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Abstract

We analyze the long time behavior of a discrete time quantum walk subject to decoherence with a

strong spatial dependence, acting on one half of the lattice. We show that, except for limiting cases

on the decoherence parameter, the quantum walk at late times behaves sub-ballistically, meaning

that the characteristic features of the quantum walk are not completely spoiled. Contrarily to ex-

pectations, the asymptotic behavior is non Markovian, and depends on the amount of decoherence.

This feature can be clearly shown on the long time value of the Generalized Chiral Distribution

(GCD).
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I. INTRODUCTION

Quantum Walks (QW) constitute the quantum analogy to classical Random Walks. The

latter are an important piece in the design of classical algorithms and are used, for example,

to efficiently explore the parameter space of some model. Here we will consider the special

case of a QW on a line [1–7]. As in the classical case, QWs have been proposed as an

element to design quantum algorithms [8–12]. The importance of the QW has increased

with the discovery that it can be used for universal quantum computation [13, 14], and

several experimental setups have been proposed or realized to implement it [15–24].

An important point to be discussed, as in all implementations of quantum algorithms, is

the possible effect of decoherence due to the interaction of the experimental setup with the

environment. This interaction will change the problem of an isolated quantum device to the

one corresponding to an open quantum system [25, 26]. In most cases, the consequence will

be that the quantum algorithm will loose its quantum advantages and, therefore, its outer-

performance (as compared to classical algorithms) will be ruined. The effect of decoherence

on the QW has been investigated in a number of papers [6, 27–34]. As a general conclusion,

it seems clear that decoherence in the coin space of the walker spoils the performance of the

QW more effectively. It must be noticed, however, that a small amount of decoherence both

on the coin and position of the one dimensional lattice QW might produce some benefits [29],

as it produces more uniform distributions. On the other hand, purely spatial decoherence

(i.e., decoherence introduced by some kind of defects on the sites of the lattice) may have a

distinctive behavior. For example, the authors in [31] study the effects of tunneling on the

spatial sites. They find that the characteristic quadratic dependency of the variance on time

is not ruined, even for maximal noise. Also, one obtains a smooth probability distribution,

except for very strong decoherence.

From the above considerations, it is clear that the effects of noise on the QW are worth

to study in order to design practical quantum algorithms which use the properties of the

QW. Most papers on this subject have considered the case when the noise appears uni-

formly distributed on the lattice. This assumption allows the effects of decoherence to be

treated within a translationally-invariant formalism, so that some analytical results can be

obtained regarding the characteristic properties of the QW distribution [31, 35]. From the

experimental point of view, it is true that one can force the setup so as to mimic a spatially
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uniform noise acting on the coin and reproduce the expected Anderson localization [36].

But the question that arises is what happens if, in a given experiment, decoherence appears

in an uncontrollable, spatially dependent, way. More precisely, decoherence might appear

only on a given region of the lattice, or it may act stronger in some parts of the system

than in others. Are results developed under the hypothesis of translational invariance still

valid under these circumstances, at least approximately? Another possibility is that new

phenomena, which were not present for translationally invariant systems, may appear when

this restriction does not apply. We think that examining such a possibility can be useful

for the design of new experiments, and for the general understanding of decoherence in the

QW.

In this paper, motivated by the above discussion, we study a simple model of non-

translationally invariant noise in the QW, in which decoherence acts on the coin degree

of freedom with some probability p, but only when the walker moves on one half of the

lattice. As we will show, even such a simple model will give rise to interesting phenomena,

which were not shown (at least to our knowledge) in previous models. At first sight, given

the interference properties of the problem under study, one might expect that the character-

istic properties of the QW, such as the quadratic growth of the variance with time, should

be completely destroyed. We show that, in fact, this is not the case, and we analyze the long

time behavior in connection with the given initial conditions. We observe that, for large

time steps, the variance grows as a power law. Surprisingly, the walk remains subballistic

even for strong values of p.

A characteristic property of the QW is the evolution of the Global Chirality Distribution

(GCD) [33, 34, 37]. This distribution gives information about the chirality of the walk,

independently of the position. It has been found, for example, that the GCD possesses

in some cases an asymptotic limit, which can be related to the initial conditions of the

coin. This result showed an unexpected behavior of the QW’s dynamics, that is more

characteristic of Markov processes. It shows that, watching only the degrees of freedom

associated with the chirality, it would be very hard to appreciate the unitary character of

the quantum evolution. In more generic words, the simple observation of variables that

belong to only one of the simplest sub-spaces can camouflage the unitary character of the

evolution [34, 38]. Therefore, it is clear that the study of the GCD is necessary in order

to understand the equilibrium between degrees of freedom of the QW. We will study the
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evolution of the chirality, as given by the GCD, and specially its long-time behavior for a

QW subject to decoherence for the model described above.

