
CompliancePal: A Tool for Supporting Practical
Agile and Regulatory-Compliant Development of

Medical Software
Vlad Stirbu

CompliancePal
Tampere, Finland

vlad.stirbu@compliancepal.eu

Tommi Mikkonen
University of Helsinki

Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract—As digital transformation affects more and more
industries, the increased role of software and the skills required to
develop software trigger a ripple effect. Entire industries, where
regulations and government standards play an important role
(e.g. health care, avionics, etc.), have used long development cycles
that relied on detailed up-front planning before advancing to
any detailed decision. In contrast to this mindset, agile software
development has proven to deliver results that satisfy customers
needs faster than traditional waterfall methodologies. The lack
of detailed upfront planning and fast delivery cycles have led to
situations where the use of agile became synonymous with lack
of documentation and poor quality, and hence the perception
that the approach is not suitable for regulated systems. In this
experience paper we describe the implementation of a service that
integrates medical device software compliance specific activities
such as architectural design and limited risk management into
the daily agile practices of a software development team.

I. INTRODUCTION

Digital transformation is a phenomenon where digital tech-
nology gets integrated in all areas of a business and the society.
An obvious result of the transformation is that a company
engaged in this path becomes a software business, which
fundamentally changes how the company operates and delivers
value to its customers. The transformation is typically accom-
panied by a cultural change that requires the organization to
challenge status quo through continuous experimentation and
getting familiar with failure.

Digital transformation poses a significant challenge for
businesses operating in heavy regulated environments such as
health care. The agility enabled by modern software develop-
ment methodologies, open source software, and the increasing
use of cloud infrastructure capabilities is at an apparent conflict
with the practices that are used to implement the regulatory
frameworks, which have been optimized for the old world
that relied on heavy up-front planning, followed by rigorous
execution of these plans.

This paper presents CompliancePal, a service that provides
templates and workflows that enables an agile team to perform,
in an automatic fashion, a subset of the compliance activities
required by the regulatory framework specific for medical de-
vice software. Although the idea of using modern automation
practices, commonly known as DevOps, has been explored

in academia [1], we approach the problem domain from a
practical software engineering perspective in an industrial
setting. The paper is a continuation of our previous work [2],
where the tool idea was presented but only at a principal level.

The paper is structured as follows. Section II introduces
modern software developments and practices that enable high
velocity delivery of features. Section III provides an overview
of regulatory landscape relevant for medical device software
development. Section V describes the service implementation,
followed by a discussion of the results in Section VI. Con-
cluding remarks are presented in Section VII.

II. MODERN SOFTWARE DEVELOPMENT PRACTICES

Agile software development [3] is a lightweight approach
for developing software, where the requirements and the so-
lution evolve through collaboration between the development
team and the beneficiary of the solution. The development
team is typically cross-functional and self-organizing. The
development team starts with an initial plan and design that
evolves through a rapid cycle of releases and continuous
improvement. The approach promotes flexible response to
change over strictly following plans, and it has been sometimes
misinterpreted as a series of ad-hoc decisions rather than a
disciplined engineering methodology. In this paper, we build
on the disciplined interpretation of agile software development
and overlook the different deviations such as ScrumBut [4] and
other (mis-)practices that are often adopted.

Scrum [5] is one of the most commonly used agile frame-
work for software development. The methodology defines two
special roles within the development team: the product owner
that represents the voice of the stakeholders and customers,
and the scrum master that facilitates the scrum and is respon-
sible with removing impediments that can hamper the ability
of the team to deliver on their goals. The development team
works in small time-boxed increments called sprints and takes
work items from an ordered list of product requirements called
product backlog. Each sprint is bounded by a planning and a
review session. During the sprint, the team holds daily scrum
sessions to evaluate progress and identify impediments.



DevOps [6] combines practices and tools with cultural
philosophies that increases the ability of an organization to
deliver applications at high velocity. The DevOps practices
and culture are aligned with and complement agile software
development practices by integrating, testing and deploying
applications at a rapid pace. For example, monitoring in real-
time the behavior of the applications in production and acting
if not performing within the desired quality parameters, creates
a fast feedback loop.

