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Abstract

Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone
transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological
impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably
results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain
development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex
hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other
transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have
analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid
hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we
generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As
described previously the single Mct8 KO neonates had a transient increase of 3,5,39-triiodothyronine concentration and
expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO
prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On
postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex
3,5,39-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no
modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of
thyroid hormone to the cerebral cortex during early postnatal development.
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Introduction

Thyroid hormones (thyroxine, T4 and 3,5,39-triiodo-L-thyro-

nine, T3) transport through the cellular plasma membrane is

facilitated by several classes of transmembrane proteins. These

include the monocarboxylate transporters (MCT), the organic

anion transporter polypeptides (OATP), the heterodimeric ami-

noacid transporters, the Na+/taurocholate cotransporting poly-

peptide (NTCP) and other classes of transporters [1]. MCT8

(SLC16A2) is specific for iodothyronine transport [2,3]. MCT8

gene mutations cause an X-linked thyroid hormone cell transport

defect, also known as Allan-Herndon-Dudley syndrome, charac-

terized by global developmental delays, profound neurological

impairment, severe intellectual deficit, and altered secretion,

distribution and metabolism of thyroid hormones [4–6]. Patients

also present elevated serum T3, reduced T4 and rT3, and

unaltered or slightly elevated serum TSH.

Thyroid hormone acts on the brain from early brain

development [7–9]. The neurological impairment of MCT8

transport defect is likely due to the failure of thyroid hormone to

reach the neural target cells in adequate amounts to sustain

normal brain development. The syndrome is partially replicated in

mice with inactivated Mct8 gene [10,11]. These Mct8-deficient

mice display the same alterations of thyroid hormone concentra-

tions as the patients, indicating that the absent or defective

function of the Mct8 protein in mice leads to similar alterations of

thyroid hormone as those found in patients. However these mice

present minimal, if any, behavioral deficits of uncertain etiology
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[12], and do not show the anatomical alterations typical of brain

hypothyroidism during postnatal development [12,13]. Further-

more, the expression of most thyroid hormone-dependent genes in

the cerebral cortex of juvenile Mct8-deficient mice is similar to the

wild type (Wt) mice [14]. The major role of Mct8 seems to be that

of facilitating the transport of T4 and T3 through the blood-brain

barrier [13,15]. However, T4 also enters the brain through

another transporter from the Oatp family, Oatp1c1 (Slco1c1, or

Oatp14) [16,17]. It has been proposed that this transport route

delivers T4 to the astrocytes, where T4 to T3 conversion takes

place, in a reaction catalyzed by type 2 deiodinase [18–21].

Therefore, in the presence of functionally defective Mct8 protein,

entry of circulating T3 into the brain is restricted. Nevertheless

enough T3 is still formed locally in the brain to sustain thyroid

hormone-dependent gene expression [14].

The in vivo role of other classes of thyroid hormone transporters

in the brain is uncertain. As can be concluded from the paragraph

above, T3 formed in the astrocytes can readily reach the neurons

in the absence of Mct8, indicating that other transporters may be

involved in this process. Among others, the L-type amino acid

transporters 1 and 2 have been suggested to compensate for the

lack of Mct8 in mice [12], and have been implicated in T3

transport in astrocytes and neurons [22]. Lat2 is highly expressed

in the postnatal mouse cerebral cortex and has been proposed to

participate together with Mct8 in T3 transport in primary

astrocyte culture [22]. We have generated mice deficient in both

Mct8 and Lat2 to investigate whether the combined absence of

both transporters impairs T3 action in the brain more severely

than in the case of Mct8 deficiency alone.

Our results indicate that Lat2 is mostly dispensable for T3

action. However it was previously reported that newborn Mct8-

deficient mice unexpectedly showed increased expression of

thyroid hormone-dependent genes in the cerebral cortex, indicat-

ing a perinatal state of cerebral hyperthyroidism [23]. In the

present work we show that Lat2 inactivation transiently blocks this

early effect of Mct8 deficiency. Furthermore, Lat2 is expressed

predominantly in neurons. The results support that Lat2 has a role

in T3 delivery to neurons during the perinatal period.

Materials and Methods

Ethics statement: All experimental procedures involving animals

were performed following the European Union Council guidelines

(directive 2010/63/UE) and Spanish regulations (R.D.1201/2005,

and Law 32/2007) and in accordance with University of Chicago

Institutional Animal Care and Use Committee. They were

approved by the ethics committee of our institution (Consejo

Superior de Investigaciones Cientı́fias, CSIC; approval number

SAF2011-25608).