The paper is organized as follows. In Sect. II we briefly review the discrete-time QW

on a line. In Sect. III we introduce our model for decoherence, and derive the recursion

formulae obeyed by the left and right components of the GCD. We discuss the asymptotic

expressions for these magnitudes. Numerical calculations that illustrate the behavior of

these magnitudes are shown on Sect. IV. Sect. V summarizes our main results.

II. DISCRETE TIME QW WALK ON A LINE

The QW may be defined using either its discrete-time or continuous time version. In

this paper, we concentrate on the discrete time version. The discrete time QW on the line

corresponds to the evolution of a one-dimensional quantum system in a direction which

depends on an additional degree of freedom, the chirality, with two possible states: “left”

|L〉 or “right” |R〉. The global Hilbert space of the system is the tensor product Hs ⊗ Hc

where Hs is the Hilbert space associated to the motion on the line, and Hc is the chirality

Hilbert space. Let us call T− (T+) the operators in Hs that move the walker one site to the

left (right) of a unidimensional lattice, and |L〉〈L| , |R〉〈R| the chirality projector operators

in Hc. We consider the unitary transformations

U(γ) = T− ⊗ |L〉〈L| Kc(γ) + T+ ⊗ |R〉〈R| Kc(γ), (1)

where Kc(γ) = σz cos γ + σx sin γ, and σz , σx are Pauli matrices acting in Hc. For γ = π/4

the Hadamard coin is obtained. When decoherence is not present, the unitary operator U(γ)

evolves the state in one time step as

|Ψ(t+ 1)〉 = U(γ)|Ψ(t)〉, (2)

and the state at time t can be expressed as the spinor

|Ψ(t)〉 =
∞
∑

x=−∞





ax(t)

bx(t)



 |x〉, (3)

where the upper (lower) component is associated to the left (right) chirality.
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III. DECOHERENCE IN THE QW

We assume a simple model in which decoherence in the QW appears as a consequence

of the additional action of σz on the coin space with a given probability. Moreover, this

operator is assumed to act only on the semipositive line, with a characteristic probability

p. Therefore, the simple dynamics described in the previous section has to be modified:

Instead of Eq. (2), one has to deal with a density operator ρ describing the state of the

QW. The dynamics can be described by the action of given Kraus operators. In our case,

we have two operators E1 and E2, defined by

E1 =
√

1− pθ(x)U(γ), (4)

E2 =
√
p θ(x)σzU(γ), (5)

where θ(x) is the Heaviside step function. In this way, the operator E2 only acts on a position

eigenstate |x〉 when x ≥ 0, and E1 reproduces the ordinary QW, Eq. (2) whenever x < 0.

In other words, one has the usual QW on the left side of the lattice, whereas on the right

side an additional dephasing operation σz appears with some probability p, where p ∈ [0, 1]

is a real number. One can readily check that the necessary condition for trace-preserving

Kraus operators

E1E
†
1 + E2E

†
2 = 1, (6)

is fulfilled. The time evolution for the density matrix of the quantum walk is then given by

the map

ρ(t+ 1) = E1ρ(t)E
†
1 + E2ρ(t)E

†
2. (7)

Later on, we will also consider the map produced on the GCD, which can be obtained from

ρ(t) by tracing out the spatial degrees of freedom. In this way, we define the reduced density

operator for the chirality evolution

ρc(t) ≡ Trs{ρ(t)} =
∑

x

〈x|ρ(t)|x〉. (8)

From this reduced operator, one can calculate the diagonal components of the GCD, defined

simply as the corresponding elements in the chiral {|L〉, |R〉} basis

ΠL(t) ≡ 〈L | ρc(t) | L〉, (9)
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ΠR(t) ≡ 〈R | ρc(t) | R〉, (10)

whereas the interference term is given by

Q(t) =
1

2
(〈L | ρc(t) | R〉+ 〈R | ρc(t) | L〉) . (11)

