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Abstract

Background: Adjusting the capacity of metabolic pathways in response to rapidly changing environmental
conditions is an important component of microbial adaptation strategies to stochastic environments. In this work, we
use advanced dynamic optimization techniques combined with theoretical models to study which reactions in
pathways are optimally targeted by regulatory interactions in order to minimize the regulatory effort that is required
to adjust the flux through a complex metabolic network. Moreover, we analyze how constraints in the speed at which
an organism can respond on a proteomic level influences these optimal targets of pathway control.

Results: We find that limitations in protein biosynthetic rates have a strong influence. With increasing protein
biosynthetic rates the regulatory effort targeting the initial enzyme in a pathway is reduced while the regulatory effort
in the terminal enzyme is increased. Studying the impact of allosteric regulation for different pathway topologies, we
find that the presence of feedback inhibition by products of metabolic pathways allows organisms to reduce the
regulatory effort that is required to control a metabolic pathway in all cases. In a linear pathway this even leads to the
case where the sole transcriptional regulatory control of the terminal enzyme is sufficient to control flux through the
entire pathway. We confirm the utilization of these pathway regulation strategies through the large-scale analysis of
transcriptional regulation in several hundred prokaryotes.

Conclusions: This work expands our knowledge about optimal programs of pathway control. Optimal targets of
pathway control strongly depend on the speed at which proteins can be synthesized. Moreover, post-translational
regulation such as allosteric regulation allows to strongly reduce the number of transcriptional regulatory interactions
required to control a metabolic pathway across different pathway topologies.
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Background
The control of metabolic pathways has been studied
in-depth in the context of metabolic control analysis
(MCA, [1,2]). This mathematical framework has a sig-
nificant number of applications and variations [3-6].
While classical MCA has focused on steady states, several
authors have used a dynamic optimization approach to
study optimal dynamics in metabolic networks [7-13].
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Wessely et al. [13] showed that, depending on protein
costs, two distinct strategies for the control of metabolic
pathways in a dynamic environment exist: sparse tran-
scriptional regulation, in which only key enzymes of a
pathway are transcriptionally regulated, and pervasive
transcriptional regulation, in which each enzyme of a
pathway is transcriptionally controlled. Pervasive tran-
scriptional regulation represents the classical picture of
pathway regulation where all the enzymes are regulated
and is used to control metabolic pathways with a high
protein cost. In contrast, sparse transcriptional regula-
tion, which mostly targets initial and terminal steps of a
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metabolic pathway, is used for pathways with low protein
costs. The existence of these two types of strategies can be
explained by a trade-off between the cost of the enzymes
catalyzing the reactions of the pathway, that is, the pro-
tein cost of the pathway, and response times that can be
reduced by an exclusive transcriptional regulation of key
steps in a pathway. This trade-off between protein cost
and regulation was also used to explain the regulation of
metabolism in Saccharomyces cerevisiae [14].
While Wessely et al. [13] considered the simple case

of a linear metabolic pathway, this did not take into
account that pathways often involve complex topologies of
branching as well as diverging sub-pathways and are often
controlled through feedback mechanisms exerted by the
product of the pathway. Moreover, it was not taken into
account how differences in the time-hierarchy between
changes in enzyme concentration and resulting changes
in metabolite concentration affect the optimal programs
for pathway regulation that were identified. In another
study, we analyzed how the capacity of the protein biosyn-
thetic machinery in relation to the amount of protein to
be produced influences the optimality of different types
of activation programs for the enzymes of a metabolic
pathway [12].
In this work, we investigate the influence of protein

synthesis rates as well as feedback inhibition on optimal
regulatory programs for the control of complex metabolic
pathway topologies by means of advanced dynamic opti-
mization techniques. We aim to draw general conclusions
about optimal points of pathway control that are indepen-
dent of the underlying kinetic parameters of the reactions
constituting the pathway. Thus, we do not consider the
example of a specific metabolic pathway but perform our
analysis on a wide range of pathways with irreversible
Michaelis-Menten-kinetics but varying kinetic parame-
ters. Moreover, we need to exclude the influence of pro-
tein abundance on pathway control strategies since this
factor is mostly independent of pathway structure and
thereby occludes the influence of pathway structure on
optimal regulatory strategies. Hence, we focus on tran-
scriptionally sparsely regulated metabolic pathways which
are characterized by a relatively small number of tran-
scriptional regulatory interactions targeting key enzymes
of a pathway.
In the first part of our work, we analyze how the intro-

duction of a time-hierarchy between changes in metabo-
lite and enzyme concentrations influences optimal targets
of pathway control. We find that constraints on protein
biosynthetic rates lead to an increase in the regulatory
effort targeting the initial enzymes of pathways while
the regulatory effort targeting the terminal enzyme is
reduced.We confirm this pattern with an analysis of path-
way regulation in prokaryotes with slow and fast protein
biosynthesis.