The capabilities of modern infrastructures exposed via ap-
plication programming interfaces (APIs) are leveraged into a
set of tools that allow a high level of automation through-
out the life-cycle of the application. The use of software
development practices for handling the infrastructure, such as
version control, allows the changes to be handled in a standard
and controlled way, resulting in repeatable and consistent
deployments that can be easily rolled back.

Agile software development and DevOps create an environ-
ment in which experimentation can thrive [7]. By having the
mundane tasks of testing, integrating, packaging and deploying
automated, the teams can focus their attention on bringing
new features to the customers faster. Anyone in the team can
perform these operations as needed without required additional
expertise.

III. MEDICAL DEVICE SOFTWARE REGULATIONS

The regulations covering medical device software fall into
two broad categories: information handling and safety. The
regulations related to information handling are Health In-
surance Portability and Accountability Act (HIPAA) [10] in
Unites States and General Data Protection Regulation (GDPR)
[8] in the European Union. HIPAA is a medical sector regula-
tion that defines what constitutes protected health information,
its use and disclosure when several health providers are
involved in the care process. GDPR is a generic data privacy
framework that defines how personal information is collected
and used. To comply with HIPAA and GDPR regulatory
frameworks, a service provider that implements part of the
functionality using software must establish procedures for
handling the relevant information. These procedures typically
get materialized into technical requirements, which have to be
implemented in software, or standard operating procedures,
which have to be followed by the staff that interacts with
the protected information. The regulations extend to business
associates that process or handle protected information, which
have to comply themselves.

The safety of medical devices or services is regulated in
Unites States by the Food and Drug Administration (FDA)
and Medical Device Regulation (MDR) in European Union.
International Organization for Standardization (ISO) and In-
ternational Electrotechnical Commission (IEC) have developed
harmonized standards that contain guidance on the processes
and requirements that must be followed when developing
software so that relevant regulatory authorities accept medical
products in the respective markets.

For example, ISO 13485 [12] specifies the requirements
for a quality management system that allows an organization
to demonstrate its ability to provide medical devices and
related services that consistently meet customer and applicable
regulatory requirements. Further, ISO 14971 [13] specifies
the processes that a manufacturer must follow to identify
the hazards associated with medical devices, to estimate and
evaluate the associated risks, to control these risks, and to
monitor the effectiveness of these controls. Lastly, the life
cycle requirements that must be followed by an organization
where software is embedded or is an integral part of the
final medical device are defined in IEC 62304 [11]. The
requirements are envisioned as a set of processes, activities and
tasks that establish a common framework for medical device
software life cycle processes.

IV. MEDICAL DEVICE SOFTWARE AGILE CHALLENGES

Although the processes, activities, and tasks defined in the
IEC 62304 are specific in what they have to accomplish,
the standard is not opinionated on how they are actually
implemented. This situation leaves a high degree of freedom
for affected organizations to select the software development
methodologies best suited for their needs, such as waterfall,
agile, or hybrid. However, the implementation is relatively
straightforward for traditional waterfall software development,
as the upfront detailed planning can incorporate all the steps
required. For practical cases, this has often been misinter-
preted as a requirement regarding the development approach,
although that is not the intention.

Showing compliance to the standard gets complicated when
an implementation relies on agile and DevOps methodologies.
There, the objective is on delivering customer features at
high velocity while maintaining the organizational ability to
react to changes at reduced costs. As the plans are detailed
and revised regularly based on the learnings gathered during
the implementation and releases to the customers, there is
an increased possibility for rifts to appear between what is
documented as part of the compliance activities and the actual
realities of the software implementation.

A. Definition of Done vs. Agile Manifesto

The definition of done1 is a list of criteria, agreed by the
agile team, that must be met before a product increment is
considered complete. Often, the documentation is formally
included in this list.

However, if the team has a low awareness of the constraints
of the regulated domain and the relevant regulatory legislation
and standards – or, as often happens, is influenced by a too
strict interpretation of the agile manifesto clause of working
software over comprehensive documentation – a situation
may emerge, where the created documentation lacks criti-
cal information required to create regulatory documentation.
However, even if the domain experience cannot be easily
compensated, the shortcomings can be mitigated by having

1https://www.agilealliance.org/glossary/definition-of-done



clear guidelines and scheduling explicitly time for producing
the documentation, instead of hoping the developers are doing
it because they are professionals.

