig. 3b) to assess the methylation differ-
ence at this region. While absolute levels of methylation
at this site were lower by pyroassay than seen using
the array (controls 16.7% pyro vs 21.95 array; cases
29.2% vs 34.5%), the approximate level of methylation
is similar, and the gains in methylation seen between
controls and cases was almost identical (12.5% pyr-
oassay vs 12.6% array) (Fig. 3b).

Fig. 3 Verification of methylation differences at psoriasis targets. a Top: genomic map indicating the region around the LCE3A gene. Tracks
showing locations of array probes and probes showing differential methylation are as in Fig. 2. The location of the pyrosequencing assay (Pyro)
upstream of the first exon of LCE3A is also shown. Genomic coordinates are as indicated. Bottom: Table comparing methylation levels as % at the
CpG site covered both by an EPIC array probe and the pyroassay, which showed good agreement. b Top: genomic map showing the region on
chr17 containing the MIR4520A/B locus (aka RefSeq MIR4520-1 and -2) and neighbouring genes. Tracks and key are as in a above. Bottom: Table
comparing methylation at the CpG covered both by the array and the pyroassay, which were again concordant
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Validation of the PSORS1C3 DMR
Recently an independent epigenetic screen by Murphy
and colleagues (2017) also identified a link between
psoriasis and depression. On comparing methylation in
brain regions BA11 and BA25 of depression-suicide
cases and normal controls, they identified Psoriasis Sus-
ceptibility 1 Candidate 3 (PSORS1C3) as one of the top
hits [46]. A region comprising 12 CpG sites across the
PSORS1C3 locus showed loss of methylation (rather
than gain) in depression-suicide cases compared to con-
trols in that study. While this locus was not identified as
a major target in our screen, there were a number of dif-
ferences in sample size, tissue type and clinical diagnos-
tics used which could account for this. An examination
of the differentially methylated sites in our study con-
firmed however that there were a number of CpG show-
ing loss of methylation immediately upstream of the
PSORSC1C3 gene in an area likely to contain the pro-
moter (Fig. 4a), with a maximum loss seen of 12.7%. To
verify that there were differences in methylation between
our cases and controls at this region, we designed a pyr-
oassay for this site, which confirmed a loss of methyla-
tion. The results again showed good concordance both
in direction (loss) and magnitude (12.0% vs 12.7%) be-
tween the pyroassay and the array (Fig. 4b).

Alterations to immune genes precede development of
depression in an independent cohort
One possible complication with regards to working with
saliva is that the samples may differ significantly in the
ratios of different cell types present. While surrogate
variable analysis as performed can compensate for such

hidden variables, an estimate of cell counts in the sam-
ples would be valuable. However, these could not be
done on saliva, so we sought instead to estimate cell ra-
tios using methods based on the array data alone, a so-
called reference-free method. These methods are based
on the observation that some methylation sites on the
array show characteristic levels of methylation in specific
tissues, independently of effects at other sites [56]. We
employed the recently-developed EpiDISH algorithm
[57] which is more suitable for saliva than the original
methods developed for blood. As can be seen in Fig. 5a,
EpiDISH indicated that the saliva samples from the Stu-
dent Wellbeing Study cases had significantly different
proportions of epithelial (p = 0.011, Kruskal-Wallis H =
6.16) and immune cells (p = 0.013, Kruskal-Wallis H =
6.453) from the controls. This suggested that some of
the immune gene signature seen in our cohort may be
due to differences in immune status at the time of sam-
ple collection in the cases versus controls. While this
finding is valuable in itself as a biomarker, most of the
changes seen in overall methylation and in specific clas-
ses of genes will be independent of the small number of
sites used to identify tissue type. We wished therefore to
further investigate if some of these methylation changes
in immune genes may precede the overt changes in cell
numbers and be linked to earlier stages in the develop-
ment of depression.
A recently published study examined methylation pat-

terns in female children, born to mothers with major de-
pressive disorder (MDD), who were at increased risk of
developing depression [58]. Saliva was collected from
these girls ~ 13 years and analysed with the Illumina

Fig. 4 Replication of differential methylation at PSORSC13 in this cohort. Top: region around the PSCORSC13 gene, first identified as showing loss
of methylation in a separate cohort of depressed subjects who had died by suicide. Symbols are as in Fig. 2 above, with addition of a track for
CpG islands (green) often found near promoters. A cluster of probes showing loss of methylation (red, below line) are also evident in our cohort
upstream of the first non-coding exon. A pyroassay (pyro, black square) was designed to determine methylation at the individual CpG just 5’ of
the island showing greatest loss on the array. Bottom: Table comparing loss of methylation at the indicated CpG site on the array and by
pyroassay, which were again in close agreement
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EPIC chip, then the children followed longitudinally,
with many developing MDD. Due to the excellent match
with phenotype, gender, tissue and method of assess-
ment this is an ideal cohort for examining changes
which may occur prior to the onset of depression. We
obtained raw data from the authors and analysed them
using the same pipeline described above. Looking at the
children who went on to develop MDD, despite the fact
that they show no sign of differences in cell counts be-
tween cases and controls (Fig. 5b), we found that many
of the same top GO categories involved immune system
response (Fig. 5c). Likewise, there was overlap between

many of the top-ranked gene bodies (Fig. 5d) and pro-
moters (Fig. 5e) showing gain in methylation between
the two studies, with many of the best hits (LCE3B,
LCE3C, PRAMEF23, DEF104B) being common to both,
supporting our theory that immune gene alterations may
prefigure MDD.

Discussion
Our previous work identified a high rate of depression
among University students in Northern Ireland [9].
Here, we further analysed this cohort and found that
while there were several extrinsic or intrinsic risk factors

Fig. 5 Alterations to immune genes precede development of depression in an independent cohort. a EpiDISH cell-type fraction estimation for
epithelial and immune cells for the Student Wellbeing Study (SWS); differences were significant by Kruskal-Wallis test (*p < 0.05). b EpiDISH
analysis of saliva samples taken from at-risk adolescent girls prior to development of major depressive disorder (MDD; 58); ns, not significant, KW
test. c Gene ontology analysis of the top 3000 ranked differentially methylated gene bodies from the MDD study shows significant enrichment
for immune system response terms. d Top 1000 gene bodies gaining methylation in the SWS and the MDD cohorts showing overlap; top hits
already identified in the SWS cohort are indicated. e Top 1000 promoter regions indicating shared targets between the two cohorts as in d

Lapsley et al. Clinical Epigenetics           (2020) 12:85 Page 9 of 16

Page 232 of 356



which were significantly correlated with depression on
its own, or depression and any one other feature, de-
pressed students with both self-harm and suicide at-
tempt formed a distinct sub-group with higher risk
scores. Significant risk factors for this group included be-
ing female or non-heterosexual, and having higher impul-
sivity and emotional suppression with poorer re-appraisal
ability. Hypothesizing that this much smaller sub-group
might also show distinct epigenetic marks, we looked for
differential methylation patterns in saliva samples from
this group. Female cases separated from controls and
showed overall tendency to gain in methylation. Methyla-
tion differences were significantly enriched in immune-
related genes, with a number of top hits, including the
LCE3 genes and MIR4520A/B, being linked to the inflam-
matory skin condition psoriasis. We confirmed methyla-
tion differences at several loci by pyrosequencing.
Additionally, the psoriasis gene PSORS1C3, recently iden-
tified as showing altered methylation in post-mortem
brain from suicide completers, was also differentially
methylated in our saliva samples. Finally, we saw alter-
ations in methylation at some of the same immune-
related genes in an independent cohort of teenage girls
prior to onset of depression, suggesting these changes are
occurring early in the etiology of the disease.
One of our major findings was the clear differential

methylation between cases and controls we identified in
immune-related genes. Depression has been previously
linked with several chronic inflammatory conditions in-
cluding diabetes, rheumatoid arthritis and cardiovascular
disease [31, 59]. Inflammatory cytokines, IL-6, TNF-α
and IFN-γ are consistently upregulated in individuals
with depression [32, 60] and many antidepressant medi-
cations have anti-inflammatory effects [61]. Further-
more, recent methylome analysis of whole blood also
reported that depression-related methylation differences
were enriched in pathways related to immune function
[45], consistent with what we have identified for the first
time in saliva. DMRs in immune response genes and
their link to immune dysregulation warrant further in-
vestigation as potential biomarkers for depression.
Psoriasis is one of the most common inflammatory

skin conditions, and affects up to 125 million people
worldwide [62]. While being noncontagious and nonle-
thal, it nevertheless can be painful and disfiguring and
can lead to severe disruptions in everyday social interac-
tions and personal relationships. Psoriasis tends to de-
velop between the ages of 15 and 25 and can lead to an
impairment of social development due to attendant feel-
ings of self-consciousness and embarrassment [63]. The
average age of onset for psoriasis therefore shows not-
able overlap with that for depression, commonly occur-
ring around 15 years old [3]. In a large UK population-
based study individuals with severe psoriasis were also

reported to have an increased susceptibility to depres-
sion, anxiety and suicidality [64]. In that study, patients
with psoriasis had a 39% increased chance of depression,
which increased to 72% for severe psoriasis. Significantly,
randomized controlled trials have shown that control of
psoriasis symptoms can lead to improvements in psy-
chological outcomes [65, 66]. Paediatric patients in par-
ticular have been shown to be at increased risk of
developing depression [67]. Individuals with psoriasis
display fatigue and sleep deprivation, which has been
linked to the concomitant pruitis (itching) and pain and
is linked to depression and obstructive sleep apnea in
this group [68]. Insomnia has been recently highlighted
as a particular risk factor for self-harm and suicide in
university students [7, 69].
As indicated earlier, genes in the LCE cluster, and par-

ticularly LCE3 homologues, have been strongly linked
with psoriasis. The genes lie in the Epidermal Differenti-
ation Complex (EDC) on chromosome 1, and genome-
wide association studies (GWAS) have identified a major
psoriasis susceptibility locus (PSORS4) in this region [70,
71]. A separate GWAS in the Chinese Han population
identified two SNPs in the LCE3A gene, and three in
LCE3D as particularly associated with psoriasis. The
EDC also contains other skin genes such as Filaggrin
family member 2 (FLG2) and Cornulin: interestingly ex-
perimental disruption of the skin barrier resulted in
down-regulation of LCE5A, LCE2B and FLG2 but upreg-
ulation of LCE3A, Involucrin and Hornerin [72]. LCE3
genes show marked difference in expression between
psoriatic lesions and normal skin, but not between pre-
lesional skin and control [72–74], consistent with roles
in skin repair rather than development per se. A small
deletion encompassing parts of LCE3C and LCE3B
(LCE3C_LCE3B-del) has also been identified as a risk
factor for psoriasis in a number of populations [52].
While we tested for CNV affecting this region in our co-
hort, we found no evidence for any deletions. The LCE
cluster has also been reported to interact epistatically
with the PSORS1 locus at the HLA-complex on
Chromosome 1 [53, 75].
Furthering the link with psoriasis, other top hits from

our screen are also connected with this condition. The
MIR4520A/B locus, which produces two microRNA
miR4520A and –B, was also a top-ranking region from
our screen. While little is currently known about this
microRNA, next-generation sequencing of small RNAs
from normal versus psoriatic skin highlighted miR4520A
as one of the most abundant novel miRNA expressed in
psoriatic skin [55] which was significantly downregulated
in psoriatic lesions. Although it has not been firmly
established whether transcription of this miR is epige-
netically controlled, increased DNA methylation at this
region may indicate downregulation of this gene in our
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cohort. Another top hit was DEFB104B, which is a beta-
defensin and part of a family of antimicrobial and cyto-
toxic peptides made by neutrophils. Defensins are
expressed during inflammatory conditions, including
psoriasis [76]. A total of 4 CpG sites were hypermethy-
lated at the promoter regions of DEFB104B in our cases,
suggesting perhaps a form of silencing or reduced
mRNA expression and thus reduction/suppression of
the innate immune response in depressive cases.
As detailed above, a number of loci involved in psoria-

sis were identified among our cases with depression and
co-occurring self-harm and suicide attempt. Recently,
Mill and colleagues (2017) compared methylation in two
cortical brain regions from depressed suicide completers
and non-psychiatric sudden-death controls and also
identified a psoriasis susceptibility locus PSORS1C3 as
the main target affected [46]. They found a loss of
methylation at a DMR upstream of the gene, which they
verified by pyrosequencing and could replicate in a sec-
ond set of suicide samples. While PSORSC1C3 was not
identified as a high-ranking DMR in our screen, there
were a number of important differences between our
studies: (1)we were using saliva samples not brain, and
tissue type is known to have a major effect on methyla-
tion patterns [77] as seen even between brain regions
[46]; (2) our samples were from subjects reporting sui-
cide attempt at most, not completion and (3) there were
a number of technical differences in diagnosis, process-
ing and analysis, including the use of different chips
(450K vs 850K EPIC). Nevertheless, on examination of
the PSORS1C3 locus in our cohort we found a DMR at
this region which also showed loss of methylation in our
samples (in contrast to the gains seen at other loci). We
could also verify this using pyrosequencing, with good
agreement in direction and magnitude of difference. These
results are important as they (1) confirm methylation
changes at this locus in another cohort displaying depres-
sion; (2) further link psoriasis, depression and suicidal
thoughts and behaviour; (3) indicate that changes seen in
the brain may also be mirrored in peripheral tissues such
as saliva (4) suggest the change precedes death by suicide
and therefore may have utility as a predictive tool.
The exact nature of the overlap between depression and

psoriasis warrants further investigation. Traditionally, de-
pression was thought to be a secondary consequence of
living with a chronic physical condition such as psoriasis.
However, the accumulating evidence that depression itself
has an inflammatory component suggests that there may
be common aetiology which can lead to mental health dis-
orders, physical health problems, or both in a given indi-
vidual. In our current sample, none of the depressed
group reported psoriasis, indicating that while there is
overlap in risk on a molecular level this does not necessar-
ily manifest as co-occurrence of the two conditions.

While replication of the PSORSC13 finding in saliva is
encouraging, there has been debate over whether find-
ings in peripheral tissue in general will parallel those in
the organ most likely to be primarily involved, in this
case the brain. A recent study evaluated DNA methyla-
tion patterns in the blood and saliva using the 450K
BeadChip to assess the correlation of the two sample
sources with secondary data from brain tissue. Although
concordance was poor overall, methylation patterns in
saliva were more similar to the brain methylome than
blood [78]. The development of biomarkers that can be
used to improve the diagnosis of depression, or those
predictive of response to treatment, requires them to be
easily accessible for sampling, so identification of reliable
markers of depression in the periphery have more clin-
ical utility than those in the brain. Saliva is a very prom-
ising potential biomarker discovery tissue due to the
non-invasive sampling method. A concern is whether
cell composition differences between cases and controls
might be a confounding effect. The collection method
utilised here involved the lysis of the cells so the specific
cell types present could not be directly assessed. EpiD-
ISH analysis indicated that the saliva samples from the
cases had different proportions of both cell types from
the controls, and that these were significant. Thus, it is
likely that the methylation profile in part may reflect a
difference in cell count in the cases vs controls. From
the point of view of a biomarker, this is still a valuable
finding as it can help to identify people with depression
based on a heightened altered cell profile. On another
level, we must consider that the surrogate variable ana-
lysis (SVA) and correction applied to our cohort will
have accounted in part for this, suggesting that the im-
mune gene hits highlighted in the analysis are genuine
targets: these two levels of information are analogous to
the cell count estimators such as EpiDISH, which can
determine cell types independently of the top hits in the
differential methylation analysis. Furthermore, immune
genes were the top GO categories, and LCE and other
immune genes the top hits, in the independent MDD
cohort where there was no evidence of cell count skew-
ing and prior to MDD onset, strongly supporting an
underlying immune system link with depression.
The current exploratory study was carried out on a

relatively small subgroup from the larger available stu-
dent cohort as an initial investigation into the viability of
using DNA methylation in saliva samples as potential
biomarkers of depression. However, we have taken a
stratified approach here in sub-classifying the cases of
depression and, using logistic regression identified the
small group of students who represent the most severe
cases of depression with self-harm and suicide attempt.
Our sample screened by array here represented more
than half (16/30) of that high-risk subgroup: by limiting
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the samples chosen we could more closely match these
cases to controls with no history of mental disorders in
terms of known confounders in methylation analysis,
namely age, gender and smoking. The stratification ap-
proach may explain why clear differences were observed
between the groups despite the small sample size overall.
Significant hits were determined using a combined rank
approach across adjacent sites, which took into account
not only p value, but also magnitude and quotient for
the changes in methylation, and is considered a more re-
liable indicator of biologically meaningful differences
than p value alone [79]. Methylomic profiling of add-
itional samples across a broad spectrum of individuals
with depression are necessary to determine whether
these changes are representative of depressive cohorts
generally and to assess their utility as biomarkers.

Conclusions
While this study is exploratory in nature, and has a num-
ber of caveats as indicated above, it nevertheless shows a
novel linkage between epigenetic changes detected in sal-
iva, and a particular category of depression with self-harm
and suicidal attempt. Furthermore, our study clearly im-
plicates changes at genes involved in the chronic inflam-
matory condition psoriasis, supporting emerging evidence
from a number of epidemiological studies. Future work
will include the analysis of a larger cohort if possible, as
well as investigating specific intrinsic influences such as
childhood adversity, and other clinical/phenotypic infor-
mation. Additionally, it will be valuable to explore the po-
tential mechanistic role of methylation in controlling
transcription from these loci. Further analyses will also de-
termine whether these markers have clinical utility in
identifying or sub-classifying depression, or in predicting
therapeutic response.

Methods
Ethics
Ethical approval was obtained from Ulster University Re-
search Ethics Committee (REC/15/0004).

Design
The Ulster University Student Wellbeing Study (UUSWS)
has been described in detail elsewhere [7, 9] and was
conducted as part of the WHO World Mental Health
International College Student Project (WMH-ICS). The
UUSWS study is being conducted as part of the WHO
World Mental Health International College Student Pro-
ject (WMH-ICS). An observational, longitidunal cohort
study design is used for all studies. Prospective studies,
such as this, can be very benefical in that recall issues are
minimised, sequences or patterns of events can be estab-
lished and causal relationships may be inferred.

Recruitment
All students commencing Ulster University in Septem-
ber 2015 were emailed a participant information sheet.
First year students were recruited during registration
where they gave written consent, provided a saliva sam-
ple and were given a unique, anonymous number to
complete an online mental health survey clinically vali-
dated against the Diagnostic and Statistical Manual of
Mental Disorders (DSM-IV) [80].

Survey responses
The survey instrument was adapted from the WMH Com-
posite International Diagnostic Interview (CIDI), version
3.0 [81], designed to be validated against the criteria of
ICD-10 and DSM-IV disorders. Although these measures
are self-report, good concordance has been found between
the CIDI and clinical assessments [82]. Participants com-
pleted a section on emotional problems including depres-
sion, bi-polar disorder, anxiety, panic attacks or panic
disorder and other serious emotional problems. Suicidal
behaviour and non-suicidal self-injury (NSSI) questions
were included from the Self-Injurious Thoughts and Be-
haviours Interview [83]. Impulsivity was measured by ask-
ing the participants if they often act without thinking, a
Likert scale ranging from 1 ‘strongly agree’ to 6 ‘strongly
disagree’ from the Student Experience and Student Expec-
tations questionnaire [84]. Bullying was measured by ask-
ing participants how often they experienced the following:
(1) you were bullied at school physically (i.e. repeatedly
punched, shoved or physically hurt)? (2) You were bullied
at school verbally (i.e. teased, called names). (3) You were
bullied at school by someone who purposefully ignored
you, excluded you, or spread rumours about you behind
your back? You were bullied over the internet (e.g. Face-
book, Twitter) or by text messaging? The questionaire
used a Likert scale ranging from 1 ‘very often’ to 5 ‘never’.
These questions were adapted from The Bully Survey [85].
Maltreatment was measured by asking participants how
often they experienced the following using a Likert scale
ranging from 1 ‘very often’ to 5 ‘never’: (1) physical
abuse—you were physically abused at home; (2) emotional
abuse—you were emotionally abused at home. The ques-
tions were adapted from the Adverse Childhood Experi-
ences Scale [86]. Emotion regulation was measured using
the Emotion Regulation Questionnaire, which consists of
two dimensions of emotion regulation, reappraisal (six
questions) and suppression (four questions), related to
how well they control or manage their emotions. The in-
strument utilises a 7-point Likert scale. High scores for re-
appraisal are optimal while low scores for suppression
indicate better emotion regulation strategies [87]. Logistic
regression analysis was used to explore relationships be-
tween socio-demographic risk factors for individuals with
depression, and comorbid suicidality and/or self-harm.
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Case selection
Cases (n = 16) were selected from students who met the
criteria for life-time (LT) major depressive episode, and
who also reported suicide attempt and self-harm. Life-
time depression is determined based on the response to
seven questions (Likert scale) corresponding to DSM-IV
criteria for depression. To calculate LT depression the
first 6 symptoms/questions were recoded to 4 = “all or
most of the time and 0 = none of the time, and summed.
If at least 1 of the first 4 symptoms was “all or most of
the time” and the sum of all six symptoms was at least
15 then participants met the criteria for depression. Sui-
cidality, including thoughts, plans and attempts and self-
harm, was assessed using items from the Self-Injurious
Thoughts and Behaviour Interview [83]. If a participant
responded yes to either of two questions asking about
thoughts of hurting or killing themselves, or responded
yes to direct questions on plan or attempt, they met the
criteria for suicidal behaviour. Self-harm was assessed by
asking the participant the following question: did you
ever do something to hurt yourself on purpose, without
wanting to die? (e.g. cutting yourself, hitting yourself, or
burning yourself)? If they responded yes, they met the
criteria for self-harm and were asked some further ques-
tions with regards to the number of times and what age
this began. Healthy controls (n = 16) were participants
who reported no mental health problems, and strictly
matched by age, gender and smoking status.

Sample collection
Saliva samples were collected using Oragene OG-500
kits (DNA Genotek, Ontario Canada), enabling the self-
collection and stabilisation of DNA at room temperature
as per manufacturer guidelines.

DNA extraction, bisulphite conversion and EPIC Beadchip
Array
Saliva samples were incubated for 2 h at 56 °C, and
DNA isolation carried out with PrepIT.L2P (DNA Geno-
tek Inc., Canada) as per the manufacturer’s instructions.
The purity and integrity of the genomic DNA prepara-
tions were assessed by agarose gel electrophoresis, and
the quantity of DNA was determined using Quant-IT
PicoGreen dsDNA Assay Kit (Invitrogen, Paisley, UK).
In preparation for DNA methylation analysis, 500 ng of
DNA was bisulphite converted using the EZ DNA
Methylation Kit (Zymo Research, CA, USA) according
to manufacturer’s instructions. Genome-wide DNA
methylation profiles were generated using the Infinium
Methylation EPIC Beadchip Array, and the Beadchip im-
ages captured using an Illumina iScan (Cambridge Gen-
omic Services, Cambridge, UK) for matched cases (n =
16) and controls (n = 16).