In the second part, we analyze how the introduction of
feedback inhibition by the product of a pathway in dif-
ferent pathway topologies influences optimal targets of
pathway regulation. We find that introducing feedback
inhibition reduces the regulatory effort that is required
to control a metabolic pathway. In a linear pathway this
even leads to the observation that a single regulatory
interaction - the control of the terminal step of a path-
way - is sufficient to precisely control the flux through
the pathway. By analyzing optimal programs of pathway
control for different strengths of feedback inhibition we
find that there is an optimal value for the inhibitory con-
stant at which the strength of the inhibitory is still high
enough while minimizing the increased protein cost due
to the inhibitory effect. In summary, our work provides
important new insights into optimal strategies of pathway
control and confirms the utilization of the proposed pro-
grams through the analysis of regulation in a large number
of prokaryotic metabolic networks.

Methods
Mathematical problem formulation
The basic model used by Wessely et al. [13] consists
of a linear metabolic pathway with four intermediates
X1, . . . , X4 that are converted from a buffered substrate
S into a product P via five enzymatic steps e1, . . . , e5.
The enzymatic steps follow irreversibleMichaelis-Menten
kinetics. This approach has been used to provide impor-
tant insights into general principles of the regulation of
metabolism [8,12,15]. Though many pathways are com-
prised of a mixture of reversible and irreversible reactions,
we only consider irreversible reactions due to the lower
number of parameters which we need to consider for
the sampling. Moreover, the validation is performed on
metabolic pathways irrespective of the reversibility sta-
tus of the constituting reactions. This indicates that the
results we obtain for irreversible pathways also apply
in the more general case for pathways also containing
reversible reactions. Nevertheless, the consideration of
reversibility is an important factor which we will consider
in future work in particular in connection with the avoid-
ance of intermediate accumulation and the facilitation of
transitions between different product dilution rates.
Given a set of dilution values of the product of the path-

way over a time-course, the aim of the optimization is to
identify a time-course of the enzymes ei(t) that maintains
the concentration of the product of the pathway within a
given range and minimizes the objective function

min
n∑

i=1
σ · ei(0) · tf

︸ ︷︷ ︸
σ ·Jcost=

n∑
i=1

costi

+
n∑

i=1

tf∫
0

(ei(t) − ei(0))2dt

︸ ︷︷ ︸
Jreg=

n∑
i=1

regi

(1)
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where n corresponds to the number of enzymes of the
pathway and tf is the considered time frame.
The objective function has two components who’s indi-

vidual contributions are adjusted through the weighting
factor σ : the total protein cost Jcost and the regulatory
component Jreg with the protein cost of each enzyme

costi = ei(0) · tf (2)

and the regulatory effort of the individual enzymes

regi =
tf∫

t0

(ei(t) − ei(0))2dt. (3)

The regulatory effort is measured as the integral of the
square deviation of the concentration of each enzyme
from its initial value.
The control variables determine the system dynamics

according to changes in the outflow of the product and
have to obey constraints on the concentration of the prod-
uct. Moreover, there are constraints on the concentrations
of the pathway intermediates to prevent their accumu-
lation to toxic levels. The importance of the two parts
of the objective function can be adjusted by a weighting
factor σ that is multiplied with initial enzyme concentra-
tions. For small values of σ , initial enzyme concentrations
have only low weight, that is, protein costs are low, while
a high value of σ corresponds to high protein costs. For
simplicity, we will assume throughout the manuscript that
the determining factor in protein costs is the total abun-
dance of a protein corresponding to the total amount of
a protein present in a cell. For the complete mathematical
formulation of the optimization problem see Additional
file 1: Texts S1 and S2. Byminimizing protein costs and the
regulatory effort we account for two sometimes oppos-
ing forces that are strong determinants of bacterial fitness.
While the production of protein is precisely adjusted to
the need of the organism [16] also environmental uncer-
tainties need to be taken into account. Thus, there is also
a strong selective force to minimize transition times after
a change in environmental conditions. Thereby, microor-
ganisms are able to reduce their variance in fitness which
can lead to growth advantages in fluctuating environmen-
tal conditions [17]. For instance, in E. coli it has been
shown that metabolic fluxes show an adaptation toward
the minimization of transition times [18]. In the context
of our objective function, such a minimization of transi-
tion time is achieved by minimizing the regulatory effort
– the amount of change required to adjust enzyme con-
centrations after a change in the required flux through the
pathway.
In the optimization, the initial concentrations of the

enzymes ei(0) and their time-courses ei(t) correspond to
the control variables. By adjusting the time-courses of

