
Gradual Deployment in Practice:
Experiences from an Industrial Case Study

Eveliina Pakarinen
Cinia, Ltd.

Helsinki, Finland
eveliina.pakarinen@cinia.fi

Tommi Harakkamäki
Cinia, Ltd.

Helsinki, Finland
tommi.harakkamaki@cinia.fi

Tommi Mikkonen
University of Helsinki

Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract—Short and rapid software development cycles have
encouraged deploying software more frequently than ever before.
At the same time, much of the features of the software being
designed rely on services that cannot be set up for testing
configurations, but are constantly live and in production. This
has inspired a development approach where new features are
gradually deployed, so that they can be tested live, but with
limited influence if something goes wrong with the deployment.
Putting such an approach to practice requires tools for managing
the different software versions as well as their deployment and
operations. In this paper, we present a case study on gradual
deployment of new versions to a web computing system, executed
at a Finnish software company. Furthermore, we also present a
proof-of-concept implementation of a tool, which enabled gradual
deployment to a cluster-based runtime environment. With this
tool it was possible to deploy a new version of a software to a
specific group of users or to rollback a deployment automatically
in the company cluster environment.

Index Terms—Continuous delivery, gradual deployment, test
configurations

I. INTRODUCTION

Continuous integration, continuous delivery, and continuous
deployment are examples of activities in a roadmap for con-
tinuous software engineering [2]. Especially terms continuous
delivery and continuous deployment are used as synonyms
in scientific literature even if there can be found differences
in their definitions [7]. According to one definition, in con-
tinuous deployment software that has passed quality checks
is deployed automatically into production with a deployment
pipeline while in continuous delivery the deployment is initi-
ated manually [3].

The automation of the deployment of software enables the
possibility to deploy an experimental version of the software
into production so that feedback can be collected from a subset
of the online users [8]. For example while using services such
as Facebook, the end users will receive new software several
times a day [1]. The data collected from the usage of an
experimental version of the software can be used to guide
the development activities and this practice can be referenced
as continuous experimentation [8].

One of the often mentioned benefits of continuous deploy-
ment is that software can be deployed faster and more often to
customers than while using traditional software development
process [7]. In this scenario it is also possible to deploy bugs
faster into production. One goal of continuous experimentation

can be to find technical problems in production by utilizing
techniques like canary releases [3] and gradual rollouts [3] to
do experimentation [8]. These techniques can be used for test-
ing in production to perform multi-phase live testing strategies
for which a formal model with a prototype implementation has
been proposed [9].

In this paper we define, that in gradual deployment when
a new version of a software is deployed into production the
new version is first made visible only to a subset of the users
of the software. After that the new version of the software is
made gradually visible to more and more users. In this paper
the implementation technique for this gradual deployment is
to use proxies for runtime traffic routing and to use a separate
application to control the configurations of the proxies as
proposed by [9]. Based on that proposition, a prototype tool
was implemented in the case company to be used as part of
the deployment pipeline.

In this paper, we present the prototype implementation of
the tool for gradual deployment that was developed in the case
company. This tool allowed deploying an application gradually
in a cluster-based runtime environment and the functionality of
the tool was verified by executing multiple test case scenarios
of gradual deployment. The study has also provided the
empirical results for a Master’s Thesis [6], based on which
this paper has been written. The work was conducted in a
business-to-business company to study strategies for gradual
deployment in practice at the implementation level.

II. CASE STUDY

To study how strategies for gradual deployment can be
applied in practice in business-to-business context, a case study
was conducted. The research question of the case study was
How the gradual deployment of a web application can be
implemented in practice at the case company? During the
case study a prototype of a tool for gradual deployment of
web applications was developed. With the tool, it was possible
to deploy a web application in a cluster-based environment.
Multiple test cases were used to validate in practice that the
tool satisfied most of the requirements set for it.

A. Case Company

The case company Cinia Ltd.1 is a Finnish IT service
company that offers software consultancy, design and develop-
ment services for energy sector, healthcare, logistics, security
and manufacturing. In its agile development process, the case
company utilizes continuous software engineering practices
like continuous integration. Many of the customers of the
case company have a need to release features frequently and
without downtime. There is also a need to make releases
gradually for example by introducing a feature first to a limited
group of users before releasing it to everyone. Furthermore,
there has to be an option to rollback a release if users
report problems or issues are detected automatically during
or after the release. Based on these needs from the company
perspective the goal of the case study was to develop a tool
for gradual deployment to be used in the release process.

