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We study harmonically trapped two-species Bose–Einstein condensates within the Gross–Pitaevskii formal-
ism. By invoking the Thomas–Fermi approximation, we derive an analytical solution for the miscible ground
state in a particular region of the system’s parameter space. This solution furnishes a simple formula that
relates the interspecies interaction strength to the second spatial moments of the density distribution of the mi-
nority condensate species. Accompanying numerical simulations confirm the accuracy of the solution and the
interaction-strength formula for sufficiently large numbers of condensed particles. The introduced formula may
provide an additional scheme for determining interspecies scattering lengths that complements existing meth-
ods, such as those based on collective-excitation spectroscopy of the two-species condensates or on collisional
measurements on thermal samples.

PACS numbers: 03.75.Mn, 67.85.Fg, 03.75.Hh
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I. INTRODUCTION

Binary mixtures of Bose–Einstein condensates (BECs)
have been extensively studied in recent years, both experimen-
tally and theoretically. In experiments to date, these so-called
two-species BECs have been produced by using either two
different elements [1–10], two distinct isotopes of the same
element [11–13], or a single isotope in two different internal
states [14–19]. Theoretical studies, in turn, have addressed
diverse phenomena such as segregation [20–24] and the as-
sociated symmetry breaking [25–29], wetting phase transi-
tions [30], and exotic vortex structures [31–40], to name but a
few.

A key ingredient that gives rise to these phenomena and sets
the two-species system apart from the single-species BEC is,
quite obviously, the interspecies interaction, which is taken
here to be of the zero-range density–density type. It can have
a drastic effect on the ground-state density distributions, lead-
ing, for example, to segregation of the two condensates when
it is strongly repulsive [6, 10, 11]. In this paper, we demon-
strate how the ground-state shapes of the coupled conden-
sates encode crucial information about the interspecies inter-
action, even when no phase separation occurs, and how the in-
formation can be conveniently extracted. Specifically, based
on the analytical Thomas–Fermi (TF) formalism, we derive
a ground-state solution of the system in closed form and, as
a corollary, a simple formula [Eq. (17)] that can be used to
determine the relative strength of the interspecies interaction
from the knowledge of the density distribution of just one of
the two miscible condensate species.

The rest of the article is organized as follows. We present
the Gross–Pitaevskii (GP) equations of the two-species BEC
in Sec. II and solve them analytically within the TF ap-
proximation (TFA) in Sec. III. The analytical solution is
then utilized in Sec. IV to investigate the behavior of the
density profiles as a function of the interspecies interaction
strength. Section V presents the derivation of the aforemen-

tioned interaction-strength formula. In Sec. VI, we use direct
numerical solutions of the GP equations to test the accuracy of
the interaction-strength formula outside the TFA. Section VII
summarizes our main findings and discusses limitations and
possible future extensions of the work.

II. GROSS–PITAEVSKII MODEL

As the starting point of our theoretical treatment, let NA
bosonic atoms of species A and mass mA and NB bosonic
atoms of species B and mass mB be confined and Bose–
Einstein condensed in three-dimensional, concentric har-
monic traps. Atoms within each species are assumed to inter-
act weakly through repulsive contact interaction of strength
cS = 4π~2aS S /mS > 0, where S ∈ {A, B} and aS S is the
s-wave scattering length between atoms of species S . The in-
terspecies contact interaction strength cAB = 2π~2aAB

(
m−1

A +

m−1
B

)
, where aAB is the positive or negative interspecies s-

wave scattering length, is taken to be weak enough for the
two species to remain miscible [41]. The concentric harmonic
traps are written as VS

trap
(
r) = mS (ω2

S xx2 + ω2
S yy2 + ω2

S zz
2)/2,

where the trap frequencies ωS l, l ∈ {x, y, z}, may all be differ-
ent [42]. It should be noted, however, that we have assumed
the two traps to be co-aligned such that they can both be as-
signed the same symmetry axes (which we have selected as
our Cartesian coordinate axes).