Bioinformatic analysis
Data was analysed using the RnBeads package (version
1.6.1) [49] on the freely available statistical software plat-
form R (version 3.1.3). All samples passed quality control
and were subjected to pre-processing, which involves fil-
tering of probes and normalisation. Probes removed in-
cluded those with a missing value (NA), probes at SNP-
enriched sites, and bad quality probes determined by
greedycut algorithm. Background correction was carried
out using methylumi.noob v2.32.0 [88] and the methyla-
tion values of the remainder probes were normalized
using bmiq [89]. Copy number variation (CNV) was
assessed using the DNAcopy package v1.60.0 [90]. In
order to account for any hidden confounding variables
in the dataset, surrogate variable analysis was carried out
using the limma method [91]. The methylation inten-
sities for each probe, representing a CpG site, were rep-
resented as β values (ranging from 0, unmethylated, to 1,
fully methylated) and these were plotted against genomic
loci (based on Human Genome Build 19) using an in-
house developed workflow in GALAXY v19.01 (https://
usegalaxy.org/) [92] called CandiMeth (Thursby and
Walsh, in prep) in order to visualise changes in DNA
methylation in UCSC (https://genome.ucsc.edu/) and
quantify differences across specific genomic intervals.
Subsequent gene ontology (GO) analyses were per-
formed using DAVID v6.7 (https://david.ncifcrf.gov/)
[50]. Cell type composition estimation was performed in
RStudio using EpiDISH v2.2.2 [57].

Pyrosequencing
Bisulphite pyrosequencing was carried out in order to ver-
ify changes in methylation at loci of interest from the Infi-
nium MethylationEPIC Beadchip Array. Primers spanning
the probes of interest from the array were designed using
the PyroMark Assay Design Software 2.0 (Qiagen, Man-
chester UK). Bisulfite-treated DNA was PCR-amplified
using the PyroMark PCR kit (Qiagen, Hilden, Germany)
according to manufacturer’s instruction. The primer se-
quences and PCR conditions are summarized in Supple-
mentary Table 1. Amplification was carried out as follows:
95 °C for 15 min, followed by 45 cycles of 95 °C for 30 s,
56 °C for 30 s, and 72 °C for 30 s, with a final elongation
step at 72 °C for 10 min. Pyrosequencing was performed
as per manufacturer’s instructions on the PyroMark Q24
system (Qiagen, Hilden, Germany), and methylation
levels were analysed using PyroMark Q24 1.010 soft-
ware (Qiagen, Hilden, Germany).

Statistical analysis
Differential methylation analysis was conducted on site
and region level for healthy controls and cases samples.
The normalized β values of the Infinium MethylationE-
PIC Beadchip Array data were converted into M values
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(M = log2(β/(1-β)) and differential methylation between
samples (cases vs. healthy controls) was estimated with
hierarchical linear models using limma. On the region
level (i.e. genes, promoters, CpG islands), differential
methylation was computed based on the average differ-
ence in means across all sites in a specified region of the
sample groups and the mean of quotients in mean
methylation as well as a combined p-value, which was
calculated from all site p-values in the region using a
generalization of Fisher's method [93]. In addition, each
region was assigned a rank based on each of these cri-
teria. The smaller the combined rank for a region, the
more evidence for differential methylation it exhibits.
The top 1000 ranking genes of each region was input

into DAVID. We used DAVID software to determine
significance of each gene ontology category, calculated
using a modified Fisher’s exact test (EASE score) which
was FDR-corrected. Pyrosequencing data were analysed
using Student’s t test to identify statistical differences be-
tween cases and healthy controls. EpiDISH data was
analysed using Kruskal-Wallis test to identify statistical
differences between cell type composition for cases and
controls in each cohort. A p value < 0.05 was considered
significant.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-020-00877-7.

Additional file 1: Table S1. Pyrosequencing primers.

Additional file 2: Table S2. Immune-related genes analysed for gains
in methylation at promoter.

Additional file 3: Figure S1. Absence of population substructure
effects. A quantile–quantile (QQ) plot showing observed vs. expected −
log10 (p values) for association at all CpG sites. The x-axis shows the ex-
pected −log10 (p value), the y-axis the observed –log10 (p value): the red
line indicates the expected distributions under the null hypothesis and
the black dots were the observed values. A close match at lower signifi-
cance values indicated no systematic inflation of P was seen due to
unaccounted-for stratification effects.

Additional file 4: Figure S2. Absence of deletions or duplications at
top differentially methylated loci. EPIC array probe data was analysed
using the DNAcopy package in R to look for variations indicating copy
number variation (CNV): an example output plot from subject 225
(Healthy Control) is shown. Probe index number is shown along the x-
axis, while gain/loss in copy number, expressed as the log-10 ratio, is
shown on the Y-axis; dots coming away from the line indicate probes
showing gains or losses of signal consistent with regional duplications/
deletions. No significant CNVs were detected in the Epidermal Differenti-
ation Complex (EDC) region on chromosome 1q21, but the approach
successfully detected a CNV on chromosome 5 in one participant (arrow
at right) not overlapping any of the differentially methylated regions,
shown here as a positive control for sensitivity. DNAcopy plots were car-
ried out for all samples and failed to detect copy number variation (CNV)
at other top hits.
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Supplementary Materials 

Table S1: Pyrosequencing primers 

Gene Primers 

LCE3A 

F1    GGA ATG ATA AAA GGG AAG TAG GAA 

R1     ACC CTA ACT TCA AAA CAT ATA AAC TAA 

S1      AAG GGA AGT AGG AAA TT 

MIR4520A F1      GTT TAA ATT TTT TTT TGA TTT GGA TAG AAA 

R1      AAA ACA TAC CCT CAA TTC CAA AAA AAT C 

S1      TTT TTT TTG ATT TGG ATA GAA AAT A 

PSORS1C3 F1      GGA GGT TTT TAT TGG TT GGA GTT GT 

R1      AAA TCA CCC CTC CCA CTA CTA A 

S1      ATT GGA TTG GAG TTG TT 
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Table S2: Immune-related genes analysed for gains in methylation at promoter 

Gene names [UCSC] 

CCL22 CCL23 CCL3 CCL4L1 CCL4L2 CCR1 CCR7 CXCL10 CD101 

CD177 CD22 CD244 CD248 CD28 CD300LB CD300LD CD300LF 

CD300A CD33 CD34 CD40 CD48 CD5L CD5 CD6 CD74 CD79B CD84 

CD93 NLRC3 NLRC4 NLRP12 NLRP3 DEFA1 DEFA1B DEFA3 DEFA4 

IGHV4-39 IGHV7-81 IGKV2-30 IGKV2D-30 IGLC2 IGLL1 IGLV2-11 

IGLV2-8 LILRA2 LILRA3 LILRB1 LILRB2 LILRB4 LST1 

Promoter regions were defined as the interval from -500bp to +1bp from the transcriptional 

start site: methylation data for these regions in controls vs cases are presented in Fig.1D.  
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Fig. S1 Absence of population substructure effects 

A quantile–quantile (QQ) plot showing observed vs. expected − log10 (p values) for 

association at all CpG sites. The x-axis shows the expected −log10 (p value), the y-axis the 

observed –log10 (p value): the red line indicates the expected distributions under the null 

hypothesis and the black dots were the observed values. A close match at lower significance 

values indicated no systematic inflation of P was seen due to unaccounted-for stratification 

effects. 

Fig. S2 Absence of deletions or duplications at top differentially methylated loci 

EPIC array probe data was analysed using the DNAcopy package in R to look for variations 

indicating copy number variation (CNV): an example output plot from subject 225 (Healthy 

Control) is shown. Probe index number is shown along the x-axis, while gain/loss in copy 

number, expressed as the log-10 ratio, is shown on the Y-axis; dots coming away from the line 

indicate probes showing gains or losses of signal consistent with regional 

duplications/deletions.  No significant CNVs were detected in the Epidermal Differentiation 

Complex (EDC) region on chromosome 1q21, but the approach successfully detected a CNV 

on chromosome 5 in one participant (arrow at right) not overlapping any of the differentially 

methylated regions, shown here as a positive control for sensitivity. DNAcopy plots were 

carried out for all samples and failed to detect copy number variation (CNV) at other top hits.  

Page 242 of 356



Page 243 of 356



Page 244 of 356



6.0 PAPER-V 

CandiMeth: Powerful yet simple visualization and quantification of DNA methylation at 

candidate genes 

Sara-Jayne Thursby, Darin K. Lobo, Kristina Pentieva, Shu-Dong Zhang, Rachelle E. Irwin, 

Colum P. Walsh 

The main aims of this paper were to: 

- Provide an online user-friendly method of feature specific methylation analysis from

the results on epigenome-wide methylation arrays

- Permit feature specific analysis of the outputs of multiple R-based methylation array

processing pipelines

CONTRIBUTION 

This paper represents the culmination of the development of the Galaxy workflow which I had been 

modifying through Papers I-IV from the original simple one generated by CPW. As well as massive 

redesign, I had to re-code much of it using SED commands, with the help of DKL. I conducted the 

majority of testing/improving of the workflow and created and populated the associated GitHub 

repository, as well as all the test and example data histories within Galaxy. I drafted the manuscript, 

carried out all suggested edits and made the majority of the figures. 
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Abstract

Background: DNA methylation microarrays are widely used in clinical epigenetics and are often processed using R packages
such as ChAMP or RnBeads by trained bioinformaticians. However, looking at specific genes requires bespoke coding for
which wet-lab biologists or clinicians are not trained. This leads to high demands on bioinformaticians, who may lack
insight into the specific biological problem. To bridge this gap, we developed a tool for mapping and quantification of
methylation differences at candidate genomic features of interest, without using coding. Findings: We generated the
workflow ”CandiMeth” (Candidate Methylation) in the web-based environment Galaxy. CandiMeth takes as input any table
listing differences in methylation generated by either ChAMP or RnBeads and maps these to the human genome. A simple
interface then allows the user to query the data using lists of gene names. CandiMeth generates (i) tracks in the popular
UCSC Genome Browser with an intuitive visual indicator of where differences in methylation occur between samples or
groups of samples and (ii) tables containing quantitative data on the candidate regions, allowing interpretation of
significance. In addition to genes and promoters, CandiMeth can analyse methylation differences at long and short
interspersed nuclear elements. Cross-comparison to other open-resource genomic data at UCSC facilitates interpretation of
the biological significance of the data and the design of wet-lab assays to further explore methylation changes and their
consequences for the candidate genes. Conclusions: CandiMeth (RRID:SCR 017974; Biotools: CandiMeth) allows rapid,
quantitative analysis of methylation at user-specified features without the need for coding and is freely available at
https://github.com/sjthursby/CandiMeth.

Keywords: galaxy; methylation; workflow; DNA methylation; arrays; epigenetics; EWAS

Introduction

Epigenetics can be defined as stable, and most often herita-
ble, changes to the chromatin that do not alter the DNA se-
quence itself but still affect gene expression and/or are required
to maintain genomic stability [1]. These modifications consist of

reversible marks such as cytosine DNA methylation or histone
modifications, each critical to gene expression regulation, im-
printing, X-inactivation, and many other processes from mam-
malian gestation to later life [1].

Cytosine DNA methylation is the most common and thor-
oughly investigated of these epigenetic alterations. It is charac-
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2 CandiMeth: Visualization and quantification of DNA methylation at candidate genes

terized by the addition of a methyl group to a cytosine residue,
many of which are located within so-called CpG islands (CGI)
close to gene promoters [2]. High levels of DNA methylation at
promoters aid in the stable long-term repression of the cog-
nizant genes, such as can be seen on the inactive X chromo-
some in mammals [3]. Methylation at control elements such as
insulators or enhancers can also help regulate regional gene ex-
pression, with multiple examples being seen among imprinted
genes [4] or gene clusters such as the protocadherins [5]. High
levels of methylation are seen on selfish DNA elements such as
endogenous retroviruses, where they play an important role in
their suppression [6] as well as at inert regions of the genome
such as pericentromeric repeats [7]. More recently, methylation
through the body of the gene has been recognized as contribut-
ing to maintaining gene transcription levels at highly expressed
genes [8, 9]. As well as showing such developmental program-
ming, DNA methylation is susceptible to environmental influ-
ence, with inputs such as diet [10, 11] and exposure to pollu-
tants such as cigarette smoke [12] having clear and reproducible
effects on methylation levels, sparking great interest in analysis
at a population level, particularly in humans [13].

Advances in sequencing technology have allowed us to quan-
tify and analyse methylation via whole-genome bisulphite se-
quencing at ∼28 million CpG resolution [14]. While this tech-
nique remains the gold standard for whole-genome methyla-
tion assessment, it can be very expensive, and when there are
hundreds of samples to be tested and analysed prohibitively
so; quantifying small differences reproducibly between multiple
samples is also challenging. An alternative technology known
as a microarray, which predates the era of whole-genome bisul-
phite sequencing, is often a popular solution for such cases,
where a lower CpG resolution is satisfactory but where greater
intersample reproducibility is required [15]. A popular choice
here is the Illumina Infinium Methylation BeadChip array [15],
which currently covers 850,000 CpG sites across the human
genome, including 99% of RefSeq genes and large numbers of
enhancers and other features. This can help elucidate the ef-
fects of an intervention across hundreds of samples in a cost-
effective manner. There are many packages across multiple
computational languages to analyse the outputs from these ar-
rays such as RnBeads [16,] or ChAMP [17], but these pipelines
operate in the statistical programming environment R and re-
quire some coding. Additionally, the output file formats can be
overwhelming and difficult to investigate further without ex-
perience in data analytics and bioinformatics. This situation
is exacerbated by the typically higher number of samples in
epidemiological or intervention studies where such arrays are
commonly used.

To help solve this predicament, we developed a Galaxy work-
flow known as CandiMeth, which takes the main output from
such methylation analysis pipelines and pairs this with a list
of features that the user may wish to investigate. The work-
flow first generates tracks showing both absolute methylation
levels in samples and differences in methylation between sam-
ples. These can be viewed via the University of California Santa
Cruz (UCSC) genome browser and overlaid with other available
tracks such as CpG island, enhancers, chromatin immunopre-
cipitation (ChIP) data, and so forth to allow data exploration and
more intuitive analysis. This also facilitates the design of as-
says to cover specific CGs using BLAT. The workflow can then
help confirm any patterns observed by quantifying data across
the identified regions or features, e.g., methylation differences at
specific sets of genes between cases and controls. It also has a
bespoke analysis allowing estimation of methylation differences

at repetitive sequences by leveraging the RepeatMasker tracks
at UCSC. The workflow removes the need for further analysis in
R and increases reproducibility by using an automated process,
but in a more user-friendly manner.

Methods

CandiMeth (CandiMeth, RRID:SCR 017974) (Biotools: CandiMeth)
is designed to work downstream of DNA methylation analysis
pipelines in R. It was developed initially using RnBeads as ref-
erence but has been subsequently successfully run with ChAMP
and other packages (see below). ChAMP (ChAMP, RRID:SCR 012
891) [18] and RnBeads (RnBeads, RRID:SCR 010958) [15, 18] are
end-to-end pipelines in R that can take raw data files such as
IDATs and bam files from microarray readers or sequencers and
process these to allow data exploration, visualization, and com-
parison. For array data, which is the main area where CandiMeth
addresses an unmet need, IDAT files containing raw values for
the red and green channels for each of ∼850,000 probes are ex-
ported from the microarray reader. RnBeads/ChAMP can per-
form quality control, remove probes with low signal or overlap-
ping with single-nucleotide polymorphisms (SNPs), and provide
a cleaned dataset giving absolute levels of methylation as β or
M values. The packages can also facilitate exploratory visualiza-
tion through principal component analysis or similar and allow
grouping of data prior to looking for differential methylation.
Probes showing substantial differences in methylation (�β) can
be identified and then ranked on the basis of a variety of param-
eters, including probability of occurrence (P-value), �β, false dis-
covery rate (FDR), or a combination of several of these. The pack-
ages can look for enriched gene sets using gene ontologies/GSEA
[19] and visualize differences for annotated categories of array
probe such as promoter and gene body.

While packages for array analysis provide genome-level data
such as whether promoters in general are losing or gaining
methylation, querying specific gene sets that might give more
biological insight cannot be easily done in this or other R pack-
ages with similar functionality without extracting the processed
dataset and writing bespoke code. Visualization of the data
against the genome map is also of great attraction for the wet-
lab biologist but is also not easily done within these packages.
While RnBeads can map methylation values to the genome as
customized tracks, this can only be carried out if a local in-
stance is installed on the user’s server, which requires substan-
tial investment for set-up and maintenance. ChAMP does not
currently provide tracks at all, to our knowledge. Typically, many
biologists have specific genes that are of interest to them, or they
may want to examine the area in which top sites are located
and determine whether adjacent probes are also losing or gain-
ing methylation. A ready way of assessing the degree to which
methylation is changing across a particular region and the ex-
act location of the probes also greatly facilitates the design of
gene-specific assays such as primer sets for pyrosequencing or
clonal analysis. It is also generally of interest to try and leverage
the enormous pool of publicly available data accessible through
UCSC Genome Browser tracks to explore possible novel correla-
tions between methylation changes in a particular dataset and
other genome characteristics such as replication timing, histone
modifications, or similar.

We therefore wished to develop a user-friendly non–
computationally intensive method of candidate feature inves-
tigation that avoided the command line but was more pow-
erful than browser-only interfaces. To this end we chose the
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Thursby et al. 3

Figure 1: Overview of CandiMeth workflow. When the CandiMeth workflow is started the user needs to specify as Inputs (left): (i) the type of R package used; (ii) the
methylation data, normally in the form of a differential methylation table generated by the package; (iii) a list of genes to be analysed; and (iv) a human genome build
to match the data to. The methylation data are then mapped (centre left) to the genome and sites overlapping features of interest analysed (centre right). The data are
then output quantitatively as Results and visually as Tracks (right).

Galaxy (Galaxy, RRID:SCR 006281) platform [20], which is a free
open-source environment for user-friendly and reproducible
bioinformatics [21]. It provides a variety of data manipulation
and analysis tools via a web interface with no prior installation
or dependency packages required, with results stored within
the Galaxy infrastructure and every action producing a new his-
tory entry so the original data are never compromised via de-
structive edits. Galaxy also allows users to aggregate analysis
steps into repeatable pipelines called workflows, which can be
easily shared, along with the histories, via URL or username.
These can allow biologists with little bioinformatics experience
to conduct complex analyses on their own data within a sys-
tem that has a low maintenance requirement and with little
worry over data storage or data corruption. Moreover, work-
flows can be published to a repository such as GitHub (RRID:
SCR 002630) or MyExperiment (RRID:SCR 001795) [22] or within
a scientific journal—further encouraging open data science and
reproducibility. Galaxy also provides many plugins such as inter-
active visualization software to view results, the option to export
results to genome browsers, and the option to configure tools, or
indeed an entire Galaxy instance, to the desired end-user needs.

Overview of workflow

The main process undertaken by CandiMeth is to take as in-
put the methylation data from an R pipeline such as RnBeads or
ChAMP and (i) visualize the data as tracks in the UCSC Genome
Browser and (ii) analyse the methylation differences relative to
genomic features specified by the user. The workflow comprises
3 main steps: Inputs, Feature Mapping, and Analysis (Fig. 1).
There are also 4 items required at input stage: the user must
(i) indicate the R package used with the keywords “RnBeads,”
“ChAMP,” or “Custom,” then supply (ii) the methylation data, (iii)
a list of the genes of interest, and (iv) specify the human genome
build to be used, e.g., hg19. The basic workflow for CandiMeth is
that the genes of interest are mapped to the reference genome
and then cross-referenced with the input methylation data to
get feature-specific statistics. The workflow can currently look
at either the promoters (−500 to +1 bp relative to transcription
start site; suffix “ P” on results) or gene bodies (the transcription
unit; “ GB”), or both parts of the gene together (“ all”). We have
found this to be a particularly useful split because the current
consensus is that promoters and gene bodies can show opposite

methylation patterns, with methylation at the promoter largely
associated with repression, whereas gene body methylation in-
stead is a feature of transcribed genes. Outputs are then grouped
in the history into 2 types, Results or Tracks (Fig. 1). The methy-
lation data from the R packages are output as a standard differ-
ential methylation table as routinely generated, and either a sin-
gle table comparing 2 groups, or several tables can be processed
at once as inputs, e.g., comparing different experimental condi-
tions with the control. Each comparison will result in a separate
table and tracks, grouped together and given a condition-specific
identifier to avoid confusion. The CandiMeth workflow, together
with the example datasets used and a step-by-step tutorial, are
available on GitHub [23]. CandiMeth is optimized to work on the
latest version of Galaxy (19.0) through the Galaxy website [20,
24], thus making it platform-independent. For users who have
their own instance of Galaxy, the workflow can be downloaded
and imported via a link on the GitHub page, where a .yaml file is
also available.

Example outputs

To illustrate the type of analysis that can be done, Fig. 2 shows
outputs from 1 of the example dataset runs. Here we used as in-
put 1 of our previously published differential methylation tables
generated by RnBeads (NCBI Gene Expression Omnibus [GEO]
identifier GSE90012; the table is also given as Suppl. Table 1)
[25]. The experiment compared wild-type hTERT1604 human fi-
broblast cells (WT) and a clonal derivative with a stable knock-
down (KD) of the maintenance DNA methyltransferase DNMT1
(d8 KD), which gave large alterations in DNA methylation lev-
els, very suitable for the purpose of illustration here. The second
item needed for CandiMeth, namely, features of interest, was
in this case a set of microRNA (MIR) genes not analysed in the
original article, which was input here simply as a list of names
(given in Supp. File 2). CandiMeth first mapped the MIR locations
to the human genome (in this case hg19), then analysed the co-
occurrence of probes at these locations. The results appeared in
Galaxy as 2 grouped sets of datasets (Fig. 2A): “Mir Cluster | hg19
all | CandiMeth Results” and “CandiMeth Tracks.”

