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Exosomes as Hedgehog carriers in
cytoneme-mediated transport and secretion
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Juan M. Falcón-Pérez2,4,5 & Isabel Guerrero1

The Hedgehog signalling pathway is crucial for development, adult stem cell maintenance,

cell migration and axon guidance in a wide range of organisms. During development, the

Hh morphogen directs tissue patterning according to a concentration gradient. Lipid

modifications on Hh are needed to achieve graded distribution, leading to debate about how

Hh is transported to target cells despite being membrane-tethered. Cytonemes in the region

of Hh signalling have been shown to be essential for gradient formation, but the carrier of the

morphogen is yet to be defined. Here we show that Hh and its co-receptor Ihog are in

exovesicles transported via cytonemes. These exovesicles present protein markers and other

features of exosomes. Moreover, the cell machinery for exosome formation is necessary for

normal Hh secretion and graded signalling. We propose Hh transport via exosomes along

cytonemes as a significant mechanism for the restricted distribution of a lipid-modified

morphogen.
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T
he Hh molecule acts as a morphogen to regulate growth
and cell fate specification at a distance. In different
systems, Hh is secreted from a restricted group of cells

and distributed in a concentration-dependent manner according
to distance from the source, resulting in differential activation of
target genes1. Thus, Hh production, release, transport and
reception must be kept under strict spatial and temporal
control to accomplish an activity gradient. Hh gradient
formation mechanisms have been studied extensively in the
Drosophila wing imaginal disc comprising two cell populations
with different adhesion affinities dividing the field into a posterior
(P) and an anterior (A) compartment. The P compartment cells
produce Hh, which moves across the A/P compartment border,
decreasing in concentration as it spreads away from the border to
the A compartment (scheme in Fig.1a). Hh is post-translationally
modified by the addition of cholesterol2 and palmitic acid3, which
promote Hh association to lipid membranes but are essential for
its restricted spreading4, raising the question of how its actual
secretion and transfer are achieved. In both the wing disc and the
abdominal epidermis of Drosophila, specialized filopodia called
cytonemes5 are crucial for establishment of the Hh gradient6.
Cytonemes are easily visualized by confocal microscope in the
basal part of the wing disc epithelium by expressing the Hh co-
receptor Interference hedgehog (Ihog)6–8, which also labels
punctate structures8 with a size of 0.1–0.6 mm; some of them
seem to exceed the cytoneme diameter, suggesting they could be
extracellular vesicles (EVs)6. In the chicken limb bud, particles
containing SonicHh (SHh) and CDO (vertebrate homologue of
Ihog) have also been shown to travel along filopodia-like
extensions within the field of SHh signalling9. Here we
characterize these structures and their association with Hh,
determining the role of EVs in Hh distribution and gradient
formation.

Results
Hedgehog is located in EVs that move towards recipient cells.
In the wing disc, Hh punctate structures (endogenous or ecto-
pically expressed Hh-green fluorescent protein (GFP)) locate at
the plasma membrane both apically and basolaterally (Fig. 1b),
and in both P and A compartment cells near the A/P border1

(Fig. 1c). Importantly, these puncta can be partially labelled by
extracellular ex vivo staining with anti-GFP antibody (Fig. 1b,c),
indicating the presence and the extracellular localization of Hh on
their surface. They are more abundant at the basolateral part of
the disc epithelium (Fig. 1b,c red and yellow puncta), and distinct
from cytoplasmic puncta8 (green puncta in Fig. 1c).

The co-expression of Hh-GFP and Ihog-RFP reveals puncta
labelled with both markers in the A compartment, as well as
puncta that just contain Hh-GFP probably due to internalization

of Hh-GFP vesicles by the receiving cells (Fig. 1d, see also
Supplementary Movie 1). Live imaging of Ihog-RFP puncta in the
abdomen, where Hh also acts as a morphogen10, confirms their
presence both laterally as well as basolaterally, similar to Hh
(Supplementary Movie 2). Dispatched (Disp)11 and Dally-like
(Dlp)8, both essential for Hh release8, also co-localize with Ihog-
labelled punctate structures and cytonemes (Fig. 1e–g). These
results indicate that Hh could indeed be transported in EVs
together with other pathway components, Ihog, Disp and Dlp, all
involved in Hh release. The punctate structures localize to
cytonemes in the basal side of the epithelium6, and as ex vivo
antibody staining marks both Disp and Hh, these proteins might
all be at the surface of EVs (Supplementary Fig. 1G).

To further investigate the EV nature of the puncta, immuno-
labelling for Hh in wing discs co-expressing Ihog-RFP and the
mammalian EV marker CD63 tagged with GFP12 was performed,
revealing a clear co-localization of the three in punctate structures
(Fig. 2a). This co-localization was also confirmed by live imaging
in the abdominal epidermis of pupae co-expressing CD63-GFP
and Ihog-RFP (Fig. 2b and Supplementary Movie 3).
Furthermore, immunoprecipitation of the GFP-tagged CD63
shows co-immunoprecipitation of Ihog-RFP and endogenous Hh
in vivo (Fig. 2c–e), supporting the presence of CD63 in the
Hh–Ihog complex observed by confocal imaging and strongly
advocating the EV nature of the puncta (Fig. 2a,b).

Detailed observation of movies with CD63-GFP marked
puncta shows their association with cytonemes in basal regions,
where they move along the cytonemes which point from the
P towards the A compartment (Fig. 3a,b and Supplementary
Movies 4 and 5). Live imaging of cells expressing either the
membrane marker CD4-Tomato or Ihog-RFP also shows
punctate structures moving along cytonemes (Fig. 3c,d and
Supplementary Movie 6 and 7, see also ref. 6). Interestingly,
CD4-Tomato labelling occasionally shows buckling followed by a
swelling structure, which might be related to direct shedding of
vesicles from the cytoplasmic membrane (Fig. 3c and
Supplementary Movie 6), also sporadically observed in puncta
labelled with Ihog-RFP (Fig. 3d and Supplementary Movie 7).