enzymes, the optimization procedure determines an opti-
mal regulatory program that maintains product concen-
trations while the demand on pathway output is changed.
In vivo this regulation can occur either on the tran-
scriptional or translational level. However, we generally
speak about transcriptional regulation since we focus on
prokaryotes and in the model prokaryote E. coli there
are, according to EcoCyc [19], only few regulatory inter-
actions known that act on an exclusive translational level.
Please note that, while dilution through growth can be
considered as the major source of the dilution of a path-
way product, we also use this formulation to account for
events in which the concentration of the product needs
to be adjusted. In a previous work we could show that we
obtain similar results if we include constraints to adapt
product concentrations but a more complex formulation
of the dynamic optimization problem is required [13].
Optimizations were performed over 30 (arbitrary) time

units. For randomized runs, kinetic parameters were uni-
formly drawn from the interval [0,2] as done previously
in [13] and values for the dilution (vgrowth) from the
interval [0.2, 0.8]. If not stated otherwise, 200 optimiza-
tion runs with randomized parameter and dilution values
were conducted for each analysis. For the consideration
of limitations in protein biosynthetic rates, we addition-
ally constrained concentrations changes of enzymes to a
maximum ofm:∣∣∣∣dei(t)dt

∣∣∣∣ ≤ m for i = 1 : 5 (4)

For more information, see Additional file 1: Text S2.
To test the robustness of our problem formulation, we

investigated the influence of final time tf and sampling
approach for kinetic constants on results. We found that
our conclusions for the basic optimization problem [13]
remained the same when increasing final time (Additional
file 1: Figure S2) and sampling kinetic constants from
measured values (Additional file 1: Figure S3).

Optimization approach
To determine optimal solutions, the original dynamic
optimization problem is transformed into a non-linear
programming problem (NLP) by means of the control
vector parametrization approach [CVP] [20].
The non-linear character of the models and the pres-

ence of algebraic constraints may induce multimodality.
Therefore, global NLP solvers are required. In the context
of dynamic optimization, the importance and efficiency
of global optimization techniques has been discussed in
depth [21] [and references therein]. Recent works pro-
posed hybrid global-local methods as an enhanced alter-
native for searching the global optimum [22,23].
In this work we use the enhanced scatter searchmethod,

eSS [23], which offers the possibility of using local



de Hijas-Liste et al. BMC Bioinformatics  (2015) 16:163 Page 4 of 13

deterministic methods from automatically selected initial
points to enhance convergence rates to the global solution.
Further details about numerical methods are presented in
Additional file 1: Text S1.

Validation of the optimal programs through data analysis
A genomic proxy for regulatory effort
The number of transcription factor binding sites as well
as the number of different transcription factors control-
ling each gene are available only for a selected number of
organisms such as E. coli. Therefore, we used the length
of promoter regions as an indicator for the regulatory
effort that is used to control a specific gene as done pre-
viously [24]. Thus, we assume that a more complex regu-
latory program (e.g. with a higher number of controlling
transcription factors) that is used to control the expres-
sion of a gene will lead to longer promoter sequences. In
contrast, if a gene is constitutively expressed or targeted
only by few transcription factors, promoter sequences will
be shorter. As described below, several lines of evidence
strongly support this hypothesis.
Promoter lengths were determined as the length of the

region upstream of the first gene of the operon to which
the gene belongs (or upstream of the gene, if it does not
belong to an operon) based on the annotation provided
in the MicroCyc database [25]. Operon predictions were
obtained from MicrobesOnline [26]. To take into account
shared promoter regions, we considered the entire pro-
moter region as contributing to the regulation of the gene
if the preceding gene (in the direction of transcription) on
the genome had the same direction of transcription. If the
preceding gene had the opposite direction of transcrip-
tion, the promoter lengths were considered to be equally
shared between both genes.
To make promoter lengths comparable across organ-

isms, we first made them comparable across the pathways
within a single organism and subsequently across sev-
eral organisms. To make promoter lengths comparable
across pathways within a single organism, we subtracted
the average promoter length of genes within this pathway
from the promoter length of each gene. This is neces-
sary since factors such as protein abundance have a strong
influence on the regulatory effort targeted at a gene [13]
and therefore on its promoter length. To make promoter
lengths comparable across organisms, we divided them by
the average promoter lengths of the non-metabolic genes
of this organism (i.e. genes not annotated with a metabolic
function). We did not consider negative promoter
lengths, that is, cases in which coding regions of genes
overlapped.
Several lines of evidence support that promoter lengths

are a good indicator of the number of transcription fac-
tors regulating a gene and thereby of the regulatory effort
targeting this gene.

