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Reduction of NO to N2O by denitrifiying bacteria is catalyzed either by a monomeric quinol-nitric oxide reductase (qNor) or by a
heterodimeric cytochrome c-dependent nitric oxide reductase (cNor). In ancient thermophilic bacteria belonging to the Ther-
males and Aquificales phylogenetic groups, the cluster encoding the cNor includes a small third gene (norH), in addition to those
encoding homologues to the subunits of a typical cNor (norC and norB). We show in Thermus thermophilus that the three genes
are cotranscribed in a single mRNA from an inducible promoter. The isolation of individual nor mutants and the production in
vivo of His-tagged NorH protein followed by immobilized-metal affinity chromatography (IMAC) allowed us to conclude that
NorH constitutes a third subunit of the cNor from T. thermophilus, which is involved in denitrification in vivo, likely allowing
more efficient electron transport to cNor.

The nitrogen cycle is one of the most important biogeochemical
cycles of the biosphere. The biochemistry of this cycle depends

on several redox reactions divided into assimilative or respiratory
reactions carried out mainly by microorganisms. One of these
processes is the denitrification pathway, where nitrogen oxides are
used as electron acceptors for anaerobic respiration in four reduc-
tion steps (NO3

� � NO2
� � NO � N2O � N2), each one cata-

lyzed by the corresponding reductase (1, 2).
The genes encoding these reductases are distributed along the

whole phylogenetic trees from both Bacteria and Archaea, being in
many cases species and even strain specific. This fact and phylo-
genetic comparisons with related enzymes support both an ances-
tral nature for the process (1) and the existence during evolution
of frequent events of loss or acquisition by lateral gene transfer
(3, 4).

NO is a strongly cytotoxic gas that efficiently inhibits metallo-
proteins involved in respiration. Thus, most organisms in the
three domains contain enzymes that are able to cope with the
toxicity of this gas (5). In fact, in most sequenced denitrifying
bacteria, the genes encoding the nitrite reductase responsible for
NO production are clustered with the genes encoding nitric oxide
reductases (NOR) that reduce NO to N2O, a less soluble and less
toxic gas. In contrast, the nitrous oxide reductase is not present in
many denitrifying organisms, so the denitrification process fre-
quently ends in N2O.

The main enzymes involved in the reduction of NO during the
denitrification process (NOR) are integral to the membrane.
These Nor enzymes belong to the same heme-copper oxidase su-
perfamily as the O2-reducing cytochrome oxidases. However, Nor
enzymes seem not to conserve energy as they are devoid of the
proton pathways from the cytoplasm that allow the cytochrome
oxidases to pump protons outwards (6–8).

Three types of nitric oxide reductases have been described so
far: the cytochrome c type NOR (cNor), the quinol-dependent
NOR (qNor), and the copper-dependent qNor (CuqNor) (9). The
cNor is the most thoroughly studied nitric oxide reductase. It is
built by two subunits, a cytochrome c subunit (NorC) and a cat-
alytic subunit (NorB) (2).