Immuno-EM reveals Hh in MVB/EV and plasma membrane.
To analyse the distribution of Hh at the ultrastructural level,
immunoelectron microscopy (Immuno-EM) was performed on
thawed cryosections of wing discs expressing Hh-GFP.
Supplementary Fig. 1A–F shows correlative light-electron
microscopy of the Hh distribution on ultra-thin cryosections cut
orthogonal to the ventral/dorsal axis. Immunofluorescent Hh
staining (Supplementary Fig. 1A) was detected along the whole
apical disc lumen and at the basolateral region of the P com-
partment. At the EM level, apical Hh signal was found

Figure 1 | Hh and key signalling components are present in EVs and cytonemes. (a) Schematic representation of a cross-section of the wing disc

showing the expression of Hh in both epithelia; disc proper (DP) and peripodial membrane. (b) Transverse section of a hh.Gal44UAS.Hh-GFP

wing disc which has been ex vivo stained with anti-GFP antibody for 1 h at low temperature to avoid Hh-GFP internalization. Note the co-localization

of Hh-GFP and externalized GFP (red) mainly at the basolateral part of the disc epithelium (bottom of image). (c) Confocal sections of a similar

hh.Gal44UAS.Hh-GFP wing disc ex vivo stained with anti-GFP antibody. Note that the co-localization of green and red (externalized Hh) is increased in

more basolateral sections. The internalized Hh-GFP at the A compartment is in green (white arrow heads). Note also that in the most basal section

Hh puncta appear to be aligned in a ‘beads on a string’ arrangement, suggesting they associate to cytonemes (see also ref. 6). (d) Ex vivo staining using an

anti-GFP antibody in a UAS.Hh-GFP/UAS.Ihog-RFP; hh.Gal4/tubGal80ts wing disc after 24 h at the restrictive temperature. Note the co-localization

between Hh and Ihog (arrow heads) in the A compartment and also the presence of externalized Hh at the cellular extensions marked by the Ihog protein.

(e) Dlp expression in a tubGal80ts; UAS.Ihoh-YFP/hh.Gal4 wing disc for 24 h. (e) Insets in e showing the co-localization of puncta of Ihog and Dlp

(arrow heads) in the A compartment. (f) Ectopic expression of UAS-Ihog-YFP and UAS-Disp using the hh.Gal4; tubGal80ts system for 24 h. (f) Insets

in f show the co-localization of puncta of both proteins (arrow heads) in the A compartment. (g) Ex vivo staining using an anti-Disp antibody in a

UAS-Disp/UAS-iHo-CFP; hh.Gal4/tubGal80ts wing disc after 24 h at the restrictive temperature. Note the co-localization of Disp, Dlp and Ihog in the

A compartment cells (arrow heads) (insets g). Scale bars,10mm.
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on microvilli membranes (Supplementary Fig. 1B), whereas
basolateral staining on Hh-producing cells was mainly detected
within multivesicular bodies (MVBs) and lysosomes as well as
on the basolateral membranes (Supplementary Fig. 1C–E).

Interestingly, Hh staining was also detected on heterogeneous
vesicle-like structures (size ranging from 30 to 200 nm) in
basolateral extracellular spaces close to the basal lamina
(Supplementary Fig. 1F,f). To further explore the extracellular
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distribution of Hh, wing discs expressing Hh-GFP were labelled
ex vivo with an anti-GFP antibody before EM processing.
As shown in Fig. 4a,b, thawed cryosections labelled with a dual
fluorescent and electron-dense Fab0fragment probe showed apical
staining and a basolateral punctate fluorescent pattern at the P
compartment, fully consistent with the punctate labelling of
external Hh observed at the confocal microscope (Fig. 1). In
addition, at the EM level, immunogold staining detected Hh-GFP
on apical microvilli membranes (arrows in Fig. 4c, d) as well as on
discrete regions of basolateral membranes (arrows in Fig. 4f,j),
frequently associated with cell-to-cell contacts (arrows in Fig. 4j).
Importantly, significant Hh labelling was detected on clusters of
vesicle-like structures at the basolateral extracellular spaces
(arrowheads in Fig. 4g,m,n,p) and some of these vesicles appear
also localized in association with cell protrusions (arrowheads in
insets Fig. 4g and m). Finally, immuno-EM confirmed the pre-
sence of Hh, Ihog and Disp at MVBs and exovesicles
(Supplementary Fig. 1G–I) in cryosections of wing discs expres-
sing Ihog-CFP and Disp-YFP, respectively. Altogether, these

results support the notion that all these Hh signalling pathway
components share the same secretion mechanism in exovesicles
at basolateral spaces.

Due to the size of some of these EVs (30–150 nm) and their
association with MVBs, they could comprise bona fide
exosomes13, defined as EVs enriched in cholesterol,
sphingomyelin, ceramide and components of membrane raft
microdomains14. Exosomes originate from MVBs and are
released to the extracellular space following fusion with the
plasma membrane, containing proteins implicated in trafficking,
membrane fusion and signalling15. Hh has been shown to traffic
from apical to basolateral plasma membranes6–8 and this
recycling process might actually localize Hh in MVBs. Both
processes, Hh release8 and MVB formation, require Rab5, Rab4
and Rab8 function16,17.

Hh-loaded exovesicles in culture cells. Further characterization
using Drosophila cultured wing disc cells, Cl8, as well as

hh.Gal4 > UAS.IhogRFP; UAS.CD63GFP

CD63GFP

IhogRFP

CD63GFP

α-Hh

20 μm

Merge

IhogRFP

CD63GFP

10 μm

kDa

100
70
55

70
55

D
ep

l.

IPIP
 C

on
tr

ol

IPIPIP
 c

on
tr

ol

IP
 c

on
tr

ol

D
ep

l.

In
pu

t

In
pu

t

In
pu

t

kDa

100

kDa

25
35

55

*

IP: CD63-GFP + Ihog-RFP

WB: α-RFPWB: α-GFP WB: α-Hh

IhogRFP

α-Hh

Figure 2 | Hh and Ihog can complex with the exosome marker CD63 in vivo. (a) Lateral view of a reconstructed z-stack of confocal images from a wing

disc expressing the exosome marker UAS.CD63-GFP and UAS.Ihog-RFP under the control of hh.Gal4/tubG80ts after 24 h at the restrictive temperature and

immuno-labelled for Hh. Note the co-localization of Ihog-RFP (red) and the endogenous Hh (grey) with the marker CD63-GFP (arrow heads). Scale bar,

20mm. (b) Live imaging of Drosophila abdomen shows CD63-GFP labelled puncta that co-localizes with puncta also labelled by Ihog-RFP (arrow heads) and

that move along the cytoneme (See also Supplementary Movie 3). Scale bar, 10mm. (c–e) Western blots showing co-immunoprecipation of CD63-GFP,

