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Abstract 

Central nervous system (CNS) development is driven by coordinated actions of 

developmental signals and chromatin regulators that precisely regulate gene expression 

patterns.  Histone methylation is a regulatory mechanism that controls transcriptional 

programs. In the last 10 years, several histone demethylases (HDM) were identified as 

important players in neural development, and their implication in cell fate decisions is 

beginning to be recognized. Identification of the physiological roles of these enzymes 

and their molecular mechanisms of action will be necessary for completely 

understanding the process that ultimately generates different neural cells in the CNS. In 

this review, we provide an overview of the Jumonji family of HDMs involved in 

neurodevelopment, and we discuss their roles during neural fate establishment and 

neuronal differentiation.  
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Introduction  

 The CNS is formed by different cell types that are generated during neural 

development. Neural progenitor cells (NPCs) proliferate to maintain their population, 

and at the same time, they differentiate, first to generate neurons, then oligodendrocytes 

and astrocytes (Guillemot, 2005). These complex processes occur in response to a 

variety of developmental cues, and their completion requires close coordination 

between transcription factors, extrinsic signals, and chromatin-modifying enzymes. The 

developmental signals and transcription factor families that control neurogenesis have 

been studied for many years, and they are quite well established (Lee and Pfaff, 2001, 
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Guillemot, 2007). However, recently, factors that interact with chromatin have emerged 

as regulators of neurogenesis and neural development. During the last decade, great 

efforts have been made to elucidate the role of epigenetic regulators that govern the 

transcriptional programs involved in neural development. 

 Eukaryotic DNA is organized into nucleosomes; this organization provides both 

a compact package of genetic material and a new layer of regulation for controlling its 

activity. Each nucleosome is composed of a DNA strand of 145-147 base pairs and two 

molecules each of histones H3, H4, H2A, and H2B. Moreover, the linker histone, H1, is 

required to compact the chromatin into high-order structures (Luger, 2003, Kouzarides, 

2007). The amino-terminal domains of H3, H4, H2A, and H2B undergo different types 

of post-translational modifications, mainly acetylation, methylation, phosphorylation, 

ubiquitination, and sumoylation (Kouzarides, 2007, Bannister and Kouzarides, 2011). 

These modifications evoke dynamic changes in the chromatin structure, which are 

essential for responding to both extrinsic and intrinsic signaling cues. In many cases, 

these responses lead to changes in gene expression that ultimately control 

transcriptional programs during development.  

 Although histone acetylation is the most studied and characterized histone 

modification (Kouzarides, 2007, Bannister and Kouzarides, 2011), in the last few years, 

many enzymes that catalyze the addition or removal of methyl groups from histones 

have been identified and widely studied. Methylation of histones can occur on lysine 

(K) and arginine (R) residues; in addition, K residues can undergo mono- (me1), di- 

(me2), or tri-methylation (me3), and R residues can undergo me1 and me2, positioned 

either symmetrically or asymmetrically. 
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 For many years, it was believed that histone methylation was an irreversible 

modification, and that the removal of methyl groups required a histone exchange. 

However, the finding that histone methylation patterns could respond to many signals in 

a reversible manner suggested that methylation/demethylation is a much more dynamic 

process than previously thought. The identification of the first histone demethylase 

(HDM) in 2004 (Shi, et al. 2004) confirmed this possibility. During the last decade, 

many HDMs have been identified (Table1). They were classified into two families: (i) 

the KDM1 family, whose members demethylate H3K4me2/1 and H3K9me2/1 in a 

flavin-adenine-dinucleotide dependent reaction (Shi, et al. 2004, Metzger, et al. 2005, 

Ciccone, et al. 2009); and (ii) the Jumonji (JMJC) family (Jumonji-c domain containing 

proteins), whose members utilize Fe(II) and 2-oxoglutarate in the demethylation 

reaction. The first JMJC HDM was identified in 2006 (Tsukada, et al. 2006). Since 

then, this family has greatly grown in number, and it includes enzymes that target me1, 

me2, and me3 histones [(Kooistra and Helin, 2012), Table 1].  

 Histone methylation is associated with both transcriptional activation 

(H3K4me3, H3K36me3, and H3K79me3/me2/me1) and repression (H3K9me3/me2, 

H4K20me3, and H3K27me3/me2). Interestingly, a combination of active and repressive 

histone methylations occurs in many promoters, and mainly in embryonic stem cells 

(ESCs). In particular, sites that carry H3K27me3 are often also enriched in H3K4me3. 