For the sake of convenience and notational symmetry, we
introduce a mass m and a frequency ω and hereafter use ~ω
and aosc ≡

√
~/(mω) as units of energy and length, respec-

tively. Assuming that the atomic clouds of both species are
dilute and that the temperature is close enough to zero, the
ground state of the two-species BEC can be described accu-
rately by the time-independent coupled GP equations [43–45]
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for the condensate wave functions φS , S ∈ {A, B}:[
− m

2mS
∇2 +

1
2

(
γS xx2 + γS yy2 + γS zz2

)
+ αS |φS (r)|2 + βS |φ/S (r)|2 − µS

]
φS (r) = 0,

(1)

where γS l = mSω
2
S l/(mω

2) is a dimensionless trap-strength
parameter, /S is defined such that /A = B and /B = A, the di-
mensionless coupling constants are

αS = 4πNS
maS S

mS aosc
, (2)

βS = 2πNS
m (mA + mB) aAB

mAmBaosc
, (3)

and µS are the chemical potentials that enter as Lagrange mul-
tipliers enforcing the unit normalization

∫
R3 |φ2

S (r)| d3r = 1.
In this notation, the number density of atoms in the BEC of
species S is written as NS |φS |2. Since we will only consider
flowless ground states, we can assume φS to be real valued.

III. THOMAS–FERMI SOLUTION

We now introduce the TFA [45–47], which applies to suf-
ficiently large numbers of condensed atoms and amounts to
neglecting the kinetic-energy terms in the GP equations [48].
When both φA and φB are nonzero, the resulting TF versions
of Eqs. (1) can be written as

αSφ
2
S + βSφ

2
/S = µS − 1

2

(
γS xx2 + γS yy2 + γS zz2

)
. (4)

If the determinant D ≡ αAαB − βAβB , 0, we obtain

φ2
S = XS − YS xx2 − YS yy2 − YS zz2, (5)

where

XS ≡ (α/S µS − βS µ/S )/D, (6)
YS l ≡ (α/S γS l − βS γ/S l)/(2D). (7)

We will refer to the formal solution given by Eqs. (5) as
Form II. Equations (6) can be solved for the chemical poten-
tials:

µS = αS XS + βS X/S . (8)

The parameters YS l defined in Eqs. (7) are known once the in-
put parameters are given, while XS remain unknown because
they depend on µS .

If exactly one of the two wave functions, say φA, is zero in
a certain region of R3, the formal solution is

φA = 0, (9a)

φ2
B =

1
αB

[
µB − 1

2

(
γBxx2 + γByy2 + γBzz2

)]
. (9b)

A solution of this type is referred to as Form IB, where the
subscript B indicates the nonvanishing species. Analogously,

Form IA can be defined. Together with the vacuum φA = φB =

0, Forms IA, IB, and II exhaust all possible types of local TF
solutions of Eqs. (1).

If one of the wave functions in Form II, say φA(r), reaches
zero as we vary r, we arrive at a boundary surface of Form II
(for instance, φA will reach zero upon increasing x sufficiently
if YAx > 0). Crossing the boundary will lead to a transfor-
mation from Form II to Form IB. It is emphasized that both
wave functions are always continuous at the form boundaries;
this is because the equations governing the two neighbouring
forms become exactly the same for the boundary points. In
this way the formal solutions, each with its own specific do-
main of definition, will be naturally and continuously linked
up to form the complete piecewise-defined TF solution over
entire R3. The complete TF wave functions, however, will not
in general be differentiable at the form boundaries. The two
unknowns µS appearing in the entire solution can be obtained
from the two additional equations

∫
R3 φ

2
S d3r = 1 for normal-

ization.
The parameter space of the two-species model is fairly

high-dimensional: even after all the redundancies are re-
moved, one must specify the values of at least nine indepen-
dent parameters in order to fix all the coefficients in Eqs. (1).
Partly for this reason, we will not develop the general TF so-
lution any further in what follows. Instead, for our purposes,
it is sufficient to consider a specific type of TF solution satis-
fying the following assumptions: (i) The isosurfaces of φ2

A are
ellipsoids, and φ2

A has its maximum at the origin. (ii) φ2
B > 0

if φ2
A > 0. (iii) The boundary surfaces of the two condensates

do not have any points in common. A TF solution satisfying
assumptions (i)–(iii) will approximate the ground state of the
system in a particular region of the whole parameter space.
Note that these assumptions are different for the two species
and hence should be used as the criteria for assigning the two
labels A and B.

