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1 Introduction

1.1 Motivation and Research Questions

Boundaries between scientific disciplines are not always clear-cut: different
fields and sub-disciplines within the same field can rely on the same funda-
mental principles and discoveries; articles from two different fields can cite
the same papers from a third field; a single study may involve researchers
from different backgrounds. Such collaborations generally exist in academia
and can be traced back through data. For example, citations in scholarly
articles can be seen as a link from one article to another, and thus one field
to another the articles respectively belong to. Given enough of such data, a
graph of science can be built to illustrate the relationships among the disci-
plines. Scientometrics uses the term "maps of science" to refer to this kind
of visualisation, which shows the structure of science in a straight-forward
way.

Among the diverse approaches to map the science, Huang et al. (2019) pro-
posed a full-text analysis method based on topic modeling. The idea was
to represent disciplines with vectors, of which each entry correspond to the
KL divergence (Kullback and Leibler, 1951) from the content of a given sec-
tion to the full-text of this field’s literature. The divergence value describes
the information loss occurring when using the section as a summary of the
full-text. Similar vectors, which imply similar subfields, are placed close to
each other. The space can be visualized as a tree structure by performing
hierarchical clustering on the vectors. The resultant map (Figure 1) showed
an indicative pattern: for example the sub-clusters at the upmost node seem
to correspond to theoretical and applied disciplines respectively.

This thesis aims to expand Huang et al. (2019)’s work by exploring how
reproducible the method is in building consistent maps of science. In this
context, reproducibility refers to how good the method is in overcoming the
variation brought by a) different samples and b) the nature of the algorithm,
"sample randomness" and "algorithm randomness" using the terms from
Dolnicar and Leisch (2010). The goal is to answer the following questions:

e Research Question 1 Does the method from Huang et al. (2019)
produce consistent results?

e Research Question 2 What are the main sources of variation in the
algorithm and the data set?



e Research Question 3 Using our findings from RQ1 and RQ2, what
improvements can be made to the method?

RQ1 and RQ2 aim to evaluate the reproducibility of the method in front of
different samples, that is, how good it is at overcoming "sample randomness"
(Dolnicar and Leisch, 2010). In my case, the samples are distinct groups of
scholarly articles that are independently collected and may vary in wording
and writing styles. A robust, reproducible method should be able to see
through the variations in the sample and capture the common characteristics
of the field, thus should produce consistent science maps even from different
data sets. To test that, I first explore RQ1 by replicating Huang et al.
(2019)’s method. A group of new maps is derived from an updated, larger
set of data, whose consistency would speak about the stability of the method
in front of different samples. It would be impossible and futile to replicate the
exact study as in Huang et al. (2019), for I have no access to the annotation
they used, which makes it impossible to replicate the exact data as they
used in the study. On the other hand, the larger data set should be a more
representative sample of the population. The new data is constituted by the
Computer Science papers from arXiv !, a preprint repository, the submissions
between July 1991 and July 2019. The data set is referred to as 130K data
set from now on. Huang et al. (2019) used much fewer papers, which takes
only 24.1% of the literature on the server.

Continuing from RQ1, RQ2 seeks to track the source of variation, whether
it is caused by the different structure of the data or the stochastic properties
of the algorithm. A factor in the data that I find may affect the result is
the distribution of the articles’ categories: for each article in the data set,
there is an attribute of category to indicate the sub-field(s) it belongs to; it
is noticed that the count of papers across categories varied widely, and some
categories are more correlated than others. To test if these factors are the
source of variation, two experiments are conducted to contrast the results
from using the data with and without the balanced counts respectively. The
data set without imbalanced categories is constructed by artificially balancing
the aforementioned categories in 130K data set. The two sets of results, if
concordant, exclude the possibility that the variation is due to the different
data. Otherwise it should be due to the randomness in the algorithm.

The stochastic nature of algorithms can be caused by, for example, using
a random start point during the optimization (Dolnicar and Leisch, 2010).
Based on the findings from RQ1 and RQ2, I test the effect of some machine
learning techniques to see if they are useful in improving the reproducibility.

Thttps://arxiv.org/
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Figure 1: Map of Computer Science from Huang et al. (2019), based on
35,137 papers from arXiv submitted 2007-mid 2015.



1.2 Overview of the Work

The remainder of this work is organized as follows: Section 2 introduces the
topic of maps of science, briefly reviews the approaches that have been devel-
oped for it and specifically explains the theories used in Huang et al. (2019)’s
approach, LDA topic models (Paul and Girju, 2009). Section 3 describes the
data used to reproduce the study, arXiv Bulk Files. Section 3 shows excerpts
of the metadata and some descriptive statistics, which, as mentioned before,
reveals the factors that could impact the reproducibility. Section 4 offers the
theories behind the series of algorithms that compose the method of inter-
est. Section 5 covers specifics of the experiments to approach the research
problems, from data pre-processing to obtaining the maps. Lastly, Section
6 answers the research questions, exhibiting the maps derived in each step
and the corresponding objective metrics to evaluate them, which add up to
the conclusion in Section 7. Section 7 also reflects on limitations of this work
and suggests on possible improvements.

2 Background

In the following, I introduce the topic of maps of science and summarise the
approaches to creating the maps. Topic modeling, a crucial piece that com-
poses the method to reproduce, is specifically reviewed, for it is potentially
a factor that can affect the reproducibility of the method.

2.1 Maps of Science

As the name suggests, "maps of science" (Small, 1999) are drawings that
present science areas in the form of maps. Such a map illustrates the re-
lationships among scientific fields and puts the fields in an organized form,
which is intuitive as human mind naturally gravitates to organized items (Nil-
son and Goodson, 2017). Seeing the connections between fields can provide
insights into the state of scientific knowledge, which is "the first requirement
of good history of science" (Small, 1999; Holton, 2000). A practical use of
science maps can be, for example, for researchers to spot potential collabo-
rators from outside of their own fields (Boyack, 2009). Nowadays maps also
serve as part of the design for the guiding interface of digital libraries, which
help users to navigate through plethora of resources (Borner et al., 2012;
Borner, 2004).



The process of making science maps typically boils down to completing two
tasks, "classification and visualization" (Boyack and Klavans, 2014). Clas-
sification involves dividing the disciplines into distinct groups, which serves
as the input to the tools for visualization. Therefore a mapping approach is
distinguished from the unique combination of the methods for the two tasks,
while the major difficulty is usually on the task of classification (Boyack
and Klavans, 2014). As a result, this review focuses on the diverse methods
applied in the classification part.

As a review of the approaches to making maps of science, Suominen and
Toivanen (2016) argued that the method for classification usually falls into
one of the following categories: co-citation analysis, co-word analysis, co-
author or co-affiliations analysis, and hybrid use of these. The first attempt
at building maps of science dates back to 1974, when Griffith et al. (1974)
mapped the most cited subfields of biomedicine, physics, and chemistry based
on 1,310 references (Boyack and Klavans, 2014). In the work, articles were
viewed as nodes in a graph and connected to one another by referencing. It
is a typical case of co-citation analysis, as only the references in the data of
papers were used and the content in the full-text was ignored. Co-author or
-affiliations analysis (e.g. Peters and Van Raan (1991)) works in a similar
way, focusing on the metadata of the articles. The way to analyse the body
of the papers, i.e. the semantic content, are called co-word analysis (Callon
et al., 1991).