B. Documentation Sprint

The documentation sprint (depicted in Figure. 1), is a
relatively common practice in agile teams developing medical
device software. In addition to standard Scrum, there is a
special sprint allocated to creating the documentation required
by regulations before a major product release or a milestone.
To meet this objective, the team is extended with specialist
compliance officers that have deep knowledge of relevant
regulatory legislation and standards. As a result, the team’s
daily activities are dominated by the compliance officers that
collect the information required to create the necessary reports.

The compliance officers organize review meetings or con-
duct interviews with the team members involved in software
development, if the documentation produced during the regular
sprints is not satisfactory. The accuracy of the collected
information during this phase depends on factors varying
from the availability of the original persons that designed or
implemented a particular software items or simply how well
they remember past decisions. This routine is repeated till the
required documentation is completed, which affects the team
cadence. To make matter worst, the compliance officers are
staffed as contractors only during the duration of this sprint,
which further increases the friction within the team.

V. COMPLIANCEPAL: MEDICAL DEVICE SOFTWARE
DEVELOPMENT GOES AGILE

When developing medical device software, the agile team
activities and practices must be aligned with the software
lifecycle processes defined in IEC 62304.

A. Service Integration Model

The environment, depicted in Figure 2, mirrors the daily
routine of an agile development team practicing the scrum
methodology. Among the agile team we emphasize three
relevant roles: the software developer, the architect and the
compliance officer. The code produced by the team is managed
using a Git repository hosted on GitHub2. The compliance
checks are performed by our service that extends the standard
GitHub workflows using the Apps3 integration methodology.
Possible compliance problems are brought to the attention of
the team via dedicated chat room hosted in Slack4.

The architect, which can also be a one of the software de-
velopers, documents the software components that implement
the product requirements, defines their hierarchy, and how they
interact with each other using a lean software architecture
model. The resulting documentation is managed in a repository
in GitHub, in a similar fashion as the rest of the code produced
by the team.

2https://github.com
3https://developer.github.com/apps/
4https://slack.com

The software developer workflow consists of developing
new functionality, test it locally, then commit changes to the
local git repository. Following the team practices to merge
completed new functionality to the common code base, the
developer pushes the changes to the remote GitHub shared
repository. GitHub notifies its service integrations upon receiv-
ing new changes. Our service receives the change notification
and performs code analysis to identify new SOUP components
in the new change set. The service updates the progress of the
check using the GitHub Checks5, an API that allows third
parties to report rich statuses, or annotate lines of code with
detailed information, rather than a mere binary pass/fail status.
Further information can be obtained by following a custom
web link to our service. The developer is able to follow the
progress as well as the rich status using the familiar GitHub
user interface.

The compliance officers are able to react to the detected
problems that require their attention via the team communi-
cation channel. Following the link, the officer can handle the
problem in the service UI. This way, the compliance officer
does not have to be familiar with how to use the GitHub
service.

B. Lean Software Architecture

One of the key premises of agile development is that work-
ing software is more important than complete documentation.
During the transition to agile ways of working, documentation
and especially documentation done using Unified Modeling
Language (UML) tools were the first victims when observed
from grass-root level. The high level of expertise required to
use the modeling tools, the level of details, and the effort
to maintain the models in sync with the implementation was
perceived as an impediment. In a relatively short interval,
UML was abandoned in favour of adding UML-like diagrams
into wikis. The trade-off, which was intended to increase
the team speed, lead often to a similar level of obsolete
documentation. More, as these diagrams are produced from
wiki friendly domain specific languages like PlantUML6, or by
visual drawing tools like Gliffy7, they lack the affordances of-
fered by the models created by the UML tooling. Documenting
software architecture using diagrams, which cannot be used
programatically downstream, further isolates the architecture
work from the rest of the team. In a DevOps dominated world,
the manually maintained wikis have not chance other than to
fail behind and rot.