Animals were housed in temperature (2262uC) and light (12:12

light-dark cycle; lights on at 7 a.m.) controlled conditions and had

free access to food and water. Euthanasia was performed by

decapitation. For in situ hybridization, the mice were first

anesthetized with ketamine (50 mg/g BW) and medetomidine

hydrochloride (0.1 mg/g BW) and perfused with 4% paraformal-

dehyde in 0.1 M phosphate buffered saline pH 7.4. Mct8 (Slc16a2)

KO mice (male genotype, Mct8-/y) originated from the line

generated by one of the coauthors (AMD) [10]. Experiments were

carried out on Wt and KO male littermates derived from back

crossing of heterozygous females with Wt males of the C57BL/6J

strain. The Mct8 genotype was confirmed as described [13].

The Lat2 (Slc7a8) KO mouse line was generated in a mixed

genetic background of C57/129Ola. Briefly, a vector with

homology arms of 6.1 kb and 2.3 kb was generated, and replaced

part of the promoter and exon 1 of Slc7a8 with the neomycin

resistance gene. Homologous recombination was performed by

GenOway (Lyon, France). Eight male chimeras were crossed with

C57BL/6J females to obtain the F1 generation. F1 heterozygotes

(Slc7a 8+/2) were intercrossed obtaining the three possible

genotypes following a mendelian frequency. A detailed description

of the procedure and the full characterization of the phenotype

will be reported [24]. To generate the animals used in the

experiments we started by crossing Mct8x/yLat2-/- males with

Mct8-/xLat2+/+ females. Then Mct8x/yLat22/+ males were crossed

with Mct8-/xLat22/+ females. From the genotypes obtained we

crossed Mct8x/yLat2+/+ (Wt) males with Mct8-/xLat2+/+ females to

generate Wt and Mct8 KO male littermates. Similarly, we crossed

Mct8x/yLat2-/- males with Mct8-/xLat2-/- females to generate Lat2

KO and Mct8Lat2 KO male littermates. The Lat2 genotype was

confirmed by PCR of tail DNA (36 cycles at 62 C annealing

temperature) using the following primers:

forward common: 59GGAGCGATCTGCGGAGTGA39;

reverse Wt-specific: 59ACAGAGTGCGCTCCTACCCT39;

reverse KO-specific: 59CGGTGGGCTCTATGGGTCTA39.

This procedure generates a 457 bp fragment from the Wt allele

and a 180 bp fragment from the null allele.

Experiments were performed on Wt, Mct8 KO (M8), Lat2 KO

(L2), and Mct8Lat2 KO (M8L2) at postnatal (P) day 0, P5, P15, and

P21. Most experiments were performed using 8 animals per group.

Trunk blood was collected in heparinized tubes after decapitation,

and the liver was frozen on dry ice and stored at 280uC. The

brain was removed and the neocortex was rapidly dissected out

from underlying structures, divided in two halves through the

sagittal cut, blotted on filter paper, weighed and frozen on dry ice.

Thyroid hormone concentration in plasma and cerebral cortex

was determined as previously described [25]. We used 30 ml of

pooled plasma from 2–3 P0 mice, or hemi cortices pooled from 3

mice. For P5 and P21 mice we used individual 50 ml aliquots of

plasma, or individual hemi cortices. Under the conditions of the

assays, the limits of detection at P0 were: 1.67 ng/ml for plasma

T4, 0.03 ng/ml for plasma T3, and 0.37 ng/g for cortex T3.

RNA was isolated from individual hemi cortices for P5, P15, and

P21 mice and from the whole cortex from individual P0 mice, and

liver. Expression of the following thyroid hormone-dependent

genes was measured by qPCR: Hr (Hairless); Sema7a (Semaphorin

7a); Klf9 (Kruppel-like factor 9, also known as Basic Transcription

Element Binding protein, BTEB); Aldh1a1, Aldh1a3 (Aldehyde

dehydrogenases 1a1 and 1a3); Slc1a3 (glial high affinity glutamate

transporter), and Dio1 (Type 1 iodothyronine deiodinase). Proce-

dures for RNA isolation and qPCR were identical to those

previously described [14]. Data were expressed relative to the

values obtained on tissues from the Wt, mice which were given a

mean value of 1.0 after correction for 18S RNA. In situ mRNA

hybridization analysis for Lat2 and the double in situ hybridization

and immunohistochemistry were performed using methods

previously described in detail [26]. The 35S Lat2 riboprobe was

synthesized from a 390 base pairs DNA template obtained by

PCR amplification with the following primers: forward 59-

GCCTGCTGTTTCCCATTATC-39, reverse 59-CAGGAATA-

CAGGGCAGAAAG-39. The antibodies used for immunohisto-

chemistry were against the neuronal nuclear protein NeuN

(Chemicon, Millipore, final dilution 1/500), and the astrocytic

glial fibrillary acidic protein (GFAP, Sigma Chemical Co, final

dilution 1/2000).