Ihog-RFP and endogenous Hh after a GFP-Trap pull down (Chromoteck) from a high-speed supernatant of homogenized larvae expressing CD63-GFP

as control and larvae co-expressing CD63-GFP and Ihog-RFP as expermiental. (c) Immunoprecipitation of CD63-GFP shown for both, the IP control

and the experimental IP control (arrowhead). (d) Co-immunoprecipitation of Ihog-RFP revealed by anti-RFP in the experimental IP control (arrow) and not

present in the IP control. (e) Co-immunoprecipitation of endogenous Hh revealed (after membrane antibody stripping) by anti-Hh in the experimental IP

control (asterisk) and not present in the IP control, probably due to an enrichment effect of the co-expression of Ihog-RFP and CD63-GFP.
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transfected S2 cells expressing Hh-GFP also show the presence of
endogenous Hh or Hh-GFP in EVs. These EVs have exosome-like
features based on flotation density and protein markers (Fig. 5
and Supplementary Fig. 2A,B). Characterization of the vesicular

fraction by isopynic density gradients shows co-fractioning of
the Hh protein with membrane (TSG101, Rab11, Rab8 and
Syntaxin), and luminal (Hsp70) exosomal-associated proteins18

(Fig. 5b) and the Hh co-receptor Ihog (Supplementary Fig. 2C).
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Figure 3 | Punctate structures move along cytonemes in vivo. (a,b) CD63-GFP labels punctate structures that move along cytonemes. Cells of the

P compartment are labelled with hh.Gal44UAS.CD63-GFP. (a) Individual frames taken from Supplementary Movie 4. Black arrows indicate puncta.

Fluorescence is depicted using an inverted grey lookup table (LUT). (b) Individual frames taken from Supplementary Movie 5. Arrowheads indicate puncta.

Fluorescence is depicted using a grey LUT (left) and a HiLo LUT (right), which highlights the brightest pixels in red. (c) Cytonemes labelled with

CD4-Tomato show ‘buckling’ and ‘swelling’. These structures might be related to the shedding of vesicles, which we could observe occasionally (see d).

Individual frames taken from Supplementary Movie 6. Cells of the P compartment are labelled with hh.Gal44UAS.CD4-Tomato. Fluorescence is depicted

using an inverted grey lookup table. (d) Occasionally, we observe punctate structures shedding from the cytonemes. Individual frames taken from

Supplementary Movie 7. Cytonemes reaching into the A compartment are labelled with hh.Gal44UAS.Ihog-RFP and coloured with a fire lookup table.

Left panel: overview. Right panels: time sequence of detail indicated in the overview. Note punctate structures, which are located along the cytonemes.

One punctum (white arrows) is budding (cyan arrowheads) and finally shedding from the cytoneme (orange arrowhead).
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Previously, it has been described that Hh is associated to
lipoproteins (Drosophila apoliproteins; Lipophorins (Lp-I and
Lp-II19) for transport12. Lp-II has also been detected in EV
preparations in the presence of fly extracts (source of Lps in the
Drosophila cell culture medium) but Lp-II does not co-fractionate
with Hh-containing exosomes (Fig. 5a,b). Moreover, Hh-loaded
EVs were able to activate the Ptc::luciferase reporter (Fig. 5c,d),
further showing that the Hh protein present in these EVs is
functional.

Finally, interfering with proteins involved in the production/
secretion of EVs, TSG101 and Rab27 (refs 20–22) in Drosophila
wing disc cells (Cl8 cells) leads to a significant reduction in the
levels of Hh protein associated to EVs (Supplementary Fig. 2D).
However, in our in vitro model, interference with the ESCRT-
independent exosome production protein nSMase does not
show a significant decrease in the Hh levels within EVs
(Supplementary Fig. 2D). Together, the results obtained from
cell cultured EV analysis support the notion that at least a
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fraction of functional Hh is secreted in exosome-like vesicles in
Drosophila cells.

Exovesicle formation genes are needed for Hh release in vivo.
From an in vivo perspective, preliminary observations have
shown a reduction of the Hh gradient when blocking EVs
formation via RNA interference (RNAi) treatment6. Further,
in vivo RNAi screening confirmed the previously observed role of
genes involved in EV formation and release, identifying new
proteins involved in the graded secretion of Hh via EVs. Five
RNAi treatments show an effect on the Hh gradient by the
analysis of the Ptc::GFP-Enhancer-Trap expression, a recognized
reporter for both, short- and long-range Hh responses: the
ESCRT complex components Vps22 (ESCRT-II component)
and Vps24 (ESCRT-III component), the ESCRT-independent
sorting protein SMase23, the SNARE complex component Ykt6
and the Drosophila homologous for the P4-ATPase (CG31729),
TAT-5 in C. elegans shown to regulate the budding of EVs
from the plasma membrane (shedding vesicles/ectosomes/
microparticles)24 (Fig. 6a–d). All these proteins are involved in
EV secretion pathways and Ykt6 has also been shown to be
involved in the release of exosomes containing Wingless (Wg)25.
In addition, to confirm the requirement of EV formation
during Hh signalling, we have quantified the effect of knocking
down a fraction of the genes identified over the long-range
target Cubitus interruptus (Ci), and a significant decrease in

activation was also observed (Fig 6A,e–h). These experiments
then endorse the necessity of the molecular machinery for EV
formation and release for both short- as well as long-range Hh
signalling.

To further analyse the effect of knocking down EVs production
genes over Hh-loaded EVs in vivo, we ectopically expressed
Hh-GFP or Ihog-RFP in producing cells, quantifying the visible
punctate structures only in the A compartment (Fig. 6i–l and for
methods Supplementary Fig. 3). We tested RNAi treatments with
a clear effect in Hh signalling (Fig. 6a–h and ref. 6) including the
ESCRT-0 protein Hrs26, the accessory ESCRT protein ALiX26, the
EV component Anx B11 (ref. 27), the endosomal sorting protein
Rab11 implicated in EV targeting28 and the lipid raft component
Flo2 also found in EVs29. All RNAi treatments tested result in
significantly fewer Hh-GFP puncta in the A compartment
(Fig. 6i–k), showing an effect on actual Hh secretion. Similar
reduction effects were also observed for Ihog-RFP puncta,
confirming again the role of these genes in the regulation of
the Hh pathway (Fig. 6k). Moreover, interfering with EV
production decreases the externalized levels of endogenous Hh
(see Fig 6C,c expressed in levels of ratio change), shown by ex
vivo staining after depletion only in the dorsal compartment of
the disc, while the ventral part retains the wild-type conditions
(Fig. 6m,n). Importantly, all RNAis used did not have a
significant apoptotic effect after treatment (Supplementary
Fig. 4A). In addition, quantitative reverse transcription-PCR
(RT–PCR) experiments for four of these treatments confirmed
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the significant reduction of targeted RNA levels induced by the
RNAis expression (Supplementary Fig. 4B).