In order to obtain a recursive formula for the GCD, let us expand the density matrix ρ(t)

in the basis {|x〉 ⊗ |i〉, x ∈ Z, i = L,R} of the whole Hilbert space, such as

ρ(t) =
∑

x,y∈Z

∑

i,j=L,R

Rx,y;i,j(t) |x〉〈y| ⊗ |i〉〈j| (12)

After substitution in Eq. (8), using Eqs. (4,5,7) we obtain, with the help of some algebra,

Trs{E1ρ(t)E
†
1} =

∑

x

{[1− pθ(x)][MRRx,x(t)M
†
R +MLRx,x(t)M

†
L]

+
∑

x

{
√

1− pθ(x+ 1)
√

1− pθ(x− 1)[MRRx−1,x+1(t)M
†
L

+ MLRx+1,x−1(t)M
†
R]} (13)

where ML = (|L〉〈L|)Kc and ML = (|R〉〈R|)Kc. On the other hand,

Trs{E2ρ(t)E
†
2} = σz

∑

x

{pθ(x)[MRRx,x(t)M
†
R +MLRx,x(t)M

†
L]

+
∑

x

{pθ(x+ 1)θ(x− 1)[MRRx−1,x+1(t)M
†
L

+ MLRx+1,x−1(t)M
†
R]}σz. (14)

In the above equations, we have introduced

Rx,y(t) ≡
∑

i,j=L,R

Rx,y;i,j(t) |i〉〈j|, (15)

which is an operator defined on the coin space. The corresponding magnitudes at time t+1

can be derived from Eqs. (13,14,15). After a lengthy, but straightforward calculation, we

arrive to the following equations relating the diagonal elements of the GCD at time t+1 to

those at time t:

ΠL(t+ 1) = cos2 γ ΠL(t) + sin2 γ ΠR(t) + sin 2γ Q(t) (16)

ΠR(t + 1) = sin2 γΠL(t) + cos2 γ ΠR(t)− sin 2γ Q(t) (17)

6



The latter results agree with similar expressions obtained in Refs. [33, 34, 37] for the

GCD dynamics, but there a handmade technique [39, 40] was used to separate the Markovian

evolution from the interference term. It can also be obtained [34] from Eqs. (16,17) that,

for p = 0, Q(t), ΠL(t) and ΠR(t) have long-time limits whose values are determined by the

initial conditions. In the next section, it is shown that, when p 6= 0, Eqs. (16,17) also have

stationary solutions.

Figure 1: The position distribution Pk as a function of the dimensionless position at t = 2000 with

p = 0.2.

According to this, it is expected that the asymptotic GCD will satisfy the following

equations

ΠL(∞) = cos2 γ ΠL(∞) + sin2 γΠR(∞) + sin 2γ Q(∞), (18)

ΠR(∞) = sin2 γ ΠL(∞) + cos2 γΠR(∞)− sin 2γ Q(∞), (19)

where we have defined ΠL(∞) ≡ ΠL(t → ∞), ΠR(∞) ≡ ΠR(t → ∞) and Q(∞) ≡ Q(t →
∞). The asymptotic behavior of the GCD has no explicit dependence on the parameter p,

but the asymptotic values of ΠL(∞), ΠR(∞) and Q(∞) do have an implicit dependence.
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Figure 2: (Color online): The standard deviation, σ obtained from all points on the lattice (positive

and negative), as a function of the time step in log-log scales, for different values of p, corresponding

to p = 0 (black, thick solid line), p = 0.9 (red, short-dashed line), p = 0.5 (green, thin line) and

p = 0.1 (blue, long dashed line).

Using Eqs. (18,19), the stationary solution for the GCD is, then





ΠL(∞)

ΠR(∞)



 =
1

2





1 + 2Q(∞)/ tanγ

1− 2Q(∞)/ tanγ



 . (20)

These solutions are the same as those obtained in Ref. [34] for a more complicated decoher-

ence. Therefore, the dynamical evolution of the GCD is non Markovian, in the sense that

asymptotic magnitudes depend on the initial conditions (as well as on the probability p). As

we show in the next Section, the interference term Q(∞) is not negligible: The behavior of

this composite QW is at first sight unexpected, since usually decoherence destroys the uni-

tary correlation, providing a route towards a classical-like behavior described by a Markov

process.

IV. NUMERICAL CALCULATIONS

The global evolution of the system depends on the application of the two operators Eqs.