Besides scientific publications, there are other resources to derive represen-
tations for the scientific fields. For example, Boyack and Klavans (2014)
built a high-resolution map with "clickstream" (Boyack and Klavans, 2014)
data from scholarly webs. A clickstream represents a series of clicks a user
makes on the web portal to move from one journal to another. Combining
it with user information (e.g. users’ research interest etc.), Boyack and Kla-
vans extracted a "journal network" from the clickstream, which reflected the
collaboration among scientific domains. This new way to derive the relation-
ships uses the data from outside of the content and cannot be categorised to
any kind of analysis mentioned above.

According to Suominen and Toivanen (2016)’s definition, Huang et al. (2019)’s
approach is a co-word analysis. The approach represents the disciplines by
probabilities inferred from the content of full-text. The probabilistic model
used in the inference, topic models, is introduced next.



2.2 Topic Modeling

Topic modeling is a statistical method typically used for the task of repre-
senting documents. It is in a sense similar to probabilistic language models
(LM), for both kinds of models assign probabilities to a piece of text. The
difference is that a language model would represent a document by assign-
ing a joint probability of co-occurring n-grams (Srikanth and Srihari, 2002),
whereas a topic model takes a document as mixture of a fixed number of
topics and represent the document with the probability distribution of the
topics. Each of the topics (see the left hand side of Figure 2) is a list of words
that frequently occur together in the content.

In the context of statistical methods, a topic is a probability distribution over
the topical words. Taking the first topic in Figure 2 as an example, it seems
to express the topic of gene, and the numbers following the words indicate
the conditional probability of the words.

Likewise, a document represented by the topic model is captured by a prob-
ability distribution over topics. As in the right hand side of Figure 2, the
words in the document correspond to the topics detected in the corpus, which
assigns topic distributions to the documents. Hence topic modeling holds the
assumption that a document is composed of a fixed number of topics, and
the representations of documents are probability distributions that describe
the topic proportions. Formally, the task of topic models is to estimate the
following distributions:

e Probabilities of word (w) in topics ()

Put = p(wlt)
e Probabilities of topics () in documents (d)
00 = p(t|d)

given the collection of texts n,q as bag-of-words, that is, the count of word
w in the document d.

Representing text as bag-of-words means topic models do not mind the order
of the words in the text, and the generative process the models describe is in
fact a process to sample words from some distribution. The distribution is
determined by the assumption of the specific variant of topic models. Topic
modeling in fact refers to a type of statistical methods that assume the topical
structure in documents (Dalwadi, 2020). In other words, any algorithm that
uses topics to represent the text can be called a topic modeling method.



In both the reference work and this work, Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) is used to model and represent the text data to prepare
for generating maps of science. The formal task of LDA follows the general
task of topic models that is stated above, while it holds the assumption that
the document-topic (0;;) and topic-word (¢,) distributions follows Dirichlet
distributions.

The generative process can be summarised as a two-step procedure: first to
choose a topic for the next word to write, then to pick a word from the list of
words related to the topic. Pseudo-codes and illustrations of the generating
process are detailed in the section for methodology (Section 4).

Topics Documents Topic p ropo rtions and
assignments
gene 0.04
el Pl Seeking Life’s Bare (Genetic) Necessities
tl“ AR X e n chat far apar.” especally
—— -
life 0.02 " }\

evolve .01
organism 0.01

/

1o

brain 0.04
neuron  0.62
nerve 0.e1

\/—

data 0.02
number  0.62
computer 0.01

/

. tapping Seq
ing, Cold Spring Harbor, New York Stripping down. Compul ysis yields an esti
May 80 12 mate of the minimum modern and ancient genomes

Figure 2: Topics in a document. An illustrative image from Blei (2012).

Topic modeling is in a sense a clustering algorithm as it aims to divide the
words into similar groups and take the groups as topics. Hence "sample
randomness" and "algorithm randomness", the factors in Dolnicar and Leisch
(2010) to account for reproducibility of clustering algorithms, also applies to
the research to it.

Topic modeling is commonly used in information retrieval applications such
as search engines, for the topics are interpretable and users can utilise the
topic to sort a document on relevance (Dalwadi, 2020). Suominen and Toiva-
nen (2016) has used this approach to present a map of Finnish science and
concluded the benefits and drawbacks of the result in contrast with those
from human-reasoning.

Tang et al. (2014)’s research gives a series of caveats on the use of the model
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and the possible limiting factors. The empirical study reminds us of some
prerequisites to use topic modeling for the data: whether the data contains
a sufficient number of documents; a sufficient number of words in the doc-
uments etc. (Tang et al., 2014). The quality of fit between the data and
method is examined and reported in Section 3.1.

3 Data

Data need to be collected and examined prior to performing the analyses. In
this study, two data sets are used to reproduce the previous work, namely
the 130k and 60k data set, which are introduced in the following.

This section explains how the data sets are collected and organized, and
the findings from the exploratory analysis. Data science techniques, such as
parsing and transforming the raw data, are applied to construct the data
sets. The pre-processed data is directly usable for the analysis described in
Section 5.

3.1 Data Source: arXiv

This work uses scholarly articles in arXiv. arXiv is a popular digital repos-
itory to deposit academic publications. By 2017, arXiv has hosted 23% of
papers from the most selective conferences in Computer Science, along with
numerous pre-prints, namely papers that have not been reviewed but have
made public before the process (Sutton and Gong, 2017). Rich in both kinds
of publications, arXiv is a good resource to acquire large quantities of text
data.

A submission to arXiv is composed of metadata and the text. Authors submit
the metadata as a form, where there are fields to fill and to specify the
necessary information about the paper. In the case of Computer Science, the
required fields are title, authors, abstract and categories (arXiv staff, 2004).
The text submission contains the complete content of the paper, usually the
source files and the rendered PDF, which arXiv requires to be one of the
following formats: a) (La)TeX, b) PDF or ¢) HTML with JPEG/PNG/GIF
images (arXiv staff, 2004). The majority format is TeX, the format that is
recommended by arXiv (arXiv staff, 2004). Both parts are accessible via the
service of arXiv Bulk Data Access. The metadata is returned as an XML file
(see the excerpt in Listing 1), which has a structured format and allows to
extract useful information about the articles.

10



The full-text access returns the source files of the articles. In this work,
145,428 papers are downloaded with the metadata through the access pro-
vided by arXiv. Those are all the papers submitted to Computer Science of
arXiv between July 1991 and July 2019. Download made after this date may
change, as authors can withdraw or edit their submissions. The data set is
thus a snapshot of the database taken in July 2019.

<OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/" xmlns:xsi="
http://www.w3.org /2001 /XMLSchema—instance" xsi:schemalLocation
="http://www.openarchives.org/OAI/2.0/ _http://www.
openarchives.org/OAI/2.0/OAI-PMH. xsd ">

<responseDate>2020—03—-28T17:48:39Z</responseDate>

<request verb="GetRecord" identifier="oai:arXiv.org:0804.2273"
metadataPrefix="oai dc">http://export.arxiv.org/oai2</request
>

<GetRecord>

<record>

<header>

<identifier>oai:arXiv.org:0804.2273</identifier>

<datestamp>2008—-04—16</datestamp>

<setSpec>cs</setSpec>

</header>

<metadata>

<oai dc:dc xmlns:oai de="http://www.openarchives.org/OAI/2.0/
oai_dc/" xmlns:de="http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.org /2001 /XMLSchema—instance "
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/
oai_dc/_http://www.openarchives.org/OAl/2.0/0ai_dc.xsd">

<dc:title>

Object Re—Use & Exchange: A Resource—Centric Approach

</dc:title>

<dc:creator>Lagoze, Carl</dc:creator>

<dc:creator>Van de Sompel, Herbert</dc:creator>

<dc:creator>Nelson, Michael L.</dc:creator>

<dc:creator>Warner, Simeon</dc:creator>

<dc:creator>Sanderson, Robert</dc:creator>

<dc:creator>Johnston, Pete</dc:creator>

<dc:subject>Computer Science — Digital Libraries</dc:subject>

<dc:subject>

Computer Science — Networking and Internet Architecture

</dc:subject>

<dc:subject>C.2.3</dc:subject>

<dc:description>

The OAI Object Reuse and Exchange (OAI-ORE) framework recasts the
repository —centric notion of digital object to a bounded
aggregation of Web resources. In this manner, digital library
content is more integrated with the Web architecture , and

11



thereby more accessible to Web applications and clients. This
generalized notion of an aggregation that is independent of
repository containment conforms more closely with notions in
eScience and eScholarship, where content is distributed
across multiple services and databases. I provide a
motivation for the OAI-ORE project , review previous
interoperability efforts , describe draft ORE specifications
and report on promising results from early experimentation
that illustrate improved interoperability and reuse of
digital objects.