First, most parts of bacterial genomes are made up
of coding regions and non-functional elements of the
genome are rapidly lost, in particular due to a bias towards
deletions in bacterial genomes [27,28]. Since a higher
number of transcription factors targeting a gene will
require a longer promoter sequence and non-functional
parts of a promoter sequence will be rapidly lost, the
length of a promoter sequence indicates the number of
transcription factors that target a specific gene.While also
transcription factor binding sites within coding regions
are known in E. coli, they make up only 12% of all
known transcription factor binding sites in EcoCyc release
14.6 [19]. Moreover, if a transcription factor is only weakly
binding a promoter sequence and we equate this with
the assumption that this implies a marginal role in the
regulation of the corresponding protein, there will be a
bias toward the loss of this portion of the genome due
to the above mentioned mutational bias. Again this leads
to a tendency of a reduced promoter length reflecting a
reduced regulatory effort targeted at the gene.
Second, we analyzed all promoter regions in E. coli and

found a significant increase in the length of promoter
regions with the number of known transcription factors
controlling a gene (obtained from RegulonDB [29]). Clas-
sifying genes according to the number of transcription
factors controlling them into genes with zero, one, two or
more transcription factors (TFs) these increases are sig-
nificant between all classes (Wilcoxon test p-values: 0 TFs
vs. 1 TF, p-val= 6.9·10−5, 1 TF vs. 2 TF, p-val= 2.9·10−9, 2
TFs vs. > 2 TFs, p-val=< 10−16, see also Additional file 1:
Figure S5).
Third, we find increased promoter lengths for initial

and terminal enzymes in transcriptionally sparsely regu-
lated metabolic pathways (Additional file 1: Figure S6A)
and decreasing promoter lengths with pathway position
in transcriptionally pervasively regulated metabolic path-
ways (Additional file 1: Figure S6B) across all organisms
in the MicroCyc collection. Similar results have been
obtained based on the number of transcription factors
regulating each gene in E. coli previously [13].
Fourth, it has been reported previously that more abun-

dant proteins have a higher number of transcriptional
regulators controlling them in E. coli [13]. Therefore, we
analysed the correlation between promoter lengths and
protein abundance, measured by the codon adaptation
index [30], across all organisms of the MicroCyc col-
lection. After correcting for multiple testing using the
Benjamini–Yekutieli procedure [31], we found that pro-
moter lengths are significantly positively associated with
protein abundance in 287 organisms, while we found
a significant negative correlation only in 21 organisms.
Hence, similar to the number of transcription factors, pro-
moter lengths are also positively correlated with protein
abundance.
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Identification of transcriptionally sparsely and pervasively
regulatedmetabolic pathways
Since our analysis is specific for sparsely regulated
metabolic pathways, that is, pathways in which tran-
scriptional control is not exerted to the same extent on
each enzyme, we needed to determine sparsely regulated
metabolic pathways in each organism. Since promoter
lengths of genes allow us to assess the regulatory effort
targeted at each enzyme, we classified metabolic pathways
as sparsely regulated if the average length of promoter
regions of genes along a linear chain of reactions within
the pathway was below 60% of the promoter lengths of
non-metabolic genes in this organism and as pervasively
regulated otherwise. Results did not change for small
changes in this threshold value. Non-metabolic genes
were defined as those genes without a metabolic function
according to the genome annotation in MicroCyc.

Determination of pathways
Linear chains of reactions within a pathway were deter-
mined as described previously [12]. For the display of
changes in relative average promoter lengths for organ-
isms with slow and fast protein biosynthesis for specific

pathways (Figure 1C), we selected individual pathways
that were identified as sparsely regulated across a large
number of organisms. We omitted data from organisms
in which the corresponding pathway is organized in a
single operon (and hence promoter lengths would be
equal for all proteins). Statistical tests were performed
using R [32]. All data used for validation can be found in
Additional file 2.