The Results set contained an output table for each condition,
namely, KD (d8) and WT cells (Fig. 2B, first 5 rows of each shown).
Each table consisted of 7 numbered columns. It should be noted
here that methylation values from the array are expressed as a
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Figure 2: Case Study 1: analysing new genes in a published dataset. Our previously published dataset GSE90012 using RnBeads to compare methylation levels in

cells deficient in DNA methyltransferase 1 (d8 KD) with wild type (WT) was reanalysed for methylation levels at microRNA (MIR) using CandiMeth. (A) The workflow
generated 2 grouped sets of outputs (white boxes at left) on completion, “Mir Cluster | hg 19 all | CandiMeth Results” containing links to the tabular quantitative data
and “CandiMeth Tracks” with links to the tracks on UCSC (B) CandiMeth Results box expanded: a separate dataset for each cell line is generated showing the list of

candidates, probe coverage, median, and a variety of other statistics for each gene analysed (top 5 rows only shown). (C) CandiMeth Tracks: UCSC Genome Browser
view, accessible via the eye symbols on the Galaxy history shown in (A): (From the top down) Scale bar, size of region in kilobases of DNA; chr1, chromosome number
and exact coordinates from the hg19 genome build. (1–4) CandiMeth tracks: (1) Mean beta d8, absolute methylation track reflecting array output going from 1, no
methylation, to 1,000, fully methylated, e.g., 811 = 81.1%, maximum and minimum indicated at left; (2) Mean beta WT, absolute methylation in WT; (3) delta d8vsWT,
a differential methylation track showing proportional change going from −1.0 (100% loss, red) to +1.0 (100% gain, blue), e.g., −0.155 = loss of 15.5% compared to WT;
(4) FDR D8, a significance score track showing only those sites whose differential methylation meets the cut-off criterion of a 0.05 false discovery rate. (5–7) Examples
of some of the tracks available through the UCSC Genome Browser, which can be aligned and directly compared to CandiMeth tracks: (5) HAIB Methyl450, data on
comparative methylation from ENCODE projects; (6) Pyro, the BLAT tool in UCSC, which can be used to find primers for pyroassays to cover 1 or multiple CG; (7) RefSeq

track, showing the location of the top 2 MIR from (B).

number from 1 (no methylation) to 1,000 (fully or 100% methy-
lated) to facilitate visualization. The numbered columns corre-
spond to (1) Feature, the candidate region of interest, in this case
each of the MIR in the initial list; (2) Probes, the number of ar-
ray probes that are found in the specified feature; (3) Median,
the methylation value that is the median of all probes mapping
to that feature, e.g., 626.208/1,000 is the median of all probes at
MIR1185–1, or 62.6% methylated; (4) Mean, the mean methyla-
tion value across all probes; (5) SD, the standard deviation; (6)
Max, the maximum probe value seen in the feature; and (7) Min,
the minimum probe value (Fig. 2B). It can be seen that methy-
lation values are much lower in the DNA methyltransferase-
depleted cells (d8) for each miR compared to the parental or WT
cells, e.g., MIR1185–1 62.6% median methylation in d8 vs 72.2% in

KD. It can be seen that, while usually in reasonable agreement, in
some cases the median and mean vary substantially, and hav-
ing data on the numbers of probes can be useful for deciding
confidence in the results and on any threshold to be applied.

In the Tracks folder CandiMeth also generated 4 tracks on the
UCSC Genome Browser (Fig. 2C, 1–4), which can be visualized by
clicking on the eye icon on the Galaxy datasets under CandiMeth
Tracks in Fig. 2A (clicking on each track overlaid it on the previ-
ous one to generate the cumulative view shown).

Tracks 1 and 2 are absolute methylation (raw β) tracks, de-
noted as “Mean beta” in CandiMeth outputs. These show the
methylation per probe for all probes in the differential methyla-
tion table that passed quality control and other screening steps
in RnBeads, and not just the feature-specific (here MIR) probes,
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as we have found that the genomic methylation context is very
valuable to consider when looking at features. In other words,
even if Promoters is selected at input, the tracks will show all
probes, including those in the gene body and other regions.
Track 1 is the DNMT1-depleted cell line (“Mean beta d8”) data,
and Track 2 is from the WT cells (“Mean beta WT”).

Track 3 is the �β track (“Delta d8vsWT”) showing the differ-
ence between methyltransferase-deficient and WT cells. These
are BedGraph files like Tracks 1 and 2, but because methylation
can be higher or lower in 1 sample versus another, the visualiza-
tion is different from the absolute methylation tracks. Instead,
gains in methylation in the experimental condition are shown
as blue columns above the zero (no change) line, and losses are
shown as red columns below the line, with a change of +1 be-
ing 100% increase and −1 being −100%, i.e., an array probe going
from 100% methylated to 0% methylated. The Delta track also
allows the user to see how many array probes in a region are
showing large differences in methylation and whether a differ-
entially methylated region (DMR) identified by RnBeads extends
farther than originally estimated [26]. Note that this track shows
all differences in methylation, however small: the FDR-corrected
probes are shown in the next track.

Last, an FDR-corrected track (“FDR D8,” Track 4) was also pro-
duced: this only showed information for those probes where
the R package has assessed the FDR to be <0.05 because this
is a statistical cut-off implemented by many array users. This
is an excellent method for visualizing only CG that have high-
confidence differences in methylation between samples. Here,
only a single probe passed the FDR threshold and is shown: the
absolute methylation level at the probe is given because P-values
would not scale correctly.

One of the most powerful features of using this approach is
that data can easily and more intuitively be compared to other
UCSC tracks (Fig. 2C, 5–7). The specific CpG site can be identified
in UCSC, e.g., by right-clicking on the column on the track, or
by typing the CG identity into the UCSC browser search window,
which will then pull out a track with the site highlighted, in this
case the ENCODE project’s HAIB Methyl450 (Fig. 2C, Track 5). A
particularly useful tool in this context is UCSC’s BLAT, which can
be used to help ensure that primers designed to verify methyla-
tion differences at specific regions of interest by pyrosequenc-
ing or similar do indeed overlap the crucial sites (Fig. 2C Track
6, Pyro), in this case the FDR-significant site. Off-the-rack as-
says for each CG on the EPIC array can also now be purchased
commercially. Other UCSC tracks shown in Fig. 2C include the
RefSeq track (Track 7), invaluable for identifying well-curated
genes rather than predicted or rare products. These tracks were
all overlaid on the CandiMeth tracks, allowing the user to see
whether methylation changes were located in or near any of
these features. These are examples only; any track available
through UCSC or that can be called through Galaxy can poten-
tially be aligned with the CandiMeth tracks.

Data preparation and inputs

A complete User Guide document with step-by-step tutorials
is available [23]; here we describe more general features of the
workflow. As indicated, CandiMeth runs in the Galaxy environ-
ment: users must first create an account and copy the Can-
diMeth test history and workflows to their account, as explained
in the Guide. Once these simple steps have been carried out the
first time, they do not need to be repeated. When CandiMeth is
being run, the initial window will look as shown in Fig. 3: the
workflow occupies the central window, while the example data

and datasets required for the workflow are in the History win-
dow at right; the left window Tools will not be used. Upon initial-
ization, the workflow window will look as shown, with 1 Yes/No
choice and 4 fields (numbered 1–4) to fill in. We recommend sav-
ing the outputs of CandiMeth to a new history when initiating
the pipeline. This will (i) make it possible to continue working on
other tasks while CandiMeth is running in the background—the
workflow can take a while to run depending on server usage and
(ii) segregate the current job from the reference datasets in the
CandiMeth initial history, which avoids cluttering the initial his-
tory or causing problems if a particular run fails and generates
incompletely processed datasets. The 4 fields are the 4 forms
of inputs required, as indicated in the example above and dealt
with below.

Input Type 1: R package used
CandiMeth works downstream of R-based packages that are de-
signed to process epigenome-wide datasets. The 2 most popular
packages (by Bioconductor download) ChAMP and RnBeads both
automatically generate tabular data outputs that are suitable
as input for CandiMeth without further processing, but the ta-
bles are in slightly different formats. Therefore, CandiMeth users
should select either “RnBeads” or “ChAMP” when asked which R
package was used. CandiMeth also supports other packages via
a “Custom” keyword.

Input Type 2: Differential methylation table
The user needs to identify the location of, or upload directly, a
copy of the output table from the R package containing the dif-
ferential methylation data. For RnBeads this can be found via the
html interface by opening “differential methylation html” and
choosing the desired comparison table. Once uploaded, the dif-
ferential methylation table must be converted to a dataset col-
lection through a 1-step operation (see the User Guide [23, 27]),
which allows all the data from the table to be processed at once.
An example table is available in dataset collection format in the
CandiMeth default history; the raw table itself is also available
as Supp. Table 1. In addition, an example ChAMP output is also
available as Suppl. Table 5 in the CandiMeth History.

If the custom option is chosen at Input 1 above, the user
can input a data frame of any origin as long as it follows the
default CandiMeth format, namely: Chromosome; Start; cgid;
mean.X; mean.Y; the difference between the 2 groups; and the
FDR-corrected P-value (where X and Y equal the names of the
experimental and control groups, respectively). Data frames can
also be rearranged in Galaxy using the text manipulation tools
“cut” and “join” within the Galaxy tool panel to produce an ac-
ceptable input table. We hope to extend the number of prefor-
matted options beyond RnBeads and ChAMP to reduce the need
for custom inputs in future.

Input Type 3: Gene features of interest
Here the user can choose which features they want to investi-
gate. This can be done in a customized fashion, but commonly
biologists initially want to see how much methylation is present
across well-defined genomic features such as genes. This can
easily be done in CandiMeth by following the commands >Get
Data >upload File >paste/Fetch and then typing the official gene
names, 1 per line, into the window that opens there (see Step-
by-Step Guide). Alternatively, they can be uploaded as a list in
a tab-delimited file format at this step. To facilitate initial trials,
the MIR gene names used above have been preloaded into the
default CandiMeth history for use and are also supplied as Supp.
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Figure 3: User Interface for the workflow. Screenshot of the workflow start window (middle pane) that appears on right-clicking >CandiMeth>Run. The right-hand side
shows the CandiMeth starting history, where preloaded data used with the workflow can be found, together with any user-uploaded datasets. Galaxy tools (left) are
not used. For the workflow the user chooses whether to save results to a new history (recommended), then specifies (1) which R package was used to pre-process the

data, e.g., RnBeads; (2) the dataset collection table of pre-processed data—available sets will appear in the drop-down menu; (3) a list of the genes/other features of
interest to analyse; and (4) the reference genome to be mapped to, e.g., hg19. Once all 4 have been decided, the user clicks on the blue “Run workflow” button at top
right to initiate a run.

Table 2. The features associated with the gene names are then
mapped to the genome using the genomic data discussed next.

Input Type 4: Genome information
An important part of the CandiMeth workflow is the parsed hu-
man genome information used to assign array probes to vari-
ous genomic features. Example human genome build informa-
tion used for the mapping part of the CandiMeth pipeline can be
found within the CandiMeth history (right-hand pane in Fig. 3).
The data provided here cover 2 genome assemblies, hg19/hg38,
and will aid the mapping of candidate features to promoters,
whole gene body region, or both (hg19 all option) as defined by
RefSeq [28].

Using CandiMeth, users can query RefSeq-defined genes or
repeats to obtain the same types of information as can be ob-
tained by analysis in an R package. One advantage here how-
ever is that the simultaneous visualization allows the user to
inspect the match between probe location and gene structure
for candidate regions of interest: e.g., the initial screen may
indicate changes in promoter methylation from the manifest-
defined promoter, when inspection shows that all of the probes
lie in the first exon of a single-exon gene and therefore are in
fact gene body, the discrepancy being due to the definition of
promoter in the manifest. CandiMeth allows the user to refine
or alter the promoter definition to exclude bases downstream
of the transcriptional start site, for example, and re-evaluate.
An approximation of promoter areas of these RefSeq genes was
generated for the example data analysis and was defined as the
region from 500 bp upstream to the first base (−500→ +1 bp)
and is available in the CandiMeth history [29] mentioned above.
Similarly, probes were also parsed into gene body and repeat cat-
egories for CandiMeth to facilitate user analysis of effects over

these types of genomic intervals for their candidate genes of in-
terest.

Processing steps

Fig. 4 shows a workflow editor view of CandiMeth: different sec-
tions have been numbered for ease of reference here.

1. Inputs: Inputs are indicated at left; R package used to generate
the table (1.1), differential methylation table (1.2), features of
interest (1.3), and parsed genome information specific to that
type of interval, e.g., promoters (1.4). Once the 4 input types
have been decided (see aforementioned examples) the work-
flow proceeds as follows.

2. Generation of a standardized data frame between RnBeads
and ChAMP: First the CSV file output from the R package
is processed by converting the delimiters used into tabs
(2.1), then the keyword identifier for that package (either
“RnBeads,” “ChAMP,” or “Custom”) added to the differential
methylation table (2.2) to form an extra column. A table is
then output showing the chr, start, cgid, mean methylation
between control and experimental groups, the difference be-
tween these experimental groups, and FDR-corrected P-value
(2.3). Subsequently, the end coordinates for each cg site are
calculated and added to this table (2.4), so the data can be
configured to run on UCSC Genome Browser at a later stage
in the workflow.

3,4. Track generation and naming: Differential Table inputs from
RnBeads (1.2) are converted into a variety of tracks compat-
ible with UCSC Genome Browser. These include 2 absolute
methylation tracks (3.4, 3.5) in this case, 1 FDR track showing
only FDR significant sites (3.1), and 1 �β track (3.3) showing
the difference in β-value between the 2 absolute methylation
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Figure 4: Galaxy Workflow Editor View of CandiMeth. Detailed view of the workflow using the editing tool in Galaxy. Steps in the workflow have been grouped for

clarity. (1) Inputs: here the user indicates which R package was used to analyse their array using the keywords “RnBeads,” “ChAMP,” or “Custom” (1.1), identifies the
differential methylation table resulting from this R package (1.2) and the genomic features that they wish to analyse (1.3), and specifies the desired genome build
(1.4). (2) Standardizing the input data: Using the R package information in 1.1 and the differential methylation table in 1.2, CandiMeth generates a table showing the
chromosome location, start, end, mean methylation in the control and experimental groups, the difference between these groups, and the FDR-adjusted P-value. (3)

Track generation: maps the data on absolute as well as differential methylation from the table to the genome build. (4) Track naming: generates unambiguous labels
for each type of track. (5) Merging of tracks and names: this ensures logical labelling and grouping of tracks. (6) Feature mapping: this maps the specific features to
the same genome build. (7) Compilation of feature methylation: this parses the data in the tracks to only examine the features of interest. (8) Output Tables: these

contain summary statistics on the features of interest and are 1 major output. (9) Output Tracks: the user can also see the mapping on which the summary statistics
are based, which allows them to see areas adjacent to the features of interest, and overlay other UCSC tracks, as well as use tools such as BLAT.

tracks. Track and results names (4.1–4.4) are also generated
from the differential table inputs: this is an important step
because both absolute methylation data for individual sam-
ples and a number of types of comparison data must be sep-
arated and given logical and intuitive names to allow easy
identification among the multiple output datasets. The work-
flow uses a number of pre-existing tools available in Galaxy
to carry out these steps (Table 1).

5. Merging of tracks and names: Following track creation (3),
the resultant tracks and their names are merged into sepa-
rate dataset collections (5.1–5–4) and then collapsed into sin-
gular dataset collections (5.5, 5.6), one for all comparative
tracks (5.5), one for all comparative track names, and one
for all absolute methylation (mean β) tracks (5.4) with their
associated names (5.7). The mean β tracks will be used for
feature investigation later in the workflow. The results here
are compilations containing information on methylation at
each probe across the genome in each sample, or the dif-
ferences in methylation at specific probes between pairs of
samples.

6. Feature mapping: Features of interest (1.3) input by the user
such as a particular set of genes are joined (6.1) to the spec-
ified genome release information (1.4) using the Paste tool.
The gene features of interest are overlapped with the genome
release information to obtain the desired genome intervals
using AWK (6.2). Any repeated columns or rows that are no
longer required are discarded and unique records extracted
(6.3). The output here is a set of genomic coordinates match-
ing only the specific features of interest, e.g., a specific set of
genes.

7. Compilation of methylation data for features: The dataset col-
lection containing now correctly named absolute methyla-
tion tracks (5.7) is now joined with the mapped features of in-
terest (7). This allows the generation of feature-specific statis-
tics.

8,9 Outputs: Feature-specific statistics such as mean methyla-
tion over all probes in each feature, median, maximum, etc.
(see below), are tabulated and form 1 major output (8). The
comparative tracks (generated in 3) are also given unambigu-
ous final names, collated, and output as a dataset collection
called “CandiMeth Tracks” (9, with green stars marking final
output states).

Output files

The CandiMeth workflow produced as indicated above under Ex-
ample outputs 2 main types of output files:

Tables
Results tables all follow the same layout: feature name, probe
coverage, median methylation, mean methylation, standard de-
viation, maximum, and minimum. A partial example of a tab-
ular output for the set of miRs used in the example above is
shown in Fig. 2B (first 5 lines) and given in full in Suppl. Ta-
ble 3. Methylation values for the features can then be plotted
within Galaxy via their integrated visualization software or the
Table can be exported and downloaded then plotted within the
user’s preferred visualization software such as Prism or Excel as
desired.
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Table 1: List of Galaxy tools used

Tool name Tool ID Version CandiMeth step Reference

Convert delimiters to TAB convert characters 1.0.0 2.1 [30]
Add column to an existing dataset add value 1.0.0 2.2 [31]
Text transformation with SED tp sed tool 1.1.1 2.3 [32]
Compute an expression on every row column maker 1.2.0 2.4 [33]
Merge collections into single list of datasets MERGE COLLECTIONS 1.0.0 5 [34]
Relabel list identifiers from contents of a file RELABEL FROM FILE 1.0.0 5.7/9 [35]
Collapse Collection into single dataset in order of
collection

collapse dataset 4.1.0 5.5/5.6 [36]

Paste 2 files side by side Paste1 1.0.0 6.1 [37]
Text reformatting using AWK tp awk tool 1.1.1 6.2 [38]
Unique occurences of each record tp sorted uniq 1.1.0 6.3 [39]
Join the intervals of 2 datasets side by side tp easyjoin tool 1.0.0 7 [40]
Group data by a column and perform aggregate
operations on other columns

Grouping1 2.1.4 8 [41]

Tracks
CandiMeth produced 4 different tracks from the differential
methylation table input in the first step, of 3 different kinds (ab-
solute methylation, relative differences in methylation [�β], and
FDR-significant methylation difference), as shown in the exam-
ple above for a cell line system.

Findings

The utility of the CandiMeth workflow may be best illustrated by
some case studies.

Case Study 1: Application to array results from model
systems

One straightforward use of CandiMeth that has found common
use in our laboratory and among collaborators is to test a specific
gene set, as illustrated by the MIR example above (Fig. 2). To do
this, the user only has to specify a list of the names of the genes
they are interested in, together with the genome release, then
upload a table containing differential methylation data. This can
either be one generated by the bioinformatics team in-house;
one that was supplied, typically when array services are brought
in; or one that was generated from publicly available array data
such as our dataset GSE90012 described previously [42] and used
above.

Case Study 2: Application to EWAS study outputs

A major application of methylation array technology is in
epigenome-wide association studies (EWAS). CandiMeth can
provide a very useful tool for quickly examining in detail and
quantifying methylation differences around candidate regions
identified either by the R-based packages or from the litera-
ture. Fig. 5 shows the application of this approach to an EWAS
that we have recently published containing data from 86 partic-
ipants divided into 45 receiving placebo and 41 receiving folic
acid supplementation during trimesters 2 and 3 of pregnancy
to assess the potential positive effects of prolonging this vita-
min supplementation beyond the currently recommended peri-
conception and first trimester periods [26]. Output differential
methylation tables from RnBeads were used as input for Can-
diMeth, together with the names of the top candidate promoters
reported earlier. This produced a collection of outputs (Fig. 5A)
including a set of tabular Results for the 2 groups Placebo and

Treatment, as well as a set of Tracks. The latter included abso-
lute mean β, �β, and an FDR track, although the latter returned
the message “#No FDR significant sites” (not shown), often the
case for EWAS if the sample set was small or the perturbation
mild. Clicking through to the tabular results (Fig. 5B) showed ta-
bles indicating the number of probes present at each promoter
and mean methylation, revealing, e.g., that median methylation
at the CES1 promoter is 2.5% lower in folic acid–treated partici-
pants than placebo (666.142 – 641.100 = 25.042/1,000 = 0.025, or
2.5%).

Examination of the CandiMeth Tracks (Fig. 5C) was however
also informative here. This BedGraph track type is set by default
to scale to the maximum loss and gain on visualization, so that
when the UCSC browser is opened on a genomic region of in-
terest, not only are the maximum loss and gain shown, but the
graph is scaled to these, meaning that even when small differ-
ences in methylation occur, as typically seen in epidemiologi-
cal studies, the areas of the genome with the greatest changes
can be easily identified at a glance. In-house testing has found
�β tracks to be particularly useful because it can easily be seen
whether a feature contains any probes with methylation differ-
ences between samples big enough to assess by other means—
e.g., pyrosequencing can accurately assess differences in methy-
lation >5%. It can be easily seen from the �β (Track 3) that
the biggest loss of methylation was 7% (–0.071). The cluster-
ing of sites losing methylation at the promoter is also striking
(boxed in green) compared to the rest of the gene, suggestive
of a step-change in methylation at this important regulatory el-
ement rather than a point source. The seamless integration of
BLAT [43] meant that designing primers to verify methylation
changes could be done very intuitively and the area covered by
the assay mapped against the methylation data to confirm that
the assay could confirm methylation levels at the exact same
location (Fig. 5C Track 4 “Pyro”).

It was also seen from the absolute methylation levels in the
samples (Tracks 1, 2, values for promoters given in Fig. 5B) that
loss of methylation at the CES1 promoter occurred against a
background of high methylation at this region, which suggested
that this control element is normally methylated and silenced,
a type that often responds to even small losses of methylation.
Additional data to corroborate this could be obtained by examin-
ing chromatin state data available through the ChomHMM track
in UCSC (Fig. 5C, Track 6), which showed that the promoter falls
into the “poised promoter” category (colour-coded pink) and is
regulated in part by polycomb-group proteins (grey shading). A
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Figure 5: Case Study 2: Using CandiMeth to mine EWAS data. Example data from an EWAS dataset comparing 45 placebo and 41 treated samples from a randomized

controlled trial of a folic acid intervention during the second and third trimester of pregnancy. (A) Output Results and Tracks from the workflow when the RnBeads
differential methylation table and a list of the top-ranked differentially methylated promoters were used as inputs. (B) Summary statistics generated by the workflow
indicates the number of probes and methylation values (from 1 to 1,000) for the top promoters. (C) Tracks view for the CES1 locus showing the absolute levels of
methylation (Tracks 1, 2) as well as the most differentially methylated probes (Track 3) located at the promoter (boxed in green). Comparison to ChromHMM data in

UCSC (Track 6) shows this to be a poised promoter (pink). Identification of individual CG (numbered in Track 8) facilitated the design of a pyrosequencing assay (Track
4) covering the CG to be validated in the laboratory.

low likelihood of SNPs at the pyroassay region could be con-
firmed by examination of the Common SNPs dataset (Fig. 5C,
Track 7) and individual CpGs labelled by searching using the
UCSC query window, and their status in other public datasets
highlighted if desired (Fig. 5C, Track 8). Thus CandiMeth allowed
quick examination of candidate regions, quantification of differ-
ences specifically at these, the assessment of sites that could
be verified in the laboratory, exclusion of confounding SNPs,
and eased assay design and gave additional valuable insights
through mining of UCSC datasets using only a few simple inputs
and no coding.