Sites marked by this combination of histone modifications with opposite regulatory 

potential are called bivalent domains, and they are thought to be responsible for 

maintaining genes in a poised state for activation (Azuara, et al. 2006, Bernstein, et al. 

2006). Accordingly, many chromatin-acting complexes contain both histone 

methyltransferases (HMT) and HDMs that catalyze functionally opposing 

modifications. For example, the one comprising MLL3-MLL4 H3K4me3 HMTs 



                                                                                                                                      Fueyo et al. 

5 
 

combined with a H3K27me3 HDM, UTX (Agger, et al. 2007, Lee, et al. 2007b); 

another containing a H3K4me3 HDM, JARID1A (jumonji, AT-rich Interactive domain 

1A) together with polycomb responsive complex 2 (PRC2), which is responsible for 

H3K27me3 methylation (Pasini, et al. 2008). These close associations might facilitate 

coordinated chromatin modifications and ensure methylation balance is maintained for 

regulating proper development. Moreover, histone methylation occurs together with 

other histone modifications, mainly histone acetylation. Accordingly, HDMs are present 

in large protein complexes that often contain other histone-modifying enzymes; for 

example, the JARID1C H3K4me3/me2 HDM is associated with histone deacetylases 

(HDAC) HDAC1 and HDAC2, the HMT G9a, and the transcriptional repressor REST 

[(Tahiliani, et al. 2007), see below]. These associations facilitate coordinated 

interactions of different enzymes with multiple histone sites. Then, although a particular 

modification might correlate with either transcription activation or repression, the 

combination of histone modifications will determine the final biological output (de la 

Cruz, et al. 2005, Taverna, et al. 2007, Lois, et al. 2010). 

 During the last few years, it was proposed that HDMs played a central role in 

development, particularly in a neural context, and in diseases (Lee and Lee, 2010, 

Pedersen and Helin, 2010,  Pattaroni and Jacob, 2013) (Table 2). However, we are just 

beginning to understand the molecular mechanisms through which HDMs cooperate 

with signals, to coordinate neural development. In this review, we briefly summarize the 

roles of Jumonji family members in different aspects of neurogenesis. In addition, we 

will highlight the major questions that remain open for future investigation. 

 

Function of Jumonji demethylases in neural development 
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 The first identified protein containing Jumonji-c domain was JARID2 that 

interestingly lacks the histone demethylase activity. However, it is essential for normal 

embryonic development and in particular for neural development  (Landeira and Fisher, 

2011). JARID2 associates with PRC2 to facilitate the latter's recruitment to target genes 

(Peng, et al., 2009, Shen, et al., 2009, Pasini, et al., 2010). As PRC complexes are 

required at different steps of neurogenesis, JARID2 might contribute to neural 

development by regulating PRC recruitment. The rest of proteins with a Jumonji-c 

domain are catalytically active and they are classified into subfamilies (HDM2/7). Each 

one contains different enzymes that target a particular lysine/s mainly on histones H3 

and H4. They are highly specific for both K residues and degree of methylation (Table 

1). Recently, many reports highlight the importance of the equilibrium between HMT 

and HDM enzymatic activities in the control of the final state of histone methylation 

during neural development. This is a key determinant of both neural commitment in 

ESCs and cell fate determination in NSCs. In accordance with that notion, many reports 

have proposed an essential role of PRC2 during neural development. PRC2 occupies 

and represses many neural-developmental regulators in ESCs (Boyer, et al. 2006, 

Bracken, et al. 2006, Lee, et al. 2006); moreover, H3K27me3 levels decrease in many 

neural-specific genes during neural differentiation (Boyer, et al. 2006, Burgold, et al. 

2008). PRC complexes are also required for NPCs differentiation. High levels of 

Enhancer of Zeste Homologue 2 (EZH2), the enzyme in PRC2 that methylates 

H3K27me3/me2, are required for NPC differentiation to oligodendrocytes. Conversely, 

Ezh2 expression decreases to allow neuronal and astrocytic differentiation (Sher, et al., 

2008). Finally, during the neurogenic to astrogenic transition, PRC proteins suppress 

neurogenic competence of NPCs by inhibiting Neurog1 expression. At the late stage of 
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NPCs, histone acetylation of the Neurog1 promoter decreases and H3K27me3 increases 

leading to repression of Neurog1 (Hirabayashi, et al., 2009).  