Due to assumptions (i) and (ii), the solution has Form II at
the origin, and it follows from Eqs. (5) that XA = φ2

A (r = 0) >
0 and XB = φ2

B (r = 0) > 0. Assumption (i) also im-
plies that all the three YAl > 0. Let us refer to the re-
gion in which φA remains nonzero as the inner region, Ωin ≡{
(x, y, z) ∈ R3 | ∑l YAll2 < XA

}
. We know from assumption (ii)

that the solution has Form II in Ωin and from assumption (iii)
that φ2

B remains positive on the boundary ellipsoid ∂Ωin. As
we cross ∂Ωin to the outside, the solution acquires Form IB
[Eqs. (9)]. Since all the three γBl are positive by definition, the
isosurfaces of φ2

B in Eq. (9b) are also ellipsoids, and φ2
B will

reach zero on the ellipsoid
{
(x, y, z) ∈ R3 | ∑l γBll2 = 2µB

}
≡

S. Because both wave functions vanish outside S, it is the
boundary surface of the whole two-species BEC. The region
between ∂Ωin and S is referred to as the outer region and de-
noted by Ωout.

The normalization 1 =
∫
R3 φ

2
A d3r =

∫
Ωin
φ2

A d3r yields

XA =

15
√

YAxYAyYAz

8π

2/5

. (10)

From the normalization 1 =
∫
R3 φ

2
B d3r =

∫
Ω̄ in∪ Ω̄out

φ2
B d3r and
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Eqs. (8) and (10), we obtain

µ5/2
B

15
=

∏
l γ

1/2
Bl

16
√

2π

αB +
5
2
βB +

∑
l

2αBYBl − γBl

4YAl

 . (11)

We can further use Eqs. (6) and (8) to write down
closed-form expressions for the remaining unknowns XB =

(µB − βBXA) /αB and µA = (DXA + βAµB) /αB. Thus, all the
quantities involved in φA and φB have now been determined in
terms of the model input parameters, and thereby the desired
TF solution has been obtained.

In order for the solution to be self-consistent, it must satisfy
the assumptions made in its design. Since we must necessarily
have

YAx > 0, YAy > 0, YAz > 0, (12)

the requirement XA > 0 is immediately satisfied by Eq. (10).
By utilizing standard techniques of analytical minimization,
we can cast the constraint φ2

B(r) > 0 ∀ r ∈ Ω̄in, where φ2
B is

given by Eq. (5), as the inequality

XB

XA
> max

{
0,max

l

YBl

YAl

}
. (13)

Furthermore, assumption (iii) implies that φ2
B as given by

Eq. (9b) must be positive on ∂Ωin, which in turn requires that

µB >
XA

2
max

l

γBl

YAl
. (14)

As long as the ten input parameters γS l, αS , and βS are cho-
sen such that the inequalities (12)–(14) are satisfied, the TF
solution derived above is self-consistent.

It is worth noting that when the interspecies coupling cAB
vanishes, the above solution reduces to the well-known single-
species case, φ2

S (r) = max
{
0,

(
µS − 1

2
∑

l γS ll2
)
/αA

}
, where

µS = 1
2
[
15αS

∏
l γS l/ (4π)

]2/5 [49]. Similarly, by assuming
that both harmonic traps are spherically symmetric (ωS x =

ωS y = ωS z), we recover the radial wave functions presented in
Refs. [50, 51].

IV. EFFECT OF THE INTERSPECIES INTERACTIONS
ON THE DENSITY PROFILES

As an example of how our analytical TF solution can be
used to infer properties of the harmonically trapped miscible
two-species BEC, let us consider the effect of the interspecies
interactions on the ground-state density profiles. To this end,
Fig. 1 shows the TF wave functions for five different inter-
species interaction strengths cAB. While cAB is varied here
primarily for the sake of illustration, in experiments its value
could be manipulated using Feshbach resonances [52], which
have been demonstrated for, e.g., 87Rb–87Rb [53–55], 41K–
41K [56, 57], and 87Rb–41K [3] interactions. The accuracy of
the TFA will be assessed in Sec. VI.