Mapping of post-translationally regulated reactions
To estimate post-translational regulation, post-translatio-
nal modification (PTM) sites of proteins were retrieved
from the data base dbPTM [33], which contains infor-
mation about all kinds of modification sites across
all domains of life. Because only for a small number
of proteins experimentally validated post-translational
modifications sites are available, those were com-
bined with predicted modification sites listed in the
same database. The UniProt identifiers of the inves-
tigated enzymes were used to map the modifications
sites to the reactions of the metabolic pathways. Data
on post-translational modifications can be found in
Additional file 3.
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Figure 1 Influence of protein biosynthetic rates on positional pathway regulation. (A) Regulatory efforts (regi) at different pathway positions for
constrained protein biosynthetic rates. A low value ofm corresponds to slow protein biosynthesis while a high value corresponds to fast protein
biosynthesis. Medians are indicated by circles. Complete boxplots are shown in Additional file 1: Figure S4. (B) The regulatory effort, measured as
average relative lengths of promoter regions at different pathway positions has been determined for organisms with slow and fast protein synthesis
rates. At the initial step of pathways the regulatory effort is increased for organisms with slow protein synthesis whereas it is increased at the
terminal position for organisms with fast protein synthesis. Average promoter length for organisms with slow protein synthesis is depicted in black
(154 organisms) and grey is used for 155 organisms with fast protein synthesis. (C) Relative average promoter lengths in selected pathways for
organisms with slow and fast protein biosynthesic rates. The medians of relative average promoter length for tryptophan biosynthesis (upper panel,
data from 83 organisms) and uroporphyrinogen-III biosynthesis (an intermediate of heme biosynthesis, lower panel, data from 114 organisms) are
shown. Data is shown for the initial and terminal reactions. Protein names correspond to those of the catalytic pathway in E. coli. Abbreviations:
Initial R., initial reaction; Terminal R., terminal reaction; Chor, Chorismate; Trp, L-Tryptophan; Uro-III, uroporphyrinogen-III; Pheme IX, protoheme IX.
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Results
Influence of protein biosynthetic rates on pathway
regulation
In a previous work we showed that the protein biosyn-
thetic rate of an organism has a strong influence on acti-
vation strategies of metabolic pathways [12]. The protein
biosynthetic rate of an organism corresponds to the rate at
which proteins can be produced. As we’ve shown in a pre-
vious work, the genomic copy number of ribosomal RNAs
is strongly associated to the protein biosynthetic capacity
of an organism [12]. Therefore, we analyzed optimal tar-
gets of pathway control with an additional constraint on
the rate of change of enzyme concentrations for different
protein biosynthetic rates (see Additional file 1: Text S2
for the problem formulation). We analyzed the regulatory
effort in a linear pathway (without feedback inhibition) for
three different protein biosynthetic rates across 150 mod-
els with random kinetic parameters and dilution values.
We observed that a high protein biosynthetic rate leads to
a decrease of the regulatory effort at the first reaction of
the pathway (Wilcoxon test p-value = 1.27 ·10−5 between
regulatory effort for m = 0.06 and m = 0.15) and a
concomitant increase at the terminal step of the pathway
(Wilcoxon test p-value< 10−16, between regulatory effort
for m = 0.06 and m = 0.15, Figure 1A). This observation
also holds when considering differences in the time-scales
between metabolite, transcriptional and growth dynamics
(Additional file 1: Figure S7).
Thus, the protein biosynthetic rate has an influence on

the optimal regulatory effort at each pathway position. By
decreasing protein biosynthetic rates, we limit the amount
of change in the individual enzymes while there is no
constraint on the amount of change in metabolite con-
centrations. In consequence, in relative terms the effects
of changes in protein concentrations on metabolite con-
centrations propagate faster through the network. Hence,
also the control of the first enzyme on the flux through
the entire pathway becomes more immediate. In contrast,
if protein concentrations can be adapted more rapidly,
also a control of the terminal enzymes of pathways is of
advantage since adjusting the concentration of the termi-
nal enzyme of a pathway allows for an immediate change
of pathway output while for slow changes in protein con-
centrations a part of this function can be taken over by the
initial enzyme.
We investigated whether we could observe this pattern

of regulation in vivo. To this end, we analysed the regu-
latory effort at different pathway positions across several
hundred prokaryotes with different protein biosynthetic
capacities. As a proxy for the regulatory effort that is
exerted on each enzyme, we used the length of non-coding
regions upstream of each gene (see Methods).
We ordered organisms according to the copy number

of ribosomal RNAs in their genome and grouped them

into organisms with low and high protein biosynthetic
rates correspondingly (lower and upper 50% of organ-
isms). Subsequently, we determined the average relative
length of promoter regions for the initial as well as ter-
minal enzymes in sparsely regulated metabolic pathways
(Figure 1B). In a direct comparison of relative promoter
lengths between organisms with low and high protein
biosynthetic rates we found a significant decrease at the
beginning of pathways (Wilcoxon test p-value = 1.2 ·
10−2) and a significant increase at the end of pathways
(Wilcoxon test p-value = 3.56 · 10−5). We performed this
analysis in more detail for two pathways amongst the tran-
scriptionally sparsely regulated pathways in the largest
number of organisms: tryptophan biosynthesis and proto-
heme IX biosynthesis, an intermediate of heme biosynthe-
sis. In both cases we observed a decrease in the regulatory
effort targeting the first reaction and an increase in the
last reaction of the corresponding pathways for organisms
with faster protein biosynthetic rates (Figure 1C). Thus, as
predicted by the optimization, there is a shift in the regu-
latory effort from the first to the terminal enzyme with an
increasing protein synthesis rate.
These results also provide an explanation why we

observed that the increase in the frequency of transcrip-
tional regulatory interactions in pathways in E. coli is
stronger at the end of metabolic pathways than at the
beginning [13], since E. coli has a high copy-number of
rRNAs in comparison to other prokaryotes.