The genus Thermus belongs to one of the oldest phylogenetic

groups of the Bacteria lineage (10). Despite the extreme ther-
mophily of many of its members, all strains of the genus prefer
oxygen as the electron acceptor in respiration, and many of them
are described as strict aerobes (11). However, many natural strains
of Thermus spp. that have not been subjected to routine aerobic
growth under laboratory conditions can grow anaerobically with
nitrate, producing nitrite or N2O (12), the final products depend-
ing on the strain (13). Actually, a high rate of N2O emissions has
been detected in situ in thermal springs where Thermus thermo-
philus constitutes a major population (14). The instability of the
denitrification capability in this genus is related to the localization
of the two gene clusters that encode the denitrification pathway
(12) within an insertion sequence-rich region of a megaplasmid.
In T. thermophilus, nitrate respiration is encoded by the nitrate
respiration conjugative element (NCE) (15), a cluster of genes that
can be transferred laterally to aerobic strains (16, 17). The NCE
cluster encodes a heterotetrameric nitrate reductase (Nar) (18),
one or two nitrate/nitrite transporters (13, 19), and a sensory sys-
tem that allows switching from aerobic to anaerobic respiration
(15). In addition, many but not all of the NCEs encode a dedicated
NADH dehydrogenase that provides electrons to the Nar (20, 21).
On the other hand respiration of nitrite is encoded by the nitrite
respiration cluster (nic) located downstream of NCE and is also
transferable (17). In T. thermophilus PRQ25, the nic cluster in-
cludes genes encoding a cd1-type nitrite reductase (NirS), a pro-
tein involved in its maturation (NirJ), and a periplasmic cyto-
chrome c (NirM) (22). Also within the nic cluster, a putative
operon exists that encodes NorC and NorB, the two subunits of a
cNor (17). Recently, we have shown that NorC and NorB form a
functional nitric oxide reductase when expressed recombinantly
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in Escherichia coli (8). Intriguingly, the norC and norB genes of
Thermus spp. are always followed by a third gene (norH) encoding
a small membrane protein, which is also conserved in the nor
clusters of thermophilic Aquificales, supporting a relevant role at
high temperatures. In this work, we analyze the physiological role
of NorH and find that it is associated in vivo with the cNor, thus
constituting a third subunit required for efficient denitrification.

MATERIALS AND METHODS
Strains and growth conditions. The strains used in this work are de-
scribed in Table 1. T. thermophilus strains were routinely grown aerobi-
cally in Thermus broth (TB) (23) at 70°C with mild shaking (150 rpm).
Anaerobic growth was achieved in Hungate tubes containing 10 ml of TB
supplemented with potassium nitrate (10 mM) or sodium nitrite (5 mM),
leaving a headspace for the collection of gas samples. After the tubes were

sealed with thermoresistant butyl rubber stoppers and metal caps, the
tubes were bubbled with N2 to eliminate oxygen before sterilization. Once
inoculated with the study strain, residual oxygen was rapidly consumed by
the cells. The aerobic strain T. thermophilus HB27 was always used as
negative control for anaerobic growth in all experiments. T. thermophilus
colonies were isolated on TB agar plates. Kanamycin (Kan [30 mg/liter])
and hygromycin B (Hyg [50 mg/liter]) were added for selection when
required.

Escherichia coli DH5� was used for the construction of plasmids. E. coli
strains were grown at 37°C on liquid or solid LB (24). Kan (30 mg/liter),
ampicillin (Amp [100 mg/liter]), and Hyg (50 mg/liter) were used when
needed.

Plasmids and isolation of mutants. The plasmids used in this work
are described in Table 2. For the isolation of clean deletion mutants, we
followed a pop-in/pop-out strategy with different suicide plasmids. In
essence, 500-bp regions upstream and downstream of the target gene were
amplified by PCR with the primers indicated in Table 3 and cloned into
pK18, a plasmid that replicates in E. coli but not in Thermus spp., and the
constructs were further used to transform the parental strain. Kanamycin-
resistant (Kanr) colonies obtained by single recombination (pop-in) were
grown in TB without antibiotics for 10 to 25 generations to allow the loss
of the plasmid by back recombination (pop-out). Clones sensitive to ka-
namycin were analyzed by PCR to identify those in which the target gene
was not present.

For larger genes like norB, a replacement strategy with a selectable kat
gene cassette through double recombination was followed. For this, a
pUC119 derivative was constructed that carried upstream and down-
stream regions of norB separated by the kat gene in the forward orienta-
tion. The construct (pUC19�norB::kat) was linearized and used to trans-
form T. thermophilus. The presence of the NorC protein in the mutants
was assayed by Western blotting with specific rabbit antisera (17) and
anti-rabbit antibodies labeled with horseradish peroxidase. Detection was
carried out through a bioluminescence assay (ECL; Amersham Interna-
tional).