 Another good example remarking the importance of the balance between the 

histone methylation and demethylation is the regulation of the GFAP promoter during 

differentiation of NPCs into astrocytes. At this stage of development, FGF2 induces the 

decrease of H3K9me3 and the increase of H3K4me3 levels on the GFAP promoter 

leading to the activation of this astrocyte-specific marker (Song and Ghosh, 2004).  

 In this review we will discuss the function of the different HDMs controlling the 

histone methylation levels during neural development. Among them, we will mainly 

focus on those targeting H3K4 and H3K27 sites, because they have been associated 

with the major neural phenotypes.  

 

KDM5 Subfamily 

 The KDM5 subfamily members catalyze the demethylation of H3K4me3/me2 

(Christensen, et al. 2007, Iwase, et al. 2007, Klose, et al. 2007, Lee, et al. 2007a, 

Tahiliani, et al. 2007, Yamane, et al. 2007). The mammalian family comprises the 

JARID1A-D proteins (Table 1). These enzymes, particularly JARID1B and C, are 

involved in different aspects of neural development.  

 Recent work with Jarid1B knockout mouse embryos revealed that this HDM 

performs essential functions in neural development. Deletion of Jarid1B led to several 

neural defects, including disorganized cranial nerves, defects in eye development, and 

an increased incidence of exencephaly (Albert, et al. 2013). JARID1B binds to neural 

master regulator genes such as Pax6 and Otx2, to maintain low levels of H3K4me3. In 
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Jarid1B KO embryos, increased levels of H3K4me3 were associated with both 

repressed and bivalent genes, which made these genes more susceptible to activation 

(Albert, et al. 2013) (Fig. 1). Furthermore, ESCs require JARID1B activity for proper 

differentiation into neurons (Schmitz, et al. 2011). On the other hand, Jarid1B over-

expression in ESCs decreased the expression of other genes that regulate cell fate 

decisions, like Egr1, p27, and BMI1. These findings demonstrated that JARID1B plays 

an important role in balancing proliferation and differentiation during development 

(Dey, et al. 2008). 

 The best-known member of the KDM5 subfamily is JARID1C. JARID1C is 

strongly related to X-linked mental retardation (XLMR) and epilepsy (Jensen, et al. 

2005, Tzschach, et al. 2006, Tahiliani, et al. 2007, Jensen, et al. 2010). The mutations 

found in patients with XLMR frequently compromise JARID1C HDM activity (Iwase, 

et al. 2007, Tahiliani, et al. 2007). Shi's group has shown that, in combination with 

REST, G9a, and HDAC1/2, JARID1C repressed a subset of the REST target genes by 

binding to the neuron-restrictive silencing elements in their promoters. Thus, the 

JARID1C/REST complex maintains the neuronal genes silenced in non-neuronal cells. 

Additionally, when Jarid1C was knocked down in primary rat cerebellar granule 

neurons, dendritic morphogenesis was impaired. Moreover, studies in zebrafish 

demonstrated that Jarid1C plays a role in brain-patterning establishment and neuronal 

survival (Iwase, et al. 2007). 

 Taken together, the published data indicate that the JARID1 family is critical for 

normal neural development. Its major role is to fine-tune the expression of important 

neural regulators by maintaining appropriate H3K4me3 levels to ensure a balance 

between active and repressive histone modifications. An alteration in this balance can 
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affect phenotypical outcome when the developmental transcription potential takes 

advantage of that. 

 

The KDM6 subfamily 

KDM6 subfamily members catalyze H3K27me3/me2 demethylation. This 

family includes UTX, JMJD3, and UTY proteins, although HDM activity has not been 

shown for UTY (Agger, et al. 2007, De Santa, et al. 2007, Lan, et al. 2007, Lee, et al. 

2007b).  