The approach followed by CompliancePal is very practical
in nature. We aim to achieve two objectives: provide value to
the team from allocating resources for architectural work, and
establish a baseline for performing the compliance activities
and tasks required by IEC 62304.

We decided to adopt the C4 model [14] as the starting
point of our solution rather than creating a bespoke solution.
The model has a track record of being used successfully

5https://developer.github.com/v3/checks/
6https://plantuml.com
7https://www.gliffy.com



2 - 4
weeks

regular
sprints

documentation
sprint 

sprint 
backlog fixed 

configuration product
product 
backlog 

Figure 1. Documentation sprint

git
commit

Developer

webhook
notification

view commit
status

GitHub commit
status

problems

view
problems

CompliancePal
(GitHub App)

Compliance Officer

Compliance
problems
(Slack)

git
commit

Architect

Figure 2. Service model and compliance workflows

by agile teams, and has a growing ecosystem of tools build
around it. It can be used for the upfront design of a software
system and for retrospective documentation, knowledge shar-
ing and learning of how an existing software system works,
making it both an effective design tool within the team, and
communication tool outside the team. Its hierarchical set of
software diagrams for context, containers, components and
code provides different levels of abstraction, each targeted
at different audiences. The context diagram emphasizes the
software system and its interactions with the outer world, those
being users or other software systems. The container diagram
describes how the software is packaged into runnable artifacts.
The component diagrams highlights the parts used to assemble
individual runnable artifacts. Finally, the code diagram shows
a component’s implementation details.

An architecture described using the C4 model complies with
a simple meta-model containing elements and relationships.
Besides the four software elements, the meta-model includes
a person element that corresponds to users. The relationships
capture interactions between the elements.

The C4 model is well aligned and supports the software
architecture activities specified by IEC 62304. The standard
requires that the device manufacturer decomposes the software
into systems, items, and units. Instead of creating an entirely
new decomposition, we augmented the C4 meta-model8 with
a corresponding decomposition property, with possible values
described in Table I. The service renders the original C4 dia-
grams and the specific ones required for producing IEC 62304
documentation from the same architecture model. An example,

8https://c4model.com/#metamodel

Table I
C4 META-MODEL EXTENSIONS

C4 element type decomposition Observations

Software System System

Container Item
Unit Not decomposed further if SOUP

Component Item
Unit Not decomposed further if SOUP

Code Unit

illustrated in Figure 3, is the software decomposition diagram
that captures the hierarchical structure of the CompliancePal
as a software system.

The software architecture model is serialized and stored in
a git repository hosted in GitHub with the rest of the software
assets. The arrangement allows the architecture to be versioned
using normal git facilities, using the same life cycle procedures
as for any code. The user is able to update the software
architecture by pushing new versions via git or by editing
model with the browser based user interface.

C. Continuous SOUP Analysis

The C4 hierarchical model of the software architecture
conveys, via the location property of an element, information
about the components developed by the team (e.g. internal) and
the components developed by a 3rd party (e.g. external). The
second category, known as software of unknown provenance9

(SOUP), is a major source of concern as it was not developed

9https://en.wikipedia.org/wiki/Software of unknown pedigree



Figure 3. Software decomposition diagram according to IEC 62304

Figure 4. Developer view of SOUP check in GitHub UI

following the medical device software life cycle required by
IEC 62304. A manufacturer using SOUP components must
perform specific risk management activities that ensure that
faults in respective components do not have an adverse effects.
Automatically tracking the SOUP components ensures that
all such components are identified and handled accordingly,
reducing the cognitive load on the software developers and
compliance officers.

CompliancePal performs automatic SOUP management for
JavaScript assets, such as NodeJS10 applications or browser
applications developed with React11 or Angular12. Once a
code repository is linked with a software item defined in the
software architecture, the CompliancePal tool listens to code
updates delivered by GitHub via push events. For each such
event, the service fetches the repository tarball and performs
static code analysis to identify changes in SOUP components

10https://nodejs.org/en/
11https://reactjs.org
12https://angular.io

Figure 5. Compliance officer view of SOUP check in CompliancePal UI

used. The result of the analysis contains three sections: the
full list of SOUP components used, the subset that has been
handled and the subset that requires additional information.
The SOUP check report is posted to the corresponding commit
using the Checks API and can be inspected by the developers
using the GitHub user interface (see Figure 4).