Since we have chosen ωAz > ωAx = ωAy and ωBz > ωBx =

ωBy, the atomic clouds of both species are oblate. Moreover,
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Figure 1. Thomas–Fermi solutions for φ2
A along (a) the x and (b) the

z axes and for φ2
B along (c) the x and (d) the z axes, for five differ-

ent values of the interspecies interaction strength cAB: −1.032 × cA

(dash-dotted curves), −1.032× cA/2 (dashed), 0 (solid), 1.032× cA/2
(dash-dot-dotted), and 1.032 × cA (dotted). The system is rotation-
ally symmetric about the z axis (ωAx = ωAy and ωBx = ωBy), and the
unit of length is aosc =

√
~/(mAωAx). For all five solutions, we have

used the parameter values mB/mA = 0.471 and cB/cA = 1.29, which
correspond to species A being 87Rb and species B being 41K, along
with NB/NA = 2.5, ωBx/ωAx = 1.5, ωAz/ωAx = 2, ωBz/ωBx = 1.5,
and αA = 105. The dotted curves (cAB/cA = 1.032) correspond to
the natural s-wave scattering length between 87Rb and 41K without
Feshbach-resonance manipulation.

because αB > αA, the atoms of species B are subjected to
stronger intraspecies repulsion than the atoms of species A;
consequently, the species-B cloud extends further away from
the origin and contains the entire species-A cloud. This inher-
ent size difference, which is implied by assumptions (ii) and
(iii) made about our TF solution, is evident for the uncoupled
system with cAB = 0 (solid curves in Fig. 1).

Since both condensate species are present in the inner re-
gion Ωin, atoms of one species are affected by atoms of the
other species if the interspecies interaction is turned on. When
this coupling is attractive (cAB < 0), both clouds tend to
shrink in order to increase their mutual overlap and thereby
enhance the attractive interspecies interaction energy EAB =

cABNANB
∫
R3 φ

2
Aφ

2
B d3r < 0. The size reduction with growing

interspecies attraction can be discerned from Fig. 1 by ob-
serving the progression from solid to dashed to dash-dotted
curves. Nevertheless, some of the species-B atoms remain
outside the species-A cloud in the outer region Ωout, and the
distribution of species B develops into a central bump sur-
rounded by a long tail [dash-dotted curves in Figs. 1(c) and
1(d)].

In contrast, when the interspecies coupling is repulsive
(cAB > 0), the two species tend to avoid each other so as to
minimize the positive interspecies interaction energy EAB. As
evidenced by the progression from solid to dash-dot-dotted to
dotted curves in Figs. 1(a) and 1(b), the cloud of species A be-
comes more oblate with increasing cAB, with φ2

A concentrated
at small |z|. At the same time, the species-B density becomes
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depleted at small |z| [dotted curve in Fig. 1(d)], which causes
the maximum point of φ2

B to shift from the origin to the two
points (x, y, z) = (0, 0,±√

XA/YAz) ∈ ∂Ωin.
The above discussion illustrates that changes in the inter-

species interaction strength cAB can cause significant changes
in the shapes of the two atomic clouds, even while remaining
in the miscible regime. As shown in the next section, informa-
tion on cAB can be directly extracted from the second spatial
moments of the probability density distributions—in fact, it is
enough to know them for just one of the two species.

V. INTERACTION-STRENGTH FORMULA

It turns out that the relative strength of the interspecies in-
teraction can be determined by observing only the inner cloud,
i.e., the density distribution of species A. The mean square
value of the atomic coordinate l ∈ {x, y, z} in the species-A
cloud is

〈l2〉A ≡
∫
R3
|φ2

A| l2d3r =

(
15
8π

)2/5 Y1/5
Ax Y1/5

Ay Y1/5
Az

7 YAl
. (15)

Furthermore, we define a 3-by-3 matrix δA with elements

δA
ll′ ≡ 〈l2〉A/〈l′2〉A = YAl′/YAl, (16)

where l, l′ ∈ {x, y, z}. For the case γAl′/γAl , γBl′/γBl, we can,
by using Eqs. (7), rewrite Eq. (16) as

cAB

cB
=

mA

mB

ω2
Al′ − ω2

Alδ
A
ll′

ω2
Bl′ − ω2

Blδ
A
ll′

(
ωAl′

ωAl
,
ωBl′

ωBl

)
. (17)