Case Study 3: Analysis of methylation at genomic
repeats such as LINE1

Many studies looking for epigenetic changes also try to as-
sess DNA methylation outside of the coding regions. One com-
mon approach is to assess methylation at a highly repetitive
interspersed repeat such as LINE1, which is found scattered
throughout the genome at ∼500,000 copies, so in theory sam-

pling methylation across many locations. This normally has to
be done using a separate wet-lab assay such as pyrosequencing
because the 450 K and EPIC arrays are designed to cover genes
and their associated control elements, not repetitive DNA. How-
ever, as has been noted elsewhere [29, 42], a substantial num-
ber of probes on the arrays, particularly the EPIC, nevertheless
fall within repeats such as LINEs and SINEs. Taking advantage of
this, we parsed data from the RepeatMasker track on UCSC to al-
low mapping and quantification of methylation at the major re-
peat classes using array data (Fig. 6A). By simply listing the cate-
gories of repeat given by RepeatMasker (as in Suppl. Table 4), it is
possible to obtain summary statistics indicating the numbers of
probes overlapping the respective elements, together with me-
dian methylation, and so forth, from any differential methyla-
tion table, in this case from our experiment comparing WT and
DNMT1-deficient cell lines (Fig. 6B). It can be seen from the ta-
bles that very substantial numbers of probes on the EPIC map
to the various repeat classes, with ∼20,000 probes in LINE ele-
ments spread across the genome, and equal numbers in SINE
elements, with satellite repeats near centromeres showing the
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Figure 6: Case Study 3: Analysis of LINEs and SINEs. Use of CandiMeth to give an overview of methylation at repetitive elements. (A) Data on repeat location and type

from the RepeatMasker track on UCSC has been parsed and made available through the workflow: users can therefore simply type in the name(s) of a class of repeats
as a query. (B) Example outputs showing probe coverage of repeats on the EPIC array and methylation statistics for each repeat class in a DNMT1 knockdown cell line
(d16 KD) versus WT. (C) Tables from B were exported, median methylation levels converted to percent, and then graphed to highlight differences between the 2 cell
lines: decreases in methylation are seen at some (LINE, SINE, satellite) but not other repeats (low complexity, simple).

lowest coverage, at ∼1,000. The summary data were exported to
Excel and graphed to highlight where the greatest differences
lay (Fig. 6C), which showed that satellite sequences appear to be
most demethylated on average, with notable decreases at LINE
and long terminal repeat (LTR)-containing elements too, which
would include endogenous retroviruses for example, whereas
low-complexity and simple repeats show almost no changes,
despite good probe coverage (Fig. 6B). Thus CandiMeth allowed
straightforward assessment of repeat methylation across the
genome without the need for wet-lab analysis and gave novel
insights into the differential effects of DNMT1 loss on individ-
ual repetitive DNA classes.

Case Study 4: Analysis of methylation changes seen at
a large complex gene locus in multiple samples using
parallel processing in CandiMeth

A powerful feature of CandiMeth is the ability to process data
from multiple differential methylation analyses at once. To illus-
trate this, we took 3 sets of comparisons between the indepen-
dently derived DNMT1 KD cell lines described earlier (d8, d10,
and d16), each of which had been compared to the parental WT

cell line, and processed them simultaneously. In our earlier pub-
lication [25] we had found differences between the variable A
and B classes and the variable C class of exons at the impor-
tant neurodevelopmental gene cluster Protocadherin β (PCDHB),
with the A and B classes showing severe loss of methylation but
no change at the C class. This highlighted differences between
these classes, which indicate (i) a hyper-dependence on DNMT1
for maintenance of methylation levels and (ii) a potential dif-
ference in methylation dependence that may track with allele
usage because the A and B classes show monoallelic expression
but not the C class. Here, we wished to examine the neighbour-
ing PCDHG locus, which has a similar structure, and see whether
the same effect could be seen there.

We therefore generated a candidate region list containing
the names of the γ -cluster genes and input this as our can-
didate feature list input to CandiMeth, together with the 3
differential methylation tables from RnBeads (d8 vs WT, d10
vs WT, d16 vs WT). All 3 sets are processed at once (Fig. 7A,
left) and give as outputs data on absolute methylation levels
in each KD line as well as the WT parental line (which will not
vary), from which summary tables were derived specific to the
PCDHG exons; example data for 1 A and 1 C exon in each cell
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Figure 7: Case Study 4: Parsing data from a complex gene locus using parallel processing. Analysis of methylation at variable exons in the large (∼200 kb) clustered
Protocadherin γ (PCDHG) locus on human chromosome 5. (A) Results: changes at the variable exons across 3 independent cell lines deficient in DNMT1 (d8, d10, d16)
were scored using the RnBeads tables comparing each to WT as input, together with a list of variable exon names. Example quantitative outputs are shown at right
for WT and knockdown (KD) cells. (B) Tracks: part of the output set of tracks is shown, which included mean β, differential methylation, and FDR significant sites (not
shown) for all cell lines, generated simultaneously in 1 run. (C) The UCSC browser view available by following the links in (B). The region covering the A and B class
variable exons appears to show more loss of methylation while the C class appear to show predominantly gains; however, this is not exclusive and many probes lie
between exons. (D, E) Data on probes that lie solely in exons and not introns, obtained through Results (B), were exported and grouped as indicated. The numbers
were then converted back into β-values and graphed. This confirmed that methylation was lost on average at the A and B class exons, while the C class predominantly
gained methylation. ∗∗∗P < 0.001, ∗P < 0.05 by Kruskal-Wallis test.
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line only are shown (Fig. 7A, right). Interestingly, the summary
statistics indicated that, while levels of methylation appeared
to be decreased across A and B class variable exons at this
locus too (e.g., PCDHGA1 63.8% median methylation in WT vs
50.9%, 55.1%, and 46% in d8, d10, and d16, respectively), median
methylation at C class variable exons appeared to be increasing
rather than remaining constant (e.g., PCDHGC3 86.5% in WT vs
89.1%, 89.1%, and 88.9% in d8, d10, and d16).

CandiMeth additionally generated Tracks outputs including
the full range of tracks for each input table (absolute methyla-
tion in WT and each KD, �β and FDR for each vs WT). In Fig. 7C
we show the differential methylation (�β) tracks, from which it
appeared that methylation was largely lost across the region of
the gene containing the A and B class variable exons (Fig. 7C,
region boxed in red), although some gains (blue peaks) could be
seen particularly in the d10 track. Additionally, given the size of
the region (∼200 kb) it cannot be assessed whether many of the
probes lie in the introns rather than the exons themselves. For
the C class exons (Fig. 7C, blue box at right) most changes ap-
peared to be gains (blue) although peak sizes were smaller and
interspersed with some individual large losses in red. To resolve
the exact nature of the changes seen, the tabular data (Fig. 7A)
were exported and median values across all A and B exons vs
WT generated, converted back to β-value to allow direct com-
parison to previous results [26], and plotted (Fig. 7D). This clearly
showed a general loss of methylation at A and B class exons in
all 3 cell lines (P < 0.001 vs WT by Kruskal-Wallis test), although
the effect was least marked in the d10 cell line. When values
were averaged in a similar fashion across the C class variable ex-
ons, however (Fig. 7E), we saw a clear gain of methylation in all
3 cell lines (P < 0.05, Kruskal-Wallis test). The reason this effect
was not noted before is likely to be because our previous exam-
ination of the C class exons at PCDHG used the FDR-significant
probes only, and as can be seen the magnitude of the gains at
the C class exons is much smaller than the losses at the A and
B classes (compare scales in Fig. 7D and E).

The analysis thus confirmed and extended observations
from our previous study that the A and B class variable exons
at the clustered protocadherin loci are hypersensitive to loss of
DNMT1 across multiple independently derived cell lines, sug-
gesting a strong dependence on this enzyme for maintenance
of epigenetic state at this important neurodevelopmental locus.
Furthermore, we have uncovered new evidence for differences
between the A and B exons and the C exons, which may reflect
divergent transcriptional control, or an increased transcription
across the C class exons in response to loss of DNMT1, in line
with observations that intragenic DNA methylation is associated
with transcription at active loci [9, 43]. In terms of CandiMeth
functionality, the study highlights the ability of the workflow to
process multiple comparisons in parallel and the value of being
able to directly compare the visual outputs and the quantitative
data where complex genetic loci are being examined, giving in-
sights into the underlying biology.

Conclusions and Future Directions

CandiMeth provides a user-friendly non–computationally inten-
sive method of candidate feature investigation. With a mini-
mum of training and no coding, users of CandiMeth can set up
and run quite advanced exploratory and confirmatory analyses
and use the rich set of existing data in UCSC to formulate and
test hypotheses regarding the methylation changes ntat they are
seeing.

In future versions, we hope to add support for further methy-
lation processing pipelines and continue to grow the CandiMeth
history with additional genomic data such as DNA hypersensi-
tivity sites. In addition to the current pipeline, we also wish to
make CandiMeth more intuitive via the creation of a Galaxy tool
that would allow the pipeline to be extended to whole-genome
bisulphite sequencing or RNA-sequencing data and would also
allow further analysis options for those with a private instance
of Galaxy.

Availability of Supporting Source Code and
Requirements

Project Name: CandiMeth
Project home page: https://github.com/sjthursby/CandiMeth
Operating system: www.usegalaxy.org
License: GNU GPL

Availability of Supporting Data and Materials

All supporting data and materials are available in the GigaScience
GigaDB database [30].

Supplementary Materials

Supplementary File 1: CandiMeth User Guide. A complete Guide
to setting up and using CandiMeth, including some background
on Galaxy and UCSC browser, how to import the workflow and
example files, tutorials on the use of the example data, and fur-
ther guidance and instruction.
Supplementary Table 1: Example Differential Methylation Table
generated by RnBeads from GSE90012 for input to CandiMeth.
Table comparing wild-type hTERT1604 human fibroblasts (WT)
and a clonally derived daughter cell line with depleted lev-
els of DNA methyltransferase 1 (d8) from GEO database entry
GSE90012, used as Input 2 to CandiMeth in Case Study 1 (Fig. 2).
Supplementary Table 2: MIR gene list used to query data from
GSE90012. List of human microRNA genes (MIR) used as Input 3
to CandiMeth in Case Study 1.
Supplementary Table 3: Methylation summary for MIR genes de-
rived by CandiMeth. Full table of Results for MIR methylation in
GSE90012 WT vs DNMT1-depleted (d8) cells given as output from
CandiMeth (Fig. 2B).
Supplementary Table 4: Classes of repetitive DNA sequence that
can be analysed. List of repetitive DNA classes as given by Re-
peatMasker and that can be used as Input 3 by CandiMeth to
query datasets, as in Case Study 3 (Fig. 6).
Supplementary Table 5: Example Differential Methylation Table
from ChAMP. Example data in ChAMP format for use in tutorial
as Input 2 in CandiMeth.
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1. Schübeler D. Function and information content of DNA
methylation. Nature 2015;517:321–6.

2. Deaton AM, Bird A. CpG islands and the regulation of tran-
scription. Genes Dev 2011;25:1010–22.

3. Lyko F. The DNA methyltransferase family: a versatile toolkit
for epigenetic regulation. Nat Rev Genet 2017;19:81–92.

4. Bartolomei MS, Ferguson-Smith AC. Mammalian genomic
imprinting. Cold Spring Harb Perspect Biol 2011;3:a002592.

5. Mountoufaris G, Canzio D, Nwakeze CL, et al. Writing, read-
ing, and translating the clustered protocadherin cell surface
recognition code for neural circuit assembly. Annu Rev Cell
Dev Biol 2018;34:471–93.

6. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP en-
dogenous retroviruses is constrained by cytosine methyla-
tion. Nat Genet 1998;20:116–7.

7. Xu GL, Bestor TH, Bourc’his D, et al. Chromosome instability
and immunodeficiency syndrome caused by mutations in a
DNA methyltransferase gene. Nature 1999;402:187–91.

8. Irwin RE, Thakur A, O’ Neill KM, et al. 5-Hydroxymethylation
marks a class of neuronal gene regulated by intra-
genic methylcytosine levels. Genomics 2014;104(5):
383–92.

9. Wu H, Coskun V, Tao J, et al. Dnmt3a-dependent nonpro-
moter DNA methylation facilitates transcription of neuro-
genic genes. Science 2010;329:444–8.

10. Sapienza C, Issa J-P. Diet, nutrition, and cancer epigenetics.
Annu Rev Nutr 2016;36:665–81.

11. Stevens AJ, Rucklidge JJ, Kennedy MA. Epigenetics, nutrition
and mental health. Is there a relationship? Nutr Neurosci
2018;21:602–13.

12. Vaz M, Hwang SY, Kagiampakis I, et al. Chronic cigarette
smoke-induced epigenomic changes precede sensitization
of bronchial epithelial cells to single-step transformation by
KRAS mutations. Cancer Cell 2017;32:360–76.e6.

13. Abdul QA, Yu BP, Chung HY, et al. Epigenetic modifications
of gene expression by lifestyle and environment. Arch Pharm
Res 2017;40:1219–37.

14. Suzuki M, Liao W, Wos F, et al. Whole-genome bisulfite se-
quencing with improved accuracy and cost. Genome Res
2018;28:1364–71.

15. Bibikova M, Barnes B, Tsan C, et al. High density DNA
methylation array with single CpG site resolution. Genomics
2011;98:288–95.

16. Assenov Y, Müller F, Lutsik P, et al. Comprehensive anal-
ysis of DNA methylation data with RnBeads. Nat Methods
2014;11:1138–40.

17. Morris TJ, Butcher LM, Feber A, et al. ChAMP: 450k Chip anal-
ysis methylation pipeline. Bioinformatics 2014;30:428–30.

18. Tian Y, Morris TJ, Webster AP, et al. ChAMP: Updated methy-
lation analysis pipeline for Illumina BeadChips. Bioinformat-
ics 2017;33:3982–4.

19. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrich-
ment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A
2005;102:15545–50.

20. Galaxy Homepage. www.usegalaxy.org. accessed 1 May 2020.
21. Giardine B, Riemer C, Hardison RC, et al. Galaxy: A plat-

form for interactive large-scale genome analysis. Genome
Res 2005;15:1451–5.

22. Goble CA, De Roure DC. myExperiment: Social networking
for workflow-using e-scientists. In: WORKS ’07: Proceedings
of the 2nd workshop on Workflows in support of large-scale
science. New York, NY: ACM; 2007:1–2.

23. CandiMeth Github. https://github.com/sjthursby/CandiMe
th. Accessed 10th October 2019.

24. Afgan E, Baker D, Batut B, et al. The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Res 2018;46(W1):W537–44.

25. O’Neill KM, Irwin RE, Mackin S-J, et al. Depletion of DNMT1 in
differentiated human cells highlights key classes of sensitive
genes and an interplay with polycomb repression. Epigenet-
ics Chromatin 2018;11(1):12.

26. Irwin RE, Thursby S-J, Ondičová M, et al. A randomized con-
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1. Overview: where to start
CandiMeth is aimed primarily at wet-lab biologists working in the general area of biomedical 
sciences who have access to DNA methylation data and want to look at methylation levels at specific 
candidate genes or regions, but are not adept at coding or programming.  

Most commonly, the end-user of CandiMeth would have a report generated in html by one of the 
two main DNA methylation array processing pipelines RnBeads or ChAMP, which will give overviews 
of the data such as PCA analysis, graphs etc and then links to the processed data in the form of 
differential methylation tables showing beta values from the arrays, differences in methylation 
between samples and p values.  

If you have tables of differential methylation values from RnBeads or ChAMP and want to look at 
specific genes then CandiMeth is a suitable tool. 

CandiMeth will allow you to visualise the methylation at your genes of interest, as well as quantify it. 
Although there are various options to allow you to visualise the methylation, we recommend the 
UCSC genome browser, as this has a wide range of extra data on the genes which can enrich and 
inform your analysis.  

• For those not familiar with the UCSC browser, see the Primer (Appendix 1)

CandiMeth basically takes the differential methylation data output by the RnBeads or ChAMP 
pipelines and uses the Galaxy web-based bioinformatics platform to map the data to the human 
genome and to assess and quantify regions of interest.  

• For those unfamiliar with the Galaxy environment, see the Quick guide (Appendix 2)

CandiMeth users do not need to be very adept with either UCSC browser or Galaxy for CandiMeth to 
work, as the interface is very simple and the outputs in terms of visualisation and quantification very 
straightforward. If you have used the UCSC browser before, and have looked over the Galaxy 
webpage, then you should be able to try CandiMeth with little prior preparation. 

• For those comfortable with the UCSC browser and who understand the basic screen layout
in Galaxy, you need to get set up with the CandiMeth workflow and example data (Section 2)

• After that, we recommend using CandiMeth the first time with the sample data provided
(Section 3)

• Once CandiMeth is working on your computer, you can try uploading and working with your
own data (Section 4)

• Some additional help is available to enable conversion of ChAMP outputs to Excel files for
import into CandiMeth (Section 4.2)

• If you run Galaxy on a local server or have a customised version, we provide a guide to
importing CandiMeth below (Appendix 3)
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2. Getting set up
[Note: CandiMeth, Galaxy and UCSC work best in Chrome or Firefox rather than Explorer. If 
Chrome is not your default browser, cut and paste the web-addresses in brackets into your 
browser window instead.] 

1) CandiMeth runs in the Galaxy on-line environment: you will therefore need a working Galaxy
account, which can be created for free here (http://www.usegalaxy.org) - those not familiar
with Galaxy are referred to the brief introduction below

[Tip! It may take a couple of seconds for the hyperlink to open.]

2) Once you have an account, click here (http://bit.do/candimeth-history) and click on the
button at the top RHS of the page – this will create a History in your own Galaxy account
containing the reference genome information and some example data to be used in the
CandiMeth workflow

It should look something like this: 

3) The input Differential Methylation Table has to be converted from a table into the form of a
Dataset Collection: this is in case there are multiple differential methylation tables to be assessed,
then CandiMeth can assess them all simultaneously and present them in the typical Results and
Tracks outputs, as opposed to multiple outputs that might make your history very crowded or
initiate multiple histories that may become confusing due to their number.
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There are two example files which can be converted and used, one which is an RnBeads output 
(Suppl.Table1) and one a ChAMP output (Suppl.Table5).  

a) Click on the already checked box at the top of the History panel (mouse over shows
“Operations on multiple datasets”): this will cause checkboxes to appear beside all of your
datasets as well as some choices to appear at top

b) Check the box beside the Differential Methylation Table dataset e.g. Suppl.Table1
c) Under the pulldown menu beside “For all selected" choose “Build Dataset List”
d) In the window that appears, you can give the collection a new name e.g. “All Probes Set1”

and click “Create”
e) A new entry will appear in the RHS with the new name and “a list with 1 (or more) items”-

this is the Dataset Collection and is now ready to be processed by CandiMeth
f) -Click on the Check box at top right again as in (a) to go back to normal list view in RHS

window

[Note: In the examples here and below, names which the user can choose themself are in green] 

It should look something like this at RHS, with the new Dataset Collection (“All Probes Set1”) at top  
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4) Following this, click here (http://bit.do/candimeth) and then click the  button at the top RHS 
of the page – this will import the CandiMeth workflow [CandiMeth] to your Galaxy account so 
you can use it. Click on “Start using this workflow” in the window that appears to bring you to 
the Galaxy webpage again 

This should look something like this: 

-the central window shows all workflows available to you:  CandiMeth should be at the top if it was
the last one you imported (the example above shows others the author was using too, will be
absent). The RHS window should still be your Test data history.

If you navigate away from this view for whatever reason, you can find it again by going to the  top of 
the Galaxy homepage and clicking on the "workflows" option 

You should now be ready for your first test run with the sample data provided. 
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3. Using CandiMeth with the sample data provided

3.1 Tutorial with the example data provided 
The first example takes data from an experiment where two cell lines were compared: one was 
normal or wild type (WT), the other had lower levels of the DNMT1 methyltransferase enzyme which 
methylates DNA (d8). DNA from the two types of cell was isolated and run on the 450K Illumina 
array to determine methylation levels. This data was processed using the RnBeads pipeline, which 
logged methylation at each position in each cell line, as well as comparing the levels at each position 
to see if they were significantly different between the cell lines. The RnBeads analysis was output as 
a table (Supp.Table1). Here we want to see if there are any differences in methylation at certain 
microRNA genes between the two cell lines: the list of genes is given in Supp.Table2.  To do this we 
choose a version of the human genome map to work with (the version called hg19) and ask to look 
at all probes associated with the microRNA (hg19_all).  

3.1.1 Inputs and starting the run   
To start, click on the CandiMeth workflow in your Galaxy page (see step 2.4 above) and on the pull-
down menu at RHS marked  choose > Run 

In the History Options at the top of CandiMeth, “Send results to a new history” click “Yes” 
(light grey) and give the new history a name of your choosing e.g.  “[Date/run identifier] 
CandiMeth My Test Data” 

[NOTE: we advise you to give each new history a unique identifier to avoid confusion] 

1. Under 1: R Package Used: (1.1) enter ‘RnBeads’

2. For 2: Input Differential Methylation Table (1.2) choose “All Probes Set1”

[Note: This was the example name used in step 2.3 above, alter as required] 

3. At 3: Input Gene Features of Interest (1.3) choose “Supp.Table2”

4. For 4: Input Genome Release Information (1.4) choose “hg19_all”

You can now click the blue ‘Run workflow’ button at top right 

The Workflow start window with all the above options chosen should look like the screenshot on the 
next page:  
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If all goes well, you should see a large green tick in the main (middle) window of Galaxy and 
the following text:  

“Successfully invoked workflow CandiMeth 

This workflow will generate results in a new history. Switch to that history now.” 

The window should also show two status bars, “Step scheduling” and “Job Execution” which will 
update you on the progress of the jobs. 
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A typical test run with the data above may take ~15 mins to complete. Once both bars have gone 
green the new  history “[Date/run identifier] CandiMeth My Test Data” is ready.  

You can navigate to the new history at any point by following the link “Switch to that history now” at 
any point, or by navigating between histories using the “Switch to” function at top of the History 
pane on the RHS.  

3.1.2 Overview of outputs from the microRNA analysis 
CandiMeth produces two types of outputs; tabular Results and genome browser Tracks. 

The outputs will look something like this for the example data above : 

The two green boxes represent the Results and Tracks output collections respectively. The general 
format of these is as follows, with details changing one ach run. The blue text in each is a link to a 
more detailed list-  

Results: 
Number: genome release_probeset|input gene list|_CandiMeth_Results 
a list with x items 

Tracks: 
Number:CandiMeth_Tracks 
A list with x items  

For the Results, the genome release_probeset and gene list are variables which were decided at the 
start of the run (see 3.1.1 above), so the choices are recorded in the outputs for clarity.  Probeset 
refers to whether methylation across the promoter only, the gene body only, or both (all) is to be 
analysed. We will now look at the Results tables (3.1.3) and Tracks (3.1.6).  
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3.1.3 Working with the output Results tables 
1. To access the tabular results, click on the link saying CandiMeth_Results which will open a new

window at RHS.  For the example data here, this will show the two items in the list (see
screenshot at left below). One is a table of methylation values across microRNA genes in the WT
cells mean_beta_WT_of_D8_Track and the second the methylation values in the cells with the
lower DNMT1 enzyme levels mean_beta_D8_Track.

2. Clicking on the mean_beta_WT_of_D8_Track will show a preview (screenshot at right above) of
the first 5 lines of the data table, as well as the header and other information.

3. To see a full table, click on the eye symbol (circled above) and the full table of data will appear in
the central Galaxy window as shown below

There are no headers in Galaxy but the key to the columns is as follows:- 

1) Name of gene, 2) Number of array probes, 3) Median methylation, 4) Standard
deviation, 5) Mean methylation, 6) Maximum value and 7) Minimum value
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You can work with the results directly in Galaxy, using the Galaxy graphing and stats tool, or you can 
save   (red box in screenshot above) the data from Galaxy onto your computer to allow you to 
work with it in other graphing and  statistics programs such as Excel and SPSS, see section 3.1.5 
below for this latter option.   