</dc:description>

<dc:date>2008—04—14</dc:date>

<dc:type>text</dc:type>

<dc:identifier>http://arxiv.org/abs/0804.2273</dc:identifier>

</oai_ dc:dc>

</metadata>

</record>

</GetRecord>

</OAI-PMH>

Listing 1: An example of metadata: the record of Article 0804.2273.

Not all of the papers go to the data set. As in the reference study, the
content in the documents must be converted to word tokens, such that it
can be further analysed. Documents that cannot be converted have to be
abandoned.

Two types of such unusable documents are non-TeX articles and TeX articles
that uses unsupported packages. Non-TeX articles, i.e. the submissions
in PDF or HTML, take only a small fraction of the total, hence are ignored
given the time and resource. The problem with unsupported packages is that
these papers cannot be parsed by the tools I use for conversion (see Section
3.3.1), hence are excluded from the later experiments. As a result, the final
data sets are composed only of those which are successfully converted by the
pre-processing pipeline.

3.2 Data Organization and Confounding Factors

The data is organized in the structure outlined in Figure 3. The structure
under the folders, the XML files, are the result from pre-processing the TeX
articles.

The data sets used to reproduce the study are plain text parsed from the
XML. The plain text composes two data sets, each of which covers a different
number of articles. The 130k data set includes all of the articles whose

12
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XML are successfully parsed, that is 131,703 documents. The other data set
includes papers sub-sampled the 130k data set, which are 58,940 articles and
is referred to as the 60k data set.

Each article within the data sets is presented in two forms. One is a single
document that contains the full-text of the article. The other version splits
the article by sections, each of which is a document. The two versions serve
the different stages in deriving representation vectors for the sub-field, which
is covered in Section 5.2.

The 60k data set is used to contrast the results from using the 130k data
set. Comparing the reproduced work from the 60k and the 130k data set
demonstrates the effect of confounding factors in the data. The confound-
ing factors involve the skewed distribution of categories and the correlating
labels, which will be detailed next.

Listing 1 shows the pseudo-code for the sub-sampling procedure. The pro-
cedure builds the 60k data set by gradually removing random documents
category by category, until there are no more than 3000 papers under all of
the categories. The goal of the procedure is to get a sample with a category
distribution that is as uniform as possible and is similar to the original. In
this way, the result from the 60k data set can contrast with the 130k data
set. Figure 4 illustrates the category distributions of the two data sets.

In Listing 1, documents are removed gradually to avoid down-sampling the
categories that correlate to other fields. It is the other confounding factor
that is found in the 130k data set. As an illustration, Figure 5 shows the dis-
tribution of the labels in Machine Learning. Clearly, the labels of Computer
Vision and Artificial Intelligence are often associated with Machine Learning.

Both of the data sets should be suitable to be represented by LDA topic
models according to Tang et al. (2014)’s caveats. The 131,703 and 58,940
documents with 5,313 and 4,653 respective average word counts satisfy the
definition of "many" "long" documents.

3.3 Pre-processing

This section walks through the pre-processing procedure, where two tasks,
data transformation and annotation, are completed consecutively. Being in
TeX with markup tags, the raw data is not directly usable for the method
to generate maps. To address the issue, I build a pre-processing pipeline to
perform a series of transformations to remove the noisy characters without
losing the word tokens. The clean data is then annotated, which provides all

14
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Algorithm 1 Resampling method

1: procedure SUBSAMPLE(input dataset)
2: Get category frequencies of the dataset

end while
end procedure

X <« the category of the most papers

while Category X that has more than 3000 papers do
Randomly remove 100 papers under category X
Update category frequencies of the dataset
X < the category which has the most papers

Operating Systems A

P 9 . yOther k

General Literature

Symbolic Computation

Digital Libraries -

Formal Languages and Automata Theory
Emerging Technologies

Hardware Architecture

Mathematical Software -

. Performance A

Programming Languages -

iscrete Mathemafics

Computational Geometry

o Graphics

. . Logic in Computer Science -
Computational Engineering, Finance, and Science
Software Engineering

Computational Complexity A

Multimedia

. Databases -

. Multiagent Systems +

Networking and Internet Architecture
Computer Science and Game Theory -
Computers and Society A

umerical Analysis 1

Human-Computer Interaction

L Systems and Control
Distributed, Parallel, and Cluster Computing -
Social and Information Networks A

Data Structures and Algorithms -

Sound fF————
Robotics ===
Cryptography and Security
Information Retrieval f========
Information Theory ===
Computation and Language
Neural and Evolutionary Computation
o Artificial Intelligence
Computer Vision and Pattern Recognition -
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Figure 5: Category frequencies of the papers in Machine Learning. Here

shows the most associated labels with Machine Learning, i.e.

Computer

Vision and Pattern Recognition and Artificial Intelligence. The fact that
some fields tend to correlate with some other fields can be a confounding

factor in the data.
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the information needed to reproduce the method.

3.3.1 Data Transformation
From TeX to XML

The raw data from arXiv are (La)TeX source files. In these files, markup
tags, maths, figures and tables mix with semantic content, which makes the
data noisy and affect the performance of the topic models (Fan and Stewart,
2015).

Avoiding the noise requires removing the markup tags; however, this would
also take the information about the structure of the articles. The informa-
tion should be kept, for I need to extract individual sections for the later
analysis. Therefore, the first step in pre-processing is to transform TeX to
an intermediate format, a structured data format such as XML or JSON,
such that information about the boundaries between sections can be kept
before I remove the markup tags.

The tool I use for this task is LaTeXML (Miller, 2019), which transforms TeX
into XML, a working format that allows to keep the structure information.
LaTeXML 0.8.4 handles 90.6% of the 145,428 articles, in which the failed
cases are empty files and are left out from the data set. The failures are
caused by either the non-TeX format (i.e. PDF or HTML) of the source
file or packages which are not supported by LaTeXML 0.8.4. Successful
conversions yields readable XML, which means the files can be parsed by
using the ElementTree? module.

From XML to "Clean" XML

The structure of the resultant XML is somehow still complicated. Markup
tags, tables, figures and mathematics and other non-semantic content are
just wrapped by the XML elements, not removed. An algorithm to extract
content from the XML would require a lot of filtering, which is not handy.
To smooth the extraction, I wrote another script to simplify the structure of
the XML.

The algorithm used in the script represents XML as a tree and forces it
to a pre-determined structure that is shallower and removes the formatting
commands. The structure is illustrated in Figure 3.