On the other hand, immunolabelling for total endogenous Hh
levels of wing discs expressing the RNAi constructs only in the
dorsal compartment, and compared to the wild-type ventral
compartment, show no significant change, excluding potential
effects of RNAi treatments over production or degradation of
intracellular Hh (Supplementary Fig. 4C). The only exceptions to
the latter observation were the RNAi treatment for the ESCRT-I
component TSG101 and the ESCRT-II component Vps22, which
show significant accumulation of total Hh on the P compartment
(paired t-test, t¼ � 5.19, df¼ 7, Po0.01; Supplementary
Fig. 4C,c). However, despite this accumulation, both TSG101
and Vps22 RNAi treatment still lead to a reduction in the
extracellular levels of Hh (Fig. 6m–o). Thus, taking into account
all data from RNAi treatments, EV production is required for the
normal release levels of Hh to the extracellular space in the wing
disc and consequently for the normal graded signalling pattern.

Discussion
Our previous research showed a requirement for cytonemes
extending from Hh producer cells towards receptor cells for Hh
gradient formation, while Hh was also observed in punctate
structures6. Here we characterized these puncta confirming their
EV nature and role during Hh signalling. These Hh-loaded
exovesicles are a heterogeneous group, differing in size and
potentially in origin. In vivo imaging shows puncta moving along
cytonemes, suggesting a route of Hh secretion and restricted
dispersion where Hh-containing EVs are transported by
cytonemes. Nevertheless, to date, we still do not know the
precise mechanism used for Hh release and transport along the
cytoneme. Ultrastructural analysis confirmed the presence of Hh
in MVBs on the A compartment, supporting an ESCRT
dependent route of exovesicle formation and release. Thus, it is
possible that MVBs fuse to the plasma membrane-releasing
vesicles at the same time as cytonemes are elongating.
Alternatively or in addition, smaller vesicles (that may well be
small MVBs) appear to be travelling within the cytoneme.
However, live imaging of these structures also shows puncta
shedding directly from the cytonemes, and these might
correspond to membrane-derived vesicles known as shedding
vesicles or ectosomes/microvesicles30.

Ectosome EVs were described as bigger than exosomes and
more heterogeneous in size, ranging from 200 nm to greater than
1 mm in diameter, and are originated by shedding preceded by the
budding of small cytoplasmic protrusions, which then detach by
fission of their stalk30. Although shedding vesicles/ectosomes
seem to have a different origin31, the mechanisms of their sorting

process remain obscure and might also be dependent on the
ESCRT complex24. In addition, studies have shown a crucial role
for cholesterol-rich microdomains of the plasma membrane for
shedding vesicle formation32 as well as for biogenesis of
exosomes14. In our in vivo experiments, we have observed a
decrease in Hh signalling by knocking down Vps22, an ESCRT-II
complex component described as dispensable for vesicles derived
directly from the plasma membrane33,34, but required for MVB
formation35 (reviewed in ref. 36) supporting an MVB fusion
origin. However, we have also observed a decrease in signalling
and Hh release when interfering with P4-ATPase (CG31729), the
Drosophila orthologue of TAT-5 specifically involved in the
formation of ectosomes in C. elegans24. Thus, as it is difficult to
account for the considerable differences between the two types of
vesicles, the result of knocking down Vps22 and P4-ATPase
together with the EM data and the in vivo imaging indicate that
Hh might be released in both ectosomes/microvesicles and
exosome-like vesicles. Determining which process might be the
main one regulating Hh secretion or whether both processes are
linked is a future challenge.

In vitro, functional tests demonstrate that Hh-loaded exove-
sicles fractionate together with classical exosomal markers
(Fig. 5b), and are able to activate Hh-dependent transcription
in cell culture (Fig. 5d). Furthermore, interference with genes
involved in the formation and release of EVs in vivo has a
decreasing effect on the release of Hh to the extracellular space,
altering the Hh gradient formation during signalling (Fig. 6). In
our experimental model (the Drosophila wing imaginal disc), all
RNAi treatments behave similarly, independent of their indivi-
dual function within the EVs formation pathways. The only
exceptions were given by the silencing of ESCRT-I component
TSG101 and the ECRT-II component Vps22, which resulted in a
significant accumulation of total Hh in the P compartment
(Supplementary Fig. 4C) but still impaired Hh secretion to the A
compartment (Fig. 6i–o), probably due to a simultaneous
impairment of the route for Hh degradation as they both play a
key role in MVB formation26,35. Differential outputs after
downregulation of different EVs formation genes have been
reported, including an increment in EVs release (for example,
ALiX RNAi)26. However, there is an increasing evidence of the
heterogeneous nature of EVs in size, protein content and origin18.
Depletion of a gene involved in the formation pathway might
either affect EVs release in general or might alter the proportion
of the different vesicles formed26. Thus, quantifying the effects
over those vesicles containing Hh or Ihog might not detect
potentially distinct changes in the distribution of different size
vesicles or protein content.

Association of Hh to EVs, and thus membranes, supports the
transport mechanism initially proposed by Greco et al.37 for the

Figure 6 | Hh signalling and release in mutant conditions for exosome production genes. (a–h) Hh signalling in wing discs expressing RNAi treatments

in the P compartment (b–d,f–h) and control (a,e), visualized in the A compartment using the Ptc-promotor-Trap::GFP reporter (a–d) and immunolabelling

for the long-range target Ci (e–h). Detail shown at the bottom and anterior is to the left. Note in RNAi wing discs (b–d,f–h), gradients are shorter than

in controls (a,e). (d,h) Box plot comparing gradient length expressed as a proportion of wing pouch length, between control discs and treatments for each

reporter. (i–l) Quantification of the number of Hh-GFP (i–k) or Ihog-RFP (l) released punctate structures. Reconstruction in Z (lateral view) of wing discs

expressing Hh-GFP (i) or co-expressing Hh-GFP and RNAi for AnxB11 (j) under the control of hh.Gal4 and immunostained for the transcription target

Ptc (red, also a marker of the A compartment cells), note punctate structures in the A compartment, decrease after RNAi treatment. (k) Boxplot comparing

the number of Hh-GFP puncta released for the control (UAS.Hh-GFP) and 10 exosome-related treatments. Note the reduction in the number of puncta. (l)

Boxplot comparing the number of Ihog-RFP puncta (anterior compartment) for the control (UAS.Ihog-RFP) and seven treatments related to exosome

production. Note the reduction in the number of puncta. (m–o) Endogenous externalized Hh levels decrease in mutant conditions for exosome production

genes. Ex vivo staining for Hh in wild-type discs (m) or in wing disc expressing RNAi for TSG101 (n) driven by ap.Gal4 with a dorsal expression domain