If the atomic masses and trap frequencies are known, Eq. (17)
can be used to determine the relative strength of the inter-
species interaction from the mean-square values of any two
coordinates in the density distribution of species A only.
As such, Eq. (17) may provide a means to determine cAB
that could complement existing methods based on collective-
excitation spectroscopy of the binary BEC [58] or on colli-
sional measurements on thermal samples [1, 59].

It is also interesting to note that Eq. (17) implies some non-
trivial relations between the elements of the matrix δA. For
instance, if a two-species system describable by our TF solu-
tion satisfies the condition ωAl′/ωAl , ωBl′/ωBl for all three
coordinate pairs (l, l′) ∈ {(x, y), (x, z), (y, z)}, we then have(

ω2
Ay − ω2

Axδ
A
xy

) (
ω2

Bz − ω2
Bxδ

A
xz

) (
ω2

Bz − ω2
Byδ

A
yz

)
=

(
ω2

By − ω2
Bxδ

A
xy

) (
ω2

Az − ω2
Axδ

A
xz

) (
ω2

Bz − ω2
Byδ

A
yz

)
=

(
ω2

By − ω2
Bxδ

A
xy

) (
ω2

Bz − ω2
Bxδ

A
xz

) (
ω2

Az − ω2
Ayδ

A
yz

)
.

(18)

In analogy with Eq. (15), our TF solution makes it possible
to derive an approximate analytical expression for any observ-
able that can be written as a functional of the BEC ground-
state wave functions φA and φB. The resulting expressions for
the observables as functions of the model parameters could
then be used in numerical optimization to fit against experi-
mental data and in this way infer the values of unknown model

parameters, without having to resort to computationally de-
manding three-dimensional GP simulations that are typically
needed for triaxial harmonic traps. The usefulness of this ap-
proach of course hinges on the accuracy of the TFA, which we
will assess in the next section.

VI. COMPARISON WITH NUMERICAL RESULTS

The formulae presented in Sec. III are generalizations to
triaxial configurations of previously obtained expressions for
spherically symmetric harmonic traps [24, 26, 50, 51]. They,
as well as Eqs. (15)–(17), are all based on the TFA and will
therefore inherit its errors. However, the TFA is known to
become more accurate with increasing number of atoms. It is
therefore natural to ask how large condensates one would need
in order for the approximation error to be negligible. To an-
swer this question, we perform numerical calculations beyond
the TFA to obtain the essentially exact ground-state solutions
of the GP equations (1). We further define (cAB/cB)est as the
estimate obtained from Eq. (17) by replacing the TF value of
δA

ll′ with that of the numerical solution. When the relative er-
ror of this estimate is negligible, Eq. (17) is applicable for the
determination of cAB/cB.

In our numerical calculations, we discretize Eqs. (1) by ap-
plying the standard three-point finite-difference stencil and
solve the resulting equations iteratively with the successive
overrelaxation algorithm. We use coordinate grids with step
lengths ≤ 0.05 × √~/ (mAωAx) in each direction. To enable
simple visualization, we set ωAx = ωAy and ωBx = ωBy and
limit the simulations to cases where both φ2

A and φ2
B are rota-

tionally symmetric about the z axis. We stress, however, that
our analytical treatment also applies to two-species BECs with
no cylindrical symmetry.

Table I collects our numerical results for a two-species
BEC where the two condensates are coupled through a repul-
sive interspecies interaction of relative strength cAB/cB = 0.8
and confined in cylindrically symmetric oblate harmonic traps
(i.e., ωS z > ωS x = ωS y). The table entries correspond to dif-
ferent values of αA ∝ NA, while the other system parameters
are kept constant as described in the table caption. The ana-
lytical TF and the numerical GP solutions for the entry with
αA = 105 are presented in Fig. 2; the same TF wave functions
are also shown by the dotted curves in Fig. 1. For the small-
est four values of αA in Table I, the root-mean-square (RMS)
values

√
〈x2〉A and

√
〈z2〉A show a noticeable discrepancy be-

tween the numerical GP solution and the TFA; consequently,
for these states (cAB/cB)est differs significantly from the true
value 0.8. However, when αA increases above 104, the accu-
racy of the TFA improves, the values of

√
〈x2〉A and

√
〈z2〉A

computed for the numerical solution approach their TF limits,
and (cAB/cB)est becomes very close to 0.8. For αA = 106, for
instance, (cAB/cB)est has a relative error of −0.239% only.