If more information is needed for specific packages, the
developer follows the instructions in the check report and
provides at least the reason for using the specific SOUP
component. The update is delivered as a new commit to
GitHub, which notifies CompliancePal to re-analyse the code.
When the new functionality is ready to be merged in the
common base, the developer opens a pull request.

The compliance officer investigates the SOUP changes using
the CompliancePal user interface and checks that the infor-
mation provided by the developer is satisfactory (see Figure
5). If more information is needed, the compliance officer can
open a review request indicating what is missing. When the
compliance officer considers that the information related to
a SOUP component is detailed enough, he can approve the
SOUP component. Once a SOUP is approved, the component
is added by the service to the architecture model and appears
in the SOUP list without further action from the user. When



(a) check failed (b) check success

Figure 6. SOUP compliance quality control via GitHub pull request

all SOUP components in the pull request are approved the
check status changes to success. At this point, the branch can
be merged into the baseline using the GitHub user interface
(see Figure. 6).

D. Development Workflow Models with Compliance Quality
Control

Git was originally designed for coordinating work among
programmers. It provides distributed version-control for track-
ing changes in source code during software development, but
it can be used to track changes in any set of files. Being
distributed by design, each Git directory is a full-fledged
repository with full history and version tracking abilities,
without requiring network access or a central server. The
default Git functionality has rich affordances that allow teams
to build workflows that enables multiple developers to work
efficiently on a single common base.

The workflows are typically build upon pull requests [15], a
feature pioneered by GitHub. Opening the pull request signals
that a developer is ready the merge the changes that have
made into their local repository into the main project. The
process includes a review phase in which the reviewers can
comment with improvement ideas as seen necessary. The
creator responds with new changes till issues raised in the
comments are addressed. The review discussion is followed
by merging the changes into the common code base.

This ability allows teams to use Git in multiple development
workflow models, the most popular being Git flow and trunk-
based development. In Git flow, there is one development
branch with strict access. Developers create feature branches
from this branch and, once their work on the feature is done,
they open pull requests. Following the review discussion,
the agreed changes are merged. When enough the features
scheduled for the next release are done, a release candidate
branch is created and after testing and bug fixes are applied it
is merged into the master. In the meantime, the new features
are developed in the development branch. In the trunk-based
development model, all developers collaborate on a single
branch, typically the master. The development is done in
short-lived feature branches which are merged into the trunk
following the review step.

Both development models have merits and are appropriate
depending various aspects such as the homogeneity of the
team, or the development stage of the product. From the com-
pliance with medical device software regulation perspective,

we are interested in the what software artifacts are created and
not the development methodology used to create them. The
CompliancePal quality control accommodates both develop-
ment workflows, enforcing the SOUP checks in the integration
branch, development and master respectively. The selection of
the integration branch is done during the configuration of the
software item’ source repository.

E. Software Assets Organization Strategies

Git allows team to organize the content of the repository
in many different ways. At one end of the spectrum we have
the multi-repo strategy in which every project is maintained
into a separate repository. At the other end of the spectrum
we have the monorepo where a large number of projects are
maintained within a single repository. Each strategy comes
with its own advantages and disadvantages and is up to
the teams to select which strategy is the most appropriate.
Our service is interested in performing compliance checks
regardless of the strategy employed by the manufacturer. The
selection of the strategy is performed during the configuration
of the software item’ source repository. The procedure allows
CompliancePal to recognize if the change sets delivered in a
push event are relevant or not.

VI. DISCUSSION

In this section we discuss the experimental result from two
perspectives. in the context of the full software development
lifecycle described by IEC 62304. Then, we explore the most
practical way to incorporate the existing rich ecosystem of
tools used widely by agile and DevOps practicing teams.

A. Software Architecture and SOUP Checks as Enablers for
Risk Management

IEC 62304 defines three threat classes that convey informa-
tion about the level of harm that the recipient of the medical
device that includes software can experience if used according
to the intended use specified by the manufacturer: A does not
result in any injuries, B can lead to non-serious injury, and C
can lead to serious injury or death.