 As described above, the H3K27 methylation status is essential for cell fate 

determination in stem cells.  Accordingly, H3K27me3/me2 HDMs are involved in 

important aspects of neural development. Several studies have demonstrated that 

JMJD3 (unlike UTX) is highly regulated at the transcriptional level in response to 

different developmental, differentiation, and stress-related signals. In a developmental 

context, Jmjd3 was up-regulated during differentiation of ESCs to a neural lineage, and 

it was required for neuronal commitment (Burgold, et al. 2008). Besides, over-

expression of Jmjd3 in NPCs induced the expression of various neuronal genes in a 

HDM activity-dependent manner (Jepsen, et al., 2007). Moreover, it has been described 

a direct relation between JMJD3 and the corepressor SMRT (silencing mediator of 

retinoic acid and thyroid hormone receptor) that is essential for proper forebrain 

development. SMRT is necessary to maintain the NSC state, mediating the retinoic-

acid- and Notch-dependent transcriptional response. In isolated NPCs, SMRT prevented 

retinoic-acid-receptor-dependent induction of neuronal differentiation in the absence of 

any ligand by repressing Jmjd3, which in turn participates in the activation of the 

neurogenic program (Fig. 2). Mechanistically, JMJD3 has been shown to cooperate with 
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a number of different signals during neural development. (i) In P19 cells, in response to 

retinoic acid (RA), JMJD3 was recruited by the Hes1 transcription factor to the Mash1 

promoter to facilitate efficient expression of the Mash1 gene and to drive RA-induced 

neuronal differentiation (Dai, et al. 2010). (ii) In vivo experiments in the chick neural 

tube have demonstrated that TGFβ-induced neuronal differentiation was dependent on 

JMJD3 HDM activity (Estarás, et al. 2012). Moreover, in neural stem cells (NSCs), 

upon signaling activation, SMAD3 recruited JMJD3 to the promoter of TGFβ-

responsive genes to facilitate transcription elongation, which allowed the TGFβ 

developmental program to proceed (Estarás, et al. 2012, Estarás, et al. 2013) (Fig. 3). 

(iii) In response to BMP pathway activation, JMJD3 interacted with SMAD1/SMAD4 

to demethylate and activate the NOGGIN promoter during spinal cord development. At 

the same time, NOGGIN antagonized the BMP pathway, generating a negative-

feedback regulatory loop, which controlled the dorsal interneuron generation mediated 

by JMJD3 HDM activity (Akizu, et al. 2010). These data point to JMJD3 as a critical 

integrator of neural developmental cues. Accordingly, a knockout of the mouse Jmjd3 

caused perinatal lethality due to an immature respiratory neuronal network (Burgold, et 

al. 2012). Furthermore, JMJD3 was shown to be essential for M2 microglia 

polarization. Suppressing Jmjd3 in N9 microglia led to the inhibition of M2 

polarization, an increase in M1 microglial inflammatory responses, and induction of 

neuronal death in vitro (Tang, et al. 2014).  

 These data suggested that JMJD3 is the member of the KDM6 subfamily that 

plays a central role in regulating H3K27me3/me2 levels in neural genes. Nevertheless, 

UTX has also been reported to play a functional role in neural development. 

Incorporation of UTX, but not JMJD3, into the HOX gene regions was required for RA-

induced neural differentiation in hESCs (Shahhoseini, et al. 2013). 
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Several reports have suggested that non-histone proteins can also be targeted and 

regulated by both HMT and HDM enzymes (Huang, et al. 2007). Recent data have 

indicated that JMJC-mediated demethylation of non-histone substrates might contribute 

to neural differentiation. The interaction between JMJD3 and p53 during mouse NSC 

differentiation resulted in nuclear accumulation of p53 (Sola, et al. 2011). Another 

member of the p53 family, p63 (TAp63g), is a direct target of JMJD3 HDM activity. 

Through demethylation, JMJD3 stabilizes p63 and influences its cellular distribution to 

promote the correct expression of p63-regulated neural-specific genes (Fonseca, et al. 

2012). 

 

The KDM7 subfamily 

The KDM7 subfamily, also called PHF (plant homeodomain finger), is the most 

recently identified HDM subfamily.  In mammals, it consists of three proteins: 

KIAA1718 which targets H3K9me2/me1 and H3K27me2/1 (Horton, et al. 2010, 

Huang, et al. 2010b, Tsukada, et al. 2010); PHF8, which demethylates H3K9me2/me1 

and H4K20me1 (Horton, et al. 2010, Liu, et al. 2010, Loenarz, et al. 2010, Qi, et al. 

2010); and PHF2, which targets H3K9me2/me1 and H4K20me3 (Wen, et al. 2010, 

Baba, et al. 2011, Stender, et al. 2012, ). 