3.1.4 Graphing data directly in Galaxy 
This option is available to the user for each table: click on the  button in the RHS window (boxed 
in yellow above). As an example we will use the Bar diagram (NVD3) option in the central Galaxy 
window.  

Below we reproduce the first part of the table for reference:- 

The key to the column headers is as above (3.1.3 step 3): Name, number of probes, median etc 
On the Bar diagram tool window in the centre window we generated the following chart 
showing median methylation at the microRNA by choosing column 3 (median) in the Data 
series window, and adding labels etc to the graph. This is one example, there are many other 
options to explore.  
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3.1.5 Exporting data from Galaxy to Excel 
Tables of generated results can be downloaded and imported into programs such as Excel and 
Notebook by selecting the  button just above the individual output in the RHS window (see p9): 
this will download the data in a generic tabular file format. The name of the file will be similar to that 
seen before (see 3.1.2 above), but will have some additional information, an example is-  

GalaxyNumber: genome release_probeset|input gene list|_CandiMeth_Results_mean_beta.tabular 

This file will have a  .tabular suffix which allows it to be imported into a number of different 
programs such as SPSS or Excel.  You should first save or move it to a specific folder on your 
computer.   

To import a .tabular file into Excel: 

1. Open Excel and using the Open command, locate the folder containing the .tabular file
[Note: the file may not be visible unless you choose “all files” in the pull-down menu to the
right of the File name window, since it is not a standard Excel suffix (.xls) ]

2. Select the Galaxy file you want to import into Excel as above, then click Open. This will cause
the Text Import Wizard window to automatically open
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3. Go with the default option Delimited, click next and on the next window the default Tab,

4. In the third and final window choose General (for formatting of columns): the imported file
should then automatically open in Excel and look like the window below-
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5. This should exactly match your data output from Galaxy. There are no headers in Galaxy so 
you should add the row of output labels at top yourself:- 
column A) Name of gene, B) Number of array probes, C) Median methylation, D) 
Standard deviation, E) Mean methylation, F) Maximum value and G) Minimum value. 

6. It would be sensible to give the Excel table a simpler name reflecting the data type eg 
“MicroRNA methylation in WT cells”, but each file will have the unique identifiers 
automatically embedded in the long file name by default 

7. In a similar fashion the data on methylation in the D8 cells can also be imported into 
an Excel file. Data from these files can then be cut and pasted into one file to allow 
direct graphing and statistical comparisons in Excel as indicated in the CandiMeth 
paper and bibliography therein 

To navigate back to the window showing both Tracks and Results, just click on the link at the 
top of the RHS screen which should say  “<Back to….My Test Data” or similar 
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3.1.6 Working with output Tracks 
To access the Tracks generated as output, from the results History generated from your run, click on 
the link saying “CandiMeth_Tracks (a list with x items)”, which will open a new window at RHS.  For 
the example data here, this will show the four items in the list below (see screenshot at left). These 
are the two tracks showing absolute methylation (beta value) in 1)the WT cells used as a control 
mean_beta_WT_of_D8_Track and 2)the D8 cells which have decreased DNMT1 levels 
mean_beta_D8_Track. There are also two tracks showing comparisons between the WT and D8: 
these are 3)the track showing difference in methylation (delta beta or ∆β) between WT and D8 
called delta_beta_D8vsWT_Track and 4)a track showing only those probes where the difference in 
methylation is significant at a false discovery rate of 0.05, called FDR_D8_of_WT_Track. 

Clicking on the name of the Track at left e.g. mean_beta_WT_of_D8_Track will show the preview 
window (see RHS above). This should say under the title ~480,000 regions” for the 450K array and 
“format:bed, database:hg19” indicating that a type of track called a BED file has been generated, 
using the hg19 edition of the human genome map. The first five lines of the track data will also be 
shown, but this is a long table with 480,000 rows! To visualise the data, we instead:-  

1. Click on one of the “display” options in the preview window: CandiMeth is optimised for
use with the UCSC browser, so click on “display at UCSC main” by following the hyperlink
in blue.

2. There will be a small delay, then a new tab will open in the browser, taking you to the
familiar UCSC genome browser page, with the data from your first track displayed at the
top (see next page for screenshot).

3. The default tracks on UCSC include roughly one from every major group (blue header),
and at writing were UCSC_Genes, NCBI_RefSeq, Publications, GTEx gene, ENCODE
regulation, Conservation and dbSNP_153. Your track will appear under the Custom Tracks
header at top as mean_beta_WT. As this makes the window quite complex and busy, you
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may wish to simplify the view by clicking on the “hide all” button (boxed in red on 
screenshot below), then add back just the locations of genes using NCBI_RefSeq >pack 
and mean_beta_WT>full (both boxed in yellow below). This should give you a simpler 
view which is easier to work with, similar to that below when using the test data: 

4. You now have a display showing the start of the genome map (chromosome 1p) with
genes displayed in blue on the NCBI_RefSeq track at bottom, with methylation levels in
the WT cells shown as peaks in the mean_beta_WT track along the top in brown.

The height of each peak in the mean_beta_WT track corresponds to the methylation level
at that position, with the minimum and maximum values seen in this window displayed at
left as beta values x 1000 (0 and 916, equivalent to 0% and 91.6% methylated
respectively).

5. This is a fully zoomable map as usual for UCSC: to illustrate, if you draw a box around the
gene just visible at right above, LINC01128, this will magnify the view of that gene,
showing the locations and extent of methylation at each probe across the gene (below)

[Note: if a window opens for “Drag-and-select” simply tick “don’t show this again” and
“zoom in”]
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6. To overlay any other data on this map, simply choose from the UCSC pull-down menus:
e.g. to show the locations of common SNPS, choosing dbSNP_153>dense under the
Variation header further down the UCSC main controls will overlay a track with this
information underneath the other tracks (arrow below)

7. The screen currently only shows the data from one of your four tracks generated using the
example data: to bring up the next track, follow steps 1-2 above for mean_beta_D8_Track:
this will open a new tab in your browser showing the new data AND the track you already
generated

8. Do the same (steps 1-2) for the remaining two tracks delta_beta_D8vsWT_Track and
FDR_D8_of_WT_Track; the last window you open will now show ALL FOUR tracks (see
screenshot below) and other tabs can be closed

[Note:  leave the Galaxy tab open in the background, to allow access to Results etc]
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9. The window containing all the track data should look much as in the screenshot above for
the example data: this shows the chromosome position and coordinates at the top, then
the four tracks:

a. delta beta track showing gains (blue) or losses (red) in D8 cells vs WT cells,
b. the FDR track showing which of those differences is significant (green)
c. the absolute methylation levels in the D8 cells (brown)
d. the absolute methylation levels in the WT cells (brown)

10. Zooming in on LINC01128 as before (step 6 above) should produce a map like:-

11. This shows that while we can see methylation levels are high across the gene, they only
drop at a few positions (red at top), with only one (green) being FDR-significant.
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12. Note that individual tracks can be toggled on or off with the buttons under Custom tracks,
then hitting “refresh”: this can be particularly useful to just look at differences in
methylation (delta beta)

13. While the Tracks open by default at the start of the genome map (chr1p), you can look at
any gene in the human genome by typing its name into the search box at top of the screen
(yellow box at top of last screenshot)

14. For this example, type “MIR1185-1” into the box: as you type, the name should appear
under the box- click on the name to take you straight there

[Note: this is a short-cut to the location of this MIR gene as decided by UCSC] 

15. Alternatively, if you type MIR1185-1 and hit “Go”, the next screen will give you a set of
alternatives, based on who has mapped the gene

- you can click on any of the options to bring you to the map location indicated: hitting
UCSC will bring you to the same location as in step 15 above. This screen can be useful
when there is some dispute over map location of genomic features.

16. Following either steps 15 or 16 above will bring you to a zoomed-in map of MIR1185-1:
this shows ONLY the body of this small gene, so information from only one array probe is
visible at right at large thick bars
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17. To get a better view of the promoter and surroundings, use the 10X zoom-out buttons

18. This shows a view of the four probes associated with this MIR: the mean and median
methylation of these four probes were captured in the Results tables under 3.1.3 above

19. From the Tracks here it can be seen that the methylation is much lower at the probe
furthest away from the gene (to left above), while the only probe showing significant
differences in methylation between WT cells and those with low levels of DNMT1 (D8) is
the probe at right (green above)
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3.1.7 Exporting browser views as graphics files 
It is often the case that the user wants to show a particular UCSC genome browser view of the data. 
You may also wish to modify the view slightly by, for example, removing the grid lines (a common 
request from journals). These facilities are provided by UCSC and can be accessed as follows:- 

1. On the blue top ribbon in the UCSC browser window, click on View button, which will bring
up a number of options in a pull-down menu

2. To first tidy the image, you can click on >Configure Browser (yellow box above)
3. Uncheck the boxes for “Show light blue vertical guidelines” and “Display description above

each track” and click the gray “submit” box at top left
4. Your browser will return to the image you were viewing, which should now have no gridlines

or labels in the middle of the screen
5. To export this view in a format you can include in documents, or further adjust in another

program, click on the View>PDF/PS option (red box in top screenshot)

6. A new screen will appear (below) with a number of options: to save as a PDF file click on the
top option (orange box above) [Note the tips for publication-quality images here]
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7. This should open a new screen showing the PDF version of the genome browser view
(above), which can be downloaded and inserted in documents

8. As well as PDFs, postscript (PS) file format is also supported: most graphics software
programs can import files in one or the other format for further adjustment if needed e.g.
Adobe Illustrator or Photoshop
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3.1.8 Quantifying methylation in different parts of the gene 
In the example above, we looked at methylation across the whole gene locus (promoter and gene 
body) for the microRNA genes in our list. CandiMeth is however designed to look at different parts 
of the gene, as these can often behave differently. 

3.1.8.1 Promoter methylation only 
To ONLY look at the methylation in the promoter regions of the microRNA genes, the same settings 
as in 3.1.1 above can be used EXCEPT that under Input 4 choose “hg19_prom” 

 [Note: if you have already run CandiMeth, remember to switch back to the original history 
containing the test data “[Date/run identifier] CandiMeth My Test Data” History by using the “switch 
history” tool  in the top RHS of the screen: choose the history needed by clicking the grey “Switch 
to” button at top left of the History, then >Analyse data on the top bar of Galaxy. You should return 
to the standard Galaxy view but with the desired History in the RHS window]  

The output tables in the Results folder will now only average the methylation across the probes 
found in the MIR promoters (defined as -500bp to +1bp from the gene start). 

3.1.8.2 Gene body methylation only 
To ONLY look at the methylation in the gene bodies of the microRNA genes, the same settings as in 
3.1.1 above can be used EXCEPT that under Input 4 choose “hg19_GB” 

The output tables in the Results folder will now only average the methylation across the probes 
found in the MIR gene bodies (defined as +1bp from the gene start, through all of the exons and 
introns, to the transcriptional end site (TES)). 

That these two parts of the genes can vary significantly, or even show opposite effects, is well-
documented in the literature and can be illustrated by the graphics below: 

This shows that median methylation (β value) of the promoters of MAGE genes decreased in D8 and 
other DNMT1- depleted cell lines relative to WT (left), while methylation at the gene bodies went up 
(right). [graphic generated in SPSS after CandiMeth analysis, see O’Neill et al E&C 2018] 
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3.2 Looking at a new set of genes in the current methylation array dataset 
In the example above, the microRNA (MIR) gene list (Supp.Table 2) was used to query the 
methylation array data from the comparison of DNMT1-depleted and WT cells (Supp.Table1, 
converted into a collection All Probes Set 1). Once array data has been uploaded and converted 
however it is perfectly possible to look at any other gene or genes you are interested in. 

1) Navigate back to the History containing the Test data, which includes All Probes Set1 (the data
you will query) by using the navigation symbol as before (see note in 3.1.8.1 above)

2) Now on the left hand side (LHS) Tools window choose >Get data (yellow oval on screenshot)
then >Upload file from your computer (red oval)

3) This will open a new window where you can put in the names of the genes you are interested in
in several different ways (a-c below), choose that which suits best:
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a) Click on >Paste/Fetch data (red square in screenshot above), then  just type or paste in the
names of the genes you wish to investigate onto separate lines as in the example below
(here the three genes from Case Study 2, main CandiMeth paper)

-Along the top of the window, give the new list a Name e.g. “TopHits”, choose >tabular
under Type, and under Genome choose  >Human Feb.2009 (GRCh37/h19) (hg19) [this
will appear as an option if you start to type hg19]

-Click “Start”: the file should upload to Galaxy and appear as a separate dataset on the RHS
with the name you gave it, in this case “TopHits”: you can close the Upload window and go
to step 4

b) If you have a longer or more complex list, this can be written in a word-processing
program such as Word and saved as a text only or Plain text file (*.txt), before uploading
directly using the  uploaded directly from a .txt file format (e.g. Supp Table 2) by following
steps 1-3 above i.e. >Upload file >Choose local file, the format should be Tabular

c) You can also simply drag and drop a text-only file created as in (b) into the window shown
at the start of step 3 above

4) This new list can then be used to query the array data by Running CandiMeth and choosing
“TopHits” as Input 3 (See 3.1.1 step 3) instead of the MIR gene list in Supp.Table2

5) The Results folder will now contain Tables showing methylation levels for the new list of genes
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3.3 Looking at repetitive DNA elements such as LINES and ERV 
Many epigenome-wide studies are interested in assessing methylation at repetitive DNA elements 
instead of endogenous genes, often using a wet-lab analysis technique such as pyrosequencing to 
assay LINE-1 methylation for example. A substantial number of probes on the 450K and EPIC arrays 
fall within repetitive DNA elements however, allowing analysis of methylation across these 
elements. As an example, we can look at methylation across repetitive elements in the WT and d8 
dataset. To do so we: 

1. Switch to the original history containing the test data “[Date/run identifier] CandiMeth My Test
Data” using the “switch history” tool  in the top RHS of the screen [see note in 3.1.8.1 above]

2. Under >Workflow on the top black Galaxy header, click on the CandiMeth workflow and on the
pull-down menu at RHS marked  choose > Run

3. Choose to Send the results to a new history e.g.  “[Date/run identifier] CandiMeth Repeats”

4. Under 1: R Package Used: (1.1) enter ‘RnBeads’

5. For 2: Input Differential Methylation Table (1.2) choose “All Probes Set1”

6. At 3: Input Gene Features of Interest (1.3) choose “Supp.Table4”

[Note: this contains the names of the different types of repetitive DNA as identified by the
RepeatMasker program (see below)]

7. For 4: Input Genome Release Information (1.4) choose “hg19_RepeatMasker”

You can now click the blue ‘Run workflow’ button at top right. Results will appear in the new History 
and should resemble the table below for the WT cells :  
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In the output Table, the different types of repetitive element as identified by the RepeatMasker 
algorithm [www.repeatmasker.org] are indicated, together with the number of probes etc in the 
same outout format as before ie  

1) Name of gene, 2) Number of array probes, 3) Median methylation, 4) Standard
deviation, 5) Mean methylation, 6) Maximum value and 7) Minimum value

The Names of the elements can be found on the RepeatMasker track in UCSC. As can be seen 
from the example Table above, a number of repeats are covered by less than 1000 probes, 
which may be less reliable. Names of the classes with >1000 probes on the array includes:-   

• DNA DNA repeat elements 
• LINE Long Interspersed Nuclear Elements such as LINE1 
• Low_complexity  Low complexity repeats which do not fall into other categories
• LTR LTR-containing elements such as endogenous retroviruses (ERV) 
• Satellite Satellite repeats, found near the centromeres  
• Simple_repeat Largely microsatellites, which are interspersed  
• SINE Short Nuclear Interspersed Elements such as Alu elements  

Methylation varies greatly across these elements as can be seen from the minimum and 
maximum values, but comparisons of median methylation can nevertheless be valuable.  

In Case Study 3 in the main CandiMeth paper for example, methylation in DNMT1-depleted 
cells (d16 in this case) can be seen to affect satellite repeats, but have little effect on 
microsatellites (Simple_repeat), many of which would lack any CG. 
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3.4 Using ChAMP-generated methylation data 
While the above examples all use the data processed by the RnBeads package in R, CandiMeth can 
also work with data which has instead been processed using the ChAMP package. An example 
dataset has been provided in the Test History, Supp.Table 5. This has been uploaded as an Excel 
output (.csv), so it needs first to be converted into a dataset collection (See also Section 2, Step 3).  

1. Convert the ChAMP csv file to a dataset collection
a. Click on “Operations on multiple datasets” at top RHS
b. Check the box beside Suppl. Table 5
c. Under “For all selected” choose “Build Dataset List”
d. Give the collection a new name e.g. “All probes ChAMP1”
e. Once the new dataset collection appears, click on the “Operations” box again to

return to normal view

2. Choosing inputs and starting the run

a. Click on Workflows on the top ribbon and choose CandiMeth and click on the arrow

b. Choose the option to send the results to a new History e.g. “[date] ChAMP test1”

c. Under 1: R Package Used: (1.1) enter ‘ChAMP’

d. For 2: Input Differential Methylation Table (1.2) choose “All Probes ChAMP1”

[Note: This was the example name used in step 1(d) above, alter as required]

e. At 3: Input Gene Features of Interest (1.3) choose “Supp.Table2”

f. For 4: Input Genome Release Information (1.4) choose “hg19_all”

3. Once the workflow has finished, similar tables of Results and Tracks should appear as before
(see sections 3.1.1-3.1.8) for these sample microRNA data, and all the same types of
operations (looking at promoters vs gene bodies, repeat analysis, new gene queries etc) can
be carried out

[Note:  If your outputs from ChAMP are not normally being produced as the .csv files needed for 
Step 1 above, please show whoever is running the ChAMP pipeline Appendix 3 below, which 
contains the few lines of coding needed to do this] 
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4. Uploading and working with your own differential methylation data
For this you need at least one file containing information on methylation differences between two 
samples produced from either RnBeads or ChAMP.  

4.1 Locating data files in RnBeads 
1. If you received your data back as a completed Report folder with an index.html page then click

on that, which should bring up a list of all reports, including differential methylation:

[Note: if Differential Methylation is absent then this type of analysis has not yet been done] 

2. Click on the Differential Methylation report and look to see what comparisons have been done,
for example:
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3. Each comparison listed will generate a differential methylation table labelled cmp1, cmp2 etc
4. Scroll down the page to find links to the actual differential methylation files, under the heading

Differential Methylation Tables (boxed in green below):

5. These hyperlinks take you the file itself- the address can be seen by holding the mouse over the
link. These files are usually located in the “differential_methylation_data” folder of your Results
folder and is named something similar to “diffMethTable_site_cmp1.csv” for comparison 1 etc

[NB: the file must have data on all sites i.e. contain “_site_” to work for all types of analysis]

6. You can Open or Save As to copy the file to a new location for uploading, or use the original file
in the differential_methylation_data folder

[Tip: these are usually large files and may take some time to download/upload]
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4.2 Locating data files in ChAMP 
If your ChAMP related output has not been produced as a .csv file outside of R, please see the below 
instructions on how to write the differential methylation table to a .csv file.  This code will need to 
be implemented in R while using the ChAMP package, so it may be appropriate to pass these on to 
whoever is providing bioinformatics support for the project. 

-For just one comparison:

write. csv(myDMP[[x]], file = ”comparison1. csv”, quote = FALSE) 

(where x is the element number of the file comparison you wish to write to the .csv file and myDMP 
is the resulting object of running champ.DMP() as within the ChAMP vignette 
(https://www.bioconductor.org/packages/3.7/bioc/vignettes/ChAMP/inst/doc/ChAMP.html#section
-differential-methylation-probes)

-For the output of multiple comparisons:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

𝑓𝑓𝑐𝑐𝑓𝑓�𝑖𝑖 𝑖𝑖𝑐𝑐 1: 𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙ℎ(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)�{𝑤𝑤𝑓𝑓𝑖𝑖𝑙𝑙𝑐𝑐. 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�[𝑖𝑖]�, 𝑓𝑓𝑖𝑖𝑙𝑙𝑐𝑐
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑖𝑖], ".csv", sep=""), quote=FALSE)} 

This will create all probes differential methylation tables within your documents folder as below: 
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When opened, this file will look similar to the image below: 

This file is in comma separated variable (.csv) format and can now be uploaded to Galaxy to be used 
in CandiMeth, as detailed in the next section and in section 3.2 above. 

4.3 Uploading your data files to Galaxy 
This is essentially as in section 3.2 above, where you uploaded a new list of gene names. In brief, 

1. Navigate back to the History containing the Test data
2. Using the Tools window (LHS) choose >Get Data > Upload File > Choose Local File and locate

the methylation data you wish to upload (e.g. diffMethTable_site_cmp1.csv). Alternatively,
you can drag and drop it in.

3. Set “Type (set all)” to whatever kind of file you are uploading, for example, RnBeads based
outputs are usually comma separated variable files (.csv)

[Tip: The default “Auto-detect” setting works well for most file formats]

4. Set “Genome (set all)” to either Human Feb. 2009 (GRCh37/hg19) or Human Dec. 2013
(GRCh38/hg38) depending on what genome your array was mapped to.

[Tip: You can type in Human here to bring up all the human genomes and save time]

The window should look something like this:-
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5. Click “Start”: the file should upload to Galaxy and the upload window will go green and a tick
appear under “Status”- this can now be closed

6. In the main window, the new data will appear as a dataset on the RHS: this goes from grey
to orange then finally green if all is well

7. NB: the input Differential Methylation Table still has to be converted from a table into the
form of a Dataset Collection as before (see Section 2 above)

8. Give the collection a more specific name e.g. “Dataset2 [your name]” and click “Create”
9. A new entry should appear in the RHS with the new name and “a list with 1 (or more)

items”-this is the Dataset Collection and is now ready to be processed by CandiMeth
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Appendix 1. Primer for those unfamiliar with the UCSC genome 
browser 
As a result of major efforts from many scientists around the world, the complete genetic code 
present in our DNA (our genome) has been characterised and mapped. As we have ~4 billion 
individual “bits” or DNA bases, split into 23 chromosomes, one of the main problems that arose was 
how to find the information for any specific gene, and relate it to its surrounding genes and other 
information we might have such as whether the gene was associated with specific diseases. In 
answer to these problems, a new way of looking at genetic information called a genome browser 
was devised, which works much like a web browser, but specific to our genes and information 
associated with them. One of the most popular such browsers is the one devised by the University of 
California at Santa Cruz (UCSC), called for short the UCSC genome browser. The UCSC browser can 
be used to look at information from other species too, such as mouse and many others: a link to 
human genome browser version can be found here: https://genome-euro.ucsc.edu/cgi-
bin/hgGateway?redirect=manual&source=genome.ucsc.edu and should look like:  

A simple way to think of the UCSC genome browser is to think of it as basically a zoomable map, not 
unlike Google maps. It shows us a representation of chromosomes in our cells, with the positions of 
the different genes indicated on each. We can take a virtual tour of our genome by scanning around, 
or zoom in to look at specific regions in greater detail. Most usefully, we can search for a genetic 
“address” and the browser will locate it for us and take us to a close-up view of the gene and its 
surroundings. 