2https://docs.python.org/3.5 /library /xml.etree.elementtree.html
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Under the root, the direct children are the following nodes: <title>, <ab-
stract>, <authors>, <section>, <chapter>, <footnote>. The <section>
and <chapter> nodes have children of <para>, the paragraph division.
Apart from <section> and <chapter>, all the nodes have text directly
wrapped within the node tags, which is parsed as the .text attribute of
the nodes. Extracting a section means parsing the <section> or the <chap-
ter> node, and extracting full-text means parsing all the nodes into element
objects and join all the .text properties.

This step processes all the XML produced from the last step. No data item
is lost.

From XML to Tokens

Another script (see the pseudo-code in Algorithm 2) is written to extract the
word tokens from the XMLs. The format of the output documents is one-
paragraph-per-line, plain text. As in the reference literature, punctuation,
maths and numbers are removed; all the word tokens are lower-cased. This
format makes the data directly usable for the later analysis.

As mentioned in Section 3.2, the extraction makes two versions for each of
the articles to serve for model learning and inference respectively. The full-
text version of the article is composed of the string in the .text attribute
from all the nodes in the XML. The section version of the articles contains
the string in .text attribute of the <section> or <chapter> nodes.

A separate text file records the filenames and the corresponding section head-
ings. In both versions of articles, the abstract is extracted from the metadata
instead of from the text submission. It is to ensure to extract the abstract
for every article, in case the algorithm does not recognise it from the XML.

3.3.2 Annotating Sections

According to the method to reproduce, sections extracted from the articles
are required to be categorised into a set of canonical classes. It is for comput-
ing the representation vectors in the later analysis, as each dimension of the
vector corresponds to the average information loss from the article content
to the content of the individual sections that are categorised into a canonical
class. To know which canonical classes the sections account for, the sections
must be categorised.

As in the reference study, the classification is done manually with a three-
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Algorithm 2 XML File Parsing Algorithm

7
8:
9:
10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:

: Load dictionary headingZsection
: Get path()
: for each filename in compilation of files do
Use ET.parse(path + filename) to establish tree
Use tree.getroot() to establish root
Create a master dictionary for the article; keys: "fulltext", "abstract",
"introduction", "background", "related work", "methods", "results",
"discussion", "conclusion", "backmatter"; values: ""
Use root.findall(’.//*’) to find all elements
for each element in elements do
Remove namespaces in the tag
end for
Use root.findall(’./*’) to find all direct nodes of root
for each node in direct nodes do
Use element.get(’title’,”) to get the heading
Use "".join(element.itertext()) to collect text
Match and join all the tokens with regular expression r"*|a-zA-
7]+ (7:]- ]la-zA-Z] )"
Lower the case
Assign the result to text
Append text to "fulltext" in master dictionary
if heading is found in dictionary heading2section then
Append text to corresponding canonical section
end if
Write out fulltext to the fulltext folder; filename: document id
140
for each key in master dictionary do
if key is not "backmatter" nor "fulltext" then

Write out section to section folder; pathname: key; file-
name: arXiv identifier + " " + ¢

Record tuple (filename, canonical section) to the log

11+ 1

end if
end for
end for

end for
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annotator setup. The annotators, two Computer Science academics and I,
label the sections independently. The classification for each of the sections
is decided by a majority vote.

In practice, annotators label the data through a web application (Figure
6). Each annotator opens the application locally, annotates the data, and
submits the text file produced by the application as the result.

The task is done by choosing the options that can describe the heading of
the given section. A section can belong to one, more than one, or none of the
categories. The canonical classes include abstract, introduction, background,
related work, methods, results, discussion, conclusion and back matter. The
rubric (see Figure 6) lists typical headings that occur in academic publica-
tions and is shown under the options as a reference.

As stated before, the final category of the headings are decided based on a
majority vote. If 2 or 3 annotators categorise the heading the same way, the
categories are the labels for the heading. In the end, 1013 unique headings are
labeled, which accounts for 46.62% of the all 22746 sections. Those which are
uncategorised occur only once in the corpus, hence are excluded from further
analysis. The agreement among annotators are almost perfect, as the Fleiss’
kappa, as a metric for inter-rater agreement that has a scale of 0-1, reaches
a very high 0.90.

4 Methods

The original study (Huang et al., 2019) used a series of machine learning
algorithms to generate a map of computer science. As a reproducibility
study, this work repeats the workflow, gets a new set of maps for the same
fields and compares the original and the new results.

This section explains the theories behind the series of algorithms and the
metrics used in the comparison.

4.1 Latent Dirichlet Allocation (LDA)

Topic modeling, the statistical method used in the approach to reproduce,
defines a process to generate documents. It is referred to as Latent Dirichlet
Allocation (LDA). In the process, each document (6) is considered as a dis-
tribution over a set of topics, and each topic (¢) a distribution over words.
Instead of taking on a fixed value, these parameters have Dirichlet distri-
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Which section categories does the following heading belong to?

"results and discussion"

abstract introduction background

related work methods results
m conclusion back matter

Ruberic:

Proofs are "methods"

Experiments are "results", but experimental setup or description are "methods"
Evaluations are "results"

Future work is a "conclusion"

Examples tend to be too vague to label

Anything about models, tend to be "methods”

Notation, definition, preliminaries are "background"

Motivation is both "introduction" and "background"

Analysis tends to be "results"

Proposals or anything proposed tend to be "methods"

Absolute: 28 / 278200

Figure 6: An example annotator screen
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Figure 7: Graphical model of LDA from Blei et al. (2003). Circles represent
the random variables denoted by the adjacent letter . The plates represent
repeated generating process. The process indicated by the outer plate is
repeated for M documents in the corpus, and the inner plate for each word
in a document. The letters denoting random variables are consistent with
the description in Section 4.1.

butions, which is the assumption of LDA as a Bayesian method. Heinrich
(2005) summarises the generative process by the following steps:

e Define topics ¢ that account for the corpus, each of which is a probabil-
ity distribution sampled from a Dirichlet distribution with parameter

B

e Decide on the topic composition for the document, which should be
sampled from a Dirichlet distribution (64 ~ Dir(«));

e Decide on each word (w,,) by

— Sampling a topic z from Multinomial(6);

— Sampling a word wy, from Multinomial(¢.,,);

Blei et al. (2003) illustrate the generative process with a graphical model
(Figure 7). Heinrich (2005) summarises the process with pseudo-code; see
Algorithm 3. The output of the process would be a corpus, or a collection
of documents. Formally, these are a series of posterior probabilities P(w,|5).
The learning process of the model would be a different one where parameters
for the needed distributions are estimated.
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Algorithm 3 The Generating Process of LDA (Heinrich, 2005)

1: procedure (input: Number of topics (K), number of documents (D),
number of words in each document (N), parameter for document-topic
distribution («), parameter for topic-word distribution (3))
for k in [1, K] do > Initialise topics
o ~ Dir(f)
end for
for d in [1, D] do > Generate Documents
04 ~ Dir(«)
for n in [1, N] do > Sample words
Zan ~ Mult(0)
Wy ~ Mult(¢., )
end for
11: end for
12: end procedure

»—
e

In practice, learning a LDA model requires estimating two parameters: «,
which is the parameter of the Dirichlet distribution for the document-topic
probabilities, and (3, the parameter of the Dirichlet distribution for the topic-
word probabilities. In this work, the learning process is implemented by Gen-
sim (Rehifek and Sojka, 2010). It fits LDA models with online variational
Bayes (VB), which is one of the approximate algorithms to estimate the pos-
terior distribution. The inference algorithm is different from Gibbs sampling,
which is used in Huang et al. (2019) by the software MALLET (McCallum,
2002). Given that the inference, i.e. computing the exact posterior proba-
bilities for the parameters, is intractable (Blei et al., 2003), the approximate
algorithm may make a difference in the actual learning for topic models. I
choose Gensim because it enables to train the LDA models with asymmetric
prior Dirichlet, which option is not provided by MALLET. The difference in
the inferring algorithm can be a factor in the stochastic nature of algorithm.