B. Requirements and Environment

One use case for the tool was to be able to deploy into a
cluster-based runtime environment an experimental version of
a software from which feedback could be collected. Addition-
ally there was a need to be able to gradually increase the load
of the traffic directed to the new software version. Based on
the needs of the case company eight requirements for gradual
deployment were identified. These requirements were revised
in practice with test cases to validate that the tool satisfied the
requirements set for it. The requirements, their descriptions
and test cases used to validate them are presented in Table I.

To verify the requirements an application under test was
needed. The application under test was a simple, stateless
back-end web application. For testing purposes four versions
of the application under test were developed. The versions are
introduced in Table II.

The environment for gradual deployment in this case study
was an on-premise Kubernetes2 cluster. During the case study
an Istio3 service mesh was installed into the cluster to enable
runtime traffic routing in the cluster environment.

C. Implementation techniques

To be able to do gradual deployment in the company envi-
ronment a tool for gradual deployment was implemented. This
tool, called AphoDeploy, was used in combination with Istio
service mesh to implement automated gradual deployment in
the Kubernetes cluster. AphoDeploy is an internal software
designed for the specific environment at the case company, so
the source code of AphoDeploy is not freely available.

The high-level architecture of the setup in the case study
is presented in Fig. 1. The implementation technique for the
gradual deployment was to use Istio to do runtime traffic
routing in the cluster and to use AphoDeploy to change
the configurations of the Istio service mesh. By using this
technique it was possible to initiate the configuration changes
automatically and precisely at specific points of time.

1https://www.cinia.fi/ (Accessed 30.05.2020).
2https://kubernetes.io/ (Accessed 11.02.2020).
3https://istio.io/ (Accessed 11.02.2020).

Fig. 1. High-level architecture of the case study setup.

When AphoDeploy changed the configurations of the ser-
vice mesh Istio Pilot4 delivered the configuration changes to
the Envoy sidecar proxies5. The sidecar proxies used this infor-
mation to do runtime traffic routing without any modifications
to the source code of the application under test [4]. In an Istio
service mesh the traffic routing decisions can be based on for
example the headers of the HTTP requests or the percentage
of the traffic load [5]. Both of these techniques were used in
this case study.

The strategy to use proxies for runtime traffic routing and to
use a separate application to control the configurations of the
proxies is proposed by [9]. The combination of AphoDeploy
and Istio service mesh is an implementation of this strategy.
The best practices for traffic management6 in an Istio service
mesh were also considered in AphoDeploy in the implemen-
tation order of the changes to Kubernetes configurations.

The Istio configurations used in this case study were pre-
defined for each of the test cases so that AphoDeploy could
directly use the configurations during the execution of the test
cases. Each version of the application under test had an own
Kubernetes deployment configuration. Additionally for each
version there was a deployment configuration with manually
injected Envoy sidecar proxy7. The architecture of the appli-
cation under test after the installation and configuration of the
Istio service mesh is presented in Fig. 2.

AphoDeploy was designed to be compatible with the com-

4https://istio.io/docs/ops/deployment/architecture/ (Accessed 23.02.2020).
5https://www.envoyproxy.io/ (Accessed 11.02.2020).
6https://istio.io/docs/ops/best-practices/traffic-management/ (Accessed

11.02.2020).
7https://istio.io/docs/setup/additional-setup/sidecar-injection/ (Accessed

22.02.2020).

TABLE I
REQUIREMENTS FOR THE GRADUAL DEPLOYMENT

Test case Requirement Description

1
Manual
code
analysis

No changes to source code
The selected method for gradual deployment should not affect the source code of
the software. There should be no dependency between the method of the gradual
deployment and the source code of the software.

2 A Parallel execution of different
software versions

It should be possible to execute multiple versions of the same software simultane-
ously. The goal is to enable the testing of the new software version while allowing
the use of the old software version at the same time.

3 B The length of downtime The goal is to have zero downtime while doing gradual deployment.

4 C Version selection based on user
specific information

The goal is to deploy gradually to a specific group of users from whom feedback
can be collected. Users are selected by user specific information like the user’s
organization.

5 D, E The length of the gradual de-
ployment

The possibility to change the length of the gradual deployment should be enabled.
The length should be configurable in the scale from minutes to days.

6 F, G Version selection based on the
amount of traffic

During gradual deployment the version of the software the user is redirected to
should be selected based on the amount of traffic. The goal is to enable the feature
to gradually increase the traffic load directed to the new software version.

7 B Cleaning up the old software
version

The old software version should not consume the resources of the system after the
gradual deployment has been completed.

8 H, I Rollback during gradual de-
ployment

Gradual deployment should be automatically rolled back if any problems are
detected during the deployment. The automatic rollback is used to minimize the
problems caused to the users of the software while gradually deploying software.