Promoter induction assays. Quantitative measurement of the tran-
scription of the nor operon was tested in cultures of T. thermophilus strains
transformed with pMHPnor�gal, a promoter probe plasmid in which the
norCp promoter was cloned after amplification with primers PnorXbaIdir
and PnorNdeIrev (Table 3), controlling the expression of a thermostable
�-galactosidase. The activity assays were carried out in 96-well plates with
25 �l of cell suspensions at optical density at 550 nm (OD550) of 1 in 50
mM phosphate buffer (pH 7.5). Cells were first permeabilized by incuba-
tion at 37°C for 15 min with 0.1% (wt/vol) of sodium dodecyl sulfate
(SDS). The samples were then incubated at 70°C with 3 mM orthonitro-
phenyl-�-D-galactopyranoside (ONPG). The �-galactosidase activity is
presented as the average of two independent experiments with three rep-

TABLE 1 Strains used in this work

Strain Genotype
Reference or
source

E. coli DH5� supE44 �lacU169 (�80 lacZ�M15) hsdR17
recA1 endA1 gyrA96 thi-1 relA1

32

T. thermophilus
HB27 Wild type Y. Koyamaa

PRQ14 Wild type 33
PRQ15 Wild type 33
PRQ16 Wild type 33
PRQ17 Wild type 33
PRQ21 Wild type 33
PRQ23 Wild type 33
PRQ24 Wild type 33
PRQ25 Wild type 33
PRQ26 Wild type 33
PRQ27 Wild type 33
PRQ28 Wild type 33
PRQ30 Wild type 33
PRQ31 Wild type 33
RQ-1 Wild type 34
B Wild type 33
HB27d HB27 transformed with DNA from strain

PRQ25; denitrifying strain
17

�norC mutant HB27d norC deletion mutant This work
�norB::kat mutant HB27d �norB::kat Kanr This work
�norH mutant HB27d norH deletion mutant This work
�norC(pMKcNOR)

mutant
HB27d �norC(pMKcNOR) Kanr This work

HB27d norH-His
mutant

HB27d pK18norH-His Kanr This work

a Institute for Biological Resources and Functions, National Institute of Advanced
Industrial Science and Technology, Tsukuba, Ibaraki, Japan.

TABLE 2 Plasmids used in this work

Name Characteristics Reference or source

pH118 Hygr; modified pUC118 with Ampr cassette replaced by Hygr one 22
pK18 Kanr; modified pUC118 with Ampr cassette replaced by Kanr one 35
pMH Pnorß-gal Hygr; pMH184 derivative where norCp has been cloned controlling a thermostable �-galactosidase This work
pMH184 Hygr pMK184 derivative; Hygr cassette (hph5) replaces kat (NdeI-BglII) 15
pMK18 Kanr PlacZ=; slpA promoter(PslpA); bifunctional plasmid (Thermus-E. coli) 36
pMK184 Kanr pMK18 derivative. 15
pUC18/19 Ampr PlacZ=; cloning vector 37
pK18norH-His Kanr pK18 derivative; norH cloned with His tag in its C terminus. This work
pK18�norC Kanr pK18 derivative; upstream (800 bp) and downstream (800 bp) regions of norC cloned for clean

deletion mutant construction
This work

pK18�norH Kanr pK18 derivative; upstream (800 bp) and downstream regions (800 bp) regions of norH cloned for clean
deletion mutant construction

This work

pUC19�norB-kat Kanr pUC19 derivative; upstream (500 bp) and downstream (500 bp) regions of norB cloned for insertional
mutant construction

This work

pMHPnor�gal Promoter probe plasmid containing norCp promoter between XbaI and HindIII sites This work
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licates and is expressed as the variation in OD420 as a function of time
(�OD420) normalized to the amount of cells.

RT-PCR analysis. Total RNA from exponential cultures of T. thermo-
philus was extracted with the RNeasy minikit (Qiagen). The extraction
was performed from aerobic cultures and from anaerobic cultures grown
for 4 h with 20 mM potassium nitrate. The RNA was retrotranscribed to
cDNA using Superscript III reverse transcriptase (Invitrogen), following
the manufacturer’s instructions, and the product was analyzed by PCR.

Detection of nitrogen oxides. Nitrite was detected by colorimetric
assays (25). Nitrous oxide was measured from gas samples taken from the
headspace of cultures grown for 24 h at 70°C in Hungate tubes. Gas sam-
ples were injected into a Hewlett Packard 5890 series II gas chromato-
graph with a Porapak 80-100 column installed, and the electron capture
data were registered by a Spectra Physics SP 4290 integrator. The injector
temperature was maintained at 300°C, the column at 40°C, and the elec-
tron capture detector at 300°C. The concentration of N2O (peak with
retention time of 4.6 	 0.14 min), was calculated using 0.4-, 100-, and
1,000-ppm standards (Scientific and Technical Gases, Ltd., Newcastle un-
der Lyme, United Kingdom).