PHF8 is the best-known member of the subfamily, partly because PHF8 

mutations have been found in patients with XLMR or cleft lip/palate (Laumonnier, et al. 

2005, Abidi, et al. 2007, Koivisto, et al. 2007). Interestingly, many of these mutations 

impair the HDM catalytic activity (Loenarz, et al. 2010, Qiu, et al. 2010, Yu, et al. 

2010). How mutations on PHF8 lead to XLMR remains unclear. Many studies have 

implicated PHF8 in the regulation of XLMR-related genes, including JARID1C (see 



                                                                                                                                      Fueyo et al. 

12 
 

above). Moreover, PHF8 associates with a zinc finger protein that is related to XLMR, 

ZNF11 (Kleine-Kohlbrecher, et al. 2010). Recent data demonstrated that PHF8 HDM 

activity was essential for promoting cytoskeleton dynamics, and it was required for 

proper neurite outgrowth in mouse primary cortical neurons (Asensio-Juan, et al. 2012). 

Consistent with those findings, depletion of the zebrafish PHF homolog led to a 

decrease in tectum size, a loss of neurons, and craniofacial alterations (Qi, et al. 2010, 

Tsukada, et al. 2010). Although PHF8 is the most studied member of the KDM7 

subfamily, another HDM of this subfamily has been associated with neural 

development. When KIAA1718 was knocked down, neural differentiation was blocked 

in mouse ESCs. This proneural effect was due to the direct transcriptional activation of 

FGF4, a signaling component implicated in neural differentiation (Huang, et al. 2010b). 

In addition, KIAA1718 promoted neural induction in early chick embryos; its over-

expression led to an expansion of the neural plate (Huang, et al. 2010a). 

 

The HDM2/3/4 subfamilies 

 Although not so many data support a definite role for the KDM2, KDM3, or 

KDM4 subfamilies in neural development, we will point to some studies that reveal 

their importance in such a context. JMJD1C, a member of the KDM3 subfamily, that 

targets H3K9me2/me1 (Yamane, et al. 2006, Kim, et al. 2010, Kim, et al. 2012), has 

been recently shown to repress neural differentiation. JMJD1C binds and demethylates 

miR-302 promoter to induce miR-302 expression, which prevents neural induction 

(Wang, et al. 2014). The mammalian KDM4A subfamily includes four members: 

KDM4A (Klose, et al. 2006, Whetstine, et al. 2006, Trojer, et al. 2009), KDM4B 

(Fodor, et al. 2006, Whetstine, et al. 2006, Trojer, et al. 2009), KDM4C (Cloos, et al. 
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2006, Whetstine, et al. 2006, Trojer, et al. 2009) and KDM4D (Whetstine, et al. 2006, 

Shin and Janknecht, 2007, Trojer, et al. 2009). Interestingly, it was recently shown that 

KDM4A drives neural crest specification in the chick embryo; loss of KDM4 leads to a 

down-regulation of neural crest specifier genes due to demethylation of regulatory 

regions (Strobl-Mazzulla, et al. 2010). The KDM2 subfamily, which targets 

H3K36me2/me1 (Tsukada, et al. 2006, He, et al. 2008, Lagarou, et al. 2008) and 

H3K4me3 (Frescas, et al. 2007) was reported to be involved mainly in oncogenesis 

(Suzuki, et al. 2006, Pfau, et al. 2008).  

 

Role of jumonji family in neurodevelopmental diseases 

As described in the Introduction, histone methylation/demethylation equilibrium 

plays an essential role in development, particularly during neural development. Thus, it 

is not surprising that specific alterations in HMT and HDM activities correlate with 

neurodevelopmental disorders (Table 2). For example, changes in HDM activity, due to 

mutations in JARID1C and PHF8, have been linked to mental retardation and facial 

morphological alterations in humans. A close analysis of the Jarid1C expression pattern 

in mice indicated that it was highly expressed in the hippocampus, which points to a 

role in cognition. Moreover, studies performed in different animal models have 

demonstrated that JARID1C is involved in neuronal survival and dendritic development 

(Iwase, et al. 2007). Similarly, PHF8 HDM activity is required for neurite outgrowth 

(Asensio-Juan, et al. 2012). Thus, the XLMR associated with PHF8 mutations might be 

due to deficient neuronal network establishment during development. Interestingly, the 

genes that encode JARID1C and PHF8 are located on the X chromosome, where the 

genes that regulate cognitive functions are more represented than in autosomes 
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(Pattaroni and Jacob, 2013). Taken together, these data provide new insights into 

XLMR in humans, and they hint that HDM activity plays a critical role.  