(marked by GFP), leaving the ventral domain in wild-type conditions as an internal control. Note the decrease in fluorescence after treatment (m,n). (o)

Boxplot showing the ratio between relative intensity of the mean grey value in the dorsal (RNAi treated) versus the ventral compartment (wild type). The

ratio is close to 1 in control, while the ratio for all RNAi cases is greater than 1 due to a decrease in the levels of external Hh in treated cells. Significance

levels for pairwise tests (Tukey HSD or Wilcoxon, depending on Normality of data): ***Po0.001, **Po0.01, *Po0.05,þ Po0.1. Scale bars,10 mm.
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spread of Wg protein; Wg secreted and moved while contained in
membrane fragments called argosomes. Vesicular release of SHh
has also been described in the determination of left–right
asymmetry in vertebrates38. Moreover, Hh has been found in
exosomal structures for its apical secretion in C. elegans39.
We have found a functional Hh associated to heterogeneous EVs,
either originated from MVBs or/and directly shedding from the
plasma membrane of cytonemes, and that are essential for Hh
gradient formation.

Recent reports also show Wg and Wnt to be released in
exosomes at the wing disc, in the zebrafish and tissue culture
cells21,22,25,40. During patterning of the zebrafish neuroectoderm,
Wnt8a localizes to the membrane-associated punctate structures
in live tissue and these puncta are found on filopodial cellular
processes40. In Drosophila, Wg has also been visualized in vivo
moving along cellular extensions by Evi-exosomes18 or released
as exosomes from MVBs at synaptic terminals22. The release of
exosomes and further activation of the Hh pathway in an
epithelium might then require a synaptic process with a potential
complex association of various proteins. Thus, in vitro
experiments with cultured cells might not be able to reproduce
the signalling process in an epithelium, leading to the relatively
low representation of Hh in exosomes and Hh-dependent
transcription activation.

Overall, our results support a route for morphogen transport
that involves vesicle transport and secretion along cytonemes
to accomplish proper spatially restricted signalling. Still, key
unanswered questions regarding the final transfer or release of
morphogens like Hh remain. Supporting a conserved mechanism
in vertebrates, SHh and CDO (vertebrate homologue of Ihog) in
vesicle-like structures have been observed moving along specia-
lized filopodia in the chick limb bud9. Further elucidation of the
origin, structure and function of the EVs implicated in this
process as well as the mechanism of their release is likely to be
essential to understand Hh cell-cell signalling. However, our
results do not totally exclude a potential combinatorial effort with
other secretion routes or extracellular forms of Hh, such as
lipoprotein particles12,41 or Hh multimers42. Comprehending
how signalling molecules like Hh are distributed will improve the
knowledge of developmental processes and their role in diseases
like cancer, revealing a wider set of mechanisms and genes
involved in the regulation of their signalling.

Methods
Fly mutants. A description of mutations, insertions and transgenes
(Supplementary Table 1) is available at Fly Base (http://flybase.org/). Gal80ts,
FLP122 (Bloomington Drosophila Stock Centre (BDSC), Indiana, USA; http://
flystocks.bio.indiana.edu).

Overexpression experiments. Gal4 drivers were: hh.Gal4 (ref. 43), ap.Gal4
(ref. 44), tub.Gal4 (BDSC). The pUAS-transgenes were: UAS.Hh-GFP45,
UAS.Ihog-RFP, UAS.Ihog-YFP, UAS.Ihog-CFP7,8, UAS.CD63-GFP12,
UAS.CD4-tdTom46 and UAS.eGFP (BDSC).

UAS-RNAi lines targeting TSG101 (35710), ALiX (33417), Hrs (33900), Rab27
(37774), Vps 22 (38289), Vps 24 (38281), aSmase (25283) and Ykt6 (38314) were
from BDSC. Flo2 (31525), AnxB11 (29693), Rab11 (108382), P4-ATPase
(CG31729) (105987) and Vps4 (105977) were from the IMP Vienna Drosophila
RNAi Centre (VDRC; http://stockcenter.vdrc.at). Transient expression of UAS
constructs using Gal4; TubGal80ts drivers was achieved by maintaining fly crosses
at 18 �C and inactivating Gal80ts at the restrictive temperature (29 �C) for thirty
hours before dissection.

Immunostaining of imaginal discs. Immunostaining was performed according to
standard protocols47,48. Imaginal discs from third instar larvae were fixed in 4%
paraformaldehyde (PFA)/PBS for 20 min at room temperature (RT) and washed in
PBT before incubating with PBT 0.2% bovine serum albumin for blocking (1 h at
RT) and primary antibody incubations (overnight at 4 �C). Incubation with
fluorescent secondary antibodies (1/200 Jackson laboratories and Invitrogen,
Carlsbad, CA) was performed for 2 h at RT for posterior washing and mounting in

media (Vectashield). Antibody dilutions were: rabbit polyclonal anti-Hh (1:800 or
1:500, raised in this work); rat monoclonal anti-Ci48 (1:20 dilution, a gift from
B. Holmgren); rabbit polyclonal anti-GFP antibody (1:500, Molecular Probes,
A-6455); and rabbit polyclonal anti-Caspase 3 antibody (1:50 dilution, Asp-175
from Cell Signalling). Ex vivo labelling using anti-GFP antibody is described in
ref. 45. Imaginal discs from third instar larvae were dissected on ice, transferred
immediately to ice-cold M3 medium containing anti-Hh (1:30 dilution; rabbit
antibody raised for this work), anti-GFP (1:50 dilution, rabbit antibody A-6455;
Invitrogen) or anti-Disp8 (1:50 dilution, guinea pig antibody), or anti-Dlp (1:5
dilution; mouse antibody, Hybridome bank, Iowa) antibodies and incubated at 4 �C
for 30 min. The incubation with the primary antibody under these ‘in vivo’
conditions, without detergents before fixation rendered the antibody incapable of
penetrating the cells. They were then washed in ice-cold PBS, fixed in PBS 4% PFA
at 4 �C, washed in PBT and incubated with secondary fluorescent antibody as
above.