Section 5 details the settings which decide how the parameters are learned.

4.2 Kullback-Leibler Divergence

In this work, the representation vector for a discipline is composed of the
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) values be-
tween the topic distribution of each section and that of the full-text. KL
divergence is a metric that compares two distributions and expresses the dif-
ference with a scalar. In our case, it is used to compare the topic distribution

23



of the full-text of a field with the topic distribution of the section from the
field. Formally, it is expressed as

Dy (PIQ) = 3 P(3) log, %

where () and P are two probability distributions, i the covariates of the
distributions. In our case, P would be the topic composition of full-text
documents and () of the section of interest.

A greater value in KL divergence indicates higher information loss. KL di-
vergence is not symmetric, which means the KL divergence from Q to P is
different from the KL divergence from P to Q. In my case, the topic distri-
bution of a given section is plugged in to the place of ) and the distribution
of full-text to P, not the other way around. The divergence describes the
representativeness of the given part for the full-texts. The base of logarithm
is set to 2, such that the divergence value can be interpreted in bits.

As an example, in the case of plugging in the topic distribution of abstracts
and full-text in Operational Systems, the yielded divergence values answer
the following question: For the scholarly articles in Operational Systems,
how many bits of information is lost when the abstracts is used to represent
the full-text?

4.3 Hierarchical Clustering

Hierarchical clustering is the analysis performed on the representation vectors
in Huang et al. (2019) to create a tree typology as the map of science, which
is also performed in this work.

The mechanism of hierarchical clustering is to first group pairs of similar
data items, then take each of the groups as a unit and group the groups
of pairs. This procedure repeats until all the groups are fused to one, i.e.
there is no pair to fuse. The algorithm is called agglomerative hierarchical
clustering among other variations (Nielsen, 2016). The shape of the final
cluster depends on the settings that are specified by the user. Once the
settings are determined, the result would be deterministic, which means the
shape of the cluster is always the same on the same data.

Concrete considerations in using hierarchical clustering involve a) defining a
dissimilarity measure for inter-observations and b) a dissimilarity measure for
clusters. It is the part where there is no absolutely right or wrong answers;
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decisions are made based on characteristics of data and the expectation for
the end result (James et al., 2013). Here, I follow the settings used in Huang
et al. (2019) as a reproducibility study.

Observation 1
= Observation 2
= Observation 3

10
1

Variable Index

Figure 8: Graph from James et al. (2013) for Illustrative data with 20 features
for each item. Observation 1 and 3 have a small Euclidean distance and a
large correlation-based distance, while 1 and 2 have a small correlation-based
distance and relatively larger Euclidean distance. For these observations, the
choice of distance measure would greatly affect the result.

As mentioned above, dissimilarity measures are decided based on the kind of
observations that are expected to go into the same subgroup. Alternatives
for this parameter in practice are limited to two options: Euclidean distance
or correlation-based distance. The difference between the measures is that
Euclidean distance tends to classify vectors with similar magnitudes, whereas
correlation-based measures prefer to group together vectors that takes a sim-
ilar shape in profiles.

James et al. (2013) illustrated the point with a straight-forward example
(Figure 8). In clusterings that use Euclidean distance, observation 1 and
3 would be grouped together due to the closer Euclidean distance by each
index, whereas correlation-based measures prefer to combine 1 and 2 in spite
of the greater distance. On the other hand, measures for each pair of clusters,
or the type of linkage as the term, affects the fusions that happen at greater
heights. James et al. (2013) also summarised the alternatives of linkage
methods: Centroid linkage can bring "inversions", where clusters are merged
at a lower height than the involved clusters thus is difficult to visualise; Single
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linkage often leads to skewed hierarchy; Complete linkage tends to generate
balanced hierarchies; Average linkage is less conservative than complete, but
the resultant cluster would be more balanced than the one from single linkage
under the same setting.

In Huang et al. (2019), Fuclidean distance is used as the dissimilarity measure
between two data items and complete as the type of linkage. The choice
indicates the magnitude of the KL divergences in the vectors weigh more
than the correlations between the sections, and the groups of scholarly fields
should be joined only when every field in the pair of groups is close enough
to each other.

4.4 Tree Metrics

The conclusions in this work are based on quantitative comparisons between
the resultant trees.

Two metrics are used for the comparison. One is a dissimilarity metric,
Robinson-Foulds (RF) distance (Robinson and Foulds, 1981). The other is
branch support (Bremer, 1994), a similarity measure. The metrics combined
gives a complete picture about the consistency between the results.

Figure 9: Example trees to illustrate how to calculate the RF distances
between a pair of trees. The tree on the left is referred to as N; and the
one on the right N,. Letters denote leaves and numbers denote bi-partitions.
The structure of N, is in fact the same with N; except Node B and Node C
exchanges the places.
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4.4.1 Robinson-Foulds Distance

Robinson-Foulds (RF) distance (Robinson and Foulds, 1981) is a metric of a
single scalar that measures the dissimilarity between two trees. The intuition
is to count the number of bi-partitions that are unique in one of the trees.
Figure 9 shows two illustrative trees, which are referred to as N; and N,
respectively. A non-terminal node (e.g. the nodes denoted by numbers in Ny
and N3) splits the leaves (i.e. terminal nodes, denoted by letters in Figure
9) into two subsets, hence correspond to a bipartition. A bipartition is a set,
or more specifically, a set of two sets, in which the elements are leaves in the
tree. Table 1 shows the elements of the sets that define the bipartitions in
Nl and Ng.

1 {C}, {D} 1 {B}, {D}
2 {B}, {C, D} 2 {C}, {B,D}

3 {A}, {B,{C,D}} [3 {A}, {C {B,D}}}

Table 1: The sets of leaves and the corresponding dividing bipartitions in
the trees shown in Figure 9.

Let ¢(7") denote the number of bipartitions in 7" and e(73, T5) the number of
identical bipartitions in 7} and 7. Formally, the normalised version of RF
distance is

i(Th) + i(Ty) — 2e(T1, T)
i(Ty) +i(T3)

RF(Ty,Ts) =

In the case of T7 and 75, the normalised RF distance between them would
be 1, for there is no identical bipartitions between the trees. The normalised
version counts the percentage of the unshared clusters, the range of it would
be from 0 to 1.

It is worth noting that RF' distance is sensitive to the difference in the group-
ings. High RF distance can occur between similar trees. As can be seen, T5 is
the result of swapping two random leaf nodes of 77, but the RF distance be-
tween 77 and 75 rises to 1 from RF(T7,T)) = 0. It would be a more complete
analysis if the reproduced structure can also be reflected. For this purpose,
I also use a similarity measure, branch support, to compare the results.
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Figure 10: An illustrative graph for the branch support metric. The values
next to the nodes indicate the branch support value of the structure the node
represents.

4.4.2 Branch Support

Here I lend branch support, a concept from phylogenetics, to quantify the
similarity between the trees.

In short, branch support counts the times that a branch appears in a group
of trees. In biological researches, it is used for parsimony analysis, where
multiple phylogenetic trees are constructed and compared by labelling how
many times the branches appear in the reconstructed trees (Aluru, 2005).
For example, "bootstrap percentage" is such a support metric, which is used
to indicate the repeatability of branches in the trees constructed through
bootstrapping the branches in a given set of trees. In practice, the metric
is usually presented as numbers by the nodes on a graph that shows a tree
topology, as it shows how many times the structure defined by the nodes is
found in the reconstructed tree.