Other developmental diseases that have been directly or indirectly related to 

alterations in HDM activity include: (i) the Kabuki syndrome, which causes 

developmental delay and congenital anomalies; it has been recently associated with a 

deletion of the UTX gene (Lederer, et al. 2012); (ii) autism spectrum disorders (ASD) 

have been related with alterations in the activity of at least two HDMs: JARID1C 

(Adegbola, et al. 2008) and JMJD2C (Kantojarvi, et al. 2010). 

Finally, several reports have suggested that JMJD3, UTX, and KDM2B HDMs 

might play critical roles in cranial neural tube development (Cox, et al. 2010, Fukuda, et 

al. 2011, Tsurubuchi, et al. 2013). For example, Kdm2B-deficient mice exhibited failure 

of neural tube closure, which led to exencephaly (Fukuda, et al. 2011). In addition, 

decreased levels of JMJD3 were found in the amniotic fluid and serum of pregnant 

women with neural tube defect-affected embryos (Tsurubuchi, et al. 2013). These data 

have opened the possibility that these HDMs, or their enzymatic activities, may serve as 

potential therapeutic targets and as biomarkers for associated conditions. 

 

Conclusions and future perspectives 

 During neural development, a complex regulatory network controls 

transcriptional programs. In the last decade, HDMs have been identified as key 

components of this network (Fig. 4). In addition to methylation, other modifications on 

histones can fine-tune transcriptional activity at each developmental stage. 

Consequently, many HDMs and HMTs are found in multiprotein complexes that 
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contain other histone-modifying activities that coordinate the establishment of the final 

epigenetic landscape.  

 Although enormous progress has been made in the last few years in 

understanding the regulatory mechanisms that control the activity of HDMs, many 

questions remain open. It is particularly important to clarify how HDMs find their 

appropriate target genes in each different developmental context. HDMs act in 

coordination with intrinsic transcriptional programs and extrinsic signals. Thus, we 

speculate that direct interactions with transcription factors and the responses to 

developmental signals will determine how HDMs are recruited to specific sets of genes 

to provide a time- and space-appropriate response. How extrinsic signals control HDM 

activity remains an unanswered question. Developmental cues might affect their 

association with other histone-modifying enzymes, with transcription factors, or with 

other cellular components. In addition, extrinsic signals may directly modify the HDMs 

to alter their enzymatic activity, their stability, or their cellular localization.  

 Another unresolved question is: what is the cellular role of HDMs? Many data in 

the literature indicate that, although they contribute to transcriptional control, they do 

not play an instructive role during gene transcription; instead, they modulate the 

response to fine-tune the transcriptional output. The importance of non-histone substrate 

demethylation could also be relevant in HDM modulation of transcription. Moreover, 

many studies have confirmed that several HDMs play a role that is independent of 

HDM activity (Koyama-Nasu, et al. 2007, Secombe, et al. 2007, Lagarou, et al. 2008, 

Li, et al. 2008, Lee, et al. 2009, Miller, et al. 2010, DiTacchio, et al. 2011, Landeira and 

Fisher, 2011, Shpargel, et al. 2012). Experiments that address the role of HDM activity 

are essential for fully understanding the contribution of these enzymes to cellular 

responses.  
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 To comprehend the role of HDMs, it will be important to characterize dynamic 

changes in genome-wide histone modification patterns and changes in their specific 

targets during development. Finally, the generation of more animal models to analyze in 

vivo functions at different developmental stages will be crucial for understanding the 

role of these enzymes in neural development and in neurodevelopmental diseases. 
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Figure Legends 

Fig. 1 Function of JARID1B in mouse neural development. a JARID1B maintains the 

low levels of H3K4me3 that are needed to repress key neural development genes, such 

as Pax6 and Otx2. b In Jarid1b KO embryos, H3K4me3 levels are increased, and a high 

neonatal lethality is observed together with several neurodevelopmental defects (Albert 

et al. 2013). Red arrows mean gene silencing, green arrows depict transcription 

activation 

  