To get started, write in the name of a gene in the “Position/Search term” box (outlined in red 
above). Like many apps, the browser tries to guess your destination, so start by writing the name for 
the human hemoglobin gene “Hbb” in the 
box: the “best guess” will appear under the 
box, choose that using the mouse so that it 
is highlighted and appears in the box (right) 
and click the big blue “Go” button. 
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This will open a new view in the browser which may be quite crowded with information, like a busy 
map. This is because, like the maps we use to navigate in everyday life where we can find the 
nearest coffee shop or petrol station, new interesting information and locations are constantly being 
added to the genome map, a bit like a news feed, and this can make it quite busy.  

To get a simple map with just the Hemoglobin gene, do the following: 

• Click on >Hide all (red box below)
• Under UCSC genes, choose “dense” (yellow box below)

The view should now look something like this: 

• Here we see the Hemoglobin gene (labelled UCSC gene) outlined on the map as black boxes
joined by thin lines: these are the exons (boxes) and introns (lines)

• Above there is a little picture or ideogram of human chromosome 11, showing where the
gene is located (red line at left)

There is a wealth of other data available for each gene, each available through the pull-down menus 
shown. Each generates a new line or “track” on the map below the gene, showing the new 
information in parallel. To get a flavour of this, the user can try “default tracks” (green box above) 
which will show the same gene, but with information below it from every major group (blue header): 

• UCSC_Genes  The default map, best current estimate of the start and end of the gene
• NCBI_RefSeq  Gene start and end as defined conservatively, based on curated data
• Publications  Scientific papers with links to this gene
• GTEx gene Data on where the gene is thought to be expressed 
• ENCODE Clues as to how the gene may be regulated based on epigenetic info 
• Conservation  Showing which regions of the gene may be conserved in vertebrates
• dbSNP_153 Known variations in the DNA sequence at this gene
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These lines of information are fully clickable in the top window: right-clicking or double-clicking can 
bring you to pages with further information on each track. 

We can also add our own data to the genome maps using our own tracks, which is what we do using 
CandiMeth (see section 3.1.6 f in main Guide). More details on how to export data, views of the 
maps and more can also be found there.  

Like political maps, the human genome map is constantly being updated with the latest borders and 
newest information. These updates are known as genome builds or genome assemblies, an example 
is the GRCh37/hg19 (Genome Release Consortium human build 37) genome build used in section 
3.1. 

Further documentation on the UCSC genome browser can be found here: 
https://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html 

-Happy browsing!
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Appendix 2. Quick guide to the Galaxy web environment  

Galaxy is a free online environment for user friendly data science. It can be located here, 
https://usegalaxy.org/ and requires users to create an account and log-in to utilise the service 
(registration for this service can be found here, 
https://usegalaxy.org/root/login?is_logout_redirect=true). Once logged in the home page should 
look something similar to the below image: 

Here, tools can be found in the tools panel on the left-hand side and any process that the user has 
executed can be found in the history column in the right-hand side. Every process a user executes 

creates a new item in the history column. Multiple histories can be created via the gear  icon and 

multiple histories can be viewed using the book-like  icon. Data can be uploaded to the Galaxy 
interface, as detailed in section 4.3 and using the “Get data” function (red box above) the user can 
load data from publicly available external sources such as UCSC genome browser or NCBI. 

Further detail regarding the Galaxy interface can be found here 
(https://galaxyproject.org/tutorials/g101/) or in the Galaxy Training Network 
(https://training.galaxyproject.org/).  
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Appendix 3. Importing CandiMeth to a custom Galaxy instance 

1. To download and upload CandiMeth to an alternative Galaxy instance, navigate to the
workflow tab using the “workflow” tab at the top of the Galaxy window.

2. Click on the import button (circled in yellow here) at the top right of the window

3. Paste this link http://bit.do/candimeth-download into the “Archived Workflow URL” section
of the import workflow screen and click on import workflow, as below.

4. CandiMeth should then show up in the list of workflows available to you, as below.
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7.0 General Discussion 
In this thesis, differences in DNA methylation between sample sets have been studied, with 

some of these sample sets arising from cell line work and some from groups of human 

participants in various studies. The common denominator here is that the studies have all 

involved arrays and other high-dimensional genomic datasets which have required 

extensive bioinformatic handling, which has been a major component of my work. This has 

led to several publications and the development of a new tool for analysis of such data. In 

this final chapter, I wish to relate the results of the presented work to that of recently 

published research to enable conclusions, limitations and the direction of further work to be 

established. 

7.1 Effects of perturbing the basic methylation machinery (Papers I and II) 
Depletion of DNMT1 highlighted several classes of genes regulated by DNA methylation 

including Protocadherins (PCDH), Fat/Body Mass (FBM) genes and olfactory receptor (OR) 

genes. 

7.1.1 Neuroepithelial genes 
The OR and PCDH genes have a number of striking features in common: 1)they are usually 

expressed in the nervous system; 2)they form neural cell-cell adhesion proteins; 3)they are 

essential to neural cell identity (El Hajj et al., 2017) (Monahan and Lomvardas, 2015); 

4)many show monoallelic expression and 5)they are known to be regulated, at least in part,

by epigenetic means (El Hajj et al., 2017). It was unclear to us initially which of these 

features, singly or in combination, explained why these gene classes were enriched in the 

DNMT1 KD cells, and why the same gene classes were not highlighted as clearly in the GO 

analysis of methylation changes in UHRF1 KD cells. To gain a better understanding of why 
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this might be, we had to look a little more closely at the structure, function and expression 

patterns of these genes. 

PCDH and OR genes both encode types of extracellular receptor, important for different 

types of extra-cellular binding. In the case of the OR genes, they form one of the largest 

gene families in the human genome and have diversified to bind different odorant 

molecules: binding triggers a G-protein coupled signaling cascade in the cell, triggering a 

neural response. Odorant cells are located in the naso-epithelial membranes and individual 

OR receptors are only expressed by a small number of cells in a cluster. Since only one OR 

out of the hundreds available is expressed, the others become inactivated and 

heterochromatinised, eventually accumulating DNA methylation as well. In fact, only a 

single allele of each OR is usually expressed, in a system analogous to antibody variable 

chain expression. OR gene expression is thus tightly linked to cellular identity for the 

expressing cells (Antunes and Simoes de Souza, 2016; Maßberg and Hatt, 2018; Monahan 

and Lomvardas, 2015). 

The PCDH gene expression is also immensely variable between neural cells, but they solve 

the problem of generating diversity through another mechanism. Rather than having a large 

battery of separate genes from which one is chosen, two of the major sets of PCDH genes, α 

and β, are arranged in clusters with alternative splicing generating different functional 

isoforms using combinatorial coding, in a similar fashion to the immunoglobulin cluster 

(Figure 1) (Collins and Watson, 2018). Here again the genes code for extracellular receptors, 

but rather than detecting odorant molecules these bind to PCDH proteins on neighbouring 

cells and repel receptors on their own cell surface. The expression of different domains on 

the mature proteins allows neighbouring cells to distinguish self from non-self. Again, only 
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one combination of exons is used in each cell, often monoallelically, with inactive exons 

being heterochromatinised and eventually methylated as well (Canzio and Maniatis, 2019; 

Hirayama and Yagi, 2017; Mountoufaris et al., 2018; Peek et al., 2017). 
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Figure 1: Structure and expression of PCDH gene cluster. Structure of the PCDHA, PCDHB and 
PCDHG clusters as found in mouse. They are located on a 900kb stretch of DNA in chromosome 18 
and consist of variable (shown in brackets) and constant exons as indicated (A). The PCDHA cluster is 
shown to demonstrate the clusters monoallelic expression. Every variable exon exhibits its own 
promoter (circle in front of the exon) found upstream of the coding region. These promoters are 
spliced and form the constant exons. Stochastic (S) isoforms are expressed by each allele while 
constitutive (C) isoforms can be found expressed via both alleles. Adapted from (Hirayama and Yagi, 
2017). 
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We thus considered that it was most likely that the enrichment for OR and PCDH genes in 

the DNMT1 KD might reflect the fact that inactive members of both clusters become heavily 

methylated, particularly in cell lines. Since they are highly methylated, but not derepressed 

when methylation is removed in fibroblasts due to the absence of tissue-specific 

transcription factors (no up-regulation on RNA arrays), they would be more likely to show 

hypomethylation in the fibroblasts since there will be no selection against this. In the case of 

the OR genes this would be compounded by the fact that there is a large family of separate 

genes (Monahan and Lomvardas, 2015), artificially inflating the GO scores. 

However, this could not be the whole answer for the PCDH genes, since there is a relatively 

small number and several other factors suggested that the PCDH gene sensitivity was 

important: 1)PCDH gene enrichment was not seen in many of our studies, unlike OR genes 

which were enriched in a number of experiments (see paper II Fig 1, (Mackin et al., 2018)) 

and we thus discounted as being of special significance in paper I 2)the enrichment reflected 

in part the very high levels of DNA methylation seen at this cluster, including at CGI, which 

are rarely methylated except when important for regulation (Deaton and Bird, 2011); 3)the 

cluster is also regulated by CTCF, which in some cases is CG-sensitive (Golan-Mashiach et al., 

2012; Mountoufaris et al., 2018), further suggesting an important role and 4)we did not see 

a general enrichment for all other loci known to be heterochromatinised and inactivated in 

our DNMT1 lines (such as CTA genes, immunoglobulin genes, germline genes or imprinted 

genes). On this latter point, this is exactly what we did see in UHRF1-depleted cells, where 

there was so much general demethylation of all heterochromatinised genes that no clear 

pattern of enrichment was apparent on looking at the methylation arrays. We concluded 

that PCDH genes are particularly sensitive to loss of DNMT1 compared to many other 
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epigenetically regulated genes, and that it is particularly important to maintain methylation 

on these genes in adult. 

Consistent with this picture, there is dedicated de novo activity from DNMT3B which can 

restore any methylation loss at PCDH clusters, as we showed using DNMT3B KD in the hTERT 

cells (Suppl. Figs, Paper I). Consistent with this picture, Toyoda and colleagues showed in an 

elegant paper which was published while our manuscript was under development, that 

DNMT3B is particularly important for establishing methylation at inactive PCDH variants 

(Toyoda et al., 2014). Additionally, Rajarajan and colleagues also recently published work 

showing that SNPs which affect DNA methylation at PCDH cluster genes are associated with 

mental health phenotypes (Rajarajan et al., 2018). 

Interestingly PCDH clusters have also been shown to be involved in cell proliferation/death 

pathways and can alter the WNT pathway signaling (O’Leary et al., 2011). For example, 

overexpression of PCDHGA1 has been found to upregulate the WNT pathway (Mah and 

Weiner, 2017). Moreover, PCDHGC3 can downregulate WNT signaling (Mah et al., 2016), 

which correlates with the discovery of PCDH cluster dysregulation in various forms of 

cancer, like hypermethylation of PCDH in Wilm’s Tumor (Dallosso et al., 2009). A role in 

triggering cell death would be consistent with neural arborisation and pruning during CNS 

development, as discussed above. 

7.1.2 Body mass regulation 
In addition to PCDH, loss of methylation was also observed in genes related to fat and body 

mass homeostasis from enrichment analyses. The most common theme to these genes is 

some form of triglyceride processing, however, many candidate genes also share an 

immune link; ANXA2 (Liu and Hajjar, 2016; Y. Liu et al., 2015), disease association (GHSR; (Z. 
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Liu et al., 2015)) and even a link to cancer (ANXA2; (Kpetemey et al., 2015), ERBB2; 

(Kushwaha et al., 2019), GHSR; (Jandaghi et al., 2015; Lin and Hsiao, 2017), SHH; (Samkari et 

al., 2015)), as well as a link to embryogenesis (NLRP2; (Peng et al., 2017) SHH; (Lopez-Rios, 

2016)). These associations and the aberrant methylation found via this intervention suggest 

a link to the foetal origins of adult disease hypothesis, as discussed in section 1.8.1.1. 

However, little difference in the methylation of ANXA2 and APOC1 following DNMT1 

depletion was observed. The lack of effect here could because these genes are not solely 

regulated by DNA methylation, as there is a small gain in the APOC1 gene, or that specific 

transcription factors are required to derepress these genes. Moreover, these genes do not 

seem to be marked by polycomb or poised promoter chromatin states but the transcription 

status of these genes would need to be assessed to further investigate this, in addition to 

the binding sites of H3K27me3/H3K4me3. However, the probe resolution at the gene body 

of APOC1 is quite low, this could affect methylation results at this gene and explain the 

small change. 

7.1.3 The UGT1A detoxification gene cluster 
In addition to losses in methylation upon DNMT1 KD, there were unexpected gains in 

methylation, particularly at the UGT1A locus and a variety of genes known as Cancer Testis 

Antigens (CTA) on the X chromosome. UGT1A genes can be found on chromosome 2q37 and 

are responsible for glucuronidation, inactivating their targets so they are excreted. Targets 

include steroid hormones, bilirubin, carcinogens, bile acids and therapeutic drugs (Hu et al., 

2016). It is thought that DNA methylation within the UGT1A locus acts as a guide to facilitate 

correct alternative splicing patterns (Habano et al., 2015). It has also been noted that 

UGT1A1 and UGT1A10 are regulated by DNA methylation but not much has been 

established regarding the rest of this gene family (Oda et al., 2014; Yasar et al., 2013). Upon 
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siRNA KD of DNMT3B, the methylation of DNMT1 targets PCDHGA2, LEP and UGT1A4 lost 

methylation indicating that, although DNMT3B did not appear to be overexpressed in these 

cells, it still provided maintenance methylation at these targets (Paper I Supplementary 

figure 4B). This could explain the hypermethylation observed at the UGT1A locus, in addition 

to the location of the UGT1A promoter locations within heterochromatic regions which may 

be more susceptible to methylation (adjacent active non-heterochromatic regions show a 

restoration of normal methylation). However, literature has stated that stable KDs in long 

term culture are affected by a cumulative gain in methylation (Bork et al., 2010; Ehrlich et 

al., 1982; Gordon et al., 2014; Landan et al., 2012). This is more likely the reason behind the 

unexpected gains in methylation at this locus as hypermethylation was not observed within 

an siRNA KD of DNMT1. Although, many of the gains observed in shRNA KD of DNMT1 do 

overlap with the poised promoter category of chromatin state segmentation from the 

ENCODE project (Ernst et al., 2011a). 

7.1.4 Cancer-testis genes 
CTA genes are a large family of genes usually expressed in the testis and placenta but have 

also been found to have abnormal expression in some cancers (De Plaen et al., 1994; 

Salmaninejad et al., 2016), such as gonadoblastoma (Kido and Lau, 2014) and melanoma 

(Hagiwara et al., 2016). Evidence also suggests that CTA are a form of expressed 

pseudogenes. CTA based pseudogenes have been isolated in both human and other 

mammalian genomes at MAGEA, MAGEB, SSX and CT47 gene loci (De Plaen et al., 1994; 

Gordeeva, 2018; Güre et al., 2002; Zhao et al., 2012). According to our KD of DNMT1, and 

many other investigations using Aza (Mackin et al., 2018; Salmaninejad et al., 2016; Wrangle 

et al., 2013), the CTA genes are directly regulated by methylation. Upon treatment with Aza, 

Weber and colleagues (1994) discovered CTA genes, such as MAGE-A1, lose methylation and 
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become transcriptionally active in melanoma (Weber et al., 1994) and later studies 

demonstrated their regulation by methylation in many other cancer types including non- 

small cell lung cancers - identifying CTA genes as a potential target for intervention during 

cancer treatment (Juergens et al., 2011; Wrangle et al., 2013). Since then, many CTA-based 

immunotherapies have been tested as potential cancer immunotherapies (NCT00960752, 

NCT00960752, NCT00960752, https://clinicaltrials.gov/) and some are being combined with 

Aza to increase the efficacy of the CTA treatment (Adair and Hogan, 2009). 

CTA genes were also demethylated and subsequently upregulated in our UHRF1 KD. 

Although, not identified in the GO analysis, CTA genes did show transcriptional upregulation 

in our transcriptional array and demethylation of some promoters with hypermethylation of 

gene bodies. These alterations were later verified using a candidate gene assessment as 

available in CandiMeth (Paper II, Paper V) and certain targets were selected for validation 

via pyrosequencing. 

The differences observed between these two KD could be because of the more widespread 

regulatory effects of UHRF1, including cell cycle regulation, regulation of the DNA damage 

response (DDR) in addition to regulation of DNMT1 (Li et al., 2018; Xie and Qian, 2018). 

Alternatively, and perhaps more likely since DNMT1 is also implicated in all these functions, 

is that the cells do not tolerate the loss of the DNMT1 protein as well. Many reports suggest 

a KD of DNMT1 causes replicative stress, resulting in proliferation being halted at the G0/G1 

phase and triggers DDR pathways which ultimately results in apoptosis (Brown and 

Robertson, 2007; Liao et al., 2015; Loughery et al., 2011; Milutinovic et al., 2003; Sharif et 

al., 2016). Fitting with this idea is the hypothesis that, upon loss of DNMT1 the DDR 

response facilitates the removal of cells with low levels of DNMT1 (and thus lack 
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methylation) and exhibits a strong preference for those which remain methylated, masking 

any sign of immune upregulation (Loughery et al., 2011). An alternative investigation also 

reported global hypomethylation in a DNMT1 KD once the DDR pathway had been blocked 

(Unterberger et al., 2006). Other data from the Walsh lab have also shown that DNMT1 

depletion, but not reduction in UHRF1, triggers PARylation of proteins, a prelude to one 

form of DDR-mediated cell death (Scullion and Walsh, unpublished data). It is not entirely 

clear why UHRF1 does not elicit the same response, but it may be due to a less immediate 

role in base modification. Overall differences in these two KDs can be observed in Table 1. 
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DNMT1 KD UHRF1 KD 

Group 
Methylation 

Transcription Group 
Methylation 

Transcription 
Promoter GB Promoter GB 

OR - OR - 
CTA CTA 
PCDH - ERV 

FBM - - IFN - - 
UGT1A ISG - - 

Table 1: Overall effects of depletion of DNMT1 and UHRF1 in adult immortalised fibroblasts. Upon 
knockdown of DNMT1 hypomethylation was observed throughout PCDH, OR, CTA and FBM gene 
clusters. However, hypermethylation was observed at the UGT1A cluster. Upon UHRF1 knockdown, 
similar hypomethylation could be observed at CTA loci. In addition to, hypomethylation at ERV and 
VDG with increases in transcription of these related genes. In addition to increases in transcription at 
IFN and ISG genes. Abbreviations: Protocadherin (PCDH), Olfactory (OR), Cancer Testis Antigen (CTA), 
Fat and Body Mass genes (FBM), endogenous retroviral elements (ERV), Interferon genes (IFN), 
Interferon stimulated genes (ISG) ‘–‘ indicates no applicable data available. 
Red indicates demethylation (downregulation in the context of transcription). Light green indicates 
hypermethylation (upregulation in the context of transcription). Dark Green indicates vast 
upregulation in the context of transcription. 
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7.1.5 Activation of innate immune genes in UHRF1-depleted differentiated human cells 
However, the CTA genes were not the only gene categories transcriptionally upregulated in 

the UHRF1 KD. Upon GO of the genes which were upregulated, all ten hits were involved in 

the innate immune response including; interferon genes (IFN), interferon stimulated genes 

(ISG) and components of the major histocompatibility complex (MHC) in addition to the CTA 

genes. While there is a genome-wide demethylation in UHRF1 KD cells, demethylation at 

the IFN and ISG was not significantly correlated with their expression (data not shown), 

suggesting an indirect up-regulation here, mirroring the findings of Chiapinelli and 

colleagues (2015), termed this state ‘viral mimicry’ as it mimics the response to invading 

viruses by the innate immune system when they replicate within the cell. They discovered 

this via Aza-mediated DNA methylation inhibition in a variety of cancer cell lines, including 

activation of INFβ through the JAK/STAT pathway (Chiappinelli et al., 2015), as in our KD of 

UHRF1. 

Roulois and Colleagues also uncovered an innate immune response in colorectal cancer cell 

lines via Aza-mediated DNMTi but after clustering, split their results into four groups 

depending on whether the genes displayed early or late responses to Aza and their 

correlation between methylation and expression. The groups observed here are very similar 

to what is occurring in our UHRF1 KD, only a low percentage of genes in our study showed 

demethylation and upregulation and the majority of genes assessed were demethylated but 

not upregulated – indicating regulation independent of methylation. Also, Roulois and 

colleagues mention that even though they observed interferon (INF) upregulation and 

demethylation there was no additional INF protein present within the cell (Roulois et al., 

2015), this may be an point to assess in our UHRF1 KD cell lines as it indicates that an 

alternative mechanism is abrogating the formation of INF proteins even after transcriptional 
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upregulation. A similar clustering effect was also found in an separate similar study 

(Wrangle et al., 2013). 

Interestingly, there were minor differences in the pathways Chiappinelli and colleagues 

uncovered compared to ours: for example, they found one of their biggest changes in 

response to DNMT inhibition (DNMTi) was from the transcription factor IRF7 (Chiappinelli et 

al., 2015), but in our work in adult fibroblasts (Paper II) we found more upregulation in IRF9. 

In addition to this, Aza has been found to affect G9A/GLP histone methyltransferases which 

again could be influencing results (Ferry et al., 2017). However, Chiappinelli and colleagues 

did compare their results to a HCT116 DKO deficient in DNMT1 and DNMT3B and found 

relatively similar results in comparison to their Aza mediated DNMTi, indicating the viral 

response may be a definitive consequence of DNMTi, independent of the mechanism of 

depletion. 

Consistent with what we saw, Chiappinelli et al. found that IRF7 was hypermethylated at the 

promoter in only 1 of their 23 epithelial ovarian cancer cell lines, and that there was a poor 

correlation between IFN/ISG gene hypomethylation and their expression, and concluded 

that an alternative mechanism may cause the viral defence response when IRF7 is not 

silenced. This matches well with a review of the viral immune response from Strick and 

similar colleagues which shows that INFα and INFβ activation following DNA methylation 

intervention can be mediated by IRF7 or IRF3 upregulation (Strick et al., 2016). It is also 

suspected that IRF9 is involved further down the viral response pathway and works with 

STAT proteins to initiate interferon stimulated gene (ISG) transcription(Chiappinelli et al., 

2015). While IRF7 upregulation is observed in our UHRF1 KDs, it may be that IRF9 is more 

important in our normal fibroblast cell lines as opposed to cancerous epithelial cell lines. 
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There is also a greater ISG response found using alterative inhibitors of UHRF1 (Cuellar et al., 

2017; Liu et al., 2016), in the latter of which upregulation of T-cell signaling genes was 

shown (Cuellar et al., 2017), which is also found in our UHRF1 KDs. 