Table II lists the corresponding results for a case where both
harmonic traps are prolate (ωS z < ωS x) and there is a fairly
strong interspecies repulsion of cAB/cB = 1.06 [60]. The an-
alytical and numerical solutions are presented in Fig. 3 for
αA = 104. Despite the prolate trap with ωAz/ωAx = 0.8, the
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Table I. RMS values of the coordinates x and z for ground-state density distribution of a harmonically trapped, three-dimensional two-species
BEC with NB/NA = 2.5, cAB/cA = 1.032, ωBx/ωAx = 1.5, ωAz/ωAx = 2, ωBz/ωBx = 1.5, and ωAy/ωAx = ωBy/ωBx = 1. The RMS values
are given for both the numerically obtained GP solution and the Thomas–Fermi approximation (TFA) derived in the text. The second-to-last
column shows the estimate (cAB/cB)est for the relative interspecies interaction strength, which is obtained by evaluating the right-hand side of
Eq. (17) for the numerically obtained φA. The last column gives the relative error of (cAB/cB)est. For the TFA, Eq. (17) is exact and yields the
true value cAB/cB = 0.8. We have used the values mB/mA = 0.471 and cB/cA = 1.29, which correspond to species A being 87Rb and species B
being 41K. The first column shows the value of the intraspecies interaction strength for species A, αA = NAcA/(~ωa3

osc) = 4πNAaAA/aosc, where
aosc =

√
~/ (mω), m = mA, and ω = ωAx. All lengths are given in units of aosc. (If we use ω = 2π × 100 Hz and aAA = 99 aB, we obtain

aosc ≈ 1.1 µm and αA ≈ 0.061 × NA.) All the listed states satisfy inequalities (12)–(14), rendering our TF solution self-consistent.

〈x2〉1/2A 〈x2〉1/2B 〈z2〉1/2A 〈z2〉1/2B (cAB/cB)est

αA Numer. TFA Numer. TFA Numer. TFA Numer. TFA Value Error (%)
100 0.7100 0.5230 0.7618 0.5724 0.5020 0.1410 0.5998 0.4221 7.5553 844.409
101 0.9312 0.8289 1.0170 0.9072 0.5605 0.2235 0.7880 0.6689 −2.2950 −386.881
102 1.4346 1.3136 1.4392 1.4378 0.6500 0.3543 1.0822 1.0602 0.3135 −60.807
103 2.1923 2.0820 2.2500 2.2788 0.7574 0.5615 1.6809 1.6803 0.6742 −15.725
104 3.3380 3.2997 3.5994 3.6117 0.9883 0.8899 2.6607 2.6632 0.7633 −4.589
105 5.2336 5.2297 5.7226 5.7241 1.4478 1.4104 4.2194 4.2208 0.7909 −1.131
106 8.2869 8.2885 9.0725 9.0720 2.2474 2.2354 6.6891 6.6896 0.7981 −0.239
107 13.1356 13.1364 14.3785 14.3782 3.5464 3.5429 10.6021 10.6022 0.7996 −0.046

Table II. RMS values of the coordinates x and z in the ground-state density distribution and the corresponding estimates (cAB/cB)est for a
harmonically trapped, three-dimensional two-species BEC with NB/NA = 20, cAB/cA = 0.8217, ωBx/ωAx = 0.65, ωAz/ωAx = 0.8, ωBz/ωBx =

0.6, and ωAy/ωAx = ωBy/ωBx = 1. We have used the values mA/mB = 0.471 and cA/cB = 1.29, which correspond to species A being 41K
and species B being 87Rb. The first column shows the value of the intraspecies interaction strength for species A, αA = NAcA/(~ωa3

osc) =

4πNAaAA/aosc, where aosc =
√
~/ (mω), m = mA, and ω = ωAx. (If we use ω = 2π × 100 Hz and aAA = 60 aB, we obtain aosc ≈ 1.57 µm and

αA ≈ 0.0254 × NA.) All lengths are given in units of aosc, and the true value for cAB/cB is exactly 1.06.