Fig. 2 SMRT repression of retinoic acid-dependent JMJD3 expression avoids neuronal 

differentiation. a SMRT blocks the expression of JMJD3 by counteracting its retinoic 
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acid-dependent activation. As a consequence, H3K27me3 at Dlx5 promoter is not 

removed, the gene remains silent, and the NSC state is maintained. b In SMRT KO 

mice retinoic acid receptor (RAR) binds to the retinoic acid responsive element (RARE) 

and promotes Jmjd3 transcription activation. Demethylation by JMJD3 causes Dlx5 

gene induction and NSC differentiation into neurons (Jepsen et al. 2007). Red arrows 

mean gene silencing, green arrows depict transcription activation  

Fig. 3 JMJD3 cooperates with TGFβ signaling to induce expression of the neurogenic 

gene Neurog2. a In the absence of the signal, Neurog2 remains silent due to the high 

levels of H3K27me3 on its promoter and coding region. b Upon TGFβ stimulation 

SMAD3 is recruited to the Neurog2 promoter and targets JMJD3 to this region. c 

JMJD3 interacts with RNA polymerase II phosphorylated in serine 2 and promotes 

transcription elongation by demethylating the gene body (Estaras et al. 2012, Estaras et 

al. 2013). Red arrows mean gene silencing, green arrows depict transcription activation 

(small arrowhead: initiation, big arrowhead: high expression) 

Fig. 4 JMJC histone demethylases are essential for progression from ESCs to terminal 

differentiated neurons. In ESCs, JMJD1C is necessary to maintain the stem cell state, 

while JARID1C, UTX, JMJD3 and KIAA1718 are required to promote neural 

commitment and differentiation from ESCs to NSCs. In addition, JMJD3 is 

fundamental to induce neurodifferentiation from NSCs, collaborating with RA, 

TGFβ and BMP pathways. Finally, the HDMs JARID1C and PHF8 contribute to the 

correct development and maintenance of axons and dendrites in mature neurons 
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FAMILY HDM OTHER NAMES HISTONE SUBSTRATE REFERENCES RELATED HUMAN HMT

KDM1A KDM1, KIAA0601, LSD1, AOF2 H3K4me2/me1, H3K9me2/me1 Shi et al. 2004, Metzger et al. 2005

KDM1B LSD2, AOF1, C6orf193 H3K4me2/me1, H3K9me2/me1 Ciccone et al. 2009

KDM2A JHDM1A, KIAA1004, CXXC8, FBL7, FBXL11 H3K36me2/me1 Tsukada et al. 2006

KDM2B JHDM1B, CXXC2, FBL10, FBXL10, PCCX2 H3K4me3, H3K36me2 Frescas et al. 2007, He et al. 2008

KDM3A JHDM2A, JMJD1, JMJD1A, KIAA0742, TSGA H3K9me2/me1 Yamane et al. 2006

KDM3B JHDM2B, JMJD1B, KIAA1082, C5orf7 H3K9me2/me1 Kim et al. 2012

JMJD1C JHDM2C, KIAA1380, TRIP8 H3K9me2/me1 Kim et al. 2010

KDM4A JHDM3A, JMJD2A, KIAA0677 H3K9me3/me2, H3K36me3/me2, H1.4K26me3 Whetstine et al. 2006, Klose et al. 2006, Trojer et al. 2009

KDM4B JHDM3B, JMJD2B, KIAA0876 H3K9me3/me2, H3K36me3/me2, H1.4K26me3 Whetstine et al. 2006, Fodor et al. 2006, Trojer et al. 2009

KDM4C JHDM3C, JMJD2C, KIAA0780, GASC1 H3K9me3/me2, H3K36me3/me2, H1.4K26me3 Whetstine et al. 2006, Cloos et al. 2006, Trojer et al. 2009

KDM4D JHDM3D, JMJD2D, FLJ10251 H3K9me3/me2, H1.4K26me3/me2 Whetstine et al. 2006, Trojer et al. 2009

KDM5A JARID1A, RBP2 H3K4me3/me2 Christensen et al. 2007, Klose et al.  2007

KDM5B JARID1B, PLU1 H3K4me3/me2 Christensen et al. 2007

KDM5C JARID1C, SMCX H3K4me3/me2 Christensen et al. 2007, Iw ase et al. 2007

KDM5D JARID1D, SMCY H3K4me3/me2 Lee et al. 2007a

KDM6A UTX H3K27me3/me2 Agger et al. 2007, Lan et. Al 2007

KDM6B JMJD3, KIAA0346 H3K27me3/me2 Agger et al. 2007, Lan et. Al 2007

UTY

KDM7A JHDM1D, KIAA1718, KDM7 H3K9me2/me1, H3K27me2/me1 Tsukada et al. 2010, Horton et al. 2010, Huang et al. 2010b