UHRF1 KD in HCT116 was previously assessed for viral defence gene (VDG) upregulation by 

Cai et al (2017), but primarily to attempt to find a potentially viable method of genome-wide 

DNA demethylation. Interestingly, they found similar levels of IRF7 and IRF9 upregulation 

upon a 60% UHRF1 KD and greater upregulation after combination treatment with Dacogen 

(Aza) (Cai et al., 2017b). In addition, similar results were found by Wrangle (2013) upon Aza- 

mediated DNMTi as in our hTERT UHRF1 KDs (Wrangle et al., 2013), in addition to high IRF7 

and IRF9 upregulation in Li (2014) (Li et al., 2014). Conversely, when Cai and colleagues 

assessed the same VDG panel in HCT116, shRNA-mediated in DNMT1 hypomorphic 

HCAT116 cell lines gave high VDG upregulation, but not in those cells in the absence of 

shRNA (Cai et al., 2017b). This indicates there is a threshold for VDG upregulation, at least in 

cancerous epithelial cell lines (Cai et al., 2017b; Chiappinelli et al., 2015; Roulois et al., 

2015). Thus, our DNMT1 KD cell lines may not have low enough levels of DNMT1 to elicit an 

innate immune response. 

We assessed the transcription of the same VDG list in the UHRF1 WT and UHRF1 KD and 

found a large increase in the transcription of these VDG between WT and KD. This 

encouraged us to develop a larger VDG panel and a gene panel for interferon and interferon 

stimulated genes to assess the extent of immune activation in our UHRF1 KD cells. 

Although, it is of note that our UHRF1 and DNMT1 KDs were composed of immortalised 

fibroblasts which may have different proliferative and DNA methylation profiles than the 

HCT116 cells utilised in the Cai, Chaippinelli and Roulois investigations (Cai et al., 2017a; 
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Chiappinelli et al., 2015; Roulois et al., 2015). HCT116 cells are also a cancerous cell line, 

these types of cell lines are known to have abnormal methylation patterns in comparison to 

non-cancerous cell lines (Kamińska et al., 2019). 

7.1.6 ERV reactivation and innate immune response to Uhrf1 mutation in mouse 
In contrast to our results in human cells, where UHRF1 but not DNMT1 depletion resulted in 

ERV reactivation, in mouse Sharif (2016) reported that DNMT1 but not UHRF1 depletion 

resulted in mouse ERV derepression (Sharif et al., 2016). Upon multiple conditional Kos 

(cKO) of DNMT1, UHRF1 and a DMNT1 and UHRF1 DKO, IAPEz upregulation was greater in 

an ESC DNMT1 cKO as opposed to the UHRF1 ESC cKO or the double cKO of both enzymes 

together (Sharif et al., 2016). However, the level of IAP upregulation found in the DNMT1 

ESC cKO was not as high as that found in the original KO by Walsh Challiet and Bestor in 

1998 (Walsh et al., 1998). 

In addition, Hutnick (2010) conducted a similar KO of DNMT1 in mouse ESCs and did not 

observe ERV upregulation until induction of differentiation (Hutnick et al., 2010). Also, in our 

UHRF1 CRISPR mediated KO of UHRF1 in mouse embryos, we can replicate a similar immune 

response as within the UHRF1 KD in hTERT and SKMEL melanoma cells. In addition, our WT 

and CRISPR mediated UHRF1 heterozygote mouse (#1) does look morphologically similar to 

the WT and Cre-mediated mouse UHRF1 conditional knockout (UHRF1cKO) in Sharif et al 

2016 (Sharif et al., 2016). In addition to, the differences in response between mouse (as in 

Sharif 2016) and human (our UHRF1 KD), Sharif and colleagues also use Cre-mediated 

conditional KOs, which could be considered a transient KD system. Therefore, their results 

could indicate the effects of acute depletion as opposed to long term shRNA mediated KDs. 
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When we conducted a CRISPR KO of UHRF1 in mice, we found a very reproducible 

demethylation of ERV elements but the reaction at IFN and ISG related genes was a lot more 

variable in our mice, in comparison to that of Sharif and colleagues 2016. However, there is 

a lack of methylation and transcriptional arrays that cover ERV elements at a high 

resolution. This led to the 450k array being repurposed to assess if we could obtain reliable 

coverage of ERV methylation and transcriptional response of ERV elements being measured 

by RT-qPCR. In order to visualise the results of the variable transcriptional response, I 

plotted the results as a heatmap to instead show overall patterns in transcriptional change 

as opposed to multiple graphical visualisations. Further discussion on this mouse work and 

the ERV response can be found in the next section. 

UHRF1 mutants in Zebrafish also display an innate immune response, in addition to mutant 

DNMT1 Zebrafish embryos, but not to as high a degree (Chernyavskaya et al., 2017). Of note 

however, was the observation of cytosolic dsDNA as well as dsRNA in the UHRF1 mutant 

(Chernyavskaya et al., 2017). This was investigated but not observed in our UHRF1 KD 

(Paper II). They also observed MAVS upregulation in their UHRF1 (IRF7 and STAT1 

upregulated in this mutant too) and DNMT1 mutant Zebrafish embryos (Chernyavskaya et 

al., 2017). Therefore, since they did not test for any specific member of the dsDNA pathway 

like MYD88 or TLR9 (Strick et al., 2016) but did observe MAVS upregulation (a key 

component in dsRNA signaling (Strick et al., 2016)) - the upregulation of STING could be due 

to the DDR response, since as cells become apoptotic they release dsDNA into the 

cytoplasm and are removed from the embryo. This theory also matches well with the 

upregulation of macrophages within mutant Zebrafish embryos (Chernyavskaya et al., 

2017). Despite some inconsistencies between the two papers from the Sadler lab then, the 
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upregulation of IRF9 in siRNA-mediated UHRF1 KD of human hepatoma cells (Chernyavskaya 

et al., 2017) nevertheless matches well with that observed in our UHRF1 KD (Paper II). 

Of additional note was that the gene ontology results implicated the PIWI-interacting RNA 

(piRNA) pathway in cellular response to UHRF1 KD (Paper II). From examination of the 

benchmark set of viral response genes from Cai et al, it was also clear that at least 1-2 of 

these were also involved in this pathway. piRNA has been been found to interact with 

UHRF1 to repress transposable elements in male germ cells (Dong et al., 2019): disruption of 

piRNA in mice led to upregulation of transposable elements and male sterility due to 

malformations in testes development. In this conditional KO of the fourth exon of UHRF1, 

decreases in H3K9me2/H3K9me3 and increases in H3K4me3 were found in cKO 

spermatocytes. UHRF1 was also found to interact with the arginine methyltransferase 

PRMT5, which is known to suppress transposable elements and interact with piRNA 

proteins. Upon cKO, mRNA of PRMT5 was also decreased and it is thought that PRMT5 could 

affect UHRF1 localisation in the nucleus of spermatocytes. Upregulation of LINE1 and TE was 

again found in UHRF1 cKO in mouse testes and spermatocytes (Dong et al., 2019). 

7.2 Methylation-deficient systems are indicative of alternative repressive mechanisms 
(Paper I and II) 
7.2.1 UHRF1 
Upon rescue with full length UHRF1 cDNA, we found that methylation genome-wide, 

including at ERVs, does not recover. However, ERV expression and the innate immune 

response previously observed appears to be attenuated independent of methylation. This 

indicated a possible alternative mechanism of repression was facilitated upon rescue of 

UHRF1. However, DNA methylation is not the only known method of ERV repression, 

microRNAs (Schorn et al., 2017), H3K9me3 including SETDB1/KAP1 based mechanisms 
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(Rowe et al., 2013), H3K27me3 (Li et al., 2017; Wang et al., 2019) and piRNA have all been 

found to repress ERVs in the absence of DNA methylation (Dong et al., 2019). In ESC, the 

primary method of ERV repression is via H3K9me3, with secondary assistance from DNA 

methylation (Bulut-Karslioglu et al., 2014; Karimi et al., 2011; Li et al., 2018; Matsui et al., 

2010), but DNA methylation appears to be the primary mechanism in differentiated cells 

(Kassiotis and Stoye, 2016; Mikkelsen et al., 2007; Rollins et al., 2006; Smith et al., 2012). 

Wang and colleagues knocked out UHRF1 in the livers of mice and found transposable 

elements to be subsequently enriched for both H3K27me3 and H3K9me3. However, 

H3K27me3 enrichment was only redistributed to hypomethylated TEs, such as the 5’ region 

of SINEs and LTRs with high CpG density, and not those that had retained residual 

methylation or had low CpG density. Interestingly, H3K27me3 was not found at IAPs (Wang 

et al., 2019). This matches well with the work of Walter and colleagues: here, embryonic 

stem cells were depleted of methylation via TET-mediated active demethylation to inhibit 

the action of DNMT3A and DNMT3B (Walter et al., 2016). This work suggested that there 

were 3 categories of transposable elements; category 1 showed co-occupation of the TEs 

with H3K9me3 and H3K27me3 (found in LINEs); category 2 showed H3K9me3 marking only 

(found in IAPEz elements) and finally category 3, which showed a transit from H3K9me3 to 

H3K27me3 on MERVL elements in response to DNA methylation depletion (Walter et al., 

2016). The redistribution of H3K9me3 after loss of methylation at IAPEz matches what we 

suspect occurs with our UHRF1 KD. However, we did not see a large change in H3K9me3 

when tested by western blot (Paper II). H3K9me3 is restricted to the 5’ UTR of LINEs but 

occurs evenly across ERV elements and could even be found in neighbouring genomic 

regions, whereas H3K27me3 could only be observed within the sequences of TEs (Bulut- 

Karslioglu et al., 2014; Walter et al., 2016). 
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Walter and colleagues also created a haploinsufficient SETDB1 /KAP1 mutants and found 

that category B elements like IAPEz elements showed high upregulation and failure to 

repress IAPEz or ERV elements (Walter et al., 2016), which is similar to what occurs in our 

UHRF1 SETDB1 and KAP1 inhibitions (Paper II). In other studies KAP1 KD in ESCs led to a 

marked increase in retroviral expression and a decrease in SETDB1 binding, with a 

subsequent depletion of H3K9me3 marks at these TEs (Matsui et al., 2010). This adds to the 

evidence that, in our UHRF1 KD, in the absence of DNA methylation, H3K9me3 could be the 

alternative mechanism repressing ERVs and IAP elements through primarily SETDB1/KAP1 

mediated mechanisms as opposed to Suv39h based mechanisms (Bulut-Karslioglu et al., 

2014; Matsui et al., 2010; Rowe et al., 2013). The afore-mentioned papers do point towards 

a complex system of H3K9me3, H3K27me3 and DNA methylation-mediated TE repression. 

However, this requires further investigation in our UHRF1 KD to clarify the effects in adult 

human cells. This could be accomplished via ChIP-seq enriching for H3K9me, H3K27me3, 

SETDB1 and KAP1, in addition to, assessments of DNA methylation, such as RRBS before and 

after KD of UHRF1 in these fibroblasts. This would give greater coverage in repetitive 

element loci. It may also be of interest to conduct RNA-seq to assess the transcriptional 

response of ERVs and innate immune genes following KD of UHRF1 as identified in the 

Chiappinelli study of 2015 that was discussed in the previous section (Chiappinelli et al., 

2015). Obtaining genome wide assessments of methylation, transcription and certain 

histone marks and protein binding sites may also identify any alternative changes that been 

overlooked due to the concentration of RT-qPCR and western blotting on genes and 

histones related to the innate immune response. 

To investigate the possibility that H3K9me3 marks in DNA methylation-deficient cells may 

act as a signal for UHRF1 to recognise ERVs, in-house generated UHRF1 mutants with 
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alternations to vital residues within the TTD/PHD domains that bind H3K9me3 were created. 

There was a failure to repress ERVs and a continued upregulation of the innate immune 

response observed. This was also observed in vivo in mice containing the same mutations, 

which died mid-gestation, suggesting the TTD-PHD domain in UHRF1 is required to bind to 

H3K9me3 on ERV, and as previous literature states (Rothbart et al., 2013, 2012), may be 

conserved through different species (Paper II). In addition, mice with a mutation of the 

H3K9me3 binding pocket seemed to show an increasing differential in methylation from WT 

as development proceeded (Paper II), suggesting a failure to gain methylation at TEs post 

implantation. This would be consistent with observations in ESC that mutants only became 

lethal on differentiation, so DNA methylation may be a long-term method of repression. This 

was also shown in our DNMT1 hypomorphs (Paper I). I also modelled the altered amino acid 

mutation in our mutant rescues using Swiss DeepView software (Guex et al., 1999). This 

software allows the user to create a 3D model of protein interactions via the amino acid 

sequence that can be downloaded from the RCSB PDB database (Berman, 2000). This 

allowed us to see the alterations that occurred following Alanine alterations and how these 

changes might affect the H3K9me3 binding pocket of the TTD-PHD domain. 

Furthermore, SETDB1 null mouse embryonic fibroblasts, which were not deficient in DNA 

methylation, did not show IAP, MusD or LINE1 derepression (Matsui et al., 2010). In HeLa 

cells, Tie and colleagues (2018) discovered overexpression of ERVs and ZNF genes following 

KAP1 KO (these were ERVs that were also thought to be bound by KAP1 according to 

ENCODE data), with additional upregulation of ZNF genes. However, depletion of KAP1 in 

PBMC or primary adult cells did not result in activation of ISG, but these cells have intact 

methylation (Tie et al., 2018). Therefore, it may be possible that, in the absence of DNA 

methylation, these cells (Paper II, UHRF1 KD hTERT-1604 cells) revert to primarily histone- 

Page 316 of 356



mediated repression, similar to when DNA methylation is reprogrammed during embryonic 

development (Zeng and Chen, 2019). Again, further investigation is enquired to confirm this, 

including H3K9me3, H3K27me3, KAP1 and SETB1 ChIP-seq in WT, KD, rescue and mutants of 

our UHRF1 cell lines. As mentioned previously, methylation and transcriptional assessment 

via sequence-based techniques such as RRBS, to give greater coverage of the DNA 

methylation changes occurring in repeat elements and paired end total RNA-seq to enrich 

for repeat elements and account for ERV transcriptional bidirectionality. 

Clinical potential of the use of UHRF1 could be similar to that of the demethyatin agent Aza, 

in which demethylation encourages a viral response similar to that of when the body is 

attacked by a virus. This upregulation of the immune system may help to fight a cancerous 

phenotype possibly with greater efficacy in conjunction with existing therapeutics such as 

histone deactylase inhibitors (Eckschlager et al., 2017). 

7.2 2 DNMT1 
For DNMT1-depleted stable cell lines, the gains in methylation in particular in the cell lines 

were very puzzling when we began our analysis. It was to be expected that we should see 

losses in methylation, and indeed these occurred at the same positions in all the cell lines 

with overlap of the probes losing methylation in different shRNA lines, which was reassuring 

in that it suggested the effects were not stochastic but instead certain regions were more 

sensitive to loss. The gains were also overlapping between lines, and were harder to explain: 

did lowering DNMT1 levels somehow cause a loss of fidelity? Or was there an up-regulation 

of de novo activity, which was somehow found in new regions? In order to try and 

determine if there was any correlation between losses and gains, and any other feature of 

the genome, we mapped the 450K probes distribution using CandiMeth and compared 

gains/losses with a number of other tracks, including replication timing, CGI distribution and 

several ENCODE tracks (ENCODE Project Consortium, 2004). Of all the tracks examined, the 
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ChomHMM tracks (Ernst et al., 2011b) seemed to show some degree of correlation, with 

hypomethylated probes distributed across polycomb repressed and heterochromatic/low 

signal regions according to ENCODE chromatin state segmentation data (Ernst et al., 2011b). 

In order to quantitate this, chromatin state segmentation data was downloaded from UCSC 

(Paper I) – polycomb repressed targets were reactivated in comparison to the positive 

control, indicating they were subject to polycomb repression. Similarly, when Hill and 

colleagues (2018) conducted a triple knockout of all DNMTs in mouse germ cells they 

discovered inhibition of both polycomb repressive complexes and DNA methylation was 

required to mimic gonadal epigenetic reprogramming (Hill et al., 2018), this again matches 

with the effects of EZH2 inhibition in our DNMT1 KD cells (Paper I). 

Brikman and colleagues (2012) showed a redistribution of H3K27me3 upon triple knockout 

of all DNMTs in mouse embryonic stem cells via ChIP-seq. They also elucidated that DNA 

methylation and H3K27me3 followed a negative correlation within CpG rich regions, but in 

CpG poor regions, similar levels of DNA methylation and H3K27me3 could co-exist 

(Brinkman et al., 2012). This could be due to the affinity of PRC2 for CpG-dense regions 

lacking DNA methylation (Laugesen et al., 2016), but proving this would require further 

investigation. It may also be of interest to conduct a similar ChIP-seq experiment to assess 

definitive evidence of redistribution of H3K27me3 between WT and DNMT1 KD in adult 

cells, in addition to repeating the shRNA KD with tighter time intervals sampled to see if the 

gains in methylation are due to long term culture or experimental intervention. When 

compared to shRNA-mediated KD of DNMT1, siRNA-mediated KD of DNMT1 displayed little 

difference between polycomb and non-polycomb regions in terms of demethylation (Paper 

I). After the siRNA KD was allowed to recover for 36 days, the polycomb-repression marked 

genes failed to remethylate, similar to what is observed in the shRNA KD at these polycomb 

regions (Paper I). 
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This failure to remethylate matches with current literature stating that after H3K27me3 

deposition, PRC2 interacts with TET1 to inhibit methylation of the newly -repressed DNA 

(Neri et al., 2013). This inhibition of DNA methylation by TET1 and PCR2 may be why little 

transcriptional response is shown after the drop in methylation of these polycomb-

repression marked genes. However, it could also be due to (at least in part) a lack of the 

correct transcription factors available to transcribe these previously methylation-repressed 

genes. Alternative studies have also pointed towards the possibility that these two 

processes (DNA methylation and polycomb repression) work in parallel (Li et al., 2018; 

Schlesinger et al., 2007; Viré et al., 2006; Widschwendter et al., 2007). 

Interestingly, no gains in DNA methylation were observed in the siRNA KD: loci such as 

UGT1A showed loss of methylation upon siRNA treatment. Transcriptional levels of the de- 

novo methyltransferase DNMT3B were also assessed but did not differ from WT (Paper I). 

This would indicate that the gains observed in the shRNA KD were likely due to long- term 

culture. Also of interest, knockdown of DNMT3B resulted in loss of methylation at germline 

and PCDH genes, known targets of DNMT3B and DNMT1, indicating that in absence of 

DNMT1, DNMT3B may have a maintenance methylation role, as previously suggested 

within the literature (Chen et al., 2003; Elliott et al., 2016; Jones and Liang, 2009; Liang et 

al., 2002). However, gains in methylation did overlap strongly with weak and poised 

promoter chromatin segmentation categories, with slight accompanying changes in 

transcription. Looking forward, ChIP-seq enrichment for H3K4me2, H3K4me3 and H3K9ac 

would help to assess whether the gains in methylation observed in the shRNA KD were 

from the   accumulation of de-novo methylation in long term culture or the redistribution 

of histone marks. An overview of the indications of alternative repressive mechanisms can 

be observed in figure 2. 
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Figure 2: Indications of alternative repressive mechanisms in methylation deficient systems. 
Upon shRNA DNMT1 KD sites that were hypomethylated correlated most with those of polycomb 
repression (grey bar) from ENCODE chromatin state segmentation data (Ernst et al., 2011b). 
Whereas sites hypermethylated in shRNA DNMT1 KD correlated most with weak/poised promoters 
(red/purple bar). However, when a siRNA DNMT1 KD was completed, hypomethylated sites showed 
no preference to polycomb above any other chromatin state suggesting the correlation to polycomb 
repressed and weak/poised promoters was due to the long-term nature of the shRNA DNMT1 KD. In 
UHRF1 shRNA KD genome wide hypermethylation was observed with an increase in ERV 
transcription and upregulation of the innate immune response. This upregulation of ERV elements 
and the innate immune response was attenuated upon rescue of the KD with a full functioning copy 
of UHRF1 but genome wide hypomethylation was still present. Upon rescue of the UHRF1 KD cells 
with UHRF1 with a mutated PHD/TTD domain, similar results were observed as in the KD, with 
upregulation of ERV elements and the innate immune response. This indicates that H3K9me3 
(orange bar) may be important in silencing ERVs in the absence of DNA methylation. 
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7.3 Differences in application of large-data analytics to human epidemiological rather 
than cell-line work (Paper III and VI) 
Up to this point I have been discussing the application of bioinformatics approaches to cell 

line work, where effect sizes are large and technical repeats are tightly grouped. The cost- 

effectiveness and reproducibility of the array meant however that collaborating labs were 

very interested in applying this approach to epidemiological studies. We found that these 

come with a different set of parameters and limitations, effect sizes can be small and 

subjects often do not tightly group together because of differences in genetics and lifestyle 

choices i.e. age, BMI, alcohol intake, smoking, sex, ethnicity and any medication that the 

may be on. These differences in lifestyle choices and ethnicity can cause differences in the 

methylation results recorded. Therefore, these factors have to be normalised for, similar to 

normalising the type I and type II probes mentioned in the introduction (see section 1.6.2.1 

). There can also be differing levels of immune cells and other tissues in whole blood 

samples, these differences also must be checked and if they classify as potentially 

confounding for the DNA methylation results obtained, they need to be corrected for. 

In order to check if any of these differences exhibit an effect on results, the data must first 

be explored and visualised. Principle Component Analysis (PCA) and Multi-dimensional 

Scaling (MDS) can provide a measure of dimensionality reduction to large scale 

epidemiological studies. Through PCA and MDS all samples can be plotted and will cluster 

via similar variances. If particular samples cluster independent of the intervention, this 

should be investigated further as it is evidence of a confounding factor. 

The affected samples can either be removed i.e. like the 7 removed from the EPIFASSTT 

study, due to skewing the age distribution of participants, or they can be corrected for prior 

to differentiation analysis using a process known as surrogate variable analysis (SVA). SVA 

seeks to reduce the effect of confounders on the data collected and can also identify and 
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correct for hidden confounders in the data that may be from unaccounted for variation in 

results, such as batch effects in EPIC array results. 

Alternative investigations, such as cell type correction should also be investigated if using 

whole blood as these samples can be composed of multiple different tissue types and 

therefore have the potential to effect results. Facilities for this assessment can be found in 

Minfi as well as RnBeads and ChAMP but SVA should normalise for any such hidden variable 

if present. I conducted cell type investigations via the Minfi package for the data presented 

in paper III to check for any skew in the distribution of tissue types from whole blood. 

Fortunately, there was no skew in the distribution of cell types in our whole blood. 

RnBeads, ChAMP and alternative packages also provide correction for copy number 

variation. Due to the literature surrounding SNPs in the LCE3B/3C genes in paper VI. I 

utilised the ChAMP and DNAcopy packages (Seshan VE, 2018) to investigate the possibility of 

a copy number variation (CNV) in the cohort utilised. After profiling each chromosome of 

each subject in paper VI no evidence of a CNV was obtained. 

7.4 Effects of environment on methylation on current and future generations (Paper 
III and VI) 

7.4.1 Folic acid supplementation in the second and third trimester causes alterations in DNA 
methylation upstream of a key imprint regulator 
Approximately 40 years ago, an investigation was published detailing a link between foetal 

nutrition and coronary heart disease in the later life of the offspring. Many other similar 

investigations have thus been published detailing a similar link and resulting in the 

formation of the foetal origins of adult disease hypothesis (further detail in section 1.8.1.1). 