Data were analyzed by one-way ANOVA and the Tukey

posthoc test using the GraphPad software (www.graphpad.com).

The P0 data were checked for a maternal effect using a General

Lineal Model with the SPSS package. This was due to the
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impossibility to obtain littermates of all genotypes for the

experiments. As described above, the Wt and Mct8 KO mice

were littermates from Mct8-/xLat2+/+ mothers. The Lat2 KO and

Mct8Lat2 KO mice were littermates from Mct8-/xLat2-/- mothers.

The possibility that any change observed, especially at P0, was due

to differences in the maternal genotype was discarded by the

General Lineal Model analysis.

Results

Lat2 expression in the brain
Lat2 expression was studied in the cerebrum of P0 and P21 mice

by in situ hybridization using a Lat2 specific riboprobe (Fig 1). At

P0 Lat2 was expressed in neocortical layers, the piriform cortex,

the hippocampus and the thalamus (Fig 1C, D). At P21, Lat2 was

expressed in the neocortex, the pririform cortex, the pyramidal

and granular cell layers of the hippocampus, the amygdala, and

the thalamus, with high expression in the thalamic paraventricular

nucleus (Fig 1E, F). Hybridization signal was also observed in the

choroid plexus of the lateral ventricles at both ages. There was

little expression in the striatum and the hypothalamus. The in situ

hybridization pattern was compatible with a predominant

expression in neurons. This was confirmed by in situ hybridization

on brain slices of P21 mice using a 35S-Lat2 riboprobe combined

with immunohistochemistry for NeuN in neurons and GFAP in

astrocytes (Fig 1G, H). While neurons were clearly labeled,

astrocytes were not. These results agree with the data from the

transcriptomic database of Cahoy et al [27] that Lat2 is expressed

in neurons and not in astrocytes when primary brain cell cultures

were analyzed, though in cultured astroglial cells Lat2 expression

becomes significant, explaining results from other authors [22].

Thyroid hormone concentrations
The plasma T4 and T3 concentrations at P0, P5, and P21 are

shown in figure 2. On P0 T4 was increased in the mice lacking

Mct8, with significant differences between M8 and Wt and

between M8L2 and L2. There was no difference between Wt and

L2. By P5 the T4 concentration in the M8 was still slightly elevated

although the difference with the Wt was not significant. In the L2

mice T4 showed a tendency to be lower than in the other groups,

although the difference was significant only when compared to the

M8. By P21 plasma T4 was 60% lower in the M8 mice, as

expected, and 35% in the L2 mice compared to Wt. The M8L2

mice showed similar T4 values as the M8 indicating that the lack

of Mct8 determined the T4 concentration in the double KO.

The plasma T3 concentration on P0 was reduced in the M8

mice compared to the Wt. On P5 the mean T3 concentration was

higher in the M8 than in the Wt, although the difference was not

significant. T3 in the L2 was lower than in the M8 or L2M8 mice.

By P21 plasma T3 showed the expected changes in the M8 mice,

with a 37% increase. Lat2 deficiency alone was associated with

25% decrease of T3. In the M8L2 mice T3 was lower than in the

M8 only mice, indicating that the absence of Lat2 moderated the

effect of Mct8 inactivation on the T3 concentration.

The bottom panel of Fig 2 shows the T3 concentrations in the

cerebral cortex. On P0 there was a 40% increase of T3 in the M8

mice, without changes in the L2 or M8L2 mice. On P5 cortex T3

was increased in the M8 and the M8L2 mice. On P21, T3 was

decreased in the cortex of M8 and M8L2 mice, in agreement with

the known effect of Mct8 inactivation at this age [11]. Inactivation

of Lat2 only also decreased T3 in the cortex at P21, correlating

with the decreased serum T3 and T4.

