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Abstract

The non-equivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing

feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity,

consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term

constructed à la Palatini, the “true” gravitational field is described by the interpolation of these

two non-equivalent approaches. The theory predicts the existence of a light long-range scalar field,

which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the

theory opens new possibilities for a unified approach, in the same theoretical framework, to the

problems of dark energy and dark matter, without distinguishing a priori matter and geometric

sources, but taking their dynamics into account under the same standard.
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There has been considerable interest in modifications of the geometric part of Einstein’s

field equations, mainly motivated by the late-time cosmic acceleration and dark matter

issues [1–7]. In particular, gravitational actions consisting of more general combinations of

curvature invariants than the pure Einstein-Hilbert term have been investigated extensively

[8–16]. Einstein though was more satisfied with the geometric part of the equations, and has

been quoted to say that while the “left-hand side is carved of marble, the right-hand side

is made of straw.” However, in generalized gravity theories, the problem of coupling matter

to gravity is often reduced to the question of which frame matter resides in with respect

to gravity. The matter Lagrangian and the corresponding stress-energy tensor are defined

in the usual way, but the metric that matter couples to may be related by a conformal, or

more generally a disformal, transformation to the gravitational metric. Apart from specific

non-conservation terms in the continuity equations, the structure of the theory is retained.

In this context, a new class of f(R) gravity theories, denoted C-theories [17], were

considered. In the latter, the connection was related to the conformally scaled metric

ĝµν = C(R)gµν with a scaling dependence on the scalar curvature R. It was shown that

the Einstein and Palatini gravities were obtained as special limits, and in addition to this,

C-theories include completely new physically distinct gravity theories even when f(R) = R.

With nonlinear f(R), C-theories interpolate and extrapolate the Einstein and Palatini cases

and avoid some of their conceptual and observational problems. In an earlier work [18], the

known equivalence between higher order gravity theories and scalar tensor theories was gen-

eralized to a new class of theories. More specifically, in the context of the Palatini formalism,

where the metric and connection are treated as independent variables (see [19] for a recent

review), the Lagrangian density was generalized to a function of the Ricci scalar computed

from the metric, and a second Ricci scalar computed from the connection. It was shown

that these theories can be written as tensor-multi-scalar theories with two scalar fields.

More radically, one may modify the response of matter to gravity by defining an action,

which depends nonlinearly upon the matter Lagrangian [20–25], or its trace [26–28]. Gener-

ally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal

to the four-velocity [29]. In fact, in these cases the motion of matter is typically altered

already in flat Minkowski space, and one may expect instabilities due to new nonlinear

interactions within the matter sector.

A natural way to obtain solely gravitational modifications of the behaviour of matter
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emerges in the Palatini formulation of extended gravity actions. There the relation between

the independent connection and the metric turns out to depend upon the trace of the matter

stress-energy tensor in such a way that the field equations effectively feature extra terms

given by the matter content. However, since the extra terms are fourth order in derivatives,

the theory is problematic both at the theoretical and phenomenological levels [30].

In the present paper, we propose a simple generalization of the models resulting from

modified gravity actions within the Palatini formalism, where such problems are absent.

An equivalent formulation is presented as a particular one-parameter class of scalar-tensor

theories. In these theories the scalar field mediates the new type of coupling to the matter.

By a constraint that is an identity within this class of theories, the scalar field can be

algebraically eliminated in terms of the matter content and the Ricci curvature in the field

equations. Generally the field equations then feature fourth order derivatives of both the

metric and the matter fields. This provides a consistent and covariant means to modify the

appearance of matter fields in the field equations, without affecting the conservation laws.

This also opens a new perspective on the f(R) theories, which are the special limits of the

one-parameter class of theories where the scalar field depends solely on the stress energy

trace (Palatini version) or solely on the Ricci curvature (metric version).

More specifically, consider a one-parameter class of scalar-tensor theories in which the

scalar field is given as an algebraic function of the trace of the matter fields and the scalar

curvature [31]:

S =

∫

dDx
√
−g

[

1

2
φR− D − 1

2(D − 2) (ΩA − φ)
(∂φ)2 − V (φ)

]

, (1)

The theories can be parameterized by the constant ΩA. The limiting values ΩA = 0 and

ΩA → ∞ correspond to scalar-tensor theories with the Brans-Dicke parameter ω = −(D −
1)/(D − 2) and ω = 0. These limits reduce to f(R) gravity in the Palatini and the metric

formalism, respectively.

This sheds further light on the nature of f(R) gravity theories. They can be understood

as the – quite special – limits of the action (1). For any value of ΩA, the field can be

algebraically eliminated in terms of R and T from the equations of motion. For any finite

value of ΩA, its value depends both on the matter and curvature. In particular, ΩA = 1

corresponds to the case where the deviation from the Einstein theory is given directly by

the deviation from the trace equation X = −κ2T + (D/2 − 1)R. In the limit ΩA → ∞
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the propagating mode is given solely by the curvature, φ(R, T ) → φ(R), and in the limit

ΩA → 0 solely the matter fields φ(R, T ) → φ(T ). In the general case the field equations are

fourth order both in the matter and in the metric derivatives.