NO reductase activity assay. The following chemical reaction was
used to produce the substrate NO used for these experiments: 2 NaNO2 

2 FeSO4 
 3 H2SO4 ¡ 2 NO 
 Fe2(SO4)3 
 2 NaHSO4 
 2 H2O.

The reaction was carried out in 20-ml Hungate tubes after first adding
0.25 g of NaNO2. Oxygen was removed in from inside the bottle by
vacuum aspiration. Afterwards 3 ml of saturated ferrous sulfate acid so-
lution were injected, and the gas produced was collected in 10-ml syringes
and used to prepare a saturated NO solution.

The NO reductase activity was measured from membrane extracts. A
100-�l sample of NO-saturated solution was injected into 1.8 ml of 100
mM Tris-HCl (pH 7.7) with 10 mM ascorbate and 0.5 mM TMPD
(N,N,N=,N=-tetramethyl-p-phenylenediamine) in 5-ml Vacutainer tubes

containing 10 �l of membrane extracts (25 �g/ml of proteins) from an-
aerobically grown cultures of the different strains of T. thermophilus. The
reaction mixture was incubated at 60°C for 16 h, and the N2O produced
was measured by gas chromatography as described above.

Expression and purification of wild-type and NorH-deficient cNOR
proteins. Protein expression and purification were done as previously
described (8). In essence, we expressed and purified the wild-type and
NorH-deficient enzymes from an E. coli strain that coexpresses the genes
required for the assembly of cytochromes c, pEC86 (26), and the pRARE
plasmid carrying tRNA genes needed for reading rare codons (pRARE).
The enzymes were purified by affinity to NorB or NorH His-tagged sub-
units as described previously (8).

Steady-state activity of the isolated enzymes. NO consumption rates
were measured in an ISO-NO electrode equipped with ISO-NO Mark II
(World Precision Instruments) in a 2-ml anaerobic reaction chamber at
42°C. The data were recorded on a Duo 18 device (World Precision In-
struments). The assay solution contained 50 mM Na citrate (pH 6.0),
0.05% dodecyl-�-D-maltoside (DDM), 5 mM ascorbate, 0.5 or 2.5 mM
TMPD, or 10 �M phenazine methosulfate (PMS), as indicated. After 20
min of argon flux, NO-saturated solution was added to the reaction mix-
ture at a final concentration of approximately 25 �M. Once the back-
ground consumption of NO was stable, NO reduction (consumption)
was initiated by the addition of cNOR (final concentration between 0.1
and 0.5 �M). The enzyme turnover (mol electrons/min mol enzyme) was
calculated from the slope of the nitric oxide consumption traces.

RESULTS
The nor operon. In T. thermophilus PRQ25, a third gene exists
(norH) downstream of norB that encodes a 98-amino-acid-long
membrane protein (NorH [11.2 kDa]). The norH gene is con-