PHF8 JHDM1F, KIAA1111, ZNF422 H3K9me2/me1, H4K20me1 Loenarz et al. 2010, Liu et al. 2010, Qi et al. 2010 

PHF2 JHDM1E, KIAA0662 H3K9me2/me1, H4K20me3 Wen et al. 2010, Baba et al. 2011, Stender et al. 2012 

* after GlcNAcylation

Table 1. Human histone demethylases

LSD
H3K4me2/me1: SETD1A-B, KMT2A-D, KMT2E*; 
H3K4me1: ASH1L, SETD7; H3K9me2: SUV39H1-
2; H3K9me2/me1: SETDB1, EHMT1-2, PRDM2.

JMJC

H3K4me3: KMT2A-D, SETD1A-B, SMYD3, ASH1L, 
PRMD9; H3K36me2: SMYD2; H3K36me2/me1: 
SETD2, SETMAR, NSD1-3, ASH1L.

H3K9me2: SUV39H1-2; H3K9me2/me1: SETDB1, 
EHMT1-2, PRDM2.

H3K9me3: SETD2; H3K9me3/me2: SUV39H1-2, 
SETDB1, PRDM2; H3K9me2: EHMT1-2; 
H3K36me3/me2: SETD2, NSD1-3, ASH1L, SMYD2; 
H3K36me2: SETMAR; H1.4K26me3/me2: EZH2, 
EHMT1-2.

H3K4me3: ASH1L, PRDM9; H3K4me3/me2: 
KMT2A-D, SETD1A-B, SMYD3.

H3K27me3/me2: EZH1-2.

H3K9me2: SUV39H1-2; H3K9me2/me1: SETDB1, 
EHMT1-2, PRDM2; H3K27me2/me1: EZH1-2; 
H4K20me3: SMYD5, SUV420H2; H4K20me1: 
SETD8.



Table2. JMJC demethylases and their role in neural development and disease 
HDM Function in Neural Development Associated pathologies References 

KDM2B Embryonic neural tube development and neurulation in mice.   Fukuda et al. 2011 

JMJD1C Inhibition of  neural differentiation in hESC.   Wang et al. 2014 

KDM4A Neural crest specification in chick embryo.   Strobl-Mazzulla et al. 2010  

KDM4C   Autism spectrum disorders. Kantojarvi et al. 2010 

KDM5B Repression of stem cell genes to allow ESC differentiation into neurons.   Schmitz et al. 2011, Albert et al. 2013 

KDM5C 
Repression of neuronal genes in non-neuronal cells. Neuronal survival and 
dendritic development. 

X-linked mental retardation, autism 
spectrum disorders, epilepsy. 

Jensen et al. 2005, Tahiliani et al. 2007, 
Iwase et al. 2007, Adegbola et al. 2008 

KDM6A Induction of neural differentiation in hESC. Kabuki syndrome. Lederer et al. 2012, Shahhoseini et al. 2013 

KDM6B 

Forebrain development antagonized by SMRT in isolated cortical progenitors. 
Neuronal differentiation in P19 cells. Neural commitment of ESC. BMP-induced 
dorsal interneurons generation in chick embryo neural tube. TGFβ-induced 
neuronal differentiation in mNSC. 

  
Jepsen et al. 2007,  Burgold et al. 2008, Dai 
et al. 2010, Akizu et al. 2010, Estaras et al. 
2012 

  

  

KDM7A Neural differentiation in mESCs. Neural induction on early chick embryos.    Huang et al. 2010a, Huang et al. 2010b 

PHF8 
Tectum development and neural survival in zebrafish embryos. Interaction with 
ZNF711 and regulation of JARID1C. Regulation of cytoskeleton-related genes 
neccesary for proper neurite formation.  

X linked mental retardation, cleft 
lip/palate. 

Laumonnier et al. 2005,  Qi et al. 2010,  
Tsukada et al. 2010, Kleine-Kohlbrecher et 
al. 2010, Asensio-Juan et al. 2012 