Feedback inhibition in linear pathways
A frequently encountered mechanism in the control of
metabolic pathways is a feedback inhibition of the initial
enzyme by the product [34-36]. To study this mechanism,
the problem was modified by introducing a competitive
inhibition of the first enzyme e1 of the pathway by the
product P (Figure 2):

υ1(t) = kcat,1 · e1(t) · s(t)
s(t) + Km

(
1 + p(t)

kr,1

) (5)

with kr,1 corresponding to the strength of the feed-
back inhibition. For increasing values of kr,1 inhibition is
weaker and for decreasing values it is stronger.
In a first step, we analyzed how the introduction of a

feedback inhibition influences the individual components
of the objective function, the regulatory effort as well as
the initial enzyme concentrations. We performed these
comparisons for two different values of the weighting
factor σ using unit inhibitory constants (Figure 3).
We did not observe a significant change in the objec-

tive function values after introduction of the inhibition
across both weights for initial enzyme concentrations
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Figure 2 Regulatory efforts (regi), measured as change in enzyme concentrations, for different weights of initial enzyme concentrations.
Optimizations without inhibition depicted in white, runs with inhibition depicted with black boxes. Complete boxplots are shown in Additional
file 1: Figures S11 and S12.

(Figure 3A). The contribution of the regulatory compo-
nent Jreg (deviation from the initial enzyme concentra-
tions) was significantly decreased across all cases. This
was mostly marked for a low weight of initial enzyme con-
centrations (Wilcoxon test p-value = 8.92 · 10−11) while it
was not as strong for a high weight of initial enzyme con-
centrations (Wilcoxon test p-value = 2.9 · 10−2). Though

Figure 3 Influence of inhibition on the objective function. The values
of the two components of the (A) objective function: (B) total protein
cost (σ · Jcost) and (C) regulatory component (Jreg), are compared for
cases with (black bars) and without inhibition (white bars). Medians
are denoted by circles.

we observed a tendency of the initial concentrations of
enzymes to increase with introduction of the feedback
inhibition, this increase was not significant (Wilcoxon test
p-value > 0.1 for each case).
Analysing changes in the regulatory effort targeting

individual enzymes (Figure 2), we found a strong decrease
in the first enzyme. This change was strongest (Wilcoxon
test p-value< 10−16) for a low weight of initial enzyme
concentrations. In consequence, particularly for path-
ways with lowly abundant proteins (low σ -values) the
introduction of a feedback inhibition appears to relieve
the requirement of a control of the first enzyme. Thus,
due to the presence of the feedback inhibition, the flux
through the entire pathway can be controlled through
transcriptionally regulating the terminal step of the path-
way. These results substantiate the observation that flux
through a pathway can be controlled much more pre-
cisely through a regulation of the terminal enzyme.
This is in contrast to the classical biochemical pic-
ture of pathway control in which the first enzyme has
been considered the most relevant [35]. However, please
note that since our optimization approach focuses on
optimal responses to changes in product consumption
while assuming a constant supply of the substrate of
the pathway, the relevance of the individual enzymes
might also differ if we consider changes in substrate
concentrations.
For a high weight of initial enzyme concentrations the

reduction in the regulatory effort was reduced but still
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significant (Wilcoxon test p-value = 2.8 · 10−4). Thus,
while protein abundance has an influence on the strength
of the reduction, it is significant across all the consid-
ered cases. This is in line with previous observations
that the utilization of post-translational regulation is not
influenced by the abundance of proteins [13].
As discussed above, the introduction of a feedback inhi-

bition reduces the efficiency of the first enzyme. Thus,
higher concentrations of e1 are required to achieve the
same flux (cf. Additional file 1: Figure S10). In conse-
quence, also initial enzyme concentrations are increased.
To further investigate this effect, we repeated the opti-
mization with different values of the inhibition constant
kr,1 between [0, 100]. We observed that an increase of
kr,1 had a strong effect on the initial concentration of e1
(Figure 4A). However, with an increasing value of kr,1 also
the strength of the inhibition is reduced and thus also its
control over the flux through the first enzyme. In con-
sequence, if kr,1 is larger than a specific threshold value,
the first enzyme is again under transcriptional control
(Figure 4B). These two opposing trends result in the opti-
mality of a specific value of kr,1 at which the inhibition is
still strong enough to exert a regulatory effect on the first

enzyme, while the costly increase of the concentration of
e1 to maintain pathway flux is minimized (Figure 4A).