TABLE 3 Oligonucleotides used in this work as primers

Name Sequence (5=¡3=) Purpose or amplified sequence

1b AAAATCTAGACTCCGGCTCATAAACTCCGAC norC upstream region
1b-dir AAAAGTCGACGCGGGCCTTTTCCAAGAGGT norC upstream region
1c AAAATCTAGAGGAGGTGAAGCATGACCCAG norC downstream region
1c-rev AAAAGAATTCCGATCCAGAAGTAGTGGTGGC norC downstream region
2b AAAATCTAGACTACTCCGCCGCCGCAAA norB upstream region
2b-dir AAAAAAGCTTGCCATGGCCCCATGCTAAC norB upstream region
2c AAAATCTAGAGGAGGTGGGGGCCCATGA norB downstream region
2c-rev AAAAGAATTCCCTTCCAGGTCTTGCGGATCT norB downstream region
3a AAAAGAATTCCCATCGCCCAGGCCTTCG norH upstream region
3b AAAATCTAGACTAGTCATGGGCCCCCAC norH upstream region
3b-dir AAAAGAATTCGAGGCCACTTGGGAGGTC norH His tag
3c AAAATCTAGATCCCGGTCCGGACCCC norH downstream region
3c-rev AAAAGAATTCCTTGAACTTGCTGGACTCGATG norH downstream region
3d AAAAGTCGACGGCACGTAGACCTTCCAGGT norH downstream region
5b AAAATCTAGAGTGGGGGCGCGTTTCCAT nirS
7a AAAAGAATTCCTTCCCCGGCCTTGGCC Region upstream of norC
badM-Fw AAAACATATGGCCCTTCGGAGCCTTC Region upstream of norC
kat1 CCTTTTTCCCCGCATCC Detection of kat gene
kat2 GAAACTTCTGGAATCGC Detection of kat gene
kat3 GGAACGAATATTGGATA Detection of kat gene
kat4 AGAAATTCTCTAGCGAT Detection of kat gene
norB_Fw AAAATCTAGAATGACCCAGGCTTTACCGCAG norB
norB_Rv AAAAGAATTCCTAGTCATGGGCCCCCAC norB
norC_Fw AAAATCTAGAATGGAGATCGGCTGGATAGAAAC norC
norC_Rv AAAAGAATTCCTACTCCGCCGCCGCAAA norC
norH-histag Rev AAAAAGCTTCAGTGGTGGTGGTGGTGGTGCCCGGATCCGTGAGCGTGCTC norH His tag
orf85_Rv AAAAGAATTCTCAGTGAGCGTGCTCCTTCT norH
PnorXbaIdir AAAATCTAGACTTGGGCCACACCCCTC norCp promoter
PnorNdeIrev AAAACATATGCTTACCCTCCTTTCACCTCCG norCp promoter
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served in the same position in nor clusters from all of the denitri-
fying strains of Thermus spp. so far sequenced: T. thermophilus
strains SG0.5JP17-16 (SG0.5) and JL-18 (27), Thermus scotoductus
SA1 (28), and Thermus oshimai JL2 (29) (Table 4). Moreover,
PCR-based assays on genomic DNA from several strains of T.
thermophilus showed the presence of the norH gene in all strains
that grow anaerobically with nitrite but not in the aerobic strain
HB27 or in those that only reduce nitrate to nitrite, like NAR1
(Table 5). In addition, homologues to NorH are also encoded
downstream from norB in several bacteria belonging to the Aquifi-
cae phylum, such as Hydrogenobacter thermophilus TK-6 or Hy-
drogenivirga sp. (Table 4).

norH is cotranscribed with norCB. The norC and norB genes
are separated by short DNA sequences, and norB and norH overlap
(Fig. 1A). A putative Rho-independent transcriptional terminator
is located immediately downstream of norH, suggesting that the
three genes are cotranscribed into a single mRNA. This hypothesis
was confirmed by RT-PCR assays on total RNA isolated from
cultures of T. thermophilus PRQ25 grown aerobically or anaero-
bically with nitrate. As shown in Fig. 1B, RT-PCR products were
detected extending the gene pairs norC-norB and norB-norH in
RNA from anaerobic cultures but not in RNA isolated from aer-
obic ones, whereas the control groES genes were detected in both
samples. Therefore, norH is cotranscribed with norC and norB
from a putative promoter located upstream from norC (norCp).

In order to identify the promoter, a 340-bp region upstream of
norC was cloned into a promoter probe vector (pMHPnor�gal),
and its expression under different conditions was assayed. As
shown in Fig. 1C, this promoter was expressed at a very low level
under aerobic conditions (condition 1) in the denitrifying strain
HB27d but was strongly induced by nitrate under anoxia (condi-
tion 3). Nitrite had a minor effect, whereas sodium nitroprusside
(SNP), a generator of NO, produced a 2-fold increase compared to
the aerobic culture. It is noteworthy that this promoter was basi-
cally inactive in the aerobic strain HB27, thus supporting that the
promoter depends on transcription activators encoded by the
denitrification island transferred to the HB27d strain (17).