Figure 10 illustrates the metric using the same example trees as in the il-
lustration for RF distances. The only structure that is not shared is the set
{C,D}; otherwise, the clusters within clusters are considered as a set instead
of a subset and thus do not affect the branch support of the parent nodes.
Taking Node 2 as an example, the branch support of it is 2, as the structure
{B,C,D} is found 2 times in the set of the trees. The metric captures the
similarity of the sub-structures in the trees, which enable us to examine the
results in a qualitative way.

This metric serves our purpose to spot reproduced sub-trees in the resultant
maps, which qualitatively shows the extent to which the method is robust.
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5 Workflow

This section explains how I derive a new group of maps of science and eval-
uate the consistency as the assessment to the reproducibility of the method.
Analyses are conducted step by step, in the same order of how the subsections
in this part are arranged.

5.1 Tuning and Training LDA Models

The method in Huang et al. (2019) maps a scientific field through vectorised
documents. The first stage is to derive vectors to represent the fields, which
requires training topic models. Before training, a list of settings must be
known to yield working models. Searching for the best setting is the process
of tuning the models, and involves multiple test runs. In this section, I focus
on how the models are tuned, and the training of models is merely to put
the found best setting to use.

I use the Gensim Python library’s ldamodel implementation (Rehﬁfek and
Sojka, 2010) to train topic models on the 130K and 60K data set respec-
tively. The implementation uses online variational Bayes algorithm, which
approximates the posterior probabilities of documents by passing "chunks" of
documents through iterations, making the convergence faster for large data
sets (Hoffman et al., 2010). To create models that can best represent the
data, I:

e Pre-process the data;
e Search the optimal number of topics for the specific data set;

e Train LDA models.

The first step, a pre-processing procedure loads the documents into the for-
mat Gensim requires. Each document is taken as a single string and is
tokenized through splitting by the occurrences of the white-spaces. Tokens
are then filtered based on the frequency: Words that occur in less than 20
documents or more than 50% of the documents are removed.

For LDA models, the number of topics is a hyper-parameter that needs to be
determined before training. The best setting can be found through test runs
where a grid of candidate values are experimented. In the test runs for models
that best represent the 130k data set, I create 16 different models by varying
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Figure 11: Topic coherence scores of the models from the test runs on the
two data sets. Up: the 60k data set, bottom: the 130k data set.

the parameter from 10 to 160 in the increment of 10, which produces a series
of topic coherence scores as the evaluation (Figure 11). The optimal setting
should be the one that yields the highest coherence. The same searching
procedure is repeated on the 60k data set.

Table 2 lists the settings I found best for training the final models as the
representation for the 130k data set. The parameters that are not specified
by the table follow the library default. Training models on the 60k data set
uses the same settings, except the num_topics is set to 70. Figure 11 shows
the coherence scores under different num_of_topic settings.

There are no rigorous studies on how to choose parameters for LDA models
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Parameter Description Value

chunksize  Number of documents to be used in each training chunk 2000

alpha A—prior% bel7ief fo,r each topic’s probab.ility;. atto’
The string ’auto’ learns an asymmetric prior from the corpus

ota A-priori belief on word probability; o’
The string ’auto’ learns the asymmetric prior from the data

iterations Maximum number of iterations through the corpus 50
when inferring the topic distribution

num_topics Number of topics 30

passes Number of passes through the corpus 10

dtype Data-type to use during calculations inside model np.float64

Table 2: Settings for the hyperparameters used in training the LDA models
for the 130K data set; parameters not mentioned in this table are set to
library default. Settings for the 60k data set are all the same, except that
num_topics should be 70.

(Wallach et al., 2009). Except num_topics, our settings are generally de-
signed in reference to the library default and Hoffman et al. (2010), where
LDA was used to model a similar sized document set, a corpus of 3.3M ar-
ticles from Wikipedia. The mini-batch size (chunksize) follows the library
default, 2000, as Hoffman et al. (2010) finds that any size from 256 to 16384
would be proper. The Dirichlet priors, alpha and eta, are set to be asym-
metric because symmetric priors is a special case of the asymmetric (Wallach
et al., 2009). Such a setting enables the model to learn the priors from the
data. The maximum iterations and the number of passes are tuned to 10
times of the value in the default to ensure convergence. For large corpora in
my case, 64-bit data-type has to be used to avoid overflow.

In the end, 2 sets of 100 models are created to represent the fields that are
reflected by the articles in the two data sets. Each set of the models are
replicates yielded from repeatedly running the respective optimal setting 100
times on the used data set.

5.2 Obtaining Representation Vectors
A trained model can tell the topic compositions of full-text documents it saw

in the training phase. To build representation vectors for scientific fields,
the distributions of the distinct sections is still needed to compute the KL
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divergence. The section composition is obtained through inference, that is,
the predicted distribution from the model given the section text.

Taking the full-text and section compositions as the input, Algorithm 4 fills
an 8x38 table to show the representation vectors as a matrix, in which the
rows correspond to the disciplines and columns the sections.

Algorithm 4 Computing Representation Vectors

1: procedure (input fulltext composition, section composition)
2 for each field in 38 fields do
3 p__i < topic distributions for all full-texts in this field
4: for each section in 8 canonical sections do
5 q_ 1 < topic distributions for the section in this field
6 Align p_7 and ¢_i by document ids
7: Get KL divergences for documents through element-wise mul-
tiplication between p_i and logy(p_1)-loga(q 1)
Get KL divergence for (field, section) by averaging the KL
divergences obtained from the last step by the number of documents
9: end for
10: end for
11: end procedure

1%

5.3 Hierarchical Clustering Setup

The map of science is formed through visualising the representation vectors.
As in Huang et al. (2019), hierarchical clustering is used as the visualising
method.

I used seaborn (Waskom et al., 2014) Python package to perform the clus-
tering. Each set of vectors, which consisted of 38 subjects with 8 sections
for each subject, corresponds to one replication of the model training. The
clustering algorithm divides the represented subjects into clusters and clus-
ters of clusters, where the hierarchy is presented in the form of a tree. The
result is illustrated by a heatmap and a tree.

The heatmap does not show the relationship between the fields; Rather, it
indicates the relative magnitude of the KL divergences that compose the
vectors. The algorithmic-specific variables follow the setting in Huang et al.
(2019), that is, Euclidean distance with complete linkage.
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5.4 Evaluating Consistency

Answering the research questions requires comparing the resultant maps.
The comparison is demonstrated through the pairwise distances of the trees
in the maps, or more specifically, the distribution of the distances between
the results from multiple runs of the method. To understand the sample at
hand, descriptive statistics for the distribution are informative enough.

To answer Question (1), which asks how reproducible the work in Huang
et al. (2019) is, a distance distribution is obtained through one-versus-all
comparison. The result from Huang et al. (2019) is compared with the two
sets of trees from this work, which are induced by modeling the 130k data set
and the 60k data set respectively. Since there are only 100 distances for each
data set in this work, a histogram is enough to illustrate the distribution. If
the method is reproducible, the distribution should show that the distances
are mostly low, that is, it should cluster at 0 without spreading wildly.

The distances are to show how the method failed to reproduce. On the other
hand, graphs showing the branch support measurement should discover the
successfully reproduced local structures which the distance cannot reflect.

Question (2) is answered in a similar way to Question (1), that is by showing
the distribution of RF distances between the trees. However, this time the
tree pairs are from within the data sets rather than from across the two data
sets.