In vivo imaging of abdomen. Pupae were filmed through a window in the pupal
case for analysis49. The window was made with forceps after attaching the pupa to
double-sided adhesive tape. To remove the adhesive, water was used. Mounting
between two spacers made of five bands of Parafilm ‘M’ ensured minimal
squashing. The pupa was surrounded by water, placing a coverslip over the sample
and closing the open part of the chamber with voltalef oil to ensure oxygen supply.
All imaged flies developed into pharate adults and many hatched. Z-stacks of
around 40mm with a step size of 2.5 or 3 mm were recorded every 150–180 s using a
Leica SP8 confocal microscope at 24±1�C.49

Number (N) of recorded pupae: Supplementary Movies 2 and 7, N¼ 8;
Supplementary Movie 3, N¼ 3; Supplementary Movies 4 and 5, N¼ 9;
Supplementary Movie 6, N¼ 6.

Microscopy and image processing of imaginal discs. Laser scanning confocal
microscopes (LSM510 or LSM710 Vertical; Zeiss) were used for confocal
fluorescence imaging of imaginal discs. ImageJ software (National Institutes of
Health) was used for image processing and for determining fluorescence levels.

Quantification of EVs and Hh levels. Vesicle number (Fig. 6i–l) was quantified
using ImageJ. A rectangular area of 170� 75mm was chosen and allocated in the A
compartment in the vicinity of the P compartment (Supplementary Fig. 3A,B). The
edge limit of the P compartment cells was defined by creating a shaped selection
after blurring of the projected image (Supplementary Fig. 3A,B); also confirmed by
the immunolabelling of the A compartment Ptc expression (Supplementary
Fig. 3C). Within the selection a mean filter of one pixel radius was used to smooth
the image and remove noise. To remove particles that were of low fluorescence
intensity, the lower threshold for pixel intensities was set to 60, whereas the upper
was kept at 255. Finally, the ‘Analyse Particles’ tool was used to count puncta
within 0–4.5 pixels of size (Supplementary Fig. 3A,B). Quantifications were per-
formed using individual Z slices taken every 1mm. All images were treated iden-
tically. For all RNAi treatments, a control for potential cell death due to RNAi
treatment was performed by immune-staining with anti-Caspase antibody (see
Supplementary Fig. 4A); no significant increment of cell death due to treatment
was detected.

Levels of externalized Hh (Fig. 6m–o) and total Hh (Supplementary Fig. 4C)
were quantified by determining Mean Grey Value in ImageJ. A rectangular area of
approximately 14,400 pixels within the wing pouch on each side of the dorsoventral
border marked by GFP expression driven by the ap.Gal4 was used.

Quantification of gradient length. Gradient lengths were determined as
described in ref. 6 and expressed as a proportion of wing pouch length (Fig. 6a–h).

Quantitative RT-qPCR. The RNAis’ ability to downregulate target genes in
transgenic flies was already tested by the manufacturer (BDSC Trip toolbox stocks).
Four RNAi treatments were tested (Supplementary Fig. 4B). Three independent
biological replicate assays were produced for TSG101-, Flo2-, Rab11- and control
EGFP-RNAi constructs, and six replicates in the case of HRS- and its control
EGFP-RNAi. For RNA extraction, Drosophila third instar larvae generally
expressing RNAi constructs or not were collected and kept at � 80 �C. Larval
tissues were homogenized in 500ml Trizol (Invitrogen), 100 ml Chloroform
(Merck). After a 15 min 15,000 g centrifugation at 4 �C, the upper phase containing
total RNA was collected and precipitated with 250 ml 2,3-propanol (Merck). The
dry pellets were resuspended in 40 ml sterile water and stored at � 80 �C. For
RT-qPCR reaction, RNA concentration was measured using Nanodrop ND-1000
and RNA integrity was confirmed using the ‘Total RNA Analysis ng sensitivity
(Eukaryote)’ assay of the Agilent 2100 bioanalyzer. cDNA was generated using
Super Script III First-Strand Synthesis SuperMix for qRT–PCR from Invitrogen
(PN 11752250), 800 ng of total RNA were used for each replicate in a final volume
of 20 ul (final concentration of 40 ng ml� 1). qPCR reactions (95 �C for 10 min.,
40 cycles of 95 �C for 15 s and 60 �C for 30 s; and 1 cycle of 95 �C for 15 s, 60 �C
for 15 s and 95 �C for 15 s) were run on the CFX 384 (Biorad) according to
manufacturer’s instructions. Primers are displayed in Supplementary Table 2.
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Statistical analysis. All statistical analysis was carried out in R50. Data were tested
for normality using Shapiro–Wilk tests (data were logged for normality where
required), and for homogeneity of variance using Bartlett tests.

Models for treatment effects on gradient length. For the Ptc reporter, a
Kruskal–Wallis test of gradient length against treatments related to exovesicle
production (wild type, UAS-aSmase-RNAi, UAS-Vps22-RNAi, UAS-Vps24-RNAi,
UAS-Ykt6-RNAi, UAS-CG31729 (P4-ATPase)-RNAi) (n¼ 65) showed a significant
treatment effect (w2-test2¼ 34.11, df¼ 5, Po0.001). For the Ci reporter, a Kruskal–
Wallis test of gradient length against treatments related to exovesicle production
(wild type, UAS-Hrs-RNAi, UAS-Vps22-RNAi, UAS-Vps4-RNAi, UAS-Anxb11-
RNAi, UAS-TSG101-RNAi, UAS-Vps24-RNAi, UAS-aSmase-RNAi), (n¼ 87)
showed a significant treatment effect (w2¼ 36.89, df¼ 7, Po0.001).

Pairwise Wilcoxon tests adjusted for multiple comparisons were used to test for
differences between control and each treatment (Fig. 6d,h).

Models for treatment effects on number of EVs released. A Kruskal–Wallis
test of the number of Hh-GFP puncta released for control (UAS-Hh-GFP) and
10 EV-related treatments (UAS-ALIX-RNAi, UAS-AnxB11-RNAi, UAS-CG31729
(P4-ATPase)-RNAi, UAS-Rab11-RNAi, UAS-Hrs-RNAi, UAS-Vps4-RNAi,
UAS-Flo2-RNAi, UAS-TSG10-RNAi, UAS-YKT6-RNAi and UAS-aSmase-RNAi)
(n¼ 103) showed a significant treatment effect (w2¼ 54.67, df¼ 10, Po0.001).

A Kruskal–Wallis test carried out for the number of Ihog-RFP puncta released
for control (UAS-Ihog-RFP) and seven treatments related to exosome production
(UAS-Alix-RNAi, UAS-TSG101-RNAi, UAS-AnxB11-RNAi, UAS-Rab11-RNAi,
UAS-Hrs-RNAi, UAS-Vps4-RNAi, UAS-Flo2-RNAi) (n¼ 76) showed a significant
treatment effect (w2¼ 31.18, df¼ 7, Po0.001).