NorH is required for efficient respiration of NO. To analyze
the role of the nor genes in denitrification and particularly that of

norH, we isolated null mutants for each of the three nor genes.
�norC, �norH, and �norB::kat deletion mutants were obtained in
which the corresponding coding sequences were deleted or re-
placed by the kat gene (Fig. 2A) as further confirmed by PCR (not
shown). Western blot assays revealed that the norC and norB mu-
tants did not contain any detectable NorC protein, whereas the
norH mutant expressed similar levels of NorC to the parental
HB27d strain (Fig. 2B). As expected, the NorC protein was not
present in the aerobic HB27 strain.

Under anaerobic growth conditions with nitrate as the electron
acceptor, the three mutants showed similar growth rates in the
early exponential phase but a decrease in growth rate above an
OD550 of 0.3. After 12 h, the three mutants reached a lower cell
density than the wild type. However, after 24 h, the differences
from the wild-type strain in cell mass were in the range of 20%
lower (Fig. 3A). Parallel analysis revealed that the amounts of N2O
accumulated by the norC and norB mutants in these growth ex-
periments were almost negligible, whereas the norH mutant pro-
duced roughly one-third of the amount produced by the wild-type
strain.

Effects of the absence of NorH on in vitro NO reductase ac-
tivity. The data presented above confirmed the expected require-
ments for NorC and NorB for Nor activity but also suggested a
role for NorH in N2O production. To check if this effect was due to
a role of NorH in proper folding or maturation of the NorCB
enzyme, we assayed the NO reductase activity of membrane frac-
tions isolated from the norH mutant and its parent, as well as with
the purified recombinant enzymes with or without NorH. As
shown in Fig. 4, membranes of the norH mutant show a capability
to produce N2O from NO similar to that of the wild type after 16
h of incubation using ascorbate-TMPD as the reductant. In con-
trast, the membrane extracts from the norC and norB mutants
produced significantly smaller amounts of N2O from NO in these
in vitro assays. Hence, the in vitro assays with purified membranes
do not reproduce the differences in N2O production between the

TABLE 4 Sequence homology of Nor protein from T. thermophilus
PRQ25

Organism

% of identity toa:

NorC
(221 aa)

NorB
(476 aa)

NorH
(98 aa)

T. thermophilus
NAR1 � � �
SG0.5JP17-16 99 99 98
JL-18 99 99 98

T. scotoductus 92 95 90
Meiothermus silvanus � � �
Hydrogenobacter thermophilus 62 68 55
Hydrogenivirga sp. 56 67 34
Pseudomonas stutzeri 38 40 �
Paracoccus denitrificans 35 40 �
a Shown are the percentages of identity of NorC, NorB, and NorH to homologues from
different organisms. Lengths (amino acids [aa]) are given in parentheses. �, no
homologues present.

TABLE 5 Distribution of nor genes in T. thermophilusa

Strain

Growth with:
Gas
production

Presence of gene:

NO3
� NO2

� norC norB norH

HB27 � � � � � �
NAR1 
 � � � � �
RQ1 
 � 
 � � �
B 
 � 
 � � �
PRQ14 
 
 
 
 
 

PRQ15 
 
 
 
 
 

PRQ16 
 
 
 
 
 

PRQ17 
 
 
 
 
 

PRQ21 
 
 
 
 
 

PRQ23 
 
 
 
 
 

PRQ24 
 
 
 
 
 

PRQ25 
 
 
 
 
 

PRQ26 
 
 
 
 
 

PRQ27 
 
 
 
 
 

PRQ28 
 
 
 
 
 

PRQ30 
 
 
 
 
 

PRQ31 
 
 
 
 
 

a Shown is a characterization of the ability to grow anaerobically with nitrate or nitrite
and to produce gas anaerobically from nitrate (40 mM) in different isolates of T.
thermophilus. The presence of the nor genes was checked by PCR amplification with the
primers indicated in Table 3. 
, positive; �, negative.
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wild type and the norH mutants observed with entire cells in vivo
(Fig. 3B).