Given two trees T} and 75 from the same data set, i.e. either the 130k data set
or the 60k data set, a distribution of the relative RF distance d is computed.
Using the 100 trees from a single data set, 1 get (120) = 4950 dependent
replications, which are the distances between all possible pairs of trees:

di = RF(1, 1), ..., d1oo = RF (T, Tho0), --., dagso = REF'(Th, Tr00)

Note the computation does not yield 100/2 = 50 distances, which would
be the result of sampling pairs of trees without replacement. Although the
trees in the data set can be regarded as independent random variables in
the function space, where independence is respect to the runs of modeling
(Dolnicar and Leisch, 2010), the distance values are not independent and no
statistical inference is conducted. The goal here is to understand the models
at hand.

For Question (3), which asks if averaging the models reduces the variance
in the result, one-versus-one comparison is conducted using the models from
within the 130k data set. Before the comparison, pairs of ensemble trees
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are created by fusing N of the 100 models from the data set. Then the RF
distances between the ensemble pairs are compared.

How the distances change as N increases indicates if the ensemble method
is effective in stablising the result of topic models. More specifically, the
procedure involves the following:

e Sample N of the 100 trees without replacement;
e Average the section vectors; renormalise them and recreate the tree,

e Repeat to get another ensemble tree;

Calculate distance between 2 trees;

Repeat the steps above 1000 times,

where N increases from 1 to 50. Finally, a heatmap is used to present the
frequencies of distances between ensemble topic models, and a density plot
to show the mean distance.

The experiments introduced above can be summarised to calculating RF
distances and branch support values for tree pairs or trees from some kind
of sampling.

A necessary step in this procedure is to translate the data structure into
Newick form, which is the only format allowed for the tooling I use to com-
pute RF distances (Arvestad, 2010), and branch support (BioPython pack-

age by Cock et al. (2009)). A simple Python script is developed to make the
transformation; see the source code in Appendix A.

6 Results and Discussion

This section answers the research questions by illustrating and discussing the
corresponding results. In addition, I present a map of computer science from
the most stable model in the study along with some patterns I find from the
map.

6.1 Reproducing the Published Results (RQ1)

The tree produced by Huang et al. (2019) is not reproducible on my expanded
data set.
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Figure 12 shows the result of the one-versus-all comparison between the tree
in Huang et al. (2019) and its replicates built in the present work. Each
distribution in the histogram is composed of 100 observations, which are
distance values computed by comparing Huang et al. (2019)’s work with the
100 trees from the 130K data set and the 60k data set respectively. The
phylogram shows the branch support values for the branches in Huang et al.
(2019), which is obtained by comparing it to the trees for the 130k data set.
All the nodes with no values specified are of 0 support.

Both the measurements indicate the model by Huang et al. is unreproducible.
First consider histogram in Figure 12. It is clear that all the distance values
between Huang et al. (2019)’s tree and the newly built ones, regardless of
the data set from which they are inferred, are greater than 0.94. Both of
the distributions peak at the highest distance value, 1.00, which comprises
about 50% of the cases, indicating a lot of the reproduced works do not share
any structure with the original. This aligns with the result from the branch
support measurement, where most of the branches have 0 support, meaning
no identical structures are found in the trees for the 130k data set.

The inconsistency mostly occurs in the early splits, namely the lowest branch
nodes. As a consequence, the ancestor nodes of the early splits have 0 sup-
port. The only branch that is somehow reproduced is (ET, CC) (Emerging
Technology, Computational Complexity), for which the branch support is 29,
meaning that 29/100 trees featured the same branch. Considering most of
the structure is of 0 support, I conclude the tree produced by Huang et al.
(2019) is not reproduced.

The fact that the two distributions are similar proves the bias in the data do
not have an obvious effect on the stability of the method. Compared to the
130k data set, the texts in 60k data set has a more balanced distribution of
categories and fewer number of papers. Given that the performance of the
mapping method almost ignores the difference in the data, it could be that
the algorithm causes the inconsistent result.

6.2 Consistency of the New Results (RQ2)

The results are inconsistent even when they are induced from the same data.
Figure 13 shows the result in the two measurements from the all-versus-all
comparison between the trees built in this work, which are induced from
models trained on the same data set. The distribution of RF distances is
rather scattered, hence kernel density estimates instead of a histogram is
used to illustrate the distribution. Only one of the results from the branch
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Figure 12: Top: Histogram of RF distances between Huang et al. (2019)’s
work and the trees derived from the 130k and 60k data set respectively. The
bins for the two data sets overlap, hence the third color. Bottom: Branch
support between Huang et al. (2019)’s work and trees from 130k data set,
subfields specified using the acronyms in arXiv. See the corresponding full
names in Table 3.
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Figure 13: Top: kernel density estimates of all pairs from the 100 trees for the
60k data set and the 130k data set, respectively. Bottom: An example of the
branch support result for a tree derived from the 130k data set. Acronyms
correspond to categories in arXiv; see the corresponding full names in Table
3.



Acronym Fullname Acronym Fullname

Al Artificial Intelligence IR Information Retrieval

CcC Computational Complexity 1T Information Theory

CG Computational Geometry LG Machine Learning

CE Computational Engineering, Finance, and Science | LO Logic in Computer Science

CL Computation and Language MS Mathematical Software

CV Computer Vision and Pattern Recognition MA Multiagent Systems

CY Computers and Society MM Multimedia

CR Cryptography and Security NI Networking and Internet Architecture
DB Databases NE Neural and Evolutionary Computation
DS Data Structures and Algorithms NA Numerical Analysis

DL Digital Libraries oS Operating Systems

DM Discrete Mathematics OH Other

DC Distributed, Parallel, and Cluster Computing PF Performance

ET Emerging Technologies PL Programming Languages

FL Formal Languages and Automata Theory RO Robotics

GT Computer Science and Game Theory ST Social and Information Networks
GL General Literature SE Software Engineering

GR Graphics SD Sound

AR Hardware Architecture SC Symbolic Computation

HC Human-Computer Interaction SY Systems and Control

Table 3: Acronyms denoting the subject categories in arXiv.

support computation is shown here, for the 200 graphs are all similar and
hence are omitted for brevity. As a result, the phylogram in Figure 13 is
a tree for the 130k data set with branch support values obtained from the
comparison to all the other trees for the same data set. The rest of the results
in branch support also shows a similar pattern: most of the branches barely
repeat, hence are again omitted.

The density estimates (Figure 13) can be interpreted as a smoothed version
of a histogram. Each curve depicts the distribution of 4950 distances between
4950 pairs of trees, that is, all the possible combinations of the 100 trees for
a data set. The curves almost overlap, both concentrating at a single point,
around 0.8 of RF distance. The high distance values indicate that using the
same sample is not helpful in obtaining stable results; topic models are too
stochastic to produce a stable mapping.

On the other hand, the result from the branch support computation reveals
some local structures that are successfully reproduced. In general, most
bipartitions occur only once or twice in the other trees. Branch nodes that
are direct ancestor of the leaves are more frequent: the branch support values
range from 4 to 95, mostly greater than 10. However, the numbers decrease
rapidly the closer they get to the root. It demonstrates the local structure is
more conserved than the global structure. This pattern is shared among all
the branch support results. It also explains why the RF distances are high
but never reach 1.0. Several bipartitions are assured to be found in both of
the trees, but those are too few compared to all the clusters in the whole
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tree.

The above demonstrates that the stochastic nature of the topic models is
problematic despite using the optimal number of topics based on the coher-
ence score.

6.3 Effect of Ensembling (RQ3)

The last experiment shows the effectiveness of ensembling. The effect is
tested by adding the number of base models used in the ensemble to see how
the differences between trees would change. The heatmap in Figure 14 shows
the relationship between the Robinson-Foulds distance, where there are 1000

observations for each size. The blue line plots the average distances for each
N.