To evaluate in which category the software fits, the product
is decomposed into software systems that consist of integrated
collections of software items. The items can be decomposed
further into software units. The manufacturer decides on gran-
ularity of items and units. The risk classification is by default
inherited from the parent component and can be changed by



performing risk analysis at component level. If following the
risk analysis a child component is classified with a higher risk
than its parent, the classification of the parent components are
elevated recursively up to the software system.

The augmented C4 model described earlier serves as the
basis to perform the risk analysis. Capturing the software
architecture and its evolution as it happens, corroborated with
the information about external risks introduced by SOUP
components, enables the compliance officers to conduct the
risk analysis and classification without further assistance from
the development team. These activities can be performed as
they happen, if compliance officers are available during the
development phase. For smaller teams, where compliance
officers join the team only before major milestones, the
compliance activities can be performed in retrospective by
time traversing these change sets.

To capture the result of the risk analysis, we have expanded
further the C4 meta-model with the class property. With the
decomposition and the classification we can automate the
enforcement of the classification constraints required by IEC
62304. The work of the compliance officers is eased as the
tool points out which software components classification has
to be reassessed, eliminating a potential source of human error.

B. Traceability and Verification in an Open Ecosystem

Traceability refers to the ability of tracking requirements
implementation as they are decomposed into product re-
quirements, system requirements, and finally into software
requirements. Verification refers to the ability to verify the
actual implementation state of the mentioned requirements.

Modern agile teams have a plethora of tools to choose
from when implementing traceability and verification. For
example, most web based Git providers offer a basic level
of requirements management via the bundled issue trackers.
The issues can be referenced using short links, such as
user/repository#12 where the user represents the
username or the organization, repository represents the
repository where the software assets is developed, and 12
represent the issue number. Teams that are not satisfied with
the bundled issue trackers use dedicated solutions, such as
JIRA13, that have the ability to track issues with branches.
These smart links convey information that can be used for
traceability in the IEC 62304 context.

The teams practicing DevOps can employ internal (e.g.
Jenkins14) or external services (e.g. TravisCI15 or CircleCI16)
that are typically used to run tests before code can be merged
into the common base, package software artifacts that are
ready to be released, or ready to be delivered to production
environments. These test suites can be mapped to the unit,
integration or system tests mentioned in IEC 62304.

Issue trackers and continuous integration pipelines are used
in various combinations to automate team unique workflows

13https://www.atlassian.com/software/jira
14https://jenkins.io
15https://travis-ci.com
16https://circleci.com

and operating environments. They have been selected pri-
marily for those purposes, not with the explicit goal of
producing the documentation required by IEC 62304. Each
tool’s maturity and rich functionality makes it unlikely that
it will be replaced by a another dedicated tool that handles
only traceability and verification. A more sensible approach
is to leverage their API integration capabilities and access the
necessary information that is already available in the tools’
internal databases. This way the information is transformed
into a form suitable for producing traceability and verification
reports. However, due to the heterogeneity of existing and
emerging issue trackers and continuous integration it would
be difficult to develop a tools that can fully handle all
combinations.

C. IEC 62304 Clauses Coverage Considerations

Manufacturers that develop medical software have to com-
ply with specific clauses defined in IEC 62304 depending on
the intended use of their product (see Figure 7a). Generally,
design documentation and testing is not required for products
that fit within Class A. Products covered by class B require
software design documentation and testing, while the ones in
class C require thorough design documentation and testing,
including the interfaces with hardware components.

IEC 62304 covers the entire software development lifecycle
of a product. In this context, our service functionality covers
a rather limited set out of the entire collection defined in
IEC 62304. The initial goal was to reduce the friction be-
tween the software developers and the compliance officers
that temporarily join the agile team. The service enables
the technical staff to capture information about the new or
changed software artifacts and their structure at the time when
the changes happen. The software created by 3rd parties is
handled according to SOUP rules. The process is integrating
into existing workflows and the tools used by the development
team and serves as basic enablers for conducting risk man-
agement. To be able to perform these functions, the service
provides features that fall in both Class A (clauses 4.3-c,
5.8.4, and 8.1.x) and Class B (clauses 5.3.1, 5.4.1, and 7.1.3).
Manufacturers targeting Class A products may perceive this
behaviour as excessive, because it involves activities related to
software architectural design that goes beyond the minimum
requirements in that class. However, from May 2020 when
Medical Device Regulation [9] comes into force, the baseline
for medical devices containing software is Class B, which
makes our decision justified.