Pairwise Wilcoxon tests adjusted for multiple comparisons were used to test for
significant differences between control and each treatment (Fig. 6k,l).

Models for treatment effect on endogenous levels of external Hh. A paired
t-test comparing relative fluorescence (mean grey values) for wild-type tissue
and RNAi-treated tissue (UAS-TSG101-RNAi, UAS-Rab11-RNAi, UAS-Hrs-RNAi,
UAS-Vps22-RNAi) (n¼ 56) showed a significant difference (t¼ 13.18, df¼ 55,
Po0.001). The Ratio WT:ap was tested for difference between RNAi expressing
wing discs (ap) and discs without RNAi treatment or Control (WT), using Anova
(F4,51¼ 7.79, Po0.001). Tukey’s Honest significant difference tests were used to
test for differences between control and each treatment (Fig 6c,e).

Models for treatment effect on endogenous levels of total Hh. Paired t-tests
comparing the relative fluorescence (mean grey values) for wild-type tissue and
RNAi-treated tissue (UAS-TSG101-RNAi, UAS-Hrs-RNAi, UAS-AnxB11-RNAi,
UAS-Flo2-RNAi, UAS-Vps22-RNAi and UAS-CG31729-RNAi (P4-ATPase) (n¼ 49)
showed non-significant differences, except for TSG101 (t¼ � 5.19, df¼ 7,
Po0.01) and Vps22 (t¼ � 5.50, df¼ 7, Po0.001) treatments. The Ratio WT:ap
was tested for difference between RNAi expressing wing discs (ap) and discs
without RNAi treatment or control (WT), using analysis of variance (F6,42¼ 11.7,
Po0.001). Tukey’s Honest significant difference tests showed that the only sig-
nificant differences with control were for TSG101 (Po0.05) and Vps22 (Po0.001;
Supplementary Fig. 4C,c).

Models for treatment effects on target RNA levels. Welch two sample t-tests
comparing the normalized values for RNA expression for wild-type tissue and each
RNAi-treated tissue (UAS-TSG101-RNAi, UAS-Flo2-RNAi, UAS-Rab11-RNAi,
UAS-Hrs-RNAi) showed significant differences between RNAi expressing larvae
and larvae without RNAi treatment or Control (Supplementary Fig. 4B). Values for
each treatment are: TSG101 RNAi against Control (n¼ 6; t¼ 3.63, df¼ 3.6,
Po0.05), Flo2 RNAi against Control (n¼ 6; t¼ 9.19, df¼ 2.5, Po0.005), Rab11
RNAi against Control (n¼ 6; t¼ 18.2, df¼ 2, Po0.005), HRS RNAi against
Control (n¼ 12; t¼ 4.08, df¼ 8.3, Po0.005).

Immunoelectron microscopy. Larvae were inverted in PBS and fixed in 2% (w/v)
PFA and 0.2% (w/v) glutaraldehyde or 4% PFA and 0.05% glutaraldehyde in 0.1 M
phosphate buffer (PB, pH 7.4) for 2 h at room temperature and kept in 1% (w/v)
PFA in PB at 4 �C. Subsequently, wing discs were dissected, embedded in 10%
(w/v) gelatine and processed for cryosectioning. Discs were cut orthogonal to the
ventral/dorsal axis on an EM FCS cryo-ultramicrotome (Leica Microsystems) at
� 120 �C. For immunogold labelling, thawed 90-nm thick cryosections were
incubated with rabbit anti-GFP (1:500, A-6455; Invitrogen, rabbit anti-Hh (1:150)
(6), guinea pig anti-Disp (1:100) antibodies followed by protein A conjugated to
15-nm gold particles (EM Laboratory, Utrecht University, The Netherlands).
Sections were stained with a mix of 1.8% methylcellulose and 0.4% uranyl acetate.
For double labelling, anti-Disp8 and anti-Hh48 antibodies were detected with goat
anti-guinea pig IgG conjugated to 10-nm gold particles and goat anti-rabbit IgG
conjugated to 15-nm gold particles (British Biocell), respectively.

For ex vivo anti-GFP labelling experiments, discs expressing Hh-GFP were
labelled with 1:30 dilution anti-rabbit anti-GFP polyclonal antibody (Life

technologies (Molecular Probes)) as above and reported in ref. 45 and fixed with
4% PFA and 0.05% GL in 0.1 M PB (pH 7.4) for 2 h at RT. The discs were
processed for cryosectioning as described. Ultra-thin (100 nm) thawed cryosections
were incubated with an anti-rabbit Fab0 fragment conjugated to Alexa594 and
1.4-nm nanogold (Fluoronanogold, Nanoprobes, New York, USA), mounted with
50% glycerol and visualized with an inverted fluorescence microscope (DMI6000,
Leica Microsystems, Wetzlar, Germany). For EM visualization, nanogold labelling
was amplified by silver enhancement according to manufacturer’s instructions
(Nanoprobes). Sections were stained with a mixture of methylcellulose and uranyl
acetate and visualized with a JEOL JEM 1010 (Tokyo, Japan) electron microscope
at 80 kV. Images were recorded with a 4� 4 k CMOS F416 camera from TVIPS
(Gauting, Germany).

Immunoprecipitation. We modified a standard protocol for immunoprecipitation
using Drosophila embryos51. Larvae expressing CD63-GFP, Ihog-RFP or co-
expressing both under tub.Gal4 were collected and dry frozen in liquid Nitrogen.
Fifty frozen larvae for each genotype were homogenized in 1 ml each of C Buffer
(50 mM HEPES (pH 7.4), 50 mM KCl, 1 mM MgCl, 1 mM EGTA, 0.1% Triton,
Protease inhibitors cocktail (Roche) and 1 mM PMSF). Extracts were initially
clarified by centrifugation at 35,000 g for 10 min, followed by two high-speed
centrifugations at 35,000 r.p.m. for 10 and 30 min. The supernatant was incubated
with GFP-Trap coupled to agarose beads (Chromoteck) for 1 h at 4 �C, then
washed (5� ) with C Buffer. Immunoprecipitated samples were resuspended in
sample buffer with DTT and subjected to 1 D SDS-polyacrylamide gel
electrophoresis and western blotting. Blotted membranes were probed with
appropriate antibodies, either to RFP (1:5,000, Abcam) or GFP (1:1,000, Sigma).
After antibody stripping (Tris–HCL 0.5 M, pH 6.8, 2% SDS and b-mercaptoethanol
0.1 M, for 30 min at 60 �C) membranes were probed with anti-Hh (rabbit antibody
raised for this work 1:5,000). Uncropped western blots are shown in
Supplementary Fig. 5A–C.