Effects of thyroid hormone transporter deficiency on
cerebral cortex gene expression

Fig 3 shows the effects of transporter inactivation on the

expression of thyroid hormone-dependent genes in the cerebral

cortex. RNA was prepared from the cerebral cortex of Wt, M8, L2,

and M8L2 mice at P0, P5, P15, and P21. Expression of three

sensitive T3-responsive genes Hr, Sema7a and Klf9 was measured

by qPCR in all genotypes at all ages. In agreement with recent

findings [23] at P0 Hr expression in the cortex was increased by

32% in the M8 mice. We also found that Hr expression decreased

in the L2 mice by 27%. Remarkably, the double M8L2 mice did

not show the increased Hr expression over the Wt observed in the

M8 only mice, indicating that normal expression of Lat2 was

required for this effect. The two other genes, Sema7a and Klf9

showed changes similar to Hr. Sema7a expression was increased by

35% in the M8 mice, decreased by 25% in the L2 mice, and again

Figure 1. Lat2 expression. A–D: P0: A and B are Nissl staining and C
and D in situ hybridization radioautographs. E and F: P21 in situ
hybridization radioautographs. Abbreviations: chp, choroid plexus; CTX,
cerebral neocortex; CA, cornus Ammonis; CPu, caudate-putamen; DG,
dentate gyrus; Hy, hypothalamus, Hip, hippocampus; Th, thalamus; PVT,
thalamic paraventricular nucleus; LA, lateral amygdala. G: in situ
hybridization (P21) with 35S-Lat2 probe combined with immunohisto-
chemistry for NeuN to reveal neurons. Hippocampal CA1 field. H: Similar
field as G, but at lower magnification, with cells stained for glial fibrillary
acidic protein (GFAP). The majority of the silver grains can be seen on
the neuronal pyramidal layer (asterisk) with background signal on the
astrocytes. Scale bars were 1 mm in C–D, E and F, and 50 mm in G and H.
doi:10.1371/journal.pone.0096915.g001
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Lat2 inactivation suppressed the effect of Mct8 deficiency. Klf9

increased by 85% in the M8, and did not change in the L2 mice.

As with Hr and Sema7a, the increase in M8 was suppressed by L2

inactivation in the M8L2 mice. Other thyroid hormone-responsive

genes, Aldh1a1, Aldh1a3, and Slc1a3 showed no changes in any of

the phenotypes (data not shown).

The increased Hr expression caused by Mct8 inactivation at P0

was still observed at P5 with the important difference that at this

age there was no suppressive effect of the additional Lat2

inactivation. The Sema7a and Klf9 responses were somewhat

variable, with an increased expression in the M8L2 mice. After a

transition at P15, with similar expression of the three genes in all

genotypes, a 40% reduction of Hr expression was observed at P21

in the M8, without changes in Sema7a and Klf9, in agreement with

previous findings [14]. There were no effects of Lat2 inactivation,

and the combined Mct8Lat2 deficiency had the same effect as the

Mct8 deficiency alone. For comparison, induction of hypothy-

roidism by administration of antithyroid drugs [13] caused a 38%

decrease of Hr expression at P0 and 85% decrease at P21 (data not

shown).

Finally, we measured the expression of liver Dio1, a sensitive

marker of peripheral thyroid status [10,28] (Fig 4). At P0 Dio1

mRNA abundance was very low, near the limit of detection by

qPCR, and was more easily measured in the rest of the groups due

to an increased expression over the Wt values. In the M8 mice Dio1

expression increased 7 fold at P0 and 3 fold at P5-P21. While the

single Lat2 inactivation did not modify Dio1 expression, the

combined Lat2 and Mct8 inactivation led to a synergistic 15 fold

increase in the M8L2 mice at P0. At P5 the M8L2 mice still

showed the highest mean value of all groups but the difference

from M8 was not significant.

Figure 2. Plasma T4 and T3 and cortex T3 concentrations in mice of different genotypes and different ages, as indicated. Wt = wild
type mice; M8 = Mct8KO. L2 = Lat2KO; M8L2 = Mct8Lat2KO. Significance of differences was calculated by one way ANOVA, and the Tukey posthoc
test. Only relevant significant comparisons are indicated. * P,0.05. ** P,0.01. *** P,0.001. P0, P5, and P21: postnatal days 0, 5, and 21, respectively.
doi:10.1371/journal.pone.0096915.g002
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Discussion

The goal of the present work was to evaluate the contribution of

Lat2, as a secondary thyroid hormone transporter, to thyroid

hormone action in the brain. Our approach was to study the

expression of thyroid hormone dependent genes in the cerebral

cortex in a mouse deficient in Lat2. However, given the possible

redundancy of different transporters we also analyzed the effect of

Lat2 deficiency in the absence of Mct8. The reason for this

approach is that, even if no effect of Lat2 deficiency only were

observed, it is entirely possible that Lat2 cooperates with Mct8 and

other transporters in thyroid hormone metabolism and action. In

this context, the thyroid hormone transporter function of Lat2

[12], like that of other transporters such as Oatp1c1 [16,29], might

compensate for the Mct8 deficiency in the mouse brain. Lack of

similar compensation in the human brain might explain the

discordant neurological phenotypes of Mct8KO mice and MCT8

deficient patients.