(4, 5) in the Hilbert space. Each operator acts on both the chirality and position spaces, and
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Figure 3: The left component of the GCD and the interference term as functions of the time step,

for p = 0.2

has a corresponding map. For our numerical calculations, instead of working with the density

operator, a statistical description can be obtained by combining many runs of the form Eq.

(2) with the appropriate statistical weights. Such a description, of course, is equivalent to

working with the density matrix, as long as a sufficiently large ensemble is considered. For

our purposes, we have found that this procedure is more efficient than a whole calculation

involving a large number of time steps and, consequently, of matrix positions, if one was to

deal with the density matrix. We have checked that the number of runs in the ensemble is

large enough so as to achieve convergence.

To implement the algorithm we proceed as follows. At each time step t, the usual QW

map is applied to each position at the left of the origin, while at the right half-line the

usual QW map, or the map obtained by the additional action of the Pauli matrix σz , are

applied with probabilities 1−p and p, respectively, p being the only parameter in the model.

We take as the initial conditions a walker starting at the central position |0〉 with chirality

1√
2
(1, i)T , γ = π/4, and we consider an ensemble of 100 dynamical trajectories with 2000

time steps. Finally, magnitudes are averaged over the whole ensemble.

Fig. 1 shows the position distribution of the QW given (for a single run) by Pk(t) ≡
|ak(t)|2 + |bk(t)|2, as a function of the position k at t = 2000. The plot, as any other
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quantity we will show, reflects the final averaging over the ensemble. This figure shows, for

p = 0.2, a very different behavior to the left and to the right of the origin. In particular, the

behavior of the system on the left half-line is close to one of the QW without decoherence,

while on the right half-line the behavior is typical of a classical walker with a Gaussian

distribution. It is worth noticing that most of the probability goes to the left, as shown in

this figure. In other words, the region on the right, where decoherence is acting, tends to

reflect the walker towards the left, where it can freely propagate. This effect is important

in order to understand other results that we show below.

As it is well known, one of the most striking properties of the one-dimensional QW is its

ability to spread over the line linearly in time, as characterized by the standard deviation

σ(t) ∼ t, while its classical analog spreads out as the square root of time σ(t) ∼ t1/2. In our

case, the standard deviation of the system is presented in Fig. 2 for different values of p. We

see that the standard deviation grows subballistically, as a power law σ(t) ∼ tc, where c takes

a constant value. It is interesting to note that this behavior remains for the whole range of

values of p. For values of p close to zero, the QW spreads almost ballistically, as expected.

For intermediate values (between 0 and 1), most of the probability goes to the left, and this

prevents decoherence from effectively reducing the QW to a diffusive behavior. Actually,

this is only a simplified vision, as the actual process is more complicated: Indeed, the QW

on the left is actually evolving under the form of waves propagating both to the left and

to the right. These right-moving waves will penetrate on the right region and eventually be

reflected to the left. It is this complicated interplay between right and left motions that leads

to the subballistic behavior explained above. For values of p close to unity, the evolution on

the right side is dictated by the operator σzU(γ), which is obviously unitary. Therefore, the

QW on both sides will recover the main properties of the standard QW.

In Fig. 3 we present the left (L) component of the GCD and the interference term Q(t):

Here it is seen that these quantities have definite limits. We have checked numerically that

Eq.(20) is satisfied independently of both the initial condition and the values of p, for p > 0.

V. CONCLUSIONS

We have analyzed a model for spatially-dependent decoherence on the quantum walk,

which we implement via the introduction of appropriate Kraus operators. In our simplified
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model, the decoherence acts only on one side of the lattice. We introduced a particular

model, defined as an additional operation acting on the coin, although we have explored

other choices of the Kraus operators, as the ones defined in [30, 31] with similar results.

In spite of the noise introduced by these operators, some characteristic properties of the

QW, such as the long term linear behavior of the standard deviation, still survive. We

have calculated the GCD, and showed that it has a given limit as a function of time. We

conclude that the dynamical evolution of the GCD is not Markovian, and has an asymptotic

value that depends on the initial conditions and on the probability of decoherence. This is

an unexpected result, since decoherence tends to destroy the correlations arising from the

unitary evolution, thus paving the way to a classical-like Markovian process. It is also in

agreement with other results discussed here, showing that, in spite of an apparently extreme

decoherence, acting on an semi-infinite lattice, some quantum features are preserved.
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