Folic acid is one of the limiting factors in one carbon metabolism as mentioned in section 

1.8.1.2 and therefore DNA synthesis and DNA methylation. Currently, folic acid 
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supplementation is only recommended during the first trimester of pregnancy, when DNA 

synthesis and cell division is at its highest rate and to prevent neural tube closure defects. 

However, during the second and third trimesters the levels of DNA methylation and 

epigenetic reprogramming are at their highest, processes that depend on one carbon 

metabolism and as a result folic acid. Therefore, we wished to investigate the effects of folic 

acid supplementation in the second and third trimester on the resulting offspring (Paper III). 

We found that maternal folic acid supplementation improves the folic acid status of the 

mother and offspring. Given this increased level of FA and the role it plays in methyl donor 

supply, it was hypothesized that methylation in the infant should increase, but this was not 

what we or others have observed (Amarasekera et al., 2014a; Caffrey et al., 2018). However, 

there are many other limiting factors to one carbon metabolism, including homocysteine 

concentration (Clare et al., 2019). The level of homocysteine has been observed as lower in 

mothers with the MTHFR mutation MTHFRC677T (Crider et al., 2011). In addition, mothers 

with this mutation have been associated with low folate status as this mutation results in 

the MTHFR enzyme having lower catalytic activity and subsequently lower production of 

methionine, a precursor to SAM – the universal one carbon donor which is essential for DNA 

methylation (Bagley and Selhub, 1998; Liu and Ward, 2010). Reports have also indicated 

high levels of SAM may modulate MTHFR and result in surplus folate being converted into 

thymidylate or purines (Crider et al., 2011). Reports indicating that excess folic acid may 

trigger a negative feedback mechanism via alterations to the SAM:SAH ratio (Christensen et 

al., 2015) would therefore fit with the lower genome-wide methylation observed in the 

treatment group (Paper III). 
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Additionally, we observed a region upstream of ZFP57 as the top hit in our DMR screen 

which appears to control ZFP57 expression (Paper III). This is of great interest as ZFP57 is an 

imprint regulator (Li et al., 2008) and a candidate gene analysis in the same cohort had 

already revealed altered methylation at certain imprinted loci (Caffrey et al., 2018). We 

could also see differences in methylation variability at imprints between treatment and 

placebo groups in the EPIFASSTT study (Paper III). 

ZFP57 was originally discovered by Li and colleagues in 2008 as regulator of genomic 

imprinting in mice: upon insertion of a null allele of a functioning copy of ZFP57 resulted in 

full embryonic lethality respectively in mid gestation (Li et al., 2008). When homozygous 

embryos were compared to their heterozygous litter mates, DNA methylation was found to 

be severely affected at multiple imprints, including NNAT (the imprint most affected from 

the EPIFASSTT screen), which does demonstrate interaction with ZPF57 (Anvar et al., 2016)). 

Li and colleagues (2008) also found that loss of zygotic ZFP57 can impede the maintenance 

of DNA methylation even in the presence of maternal ZFP57. Conversely, in absence of 

maternal ZFP57, zygotic ZFP57 can rescue imprint maintenance. However, the methylation 

profile of the paternal chromosome cannot be maintained in the absence of both the 

maternal and zygotic forms of ZFP57, leading them to conclude that ZFP57 was a maternal- 

zygotic effect gene (Li et al., 2008). 

ZFP57 protects genomic imprints from epigenetic reprogramming via forming a complex 

with KAP1 (Messerschmidt, 2012; Quenneville et al., 2011). This complex can then recognise 

its methylated consensus sequence [TG]GCCGC, which occurs at a high frequency at imprint 

control regions (Anvar et al., 2016; Liu et al., 2012; Quenneville et al., 2011). The KAP1 

component of the ZFP57-KAP1 complex recruits SETDB1, the histone methyltransferase 
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mentioned in the previous section, in addition to the DNMT enzymes to maintain 

methylation at the imprint control regions of these imprints and also deposit H3K9me3 (Zuo 

et al., 2012). Mutations of ZFP57 have been associated with transient neonatal diabetes 

mellitus type 1, with marked hypomethylation found at imprinted regions (Baglivo et al., 

2013; Mackay et al., 2008; Touati et al., 2019). 

The FASSTT Trial (McNulty et al., 2013) was one of the first randomised control trials (RCT) 

of folic acid supplementation in the second and third trimester and the sequential 

EPIFASSTT trial poses the first evidence from an RCT that folic acid supplementation effects 

the methylation of the imprint regulator ZFP57. Before this RCT, an observational trial by 

Amarasekera 2014 had found lower methylation at this region upstream of ZFP57 

(Amarasekera et al., 2014b). However, there were many differences between the EPIFASSTT 

RCT (Paper III) and this observational study (Amarasekera et al., 2014b) including, a smaller 

sample size (n=23), recruitment from an allergy clinic where 73% of subjects in the high 

folate test group had a history of allergenic disease, use 2 purified immune cell types (as 

opposed to using whole blood as in EPIFASSTT) and use of a 450k array as opposed to the 

improved EPIC array as within EPIFASSTT. Amarasekera and colleagues’ independent and 

study subjects were also from the same source-cohort (Amarasekera et al., 2014b) which 

questions the verification of their results in their independent cohort. 

To verify our methylation results from the EPIFASSTT RCT, I independently conducted the 

array analysis in RnBeads, analysed results and constructed a hierarchical linear model in 

limma to verify differentially methylated probes such as the region upstream of ZFP57. I also 

conducted analysis with and without SVA and tissue type correction to assess the 

differences in DMRs and to ensure array processing was reliable. 
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In Joubert et al 2016, five CpGs from our proposed folate sensitive DMR upstream of ZFP57 

did exhibit differential methylation in one of the largest folate supplementation 

observational trials in the MoBa and Generation R cohorts, but the direction of change was 

not clarified (Joubert et al., 2016). Nevertheless, I was able to replicate our findings in an 

independent RCT, the AFAST study (Charles et al., 2005), but to a lesser effect size. This 

could be due to the greater age of the participants used in this study or the use of saliva 

instead of cord blood as a measure of DNA methylation. 

Many other studies have noted a change in DNA methylation in response to folic acid 

supplementation or depletion. In the agouti mouse model, Waterland and colleagues (2010) 

discovered a change in the coat colour of mice offspring whose mothers had been 

supplemented with methyl-donor nutrients like folic acid (Waterland et al., 2010). Offspring 

of female sheep fed a methyl-donor constrained diet had a higher body mass, blood 

pressure, alterations to the immune system response and demonstrated signs of insulin 

resistance in comparison to controls (Sinclair et al., 2007). Haggarty (2013) discovered 

higher methylation at IGF2 and lower methylation at PEG3 following supplement use after 

week 12 of gestation (Haggarty et al., 2013). Similar changes in the methylation of IGF2 

were also found in Steegers-Theunissen et al (2009). Following folic acid supplementation, 

children had 4.5% higher methylation at IGF2 in comparison to those without 

supplementation. Alterations to imprint methylation were also found in a multi-ethnic 

observational trial (Hoyo et al., 2014), including lower DNA methylation at NNAT as 

observed in the EPI-FASSTT trial (Paper III). IGF2 amongst others was also altered in the 

original candidate gene approach of the FASSTT trail (Caffrey et al., 2018). Interestingly, 

ZFP57 has been found to regulate the methylation of the above-mentioned imprinting genes 

(Anvar et al., 2016; Takahashi et al., 2019). 
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Moreover, the effects of folic acid supplementation extend beyond imprints. In a study of 

rural Gambian women, variation in seasonal nutrient intake surrounding the period of 

conception caused alterations in the DNA methylation of 13 plasma biomarkers 

(Dominguez-Salas et al., 2014). Sex specific changes in the DNA methylation of the HSD11B2 

gene, which controls foetal exposure to glucocorticoids and has been linked to low birth 

weight and were observed upon folate acid supplementation in rats (Zhao et al., 2014). Folic 

acid supplementation caused decreased methylation at this gene in only males but caused 

increased birth weight in females. In addition, folic acid supplementation has been 

implicated in lowering the risk of stroke and other cardiovascular diseases (Li et al., 2016). 

Conversely, in a folate-replete population, maternal intake of folic acid and other methyl- 

donors periconceptionally or during the second trimester was not associated with 

alterations to LINE1 methylation (Boeke et al., 2012). This may indicate again a potential 

feedback mechanism, directing one carbon metabolites to alternative tasks such as purine 

or pyrimidine synthesis. Nevertheless, further studies would be needed to clarify this. 

ZFP57 has also been implicated as a transcriptional repressor in Schwann cells of the 

peripheral nervous system (Alonso et al., 2004). Interestingly, children of the mothers in the 

folic acid supplementation group within the EPI-FASSTT study, have been found to have 

increased emotional intelligence, resilience and psychosocial benefits (Henry et al., 2018). 

In addition to improved cognitive performance (McNulty et al., 2019). Further work should 

be done to investigate the methylation of neural genes, via CandiMeth and a network style 

approach like Ingenuity Pathway Analysis within the treatment cohort to assess further 

alterations from supplementation of this methyl-donor. It may also be of interest to look at 
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the methylation of these neural genes and ZFP57 in the publicly available methylation data 

of NTD investigations or those with anencephaly. 

Of note, there appears to be an association between the stage of gestation and the effects 

of exposure to folic acid supplementation/restriction of methyl-donors, intergenerationally 

and transgenerationally. Heijmans and colleagues (2008) discovered that those exposed to 

famine in the early stages of gestation exhibited hypomethylation at the IGF2 gene decades 

after exposure. However, their same-sex siblings exposed in late gestation did not show any 

alterations in DNA methylation at the same region – indicative of intergenerational effects 

of maternal nutrition during gestation (Heijmans et al., 2008). Further studies on the agouti 

mouse model mentioned earlier, demonstrated that the DNA methylation changes that 

occurred from folic acid supplementation in the previous generation remained in offspring 

not exposed to any supplements (Cropley et al., 2006) – example of intergenerational 

effects of maternal nutrition during gestation. Additionally, follow-up work to the AFAST 

study found alterations to DNA methylation 47 years after the folic acid supplementation 

trial had taken place (Richmond et al., 2018), an example of transgenerational effects of 

maternal nutrition during gestation. 

7.4.2 Alterations to the DNA methylation of immune response genes in sufferers of 
Depression 
The other major epidemiological study I was involved with was regarding potential 

epigenetic markers of mental health. During a WHO World Mental Health International 

College Student project a high prevalence of depression was discovered in university 

students within the United Kingdom (Auerbach et al., 2018). Within Northern Ireland in 

particular, the prevalence was especially high (O’Neill et al., 2018). The NI data was derived 

from a student cohort at Ulster: further analysis of this cohort revealed a sub-set of these 

students, those 
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with depression, self-harm and a suicide attempt, had significantly higher shared risk factors 

such as being female and non-heterosexual (Paper IV). Given the higher risk score of this 

sub-group and the links between depression and immune dysfunction (Robson et al., 2017), 

it was hypothesized that this group may show epigenetic differences in comparison with 

healthy controls. Results showed epigenetic dysregulation at multiple immune-related 

genes and a link to psoriasis – an immune condition which has also been linked with 

depression (Pariser et al., 2016). To obtain these results I conducted our array analysis 

independently in different package such as ChAMP and RnBeads. GO of array results 

indicated upregulation of the immune system response in top ranking promoters. From this 

GO result, I used CandiMeth to assess the methylation of these immune system response 

genes and found a significant difference in the methylation of these genes between cases 

and controls. We also had difficulty with tissue type correction as no reference set existed 

for saliva samples (the tissue type taken during this investigation). However, after 

conducting SVA, exploring the data via PCA and checking recent literature we came to the 

conclusion that SVA should remove variation from differences in tissue type composition 

(Teschendorff and Relton, 2018). 

In a global burden of disease study in 2016, it was revealed that over 168 million people 

suffer from depression (Vos et al., 2017). Depression is a complex disorder characterised by 

multiple physical and neurological symptoms including; fatigue, social withdrawal, 

anhedonia, low mood and insomnia (Rahim and Rashid, 2017). As mentioned, depression 

has been linked to immune dysregulation (Robson et al., 2017). This theory was proposed 

over 20 years ago (Maes et al., 1991) and multiple studies have supported this theory since 

then (Ménard et al., 2016; Miller and Raison, 2016; Won and Kim, 2016). Depression has 

also been linked with many other chronic immune inflammatory disorders including, 
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cardiovascular disease (Halaris, 2017), diabetes (Anderson et al., 2001), asthma (Zielinski et 

al., 2000) and psoriasis (Patel et al., 2017), the latter being the most commonly linked to 

depression (Patel et al., 2017). 

Interestingly, we found alterations to the methylation of the Late Cornified Envelope (LCE) 

cluster within our study which have also been linked to psoriasis (Hüffmeier et al., 2010). 

This cluster is located on chromosome 1 and is part of the Epidermal Differentiation 

Complex (EDC), a 2 Mb region responsible for growth, repair and terminal differentiation of 

keratinocytes which will ultimately aid the cornified envelope of the skin (Abhishek and 

Krishnan, 2016). It is under epigenetic regulation by histone modification (Luis et al., 2011) 

and regulation by microRNA (Kretz et al., 2013). Dysregulation of this complex has been 

associated with psoriasis in addition to other dermatological disorders (Abhishek and 

Krishnan, 2016). The LCE cluster is divided into 6 groups and deletion of the LCE3B and 

LCE3C genes was found to be significantly associated with psoriasis, in a genome wide CNV 

analysis of 2831 European and American subjects (De Cid et al., 2009). An alternative GWAS 

study noted the same association between LCE3B and LCE3C deletion and psoriasis. 

Further work into the expression of the LCE cluster in normal versus psoriatic skin 

discovered that LCE3B and LCE3C exhibited negligible expression in normal skin but were 

significantly upregulated in psoriatic skin (Bergboer et al., 2011), this was also noted in an 

alternative study (Guttman-Yassky et al., 2009). Additionally, expression of the group 1, 2, 5 

and 6 LCE group genes were significantly downregulated in psoriatic skin compared to 

normal controls (Bergboer et al., 2011). A meta-analysis of psoriatic patients also revealed 

that 90% of sufferers exhibited heterozygous or homozygous deletions of the LCE3B and 

LCE3C genes (Riveira-Munoz et al., 2011). Following these investigations, it was suspected 
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that LCE3 genes encoded skin barrier repair proteins and absence of these genes lead to 

discrepancies in skin barrier function and susceptibility to psoriasis (Bergboer et al., 2011; 

Riveira-Munoz et al., 2011). An assessment of CNVs was conducted in our cohort but no 

evidence of a deletion at this region resulted (Paper IV). This was conducted as mentioned 

in section 7.3. 

Moreover, a psoriasis susceptibility loci PSORS4 has also been found in the EDC on 

chromosome 1q21, close to the LCE genes, in Chinese (Chen et al., 2009), European (Liu et 

al., 2008) and Italian cohorts (Capon et al., 1999). In addition, interactions have been found 

between the LCE cluster on chromosome 1q21 and PSORS1 on chromosome 6q21 (Capon et 

al., 1999; De Cid et al., 2009; Hüffmeier et al., 2010). A further meta-analysis of multiple 

cohorts found that this latter interaction was only present in Dutch and American cohorts 

but not in Italian, Japanese or Mongolian cohorts (Riveira-Munoz et al., 2011). This meta- 

analysis also revealed that the LCE3C-LCE3B and PSORS1 interaction was dependent on the 

presence of the HLA-cw06 allele (Riveira-Munoz et al., 2011). This allele was a part of the 

PSORS1 susceptibility loci on chromosome 6 and involved in the major histocompatibility 

complex (Sagoo et al., 2004), a key part of immune system responses (Wieczorek et al., 

2017). 

Alternative top hits from this study include the MIR4520A/B locus which encodes two 

microRNA with the same names as their respective genes (Timis and Orasan, 2018). Not 

much is known about the regulation of this locus, but it has been identified as a top hit in a 

psoriasis study of small RNAs (Joyce et al., 2011). As mentioned previously, miRNAs may 

regulate the EDC (Kretz et al., 2013; Timis and Orasan, 2018) and that MIR4520A/B have also 

been identified as top hits in a psoriasis study (Joyce et al., 2011), it may be of interest to 
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examine the function of MIR4520A/B and their regulation to see whether they have a 

regulatory role in the EDC or if they are/contribute to a psoriasis susceptibility loci. To 

facilitate this, current publications should be checked to examine the known 

effectors of MIR4520A and MIR4520B. Following this, epigenome wide and genome 

wide association studies should be analysed for the expression/methylation of 

MIR4520A/B upon different interventions, before interventions to investigate the link 

between MIR4520A/B and any psoriasis susceptibility loci can begin. 

DEFB104B was also identified as a top hit in our study. It encodes a β-defensin protein, a 

category of antimicrobial peptides involved in immune system responses (Premratanachai 

et al., 2004). Certain β-defensin gens have also been identified as tumour suppressor genes 

and their epigenetic dysregulation is associated with many chronic diseases including cancer 

(Xu et al., 2016), depression (Liu et al., 2018) and psoriasis (Stuart et al., 2012). CNV of β- 

defensins on chromosome 8 (location of DEFB104B) has also been identified as a risk factor 

in psoriasis (Hollox et al., 2008; Stuart et al., 2012). 

A direct split between the male and female subjects on the basis of methylation was also 

discovered in our study. This could be because of the different levels of HPA-axis activation 

initiated in different sexes following stressful events (Muscatell et al., 2015) and why the 

female sex has been identified as a potential risk factor for developing depression. A recent 

review of the literature into sex-specific differences in the development of depression 

suggested that women have a more pro-inflammatory response to stressors with decreased 

sensitivity to glucocorticoids. This upregulation of glucocorticoids and inflammatory 

cytokines can then cause alterations to neurotransmission and synaptic plasticity (Bekhbat 

and Neigh, 2018). 

Although, the current study does possess limitations, such as the small sample size. It 
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nevertheless acts as an informative pilot into the link between psoriasis and depression 

in those of university age, confirms saliva as an appropriate tissue for DNA methylation 

assessment in mental health conditions. It would be useful to obtain, in future, the 

genotype of the subjects in relation to the LCE3C/LCE3B-del and possibly other genotypes 

such as CNV of β-defensin which has also been identified as a risk-loci in psoriasis (Hollox 

et al., 2008; Stuart et al., 2012). In addition to expanding this pilot study into the DNA 

methylation of depressed vs healthy students. Since it is suspected that the LCE cluster is 

under regulation by DNA methylation, yet little evidence exists to support this. A greater 

sample size would also provide this investigation with greater statistical power and as a 

result increase the probability that this study is representative of DNA methylation in 

depressed students compared to healthy controls. Transcriptional data, such as RNA-seq 

on the samples in this study may also aid the investigation into whether the LCE cluster is 

regulated by DNA methylation.  

7.5 The development of CandiMeth and possible future versions

The cost effectiveness of Illumina methylation arrays has inspired multiple 

epidemiological studies to investigate their results at a molecular scale. Examples include 

the data presented in paper IV. However, after preliminary analysis of array data and 

subsequent GO analysis, it can be difficult for those without much bioinformatics 

experience to utilise their array results for further investigation. Platforms such as Galaxy 

(www.usegalaxy.org) have aided in this cause but matters that would be simple to 

bioinformaticians such as candidate gene investigation remain difficult to those not used 

with the command line or high dimensional data structures, such as those output from 

methylation array analysis with RnBeads or many other packages. To this end we wished 

to plug this gap in current software provisions via creating an online workflow in the 

Galaxy interface. 
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This workflow would allow users to easily investigate candidate genes and features from the 

results of multiple epigenome wide association studies (Paper V). The workflow, later called 

CandiMeth, allows users to overlap their methylation array results with popular UCSC 

genome browser tracks like RepeatMasker and hopefully in the future chromatin state 

segmentation tracks or CpG islands. In addition to, providing approximations for the 

promoter and gene bodies of all Reference Sequence defined genes in the hg19 and hg38 

human genome assemblies. 

CandiMeth was modelled around RnBeads primarily as it was the R package used within the 

Walsh lab to analyse methylation arrays, but is now compatible with ChAMP outputs as well 

as the option to upload custom outputs as long as they match the data format described in 

the CandiMeth paper. CandiMeth was primarily targeted at pipeline-based R-packages as 

these usually will produce outputs such as differential methylation tables without bespoke 

coding and can therefore be input with ease into Galaxy and therefore CandiMeth. This 

allowed the wet-lab biologists of the Walsh lab to investigate for example, all 4 results files 

for the DNMT1 KD (Paper I) or UHRF1 KD and R (Paper II) via creating a one column text file 

in the Galaxy interface of the features they wanted to investigate and selecting this file from 

the drop-down menus of the CandiMeth workflow. CandiMeth has no installation process 

required to make this process as simple as possible. Furthermore, CandiMeth also provides 

users with UCSC compatible tracks which when viewed within UCSC genome browser show 

the absolute methylation of WT and experimental results (also known as absolute beta 

tracks), the difference between WT and experimental results (delta beta tracks) and tracks 

which show the absolute methylation of only those probes that satisfy an FDR criteria of q < 

0.05. This allows users to view the results of their intervention at a gene/cluster of interest 

to see if the difference at that site is worthy of further investigation and provides seamless
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integration with BLAT for primer design, in the case of loci of interest. A comprehensive 

guide and GitHub repository were also created with step-by-step instructions on how to use 

CandiMeth via Galaxy with test data and using the user’s own data, in addition to how to 

integrate those results with the RepeatMasker track. CandiMeth and the accompanying 

guide therefore providing a simple and easy to use process which improves result 

reproducibility and gives those with little bioinformatics training more control over their 

large-scale data. 

Future amendments to CandiMeth include, integration with further R-packages (like Minfi), 

UCSC tracks i.e. chromatin state segmentation or CpG island tracks and potentially 

expanding CandiMeth to include different types of input files, such as RNA-seq. Candimeth 

could also be improved to facilitate downstream analysis from new analysis suites which 

take machine learning or multi-omics approaches to differential analysis, such pipelines 

include Bigmelon (Gorrie-Stone et al., 2019) or PyMethylProcess (Levy et al., 2019) amongst 

others (Heiss and Just, 2019; Prelot et al., 2018; Song et al., 2019; Wang et al., 2019).  

7.6 Concluding Remarks

Through bioinformatics approaches I have investigated in this thesis the effects of DNA 

methylation depletion in normal adult cells with implications for potential repressive 

mechanisms upon depletion of DNA methylation (polycomb repression), added to the 

knowledge base regarding a maintenance methyltransferase function for DNMT3B and 

provided inferences on a potential epi-therapeutic pathway in adult cells following 

depletion of UHRF1. Using human intervention studies, I have determined effects on the 

offspring of folic acid supplementation in the second and third trimester, including a key 

effect on an imprint regulator and were able to replicate the effect in cell-line based models 

– adding to the growing evidence of a beneficial effect of folic acid supplementation during
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late gestation and rationale for investigation into the effects later in the life of the child and 

on the mother. I have also added to the evidence of an immune component to the aetiology 

of depression and provided an informative basis for further study to elucidate potential 

genetic or epigenetic predispositions to the mentally ill state of the cases in comparison to 

the control subjects. I have also provided a user-friendly web-based workflow known as 

CandiMeth to allow those with little bioinformatics knowledge to investigate features of 

interest from the results of epigenome wide methylation arrays.
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