〈x2〉1/2A 〈x2〉1/2B 〈z2〉1/2A 〈z2〉1/2B (cAB/cB)est

αA Numer. TFA Numer. TFA Numer. TFA Numer. TFA Value Error (%)
101 1.1053 0.9013 1.0411 1.0061 0.9695 0.3662 1.6973 1.7100 0.7827 −26.163
102 1.5755 1.4284 1.6021 1.5946 1.0151 0.5804 2.7023 2.7102 0.9624 −9.203
103 2.3155 2.2639 2.5292 2.5272 1.1663 0.9199 4.2918 4.2954 1.0276 −3.053
104 3.5987 3.5880 4.0062 4.0054 1.5629 1.4579 6.8064 6.8078 1.0516 −0.789
105 5.6867 5.6867 6.3485 6.3481 2.3478 2.3107 10.7891 10.7896 1.0581 −0.178
106 9.0117 9.0128 10.0611 10.0610 3.6742 3.6622 17.1002 17.1004 1.0596 −0.037
107 14.2838 14.2843 15.9456 15.9456 5.8078 5.8041 27.1022 27.1022 1.0599 −0.007

density φ2
A shown in Fig. 3(c) is observed to have a highly

oblate profile due to its coupling to species B; this sug-
gests that the shape of the cloud carries a strong signal of
the interspecies interaction, and consequently we may expect
(cAB/cB)est to be particularly accurate in this configuration. In-
deed, its relative error (cAB/cB)est cB/cAB − 1 is only −1.13%
already at αA = 104 and becomes < 10−4 at αA = 107.

VII. DISCUSSION

In summary, we have presented an analytical TF solu-
tion for a miscible two-species BEC confined in a three-
dimensional harmonic trap; we derived a formula, given by
Eq. (17), that enables one to determine the relative inter-
species interaction strength cAB/cB from the knowledge of the
RMS values of two coordinates in the density distribution of
species-A atoms. The error in the value of cAB/cB obtained in
this manner has two origins. One is the imperfectness of the
TFA itself, while the other is the uncertainty in the experimen-

tal measurements.

We addressed the first origin by means of a numerical com-
parison between the estimate (cAB/cB)est obtained by applying
Eq. (17) to the GP solution and the exact value cAB/cB. Al-
though (cAB/cB)est was found to be highly inaccurate for small
numbers of condensed atoms, its relative error became smaller
than or comparable to typical experimental uncertainties at
atom numbers achievable at state-of-the-art experiments.

With regard to the second origin of error, we note that the
masses and trap frequencies are typically known to a high ac-
curacy (for example, by measuring the dipole oscillations of
the center of mass of the atomic cloud, the relative uncer-
tainty in determining the trap frequency can be as small as
10−3 [58, 61]). Consequently, the experimental uncertainty in
evaluating the right-hand side of Eq. (17) arises mainly from
the uncertainty in the measurement of δA

ll′ ≡ 〈l2〉A/〈l′2〉A. Let
its measurement be repeated Nδ times with the same accuracy
(the same set of instruments). The result from the jth mea-
surement is denoted by

(
δA

ll′
)

j
. From the Nδ measurements we
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(a) (b)

(c) (d)

32aosc

22
a o

sc

0 maxx,z |φ2
S (x,0,z)|

x
z

Figure 2. (a)–(b) Analytical TF and (c)–(d) numerical GP solutions
for the cylindrically symmetric two-species BEC corresponding to
the sixth entry in Table I, with αA = 105, and to the dotted curves in
Fig. 1. Panels (a) and (c) show |φ2