Optimal regulatory programs for complex pathway
topologies
Since metabolism often involves more complex topolo-
gies than the simple linear pathway considered above,
we investigated optimal regulatory programs in two more
complex pathway topologies: a converging pathway lead-
ing from two substrates to a product and a diverging
pathway producing two distinct products from a single
substrate (See Additional file 1: Text S3 for the problems
formulations).

Optimal regulatory programs in pathways with a converging
reaction
In a first setup, we considered a pathway in which two
substrates are converted into a common product which
is drained through νgrowth (Figure 5A). For the individual
steps, we assumed irreversible Michaelis-Menten-kinetics
as above.
The regulatory effort in different pathway positions is

displayed in Figure 5A. While most of the regulation was

A

B

Figure 4 Influence of regulatory strength (kr,1). (A) Initial enzyme concentrations for the different values of the regulatory constant kr,1 (B) Regulatory
efforts (regi) for different values of kr,1. Please note the logarithmic scale of the x-axis. The dashed line indicates the value of the inhibitory constant
kr,1 at which transcriptional regulation is switching from a sole regulation of the terminal enzyme to a regulation of initial and terminal enzyme.
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Figure 5 Optimal regulatory programs in complex pathways. (A) Regulatory efforts (regi , y-axis) for a converging pathway. (B) Regulatory efforts
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observed in the initial and terminal steps of the pathway,
there was almost no regulation at intermediate positions
(e2, e4, e5).
These results show that in the case of a metabolic

pathway with two convergent branches, it is still sufficient
to control both the initial and the terminal steps of the
pathway and there is no regulation around the converging
step. Thus, the flux through the entire pathway, also after
the branch, can be controlled by the initial enzymes of the
individual pathway branches.
To verify the prediction that there are no differences in

the regulatory effort around a convergent branch, we ana-
lyzed the average length of promoter regions of proteins
catalyzing the corresponding reactions across our collec-
tion of prokaryotes. In confirmation of the optimization
results, we did not observe a change in the length of pro-
moter regions between reactions prior to a converging
reaction and the converging reaction itself (Figure 5C,
Wilcoxon test p-value = 0.29).

Optimal regulatory programs in pathways with a divergent
branch
In a second step, we analyzed regulatory programs to
control a metabolic pathway that diverges into two dis-
tinct branches. We assumed that the products of the

individual branches are drained with two different rates,
νg1 and νg2, to account for potential differences in their
production, for instance, when concentrations need to be
adapted independently. Initially, we considered a pathway
with eight reactions with irreversible Michaelis-Menten
kinetics (Figure 5B).
We found that apart from a regulation in the initial

and terminal reactions, also frequently the enzymes after
the pathway branch (e3, e4) were regulated (Figure 5B).
In contrast, upstream of the branch, we did not observe
much regulation. Hence, a regulation after the branch
appears to provide a better control of flux through the
entire pathway than before the branch. This has impor-
tant consequences on pathways in which the product of
the pathway is substrate to further pathways since, in prin-
ciple, no transcriptional control of the terminal step of the
pathway would be required in such a case.
To test the predictions of the optimization, we ana-

lyzed the relative length of promoter regions of enzymes
catalyzing reactions before and after branching reactions
in the metabolic networks of our prokaryote collection.
We found that in sparsely regulated metabolic pathways
there was a significant increase in the length of promoter
regions of enzymes after the branching reaction com-
pared to the preceding reactions (Figure 5C, Wilcox test
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p-value = 6.96 · 10−11). A specific example for the
regulatory effort before and in a set of branching
reactions in adenosine nucleotide biosynthesis is shown in
Figure 5D.

Feedback inhibition over different positions of the pathway
Since we did not observe any regulation in the inter-
mediate enzymes, we considered the impact of feedback
inhibition in a reduced network in which e7 and e8 were

removed (Figure 6A). Three different cases of feedback
inhibition were considered for unit inhibitory constants
(Figure 6A): 1) an inhibition of the initial step of a pathway
by the two products (panel 2 in Figure 6A), 2) an inhibition
of the branching enzymes e3 and e4 by the products P1
and P2, respectively, (panel 3 in Figure 6A) and 3) a com-
bination of the two previous cases (panel 4 in Figure 6A)
which corresponds to a nested feedback inhibition
[37].
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In general, we observed a decrease in the regula-
tory effort for enzymes targeted by feedback inhibi-
tion (Figure 6B). In the case of a feedback inhibition
from the products of a pathway on the first step of
the pathway, we observed a drastic decrease in the
regulatory effort at this position. This decrease was
not as strong when the products of the pathway addi-
tionally influenced the reactions after the branchpoint
(e3 and e4).
The introduction of different types of feedback inhibi-

tion reduced the overall regulatory effort that is required
to control the flux through the pathway across all differ-
ent cases (Figure 6C). We observed the strongest decrease
in the regulatory effort required for the case in which the
products inhibited the initial reaction as well as the reac-
tion after the branching point. In consequence, in princi-
ple a transcriptional control of the terminal steps of the
individual pathway branches would be sufficient for a full
control of the flux through the pathway. Thus, the intro-
duction of feedback inhibition allows the reduction of
the required number of transcriptional regulatory control
points from five to two. The optimality of this pattern of
feedback inhibition is exemplified by its implementation
in several pathways in E. coli metabolism including aro-
matic amino acid biosynthesis, the combined metabolism

of lysine, methionine as well as threonine, branched
chain amino acid biosynthesis and purine biosynthesis
(Figure 6D).