Further information was obtained by assaying purified en-
zymes with or without the NorH protein by using different elec-

tron donors (Table 6). These assays can be completed within a few
minutes, in contrast to 16 h, as done for membrane extracts.
TMPD, which donates electrons to the heme c component of the
enzyme, showed about a 3-fold increase in activity in the NorH-

FIG 1 The norCBH operon. (A) Scheme of the nor operon. The loop indicates a Rho-independent transcriptional terminator located downstream of norH. The
bent arrow indicates the norCp promoter. Gray arrows indicate the approximate hybridization positions of the primers (Table 3) used for the RT-PCR assays
shown in panel B: norC_Fw (arrow 1), 1c_Rev (arrow 2), 3b_dir (arrow 3), and orf85_Rv (arrow 4). (B) Cultures of T. thermophilus PRQ25 grown aerobically
(lane A) or incubated for 4 h with 20 mM nitrate under anaerobic conditions (lane An) were used as the source of RNA for RT-PCR experiments with the primers
shown in panel A. The groES housekeeping gene was used as a control. (C) �-Galactosidase (�-gal) activity produced by cells transformed with pMHPnor-�gal
under the following conditions: Aerobic (no. 1), anaerobic without electron acceptors (no. 2), or anaerobic with nitrate (no. 3), nitrite (no. 4), or SNP (no. 5).
The HB27 strain was used as an aerobic control. The �-galactosidase activity was expressed as the change in OD420 as a function of time (�OD420) normalized
to the OD550 of the cultures.

FIG 2 Isolation of nor mutants. (A) Scheme showing the genetic structure of the nor operon in the nor mutants. Bent arrows indicate the norCp (white) and slpAp

(gray) promoters that control the nor operon and the kat gene, respectively. Note that absence of transcription terminator after the kat gene allows the expression
of the norH gene. Wt, wild type. (B) Western blot to detect the NorC protein in the nor mutants. The aerobic HB27 strain was used as a negative control.
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deficient protein compared to the wild type. However, PMS,
which presumably donates electrons directly to the active site in
the NorB subunit without involving the heme c in the NorC sub-
unit (6), did not show any change in activity with respect to three
enzyme subunits (Table 6). The data implicate the NorH subunit
as possibly regulating the kinetics of electron transfer to the heme
c component of the cNOR.

NorH interacts with the nitric oxide reductase. The results
obtained with purified recombinant enzymes isolated by His tag
affinity show the existence of direct interactions between NorH
and the NorCB complex. To test if this was also true in the native
enzyme, an insertion mutant of the T. thermophilus denitrifying
strain HB27d was generated by recombination with a suicide plas-
mid that produced a NorH protein with a C-terminal His tag
(Materials and Methods). A pulldown experiment using a Ni-
agarose affinity column with proteins solubilized from mem-
branes of this mutant allowed the detection of the NorC protein by
Western blotting in fractions of protein specifically bound to the
column (lanes 2 and 3). In contrast, NorC was not detected when
equivalent cell extracts from the wild-type non-His-tagged strain
were used (not shown). Therefore, the NorH-His protein was able
to pull down NorC, supporting that NorH is associated with the
enzyme.

DISCUSSION

Recently it has been shown that NorC and NorB form a heterodi-
meric complex active in NO reduction when expressed recombi-
nantly in E. coli (8), and the three-dimensional (3D) structure of
this complex was modeled based on the crystal of cNor from Pseu-
domonas aeruginosa. Therefore, the results showing that norC and
norB deletion mutants are unable to produce significant amounts
of N2O in vivo were expected (Fig. 3B). Significantly, it is shown
here that a third protein (NorH), encoded at the end of the nor
operon of the ancient clades Thermales and Aquificales, is relevant
for efficient NO respiration in vivo and influences the kinetics of
cNOR activity with the isolated enzyme when assayed with
TMPD.

The norH gene is cotranscribed with norC and norB (Fig. 1B)
from a promoter located immediately upstream of norC, which is
induced under denitrifying conditions (Fig. 1C). Although we do
not have specific antibodies to monitor the expression of NorH,
the presence of a ribosome binding site supports that the pro-
tein is translated as well. This translation of norH is also sug-
gested by the fact that �norH mutants show defective produc-
tion of N2O (Fig. 3B).