TABLE II
THE VERSIONS OF THE APPLICATION UNDER TEST

Version Description
1.7.0 Returns an aphorism successfully.
1.8.0 Returns a different aphorism successfully.

1.9.0
Returns HTTP failure if the header ”Aphorism-
Organization” contains characters ”apho-deploy”.
Otherwise returns an aphorism successfully.

1.9.1
Returns HTTP failure if the first character of
the header ”Aphorism-Organization” equals ”A”.
Otherwise returns an aphorism successfully.

Fig. 2. The Kubernetes architecture of the application under test.

pany cluster environment which is constantly changing and
under constant development. The configurations and the imple-
mentation of AphoDeploy were adapted to the company cluster
environment at a specific time during fall in year 2019. After
that the backbone infrastructure and Kubernetes distribution
of the on-premise cluster has been changed and exactly the
same implementation of AphoDeploy can no longer be used
in the new environment.

Consequently, the implementation of AphoDeploy is en-
vironment specific, and every time the cluster environment
changes the implementation of the gradual deployment tool
must be adapted to the new environment. Therefore, AphoDe-
ploy is considered only as a proof-of-concept implementation
of a gradual deployment tool in the case company environ-
ment.

D. Results

In total, nine test cases were used to test if AphoDeploy met
the requirements for gradual deployment. Each test case was
executed three times in order to be able to create an average
test case run from which the results could be interpreted.

With these test cases it was possible to simulate different
scenarios in which AphoDeploy could be used to do gradual
deployment. During the execution of the test cases Apache
JMeter8 was used to simulate HTTP traffic load to the applica-
tion under test. The test case scenarios and the state transitions
during the test cases can be seen from the Fig. 3. The figure
also shows the results for the execution of the scenarios.

Eight of the nine test cases had a successful result when
using AphoDeploy to do gradual deployment for the applica-
tion under test. The test cases verified that the implementation
for changing the runtime traffic routing configurations in

8http://jmeter.apache.org/ (Accessed 12.02.2020).

Fig. 3. Test case scenarios and the results for the test cases.

specific order and after specific time intervals was successful.
Furthermore, the test cases verified that the traffic routing
could be done using user specific information like the user’s
organization. User specific information could also be suc-
cessfully combined with the percentage based runtime traffic
routing.

In one scenario AphoDeploy could also perform a rollback
when it detected an error during the gradual deployment of the
version 1.9.0 of the application under test. In another test case
scenario the version 1.9.1 of the application under test returned
a failure which AphoDeploy could not detect directly. Because
of that AphoDeploy did not do an automatic rollback of this
version which led to the failure of the test case.

III. RELATED WORK

In this case study we implemented a proof-of-concept tool,
AphoDeploy, which could be used to do gradual deployment
in a cluster-based runtime environment. The implementation
techniques used in AphoDeploy followed the techniques pro-
posed by [9]. The main technique proposed in the related
literature was to use proxies to do runtime traffic routing and
a separate application to configure and orchestrate the proxies
[9]. Similar technique was also used in this case study.

The use of AphoDeploy as a tool for gradual deployment
had also certain limitations which were covered in related liter-

ature. One limitation was that the performance impact of using
the combination of the Istio service mesh and AphoDeploy in
gradual deployment was not considered in this case study. In
related literature the performance impact of their prototype
implementation was measured to be small [9].

The second limitation was that in this case study AphoDe-
ploy was used to gradually deploy only one application
into the cluster-based runtime environment. Related literature
covered the possibility to execute over a hundred live testing
strategies simultaneously [9]. However, the functionality of
AphoDeploy could be enhanced in the future to enable the
gradual deployment of multiple applications at the same time.

One of the key aspects of the related literature was using
metrics of the environment as a part of the decision making
process during the the execution of the live testing strategies
[9]. The use of metrics could enable the possibility to detect
anomalies during the execution of a live testing strategy and
the information which metrics provide could also enable the
option to do an automatic rollback if an anomaly is detected
[9]. We however did not study these options in this case study.

Additionally, in this case study one failing test case scenario
was that AphoDeploy could not identify that the application
under test returned a failure for a specific group of users.
One possible fix for this failing test case could be to make
AphoDeploy aware of the metrics in the cluster environ-

ment. By evaluating the metrics while making decisions about
rollback or continuation of the gradual deployment the tool
could perform automatic rollbacks when needed or decide
to continue the deployment. Finally, AphoDeploy was only
tested with a stateless web application, which means that
AphoDeploy may not be suitable for the gradual deployment
of stateful web applications.

IV. DISCUSSION

During the case study we searched an answer to the question
how the gradual deployment of a web application can be
implemented in practice at the case company. The answer
to the research question is that at the case company the
implementation must be environment specific and that it can
be a combination of existing technologies to create to a custom
implementation adapted to the company environment.