Cell culture. Drosophila S2 cells stably-expressing full-length Hh fused to GFP
(S2::Hh-GFP) were generated using multicistronic vector pAc5-STABLE2-Neo52,
and cultured in Schneider’s medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin at 25 �C. Cl8 cells were cultured in M3
medium containing 2.5% of FBS, 2.5% fly extract, 10 mg ml� 1 of insulin and
1% penicillin/streptomycin. Transient transfections of Cl8 cells were performed
using X-tremeGENE transfection reagent (Roche Applied Science) following
manufacturer’s instructions on 25 million (5 million ml� 1) cells and 6 mg of DNA
per transfection experiment.

Production and isolation of EVs. Crude preparation of EVs from Hh-GFP
transiently transfected Cl8 cells was obtained by collecting 5 ml of EV-depleted
media and performing differential centrifugation at 2,000 g and 100,000 g of
supernatants after 48 h transfection. Pellets containing crude EVs were resus-
pended. For EV production of S2::Hh-GFP and Cl8 cells, 400 million cells were
cultured for 48 and 96 h, respectively, in EV-depleted media (2.5 millions ml� 1)
and exosomes-enriched EVs secreted into the medium were purified as previously
described53; briefly, culture supernatant was collected and centrifuged at 2,000 g,
4 �C, for 10 min to remove cells. The resultant supernatant was subjected to
filtration through 0.22-mm pore filters, followed by ultracentrifugation at 10,000
and 100,000 g for 30 and 60 min, 4 �C, respectively. Resulting pellets were washed
with PBS and again ultracentrifuged at 100,000 g, 4 �C, for 60 min. Final pellets
were suspended in PBS and stored at � 80 �C.

Western blot analysis. A small portion (1/350th) of supernatants obtained after
2,000 and 100,000 g, and 1/5th of the crude EVs preparations or the fractions from
the sucrose gradient were analysed by western blotting. Extracts from larvae stage 3
(L3) were prepared as described7. SDS sample buffer was added to samples and
incubated for 5 min at 37, 65 and 95 �C and separated on 4–12% pre-casted
acrylamide gels (Invitrogen) under non-reducing conditions. Gels were transferred
to polyvinylidene difluoride membranes and blocked (5% milk and 0.05% Tween-
20 in PBS) for antibody incubation. Chemoluminescent detection of proteins was
performed using ECL Prime (Amersham) or Clarity Western ECL substrate
(Biorad). Monoclonal antibodies were purchased from vendors indicated:
anti-GFP (clones 7.1 and 13.1) from Roche, anti-GFP (clone GFP-20) for
co-immunoprecipitation experiments from Sigma, anti-RFP (ab62341) from
Abcam, anti-Hsp70 (BRM-22) from Santa Cruz Biotechnology, Inc (Santa Cruz,
CA), anti-TSG101 (4A10) from Abcam, anti-Rab11 (clone 47) and anti-ubiquitin
(clone 6C1.17) from BD Biosciences (Mountain View, CA), anti-ApoLII (ref. 54)
and anti-Syntaxin (8C3) from Developmental Studies Hybridoma Bank (Iowa City,
IA). Rabbit polyclonal anti-Hh and anti-Ihog were obtained using the Polyclonal
Genomic Antibody TechnologyTM (sdix)55. For anti-Hh production, the
immunogen region used comprised the DmHh amino-acids region 80–256;
as for the anti-Ihog the DmIhog amino-acid region 248–488 was used.
Horseradish peroxidase-conjugated secondary antibody was from GE-Healthcare
(Buckinghamshire, UK). Uncropped Western blots are shown in
Supplementary Fig. 5.
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Fractionation of EVs on continuous sucrose gradient. A continuous 0.25–2 M
sucrose gradient in 20 mM HEPES (pH 7.4) was performed as described in ref. 56.
Briefly, EVs were placed on the continuous sucrose gradient and submitted to
ultracentrifugation for 16 h at 210,000 g, 4 �C, in a SW40Ti swinging-bucket rotor.
By using an auto densi-flow density gradient fractionator (Labconco, Kansas City,
MO, USA), 1 ml fractions were collected from top to bottom and 20 ml of each
fraction were reserved for measurement of the refractive index to density
determination. Each fraction was diluted with 2 ml of 20 mM HEPES (pH 7.4) and
ultracentrifuged for 1 h at 100,000 g, 4 �C, in a TLA-110 rotor. Supernatants were
aspirated and pellets were suspended in 25 ml PBS and stored at � 80 �C.

Gene silencing in Drosophila cultured Cl8 cells. nSMase, TSG101 and Rab27
dsRNAs were synthesized following the protocol used at the Drosophila RNAi
Screening Centre (DRSC) in Boston. Briefly, DNA templates containing T7 pro-
moters sequence on both ends were obtained from DRSC and were amplified by
PCR. These PCR products were used for in vitro transcription reaction, which was
carried out for 16 h at 37 �C using the T7 Megascript kit from Ambion. After
DNaseI (Ambion) digestion to remove the template DNA, dsRNAs were purified
using RNAeasy columns (Qiagen). Both PCR-amplified DNA and purified dsRNA
products were assessed by gel electrophoreses and absorbance measurements of
yield. Cl8 cells were seeded in six-well plates at 2� 106 per well in 0.5 ml of FBS-
free medium and 7.5 mg of dsRNA were added and incubated for 1 h, adding 1.5 ml
of EV-depleted medium. After 48 h of incubation, a new dose of dsRNA was added
and after another 48 h of incubation supernatants were collected and centrifuged at
2,000 g for 10 min to remove cells, then centrifuged at 100,000 g for 1 h, 4 �C, in a
TLA-110 rotor. The resulting pellets were suspended in 25 ml of PBS and stored at
� 80 �C for subsequent analysis by western blotting.

Luciferase activity assay of Hh EVs on cultured Drosophila cells. Cl8 cells were
transfected with ptcD136-GL3 Firefly responsible reporter57. After 24 h, cells were
lifted and seeded into 96-wells plate, and 8-hours later incubated with 0.2 ng ml� 1

of Shh recombinant protein (Sigma) or 1/4th of the crude EVs. After 24 h of
treatment, Firefly luciferase levels were measured using Dual-Glo Luciferase Assay
System (Promega) and the ratio to the control (no EVs added) was calculated to
give Hh signalling activity. This was tested in triplicate and significant differences
were tested by a t-student test.
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