More specifically, the intermediate theory with ΩA = 1, corresponds to the hybrid metric-

Palatini gravity theory proposed in [32], where the action is given by

S =

∫

dDx
√
−g
[

R + f(R) + 2κ2Lm

]

. (2)

which, in D = 4, can be recast into a scalar-tensor representation [32–34] given by the action

S =
1

2κ2

∫

d4x
√−g

[

(1 + φ)R +
3

2φ
∇µφ∇µφ− V (φ)

]

+ Sm , (3)

where Sm is the matter action, κ2 = 8πG/c3, and V (φ) is the scalar field potential. Note

that the gravitational theory given by Eq. (3) is similar to a Brans-Dicke scalar-tensor action

with parameter w = −3/2, but differs in the coupling to curvature.

The variation of this action with respect to the metric tensor provides the field equations

(1 + φ)Gµν = κ2Tµν +∇µ∇νφ−✷φgµν −
3

2φ
∇µφ∇νφ+

3

4φ
∇λφ∇λφgµν −

1

2
V gµν , (4)

where Tµν is the matter stress-energy tensor. The scalar field φ is governed by the second-

order evolution equation

− ✷φ+
1

2φ
∇µφ∇µφ+

1

3
φ

[

2V − (1 + φ)
dV

dφ

]

=
φκ2

3
T , (5)

which is an effective Klein-Gordon equation [32, 33].

In the weak field limit and far from the sources, the scalar field behaves as φ(r) ≈ φ0 +

(2Gφ0M/3r)e−mϕr; the effective mass is defined as m2
ϕ ≡ (2V − Vφ − φ(1 + φ)Vφφ)/3|φ=φ0

,

where φ0 is the amplitude of the background value. The metric perturbations yield

h
(2)
00 (r) =

2GeffM

r
+

V0

1 + φ0

r2

6
, h

(2)
ij (r) =

(

2γGeffM

r
− V0

1 + φ0

r2

6

)

δij , (6)

where the effective Newton constant Geff and the post-Newtonian parameter γ are defined

as

Geff ≡ G

1 + φ0

[

1− (φ0/3) e
−mϕr

]

, γ ≡ 1 + (φ0/3) e
−mϕr

1− (φ0/3) e−mϕr
. (7)

As is clear from the above expressions, the coupling of the scalar field to the local system

depends on φ0. If φ0 ≪ 1, then Geff ≈ G and γ ≈ 1 regardless of the value of m2
ϕ. This
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contrasts with the result obtained in the metric version of f(R) theories, and, as long as

φ0 is sufficiently small, allows to pass the Solar System tests, even if the scalar field is very

light.

In the modified cosmological dynamics, consider the spatially flat Friedman-Robertson-

Walker (FRW) metric ds2 = −dt2 + a2(t)dx2, where a(t) is the scale factor. Thus, the

modified Friedmann equations take the form

3H2 =
1

1 + φ

[

κ2ρ+
V

2
− 3φ̇

(

H +
φ̇

4φ

)]

, (8)

2Ḣ =
1

1 + φ

[

−κ2(ρ+ P ) +Hφ̇+
3

2

φ̇2

φ
− φ̈

]

(9)

respectively.

The scalar field equation (5) becomes

φ̈+ 3Hφ̇− φ̇2

2φ
+

φ

3
[2V − (1 + φ)Vφ] = −φκ2

3
(ρ− 3P ). (10)

As a first approach, consider a model that arises by demanding that matter and curvature

satisfy the same relation as in GR. Taking

V (φ) = V0 + V1φ
2 , (11)

the trace equation automatically implies R = −κ2T+2V0 [32, 33]. As T → 0 with the cosmic

expansion, this model naturally evolves into a de Sitter phase, which requires V0 ∼ Λ for

consistency with observations. If V1 is positive, the de Sitter regime represents the minimum

of the potential. The effective mass for local experiments, m2
ϕ = 2(V0 − 2V1φ)/3, is then

positive and small as long as φ < V0/V1. For sufficiently large V1 one can make the field

amplitude small enough to be in agreement with Solar System tests. It is interesting that

the exact de Sitter solution is compatible with dynamics of the scalar field in this model.

Relative to the galactic dynamics, a generalized virial theorem, in the hybrid metric-

Palatini gravity, was extensively analyzed [35]. More specifically, taking into account the

relativistic collisionless Boltzmann equation, it was shown that the supplementary geometric

terms in the gravitational field equations provide an effective contribution to the gravita-

tional potential energy. The total virial mass is proportional to the effective mass associated

with the new terms generated by the effective scalar field, and the baryonic mass. This shows

that the geometric origin in the generalized virial theorem may account for the well-known
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virial mass discrepancy in clusters of galaxies. In addition to this, astrophysical applications

of the model where explored, and it was shown that the model predicts that the effective

mass associated to the scalar field, and its effects, extend beyond the virial radius of the

clusters of galaxies. In the context of the galaxy cluster velocity dispersion profiles predicted

by the hybrid metric-Palatini model, the generalized virial theorem can be an efficient tool

in observationally testing the viability of this class of generalized gravity models. Thus,

hybrid metric-Palatini gravity provides an effective alternative to the dark matter paradigm

of present day cosmology and astrophysics.

In a monistic view of Physics, one would expect Nature to make somehow a choice

between the two distinct possibilities offered by metric and Palatini formalisms. We have

shown, however, that a theory consistent with observations and combining elements of these

two standards is possible. Hence gravity admits a diffuse formulation where mixed features

of both formalisms allow to successfully address large classes of phenomena.
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