Post-translational regulation reduces the transcriptional
regulatory effort targeted at enzymes
As our optimization results have shown, post-translatio-
nal regulation in general reduces the regulatory effort
that is required to control the flux through a metabolic
pathway. To test this assumption, we investigated the asso-
ciation between the occurrence of post-translational reg-
ulation and the length of promoter regions. As reference
for post-translational regulation across our organism set,
we used the dbPTM data base [33] that contains a large
number of experimentally verified and predicted sites of
post-translational modifications across all domains of life.
We used these protein modifications as a reference for
post-translational regulation since large-scale information
about feedback inhibition in metabolism is only available
for very few organisms.
For transcriptionally sparsely regulated metabolic path-

ways, we compared how the presence of post-translational
regulation influenced promoter lengths at different path-
way positions (Figure 7). We observed for all pathway
positions that promoter lengths were significantly shorter
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post-translational modification site and the right violin plot relative promoter lengths for enzymes with at least one post-translational modification
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de Hijas-Liste et al. BMC Bioinformatics  (2015) 16:163 Page 12 of 13

if an enzyme is post-translationally regulated (Wilcoxon
test for initial reactions: p-val= 8.6 · 10−8, intermediate
reactions: p-val≤ 2.2 · 10−16, terminal reactions: p-val=
1.9 · 10−3). The relative difference in promoter lengths
was largest for initial reactions. Thus, the in vivo valida-
tion confirmed that post-translational regulation reduced
the amount of regulatory effort targeted at an enzyme.
Beyond the consideration of optimal programs for path-
way regulation this result also represents a very inter-
esting aspect considering that it is usually assumed that
post-translational and transcriptional regulation act on
completely different time-scales [38]. Our optimization
predicts and the validation shows that despite this separa-
tion of time-scales, both types of regulation appear to be
interchangeable to some extent.

Conclusions
In this work we used simplified models of metabolic path-
ways to study the influence of protein synthesis rates as
well as feedback inhibition on optimal programs for the
control of metabolism. Considering constraints on pro-
tein synthesis rates, we observed that a slower protein
synthesis rate entails a reduction of the regulatory effort
in the terminal step with a concomitant increase at the
beginning of pathways. Through an analysis of the regula-
tory effort in pathways in a large number of prokaryotes,
we could confirm these predictions. Considering individ-
ual organisms, these results also imply that environmental
conditions might influence the optimal strategy to control
a metabolic pathway. Since protein biosynthetic rates
are strongly influenced by environmental conditions [39],
there might even be shifts in the relevance of transcrip-
tional control of individual enzymes between conditions
that allow for slow or fast growth.
Analyzing the relevance of post-translational regulation

with feedback inhibition as an example for pathway con-
trol, we found that post-translational regulation allowed
to decrease the regulatory effort that is required to control
a pathway for a wide variety of pathway topologies. We
confirmed these results through the analysis of the inter-
play between transcriptional and post-translational reg-
ulation in our organism set. As a result, for the full
control of a linear metabolic pathway it is sufficient to
only regulate the terminal enzyme if the initial enzyme
is inhibited by the product of the pathway. For branch-
ing pathways, we found that the optimal control points we
identified resembled known patterns of feedback inhibi-
tion implemented in E. colimetabolism. These results are
of particular importance in the context of gene expres-
sion analysis. There it is often implicitly assumed that
changes in the expression of enzymes are equally impor-
tant across all enzymes of a pathway. As our results
show and additionally to the influence of allosteric regu-
lation, transcriptional control favours those enzymes that

provide better control of the flux through a pathway.
Thus, depending on the topology of the metabolic net-
work, changes in the expression of key enzymes are likely
much more relevant than those of other enzymes of the
same pathway. In the extreme case, a transcriptionally
sparsely regulated metabolic pathway might only show
changes in the expression of the terminal enzyme which
will be certainly missed by conventional gene set enrich-
ment analyses [40]. However, though a weighting of genes
in gene set enrichment analyses can be considered [41],
there exists so far no method that takes into account
the relevance of enzymes for the regulation of metabolic
fluxes in the context of this kind of methods.
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