As mentioned in the previous subsections, other IEC 62304
clauses related to issue tracking, testing, and releasing are
covered by other activities performed by the team as part
of their DevOps pipelines and ceremonies. We decided that
it would be beneficial to adopt and integrate those into the
compliance activities rather than develop new tools.

VII. CONCLUSIONS

Bridging the medical device software development and agile
practices is a long term endeavor that should be accomplished,



(a) Clauses required by class A (green), B (orange), and C (red) (b) Clauses covered by the service (green)

Figure 7. IEC 62304 clauses clustering

in truly agile spirit, in a sequence of small increments. The
service implementation presented in this paper proves that
properly designed tooling, although limited in scope, can bring
together agile software development and compliance practices.
The seamless integration into development team tools reduces
friction, enabling the developers to focus on software devel-
opment activities. The use of familiar DevOps patterns gives
the developers the confidence that compliance problems are
detected and handled by the responsible team members fast.
Similarly, compliance officers are confident that they have
up to date information about the software implementation
in their area of interest. The high level of automation and
transparency builds trust within the team. The tooling assists
the team members to perform to compliance activities only
when needed, making them efficient while maintaining high
velocity. As a result, compliance becomes an organization’s
shared goal instead of an impediment.

REFERENCES

[1] Laukkarinen, T., Kuusinen, K., and Mikkonen, T. DevOps in regulated
software development: case medical devices. In Proceedings of the
39th International Conference on Software Engineering: New Ideas and
Emerging Results Track, pp. 15-18. IEEE Press, 2017.

[2] Anonymous, A. Anonymized title. IEEE Anonymized Workshop. IEEE,
2018.

[3] Cockburn, A. Agile Software Development Addison-Wesley, Boston,
2002.

[4] Eloranta, V.-P., Koskimies, K. and Mikkonen, T. Exploring ScrumBut
– An empirical study of Scrum anti-patterns. Information and Software
Technology 74, pages 194-203, Elsevier, 2016.

[5] Schwaber, K., and Beedle, M. Agile software development with Scrum.
Vol. 1. Upper Saddle River: Prentice Hall, 2002.

[6] Debois, P. DevOps: A software revolution in the making. Journal of
Information Technology Management 24, pages 3-39, no. 8, 2011.

[7] Fagerholm, F., Guinea, A.S., Mäenpää, H., and Münch., J. Building blocks
for continuous experimentation. In Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering, pp. 26-35. ACM,
2014.

[8] Official Journal of the European Union, Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation), Vol 119, 2016-05-04

[9] Official Journal of the European Union, Regulation (EU) 2017/745 of
the European Parliament and of the Council of 5 April 2017 on medical
devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002
and Regulation (EC) No 1223/2009 and repealing Council Directives
90/385/EEC and 93/42/EEC, Vol 117, 2017-05-05

[10] Centers for Medicare & Medicaid Services (1996), The Health In-
surance Portability and Accountability Act of 1996 (HIPAA), Online
http://www.cms.hhs.gov/hipaa/. Referred 15.7.2018.

[11] International Electrotechnical Commission, Medical device software -
Software life cycle processes, IEC 62304, 2015-06

[12] International Standards Organization, Medical devices - Quality man-
agement systems - Requirements for regulatory purposes, ISO 13485,
2016-03-01

[13] International Standards Organization, Medical devices - Application of
risk management to medical devices, ISO 14971, 2007-10-01

[14] Simon Brown, The C4 Model for Software Architecture, Online
https://www.infoq.com/articles/C4-architecture-model. Referred
23.04.2019

[15] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An
exploratory study of the pull-based software development model. In
Proceedings of the 36th International Conference on Software Engi-
neering (ICSE 2014). ACM, New York, NY, USA, 345-355. DOI:
https://doi.org/10.1145/2568225.2568260