Both the curve and the heatmap present a decreasing trend in RF distance.
The trend almost asymptotes before it will intersect the horizontal axis,
indicating ensembling more trees may not have much additional impact on
consistency. The curve is monotonic, which means adding more trees within
the range can always improve the performance. Overall, the dark coloured
part of the heatmap is rather concentrated.

There is a clear "belt" of frequent distances. The performance of single mod-
els is presented at N=1. The distances are centered at 0.8, which indicates
single models are mostly unstable. The belt loses its shape between 5 and
30 models, which shows the range when the ensemble performance varies
greatly. Ensemble models whose size is greater than 30 are more stable,
where more than 80% of the comparisons gives a distance around 0.1. Given
that Robinson-Foulds distance is a strict metric, this is a major improvement
for the mapping method.

6.4 Domain Structure in the Reconstructed Tree

Figure 15 shows the "best" tree this work has produced for Computer Science.
Vectors used in the clustering are generated from the ensemble model that
averages the prediction of the 100 topic models for the 130k data set. It is
"best" because it utilises all the data and base models available in this work,
which, according to the inferences I draw from the last two experiments, is
the best approach to create a consistent model.

The topmost split in Figure 15 presents a similar pattern as in Huang et al.
(2019), which distinguishes the applied and the theoretical disciplines. The
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applied group (the upper sub-tree) generally have lower KL divergence in
every section except the introduction, whereas the background, abstract and
conclusion are less distinctive in the sense that the corresponding leaves are
in slightly lighter colours and are closer to the sections in the theoretical
disciplines. Overall, all the subjects write introductions that well summarise
the full-text, which is indicated by the low KL divergences to the distribution
of the full-text. The least representative section for the applied disciplines is
background, and it is methods for the theoretical group.

Some groupings are surprising. For example, the direct node that contains
Systems and Control connects it with seemingly unrelated fields, i.e. Infor-
mation Theory, Game Theory and Numerical Analysis. The lighter colour for
the methods section indicates that the methods deviates from the full-text
to a greater extent than the other sections.

Some writing styles can be sensed from articles in Systems and Control. Some
(n=30) articles in this area tend to require long proofs as the method chapter,
which breaks the flow of the paper. The language in methods generally
concerns mathematical derivations or algorithms to explain the controller
of the system. Typical sections in this field include "problem formulation",
"simulation results" and "proofs". Such structure is also found in papers
from Information Theory, and less surprisingly, Game Theory.

Among the others, the nodes for Hardware Architecture and Operating Sys-
tems also seem unnatural, but this could be due to fewer articles. The ob-
servation aligns with wider confidence intervals, or equivalently, the higher
variances in Figure 16, which shows mean KL divergence between topic distri-
butions from abstract and full-text document. The tree is overall reasonable,
while the unnatural groupings can be explained by the biases stated above.

7 Conclusion and Future Work

In this work, I explored the reproducibility of the science mapping method
in Huang et al. (2019) from the perspective of sample randomness and algo-
rithm randomness. Given that the exact data were not accessible, I did not
repeat the scheme exactly as in the reference study, but instead used a much
larger and more representative set of data to obtain new results. The new
results were not concordant with the previous result. The set of maps (trees)
produced from the newly obtained models showed inconsistent structures,
despite some local branches within the trees were conserved. The original
method in Huang et al. (2019) is found to be not robust and therefore needs
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improving.

The major difficulty in reproducing the method in Huang et al. (2019) lies
in the lack of details for the algorithmic settings. As the findings reveal,
the variation in the result is mostly caused by the stochastic nature of LDA
models. The settings used to train the models in this work are decided based
on topic coherence scores. It is unclear whether Huang et al. (2019) used
the same evaluation metric for tuning the number of topics, and the same is
for the other settings such as the prior belief of the Dirichlet distributions.
It seems the settings significantly impact the performance of topic models.
As a consequence, the decisions made during tuning the settings affect how
much variation is caused by randomness of the algorithm. In general, the
mapping method is applicable. However, the reproducibility of the method
can be affected by the specifics in the algorithm settings.

The research questions are answered as follows.
RQ1 Does the method from Huang et al. (2019) produce consistent results?

A1 Both consistency and inconsistency are found in the results. The lower-
level structures are consistent, while the overall structures are not. Without
ensembling, the method is not stable.

RQ2 What are the main sources of variation in the algorithm and the data
set?

A2 In the algorithm: the stochastic nature of topic modeling.

In the data set: the imbalanced distribution of category papers, despite the
impact it has on the overall consistency of models is slight.

RQ3 What improvements can be made to the method?

A3 Use the ensemble technique. It is effective to train multiple models and
then average the resultant vectors to get a final result. It is recommended
to train at least 40 models for the base, as in my case the effect of improve-
ment reached the highest when that many models were used. However, the
effect of more models can be limited after a critical value, since the effect of
improvement dropped rapidly after adding enough models.

The method of interest can still be improved in many ways. A future work
can improve the method by focusing on better use of topic models, for exam-
ple if other techniques in machine learning would improve the consistency of
the results. There are few studies on choosing the best presenting structures
for the representation vectors; a investigation of visualising methods would
be useful. As scientific maps are usually made for human readers to under-
stand domains, it would be beneficial to have a systematic way to check the
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alignment with expert knowledge.
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A Source code

A python script to extract Newick format trees from .csv files.

"mhGet Newick trees from wvector csv files

Usage :
python3 getnewick.py [path_to csv] [dst_path]"""

import sys

import seaborn as sns

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from scipy.cluster import hierarchy
from os.path import join

def getDf(fpath):
"""Read csv files for wectors into pd.dataframe

Format for csv:

name, Abstract , Introduction , Background , Related  Work
Methods , Results , Discussion , Conclusion

Computational Complexity
,1.50,0.93,1.24,1.39,1.30,0.83,1.30,1.47

Logic in Computer Science
,1.45,1.00,1.26,1.25,1.41,1.26,1.21,1.39

nimn
df = pd.read csv(fpath)
df = df.set index( ’name’)
df = df.sort_index ()
return df

def getNewick (node, newick, leaf names):

if node.is leaf():
return "%s%s" % (leaf names|node.id]|, newick)
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else:

if len(newick) > 0:
newick = ")%s" % newick

else:
newick = ");"

newick = getNewick (node.get left (), newick,
leaf names)

newick = getNewick (node.get right(), ", %s" % (
newick), leaf names)

newick = "(%s" % (newick)

return newick

def getCluster (df):
sns.set ()
sns.set (font scale=0.6)

g = sns.clustermap (df, metric="euclidean’, method="’
complete’, linewidths=.25, col cluster=True,
square=True, cmap="mako", robust=True)

return g

def getTree(g):
Z = g.dendrogram row.linkage
tree = hierarchy.to tree(Z,False)
leaveslist = hierarchy.leaves list(Z)
return tree, leaveslist

def getLeafnames(df, leaveslist):
leaf names = {leafid:df.index[leafid| for leafid in
leaveslist}
return leaf names

def saveNewicktree(src, dst):
df = getDf(src)
g = getCluster (df)
tree, 11 = getTree(g)
leaf names = getLeafnames(df,11)
newick = getNewick (tree, "", leaf names)
with open(dst,’w’) as f:
f.write (newick)
plt.close(’all’)
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def computeNewick (df):
g = getCluster (df)
tree, 11 = getTree(g)
leaf names getLeafnames (df, 11)

newick = getNewick (tree, "", leaf names)
return newick

if name — " main ":
sre sys.argv|1]
dst = sys.argv|2]
saveNewicktree (src, dst)
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