We defined eight requirements and based on these re-
quirements implemented a prototype tool, AphoDeploy, which
could perform gradual deployment in a cluster-based runtime
environment. The functionality of the tool was verified using
test cases to execute various scenarios of gradual deployment.
The results of the test cases indicated that the tool could per-
form gradual deployment based on for example user specific
information like the user’s organization. Although not every
part of the gradual deployment was successfully automated
by the tool, the concept of the tool was found to be useful.
Moreover, a number of tools that were identified proved to
be a good starting point for creating a test environment for
company cluster environment.

On the downside, the tool was designed to be compatible
with the company cluster environment, which is constantly
changing and under development. Therefore, when the cluster
environment was revisited after the case study, the exact same
implementation of the tool could no longer be used in the
new environment. By using the requirements and test cases
defined during the case study, a new implementation of a
gradual deployment tool could be prepared and validated to
be used in the revisited environment.

Furthermore, using the implementation details of the pro-
totype tool as guideline it would be possible to adapt the
implementation to fit into another environment, and using the
test case scenarios it is possible to validate whether the new
implementation still fulfills the requirements. The downside of
this is that when the cluster would be revisited the next time,
chances are that the tool would have to be revisited yet again.
This indicates that such tools go hand in hand with the cluster,
and making them truly general is not easy.

Threats to Validity. To begin with, the work presents a
single case study, so there is a clear threat to validity that the
results cannot be generalized. To mitigate this threat, the case
study was implemented as a part of company daily operations
and not as a research artefact. Furthermore, the fact that the
change in the company cluster environment invalidated the
prototype implementation it confirms our assumptions on the
important role of system specific features.

A further threat to validity is that the first author of this
paper has implemented both AphoDeploy and the test cases
that validate its functionality. This could mean that the test
cases may not be versatile enough and may not contain enough
scenarios to find deficiencies in AphoDeploy. This threat has
been mitigated by taking in at least one negative test case into
the case study.

V. CONCLUSIONS

In this paper, we have presented a company case study for
a proof-of-concept implementation of a method for gradual
deployment in a cluster-based runtime environment. The im-
plementation was designed to be compatible with the company
cluster environment in fall 2019 and followed a model defined
in [9].

Today, the backbone infrastructure has been revisited, and
exactly the same implementation of the tool can no longer
be used in the current environment without adapting the im-
plementation to be compatible with the revisited environment.
However, the same principles behind the implementation of
the tool are also applicable in the new environment. This
means that by using these principles a new version of the tool
could be implemented in the future to be able to do gradual
deployment in the revisited cluster environment.

ACKNOWLEDGEMENTS

This work has been supported by the Academy of Finland,
project 317657. In addition, the authors wish to thank the case
company Cinia Ltd. for supporting this work.

REFERENCES

[1] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. Development and
deployment at facebook. IEEE Internet Computing, 17(4):8–17, 2013.

[2] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering:
A roadmap and agenda. Journal of Systems and Software, 123:176–189,
2017.

[3] Jez Humble and David Farley. Continuous Delivery: Reliable Soft-
ware Releases through Build, Test, and Deployment Automation (Adobe
Reader). Pearson Education, 2010.

[4] Istio Authors. Architecture. [Online], Mar 2020. Accessed 15.03.2020.
URL: https://istio.io/docs/ops/deployment/architecture.

[5] Istio Authors. Virtual service. [Online], Mar 2020. Accessed 15.03.2020.
URL: https://istio.io/docs/reference/config/networking/virtual-service/.

[6] Eveliina Pakarinen. The gradual deployment of a new version of a web
application. Master’s thesis, University of Helsinki, 2020. In Finnish. Ac-
cessed 26.05.2020. URL: http://urn.fi/URN:NBN:fi:hulib-202003191585.

[7] Pilar Rodrı́guez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna
Teppola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja,
June M. Verner, and Markku Oivo. Continuous deployment of software
intensive products and services: A systematic mapping study. Journal
of Systems and Software, 123:263 – 291, 2017. URL: http://www.
sciencedirect.com/science/article/pii/S0164121215002812.

[8] Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zdun, and Har-
ald C. Gall. We’re doing it live: A multi-method empirical study
on continuous experimentation. Information and Software Technology,
99:41 – 57, 2018. URL: http://www.sciencedirect.com/science/article/pii/
S0950584917302136.

[9] Gerald Schermann, Dominik Schöni, Philipp Leitner, and Harald C Gall.
Bifrost: Supporting continuous deployment with automated enactment
of multi-phase live testing strategies. In Proceedings of the 17th
International Middleware Conference, pages 1–14, 2016.