In addition, when a gene coding for a His-tagged NorH was
used to replace the wild-type norH gene in the genome of the
strain, we were able to pull down the NorC protein by immobi-
lized-metal affinity chromatography (IMAC) both in the recom-

FIG 3 Anaerobic growth and N2O accumulation in the nor mutants. (A)
Anaerobic growth of the wild type (HB27d) and the indicated nor mutant
derivatives at 70°C in the presence of 10 mM nitrate. (B) Production of nitrous
oxide from the cultures shown in panel A. The aerobic strain HB27 strain was
used as a negative control.

FIG 4 Nitric oxide reductase activity in membrane fractions of nor mutants.
The figure shows the amount of N2O produced from NO (100 �M) at 70°C
after 24 h of incubation with membrane fractions isolated from cultures of the
indicated strains grown anaerobically with nitrate. Ascorbate (5 mM) and
TMPD (5 mM) were used as electron donors.

TABLE 6 NOR activity of the purified T. thermophilus cNOR wild-type
and norH-deficient enzymes using different electron donors

Electron donor

Turnover no. (min�1)a

cNOR �norH mutant

TMPD 5.5 	 0.5 15.6 	 1.2
PMS 9 	 0.7 10 	 0.8
a Turnover number is expressed as mol of electrons/min per mol of enzyme. Turnover
refers to the mol NO/min per mol of enzyme that can be obtained by dividing by 2 the
data shown. The data are expressed as the average 	 standard deviation from 4
independent experiments.
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binant enzyme produced in E. coli (Table 6) and that produced in
T. thermophilus (Fig. 5), showing first that NorH is actually ex-
pressed and second that it interacts at least with NorC. In the
pulldown experiments with T. thermophilus the amount of NorC
detected was small, as expected for a terminal reductase expressed
from a single-copy gene, and immunoblots were required for de-
tection. Despite this low abundance, most of the NorC protein
from the solubilized extracts of NorH-His-expressing cells was
bound to the IMAC column, supporting a high binding affinity of
NorH for NorC. As NorC forms a complex with NorB to render an
active enzyme (8) a direct interaction between NorH and NorB is
also possible. In either case, our data with in vivo His-tagged NorH
and with recombinant Nor-tagged protein support that NorH is
bound to NorBC.

NorH is predicted to be a small highly hydrophobic integral
membrane protein with three transmembrane helices. Therefore,
its interaction with NorCB is likely to take place within the mem-
brane bilayer. The possibility that NorH could function as a chap-
erone required for folding or maturation seems unlikely because it
is possible to form NorC-NorB heterodimers in E. coli that are
quite active in NO reduction without NorH (Table 6) (8). On the
other hand, a role for NorH in the stabilization of the complex at
high temperatures (�60°C) also seems unlikely, as membrane ex-
tracts from �norH mutants of T. thermophilus showed no defects
in NO reduction to N2O when artificial electron donors were used
(Fig. 4). Moreover, it seems that the stability of NorC depends on
NorB and not on NorH, as �norB::kat mutants do not express any
detectable amount of NorC (Fig. 2B). Thus, a role for NorH in
respiration itself is more likely than in enzyme stabilization.

The activity of the recombinant wild-type and NorH-deficient
enzymes using different substrates may provide a clue as to the
function of NorH (Table 6). NOR activity using PMS, which do-
nates electrons directly to the enzyme active site (6), is not influ-
enced by the absence of NorH. In contrast, NOR activity using
TMPD as the electron donor is increased by 3-fold in the NorH-

deficient enzyme compared to the wild type. The results with in-
tact cells show that the production of N2O is lower in the absence
of NorH, but it must be recalled that the physiological electron
donor is not TMPD but a c-type cytochrome. Putative candidates
are the nitrate reductase, whose periplasmic cytochrome c has
been speculated to be required as an electron donor to the termi-
nal reductases (30) or the cytochrome c552 shown to be the elec-
tron donor for the cytochrome ba3 oxidase (31). At this point, the
data are merely suggestive that the role of NorH may involve mod-
ulating the interaction between the physiological electron donor
and the cytochrome c component of cNOR. Further biochemical
analysis and a structural analysis of the whole NorCBH complex
are needed to clarify the role of the NorH subunit of these ther-
mophilic cNORs.
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