A|, while panels (b) and (d) are for
|φ2

B|. Here aosc =
√
~/ (mAωAx). Each atomic density is rotationally

symmetric about the z axis and is presented here in the plane y = 0.
Evaluating the right-hand side of Eq. (17) for the GP solution shown
in panels (c) and (d) yields the estimate (cAB/cB)est = 0.7907, which
is 1.13% smaller than the true value 0.8.

obtain the mean value δA
ll′ = N−1

δ

∑Nδ

j=1

(
δA

ll′
)

j
. Following the

standard procedure, we then quantify the uncertainty of δA
ll′ in

terms of the corrected sample standard deviation

∆
[
δA

ll′
]

=
1√

Nδ − 1

{ Nδ∑
j=1

[(
δA

ll′
)

j
− δA

ll′

]2}1/2
. (19)

Furthermore, let the uncertainty in cAB/cB be denoted as
∆{ωS l}[cAB/cB], where the subscript {ωS l} specifies a fixed set
of trap frequencies used in the measurements. As long as
∆
[
δA

ll′
]

is small enough, from Eq. (17) we have

∆{ωS l}[cAB/cB] =
mA

mB

|ω2
Blω

2
Al′ − ω2

Alω
2
Bl′ |(

ω2
Bl′ − ω2

Blδ
A
ll′

)2 ∆
[
δA

ll′
]
. (20)

If we use the TF value YAz/YAx in place of δA
xz [see Eq. (16)],

the coefficient on the right-hand side of Eq. (20) becomes
1.25 × 10−2 for the parameter set of Table I and 9.62 × 10−3

for that of Table II.
It follows from Eqs. (19) and (20) that the uncertainty

in cAB/cB could be reduced by increasing the number Nδ

of δA
ll′ measurements or by choosing the set {ωS l} so as to

make the numerator in Eq. (20) small [while ensuring that
the conditions for the validity of Eq. (17) are not violated].
We could also adopt a number, say Nω, of different sets of
trap frequencies

{
ω

( j)
S l

}Nω

j=1 for the experiment. If the rela-
tive interaction strength was then determined as the average
cAB/cB = Nω

−1 ∑Nω

j (cAB/cB) j, where (cAB/cB) j is the value
obtained with the jth set, then the uncertainty in cAB/cB could
be further reduced by increasing Nω.

(a) (b)

(c) (d)

24aosc

38
a o

sc
0 maxx,z |φ2

S (x,0,z)|

x
z

Figure 3. As Fig. 2, but for the fourth entry in Table II, with αA =

104. Applying Eq. (17) to the numerically obtained GP solution in
panels (c) and (d) yields the estimate (cAB/cB)est = 1.0516, which is
0.79% smaller than the exact value 1.06.

To date, the most precise experimental determination of
cAB/cB has been achieved through the measurement of collec-
tive oscillation frequencies in a two-species BEC of 87Rb [58].
Various other condensate-based experiments [61–63], as well
as ones involving collisional measurements on thermal sam-
ples [1, 59], have been performed to determine the inter-
species scattering lengths. Nevertheless, Eq. (17) could still
provide an additional way of determining the interspecies in-
teraction strength, complementary to the existing methods.
On the other hand, Eq. (17), or other analogous relations
derivable from our TF solution, could also be used to cross-
check the consistency of the observed density profiles against
the assumed interaction strengths or other parameters of the
solution, without the need to carry out time-consuming three-
dimensional GP simulations.

The basic approach of forming piecewise-defined TF solu-
tions of multispecies BECs is quite general [45] and can be ap-
plied to many more situations besides the one considered here.
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In future work, it would be beneficial to derive the detailed
TF solutions for the entire parameter space and investigate
whether similar convenient relations could be found outside
the validity range of the present solution. Such a general solu-
tion would also facilitate a detailed study of the ground-state
phase diagram of the system. Another possible future exten-
sion could also be to apply the present approach to mixtures
of two spinor condensates [64–67] instead of scalar ones.

Finally, it should be noted that besides inherently limiting
the study to dilute zero-temperature gases, the underlying GP
equations (1) have neglected effects that may be important in
some situations. These could include, e.g., the axial misalign-
ment or gravity-induced center offset of the two harmonic
traps, the presence of finite-range interactions, or distortion
of the density profiles due to losses from two- and three-body

inelastic collisions.
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