A previous analysis of a different strain of Lat2KO mice found

in adult mice a mild phenotype, with aminoaciduria, normal

growth, and altered performance in the rotarod test, indicating

light neurobehavioral alterations [30]. Mice had no obvious

defects of thyroid hormone signaling, and had normal serum

Figure 3. Gene expression (mean ± SE) in the cerebral cortex and liver of mice of different genotypes and ages as indicated. Wt =
wild type mice; M8 = Mct8KO; L2 = Lat2KO; M8L2 = Mct8Lat2KO. Measurements were by qPCR, and the data expressed relative to 18S RNA.
Significance of differences was calculated by one way ANOVA and the Tukey posthoc test. Only relevant significant comparisons are indicated. * P,
0.05. ** P,0.01. *** P,0.001. Hr: Hairless mRNA. Sema7a: Semaphorin 7a mRNA. Klf9: Kruppel factor 9, or BTEB mRNA. P0, P5, P15, P21: postnatal days
0, 5, 15, or 21.
doi:10.1371/journal.pone.0096915.g003
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concentrations of thyroid hormones and TSH, normal cerebellar

development, and normal expression of the T3 target genes RC3

(Nrgn), Hr, and Dio3 in the cerebellum and the cerebral cortex, and

of Dio1 in liver and kidney. In general these results agree with ours,

and we did not find signs of delayed cerebellar development in the

Lat2KO only mice as well as in the double Mct8Lat2KO mice

(results not shown). We also found altered rotarod performance in

the adult Lat2KO mice that was not worsened by concomitant

Mct8 deficiency (data not shown). In our strain of mice, Lat2-

deficiency had a mild effect on circulating thyroid hormone

concentrations in juvenile animals, with decreased T4 and slightly

decreased T3 at P21. These hormonal changes, however, did not

result in tissue hypothyroidism, in liver or brain, with normal

expression of Dio1 and Hr, respectively. On the other hand the

Mct8-deficient mice had the expected changes of circulating T4

and T3 [10], and the double Mct8Lat2KO mice mostly resemble

the Mct8KO only mouse. Increased Dio1 mRNA in the Mct8KO or

Mct8Lat2KO at P21 paralleled the plasma T3 increase in these

groups. Our findings, together with the previous findings by Braun

et al [30] indicate that Lat2 has little contribution to thyroid

hormone economy at least from the late postnatal period.

Despite this conclusion, Lat2 might be relevant to thyroid

hormone transport in the brain during the perinatal period. As

already reported [23] the newborn Mct8KO mice showed an

unexpected cerebral cortex hyperthyroidism as reflected in the

expression of the thyroid hormone-regulated genes Hr, Sema7a,

and Klf9, which is not due to immaturity of the brain barriers

[23,31]. Lat2 is required for the hyperthyroid effect of Mct8

deficiency, at least at P0. At this age Lat2 deficiency blocks the

increased gene expression and cortex T3 concentration observed

in the absence of Mct8. However the specific pathway controlled

by Lat2 is not apparent. As in the earlier study [23] we found here

that plasma T4 was increased in the Mct8KO mice, and also in the

Mct8Lat2KO. T3 was however decreased in the plasma at P0

supporting the view that cerebral hyperthyroidism is not due to

increased uptake of T3 by the brain, and correlates better with the

increased circulating T4. This suggests that the cortex hyperthy-

roidism is due to either increased local production of T3 from T4,

or to retention of T3 in the cortex. The latter could indicate that

the absence of Mct8 interferes with T3 efflux [23] and/or with its

degradation by D3 in neurons [32] leading to T3 accumulation.

The specific role of Lat2 is not evident but given its neuronal

expression, it is reasonable to think that it has relevant role in T3

influx into the neurons during the perinatal period.

Liver Dio1 was increased in the M8 mice at P0 as already

reported [23]. This change takes place in the face of a lower

plasma T3 concentration than in the Wt, as shown in this work,

and in the presence of an increased hepatic T4 content at E18 and

P0 [23] consistent with a role of Mct8 in thyroid hormone efflux.

Interestingly we found that the Lat2 and Mct8 deficiencies have a

synergistic effect on Dio1 expression at P0, reminiscent of what

happens with the combined Mct8 and Mct10 deficiency in older

animals [33]. This supports the view that during the perinatal

period Lat2 has a role in thyroid hormone efflux at least in the

liver.
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